JPH04174980A - Connecting member for circuit - Google Patents

Connecting member for circuit

Info

Publication number
JPH04174980A
JPH04174980A JP2301667A JP30166790A JPH04174980A JP H04174980 A JPH04174980 A JP H04174980A JP 2301667 A JP2301667 A JP 2301667A JP 30166790 A JP30166790 A JP 30166790A JP H04174980 A JPH04174980 A JP H04174980A
Authority
JP
Japan
Prior art keywords
particles
connection
insulating
circuit
insulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2301667A
Other languages
Japanese (ja)
Inventor
Isao Tsukagoshi
功 塚越
Atsuo Nakajima
中島 敦夫
Yasushi Goto
泰史 後藤
Tomohisa Ota
共久 太田
Yutaka Yamaguchi
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2301667A priority Critical patent/JPH04174980A/en
Publication of JPH04174980A publication Critical patent/JPH04174980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Multi-Conductor Connections (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PURPOSE:To achieve highly reliable circuit connection that enables connection of microcircuits by heating both insulative particles and thickness-control particles being harder than the insulative particles, and containing the insulative particles and the thickness-control particles in an insulative adhesive which shows plastic fluidity, the insulative particles comprising conductive particles covered at their surface with a thermoplastic insulative layer. CONSTITUTION:This connecting member comprises insulative particles 1, thickness-control particles 2 and an adhesive 3. The insulative particles 1 have conductive particles 4 substantially covered at their surface with a thermoplastic insulative layer 6. The conductive particles 4 need to show deformation by heating and pressing at the connection of a circuit. As the insulative particles, a macromolecular material such as polystyrene and phenol resin is used as a core 7 and a conductive metal thin layer 5 of Cu, Ni, Au and the like is provided on the surface of the core. A Pb/Sn allay or the like is used as the charged particles 4 showing plastic fluidity by heat. Connection of microcircuits is thus made possible and highly reliable circuit connection is achieved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は微細回路用の接続部材に関し、更に詳しくは集
積回路、液晶パネル等の接続端子とそれに対向配置され
た回路基板上の接続端子を電気的、機械的に接続するた
めの接続部材に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a connecting member for microcircuits, and more specifically, a connecting member for connecting terminals of integrated circuits, liquid crystal panels, etc. and connecting terminals on a circuit board disposed opposite thereto. The present invention relates to a connecting member for electrically and mechanically connecting.

[従来の技術] 電子部品の小形薄形化に伴い、これらに用いる回路は高
密度、高精細化して、いる。これら微細回路の接続は、
従来のハンダやゴムコネクターなどでは対応が困難であ
ることから、最近では異方導電性の接着剤や膜状物(以
下接続部材という)を用いる方法が多用されるようにな
ってきた。
[Prior Art] As electronic components become smaller and thinner, the circuits used in these components are becoming denser and more precise. The connections of these microcircuits are
Since it is difficult to use conventional solder or rubber connectors, methods using anisotropically conductive adhesives or film-like materials (hereinafter referred to as connection members) have recently come into widespread use.

この方法は、例えば、相対峙する回路間に、導電材料を
所定量含有した接着剤よりなる接続部材層を設け、加圧
又は加熱加圧手段を講じることによって、回路間の電気
的接続と同時に隣接回路間には絶縁性を付与し、相対峙
する回路を接着固定するものである。
In this method, for example, a connecting member layer made of an adhesive containing a predetermined amount of a conductive material is provided between opposing circuits, and by applying pressure or heating/pressing means, the electrical connection between the circuits is simultaneously established. Insulation is provided between adjacent circuits, and opposing circuits are bonded and fixed.

上記したような回路の接続部材は多数点回路の一括接続
材料であることから極めて有用であるが、高精細化の進
む微細回路の接続に対して分解能を向上することと長期
接続信頼性とを併せて得る要求が極めて強い。すなわち
従来技術では一般的に5本/mmの回路(回路中100
μm、絶縁中100μm)の接続が可能であるが、最近
の回路の微細化により例えば10本/mm(回路中50
μm1絶縁巾50μm)以上の回路接続や、ICチップ
のボンディング用途においては、例えば1電極の接続面
積が50μm角で電極間距離か20μmといったように
回路の微細化がますます進行している。
The above-mentioned circuit connection members are extremely useful as they are materials for connecting multiple circuits at once, but it is important to improve resolution and long-term connection reliability for connection of fine circuits, which are becoming increasingly high-definition. The demands that come with this are extremely strong. In other words, in the conventional technology, generally 5 wires/mm are used in the circuit (100 wires in the circuit).
μm, 100 μm in insulation), but with the recent miniaturization of circuits, for example, 10 connections/mm (50 μm in insulation) is possible.
In connection with circuits with an insulation width of 50 μm or more, and in bonding applications for IC chips, circuits are becoming increasingly finer, with the connection area of one electrode being 50 μm square and the distance between electrodes being 20 μm, for example.

接続部材をこのような微細回路の接続に対応できるよう
に高分解能化するための基本的な考え方は、隣接回路と
の絶縁性を確保するために導電材料の粒径を回路間の絶
縁部分よりも小さくし、併せて導電材料が接触しない程
度に添加量を加減しながら回路接続部における導通性を
確実に得ることである。しかしながら導電材料の粒径を
小さくすると、表面積の増加と粒子個数の著しい増加に
より粒子は2次凝集してしまい隣接回路との絶縁性が保
持できなくなり、また粒子の添加量を減少すると接続す
べき回路上の導電材料の数が減少することから接触点数
が不足し接続回路間での導通が得られなくなるため、長
期接続信頼性を保ちながら接続部材を高分解能化するこ
とは極めて困難であった。
The basic idea behind making connection members high-resolution so that they can connect such fine circuits is to make the particle size of the conductive material smaller than the insulating part between the circuits in order to ensure insulation from adjacent circuits. The objective is to ensure conductivity at the circuit connection portion by reducing the amount of the conductive material and adjusting the amount added to such an extent that the conductive materials do not come in contact with each other. However, when the particle size of the conductive material is reduced, the surface area increases and the number of particles increases significantly, causing secondary agglomeration of the particles, making it impossible to maintain insulation from adjacent circuits. As the number of conductive materials on the circuit decreases, the number of contact points becomes insufficient and continuity between connected circuits cannot be obtained, making it extremely difficult to increase the resolution of connecting members while maintaining long-term connection reliability. .

このような微細回路の接続を可能とし、かつ接続信頼性
を向上するための試みとして、例えば特開昭63−54
796号公報記載の方法がある。
As an attempt to enable connection of such fine circuits and improve connection reliability, for example, Japanese Patent Laid-Open No. 63-54
There is a method described in No. 796.

この方法は、ポリマ粒子や半田粒子の表面をNiやCu
等の導電材料で構成し、更にこの表面を絶縁性樹脂層で
被覆したマイクロカプセルにより電極間を加熱加圧して
接続する方法である。
In this method, the surfaces of polymer particles and solder particles are coated with Ni or Cu.
In this method, the electrodes are connected by heating and pressurizing them using microcapsules made of a conductive material such as, the surface of which is further coated with an insulating resin layer.

[発明が解決しようとする課題] 特開昭68−54796号公報に示される方法は、導電
性粒子が加熱により変形性を示すので接続回路への接触
面積が増大することから良好な接続信頼性の得られる可
能性が高いものの、その良好な信頼性を得るには接続条
件を厳しく管理しなければならないという欠点を有して
いた。
[Problems to be Solved by the Invention] The method disclosed in Japanese Patent Application Laid-Open No. 68-54796 has good connection reliability because the conductive particles exhibit deformability when heated, increasing the contact area with the connection circuit. However, in order to obtain good reliability, connection conditions must be strictly controlled.

すなわち、接続条件である温度や圧力が不足の場合は、
回路面における粒子表面の絶縁層の排除が不十分となる
ので接続抵抗が高く、また電極面と粒子との接触が不完
全なので接続信頼性も低下してしまう。一方、温度や圧
力が過剰な場合、粒子表面の絶縁層は全表面で簡単に溶
解してしまい絶縁層を形成した効果が得られなくなり、
隣接粒子との接触により分解能が低下し微細回路の接続
に適用できなくなってしまう。また、導電性粒子の変形
度は接続条件により変動してしまい、接続信頼性にばら
つきを生じてしまうため、厳しい接続条件の管理を必要
とする。
In other words, if the connection conditions such as temperature or pressure are insufficient,
Since the insulating layer on the particle surface is insufficiently removed from the circuit surface, the connection resistance is high, and since the contact between the electrode surface and the particle is incomplete, the connection reliability is also reduced. On the other hand, if the temperature or pressure is excessive, the insulating layer on the particle surface will easily melt over the entire surface, and the effect of forming the insulating layer will no longer be obtained.
Contact with adjacent particles reduces resolution, making it unsuitable for connecting microcircuits. Furthermore, the degree of deformation of the conductive particles varies depending on the connection conditions, resulting in variations in connection reliability, which requires strict management of connection conditions.

更に、回路同士の構造的接続は粒子表面に形成した絶縁
層の溶融により得る方式であるため、接着強度が接続条
件により変動し、また接続部が点状に存在するので接着
面積が不十分となり接着強度が低く応力集中により劣化
し易い等の欠点を有していた。
Furthermore, since the structural connection between circuits is obtained by melting the insulating layer formed on the surface of the particles, the adhesive strength varies depending on the connection conditions, and since the connection parts are dotted, the adhesive area is insufficient. It had drawbacks such as low adhesive strength and easy deterioration due to stress concentration.

本発明は上記問題点を解決するためになされたもので、
微細回路の接続が可能で、長期接続信頼性に優れた回路
接続を幅広い接続条件下で簡単に安定して行うことがで
きる回路の接続部材を提供することを目的とする。
The present invention has been made to solve the above problems,
An object of the present invention is to provide a circuit connecting member that can connect fine circuits and easily and stably connect circuits with excellent long-term connection reliability under a wide range of connection conditions.

[課題を解決するための手段] 本発明は、加熱により変形性を示す導電粒子の表面を熱
可塑性絶縁層で実質的に覆ってなる絶縁性粒子と前記絶
縁性粒子より硬質である厚み制御粒子とを加熱により塑
性流動性を示す絶縁性接着剤中に含有させたことを特徴
とする回路の接続部材を提供するものである。
[Means for Solving the Problems] The present invention provides insulating particles that are formed by substantially covering the surfaces of conductive particles that exhibit deformability when heated with a thermoplastic insulating layer, and thickness-controlled particles that are harder than the insulating particles. The present invention provides a circuit connecting member characterized in that the above is contained in an insulating adhesive that exhibits plastic fluidity when heated.

本発明はまた、厚み制御粒子として上記厚み制御粒子の
表面を熱可塑性絶縁層で実質的に覆ってなる被覆粒子を
絶縁性接着剤中に含有させたことを特徴とする回路の接
続部材を提供するものである。
The present invention also provides a connection member for a circuit, characterized in that an insulating adhesive contains coated particles in which the surfaces of the thickness control particles are substantially covered with a thermoplastic insulating layer as thickness control particles. It is something to do.

本発明を図面を参照しながら更に詳細に説明する。The present invention will be explained in more detail with reference to the drawings.

第1図及び第2図は、本発明の一実施例を示すフィルム
状の接続部材の模式断面図であり、本発明の接続部材は
絶縁性粒子1と厚み制御粒子2及び接着剤3より基本的
に構成されている。
1 and 2 are schematic cross-sectional views of a film-like connecting member showing an embodiment of the present invention. It is structured as follows.

本発明における絶縁性粒子1は、第3図に示すように導
電粒子4の表面が熱可塑性絶縁層6で実質的に覆われて
いる。また、導電粒子4は、回路接続時の加熱加圧によ
り変形性を示すことを必要とする。このような特性を示
す絶縁性粒子としては、第3図に示すように、ポリスチ
レン、ポリメチルメタクリレート、フェノール樹脂又は
エポキシ樹脂等の高分子物質を核材7とし、その表面に
導電性のCu、 Ni、 Auなどの金属薄層5を形成
したものが好ましく用いられる。熱により変形性を示す
導電粒子(加熱変形性導電粒子)4としては、Pb/S
n合金を代表とする融点250℃以下の低融点金属類か
らなる粒子も用いられる。
In the insulating particles 1 according to the present invention, the surfaces of the conductive particles 4 are substantially covered with a thermoplastic insulating layer 6, as shown in FIG. Furthermore, the conductive particles 4 need to exhibit deformability when heated and pressurized during circuit connection. As shown in FIG. 3, insulating particles exhibiting such characteristics include a core material 7 made of a polymer material such as polystyrene, polymethyl methacrylate, phenol resin, or epoxy resin, and conductive Cu, Cu, etc. on the surface thereof. A material having a thin metal layer 5 of Ni, Au, etc. formed thereon is preferably used. The conductive particles 4 that exhibit deformability due to heat (thermal deformable conductive particles) include Pb/S.
Particles made of low melting point metals having a melting point of 250° C. or less, typified by n-alloys, may also be used.

加熱により変形性を示す導電粒子4の形状は特に問わな
いが、球状物が取扱い易いことから好ましい。
Although the shape of the conductive particles 4 that exhibit deformability upon heating is not particularly limited, spherical particles are preferred because they are easy to handle.

粒径は、接続回路の絶縁中以下のものが用いられ、0.
1〜30μmとすることが好ましい。粒径分布は加熱加
圧による回路接続時に変形するので不均一であっても良
いが、絶縁層6を形成する場合に均一厚みを得易いこと
から粒径範囲を小さくすることが好ましい。
The particle size used is less than that of the insulation of the connection circuit, and is 0.
It is preferable to set it as 1-30 micrometers. Although the particle size distribution may be non-uniform since it is deformed during circuit connection by heating and pressurizing, it is preferable to make the particle size range small since it is easier to obtain a uniform thickness when forming the insulating layer 6.

加熱により変形性を示す導電粒子4は、完全な充実体、
内部に気泡を有する発泡体、内部が気体からなる中空体
及び小粒子の集りである凝集体等のいずれでも良く、こ
れらを単独若しくは複合して用いることができる。
The conductive particles 4 that exhibit deformability when heated are completely solid bodies,
Any of foams having air bubbles inside, hollow bodies having gas inside, and aggregates having small particles may be used, and these can be used alone or in combination.

絶縁層6は、加熱加圧により流動性を示す熱可塑性絶縁
体が適用できる。すなわち回路接続時の加熱加圧により
接続すべき回路間において、導電性粒子と回路間あるい
は導電性粒子相互間の接触部の絶縁層6が流動して接触
部から排除されることにより、接続回路間に導電性が得
られる。これらの絶縁層6の材質としては、ホットメル
ト性の接着剤が代表的である。また熱軟化性や融点を有
するホットメルト接着剤のベースポリマーも有用であり
、例えばポリエチレン、エチレン共重合体ポリマー、エ
チレン−酢酸ビニル共重合体、ポリプロピレン、エチレ
ン−アクリル酸共重合体、エチレン−アクリル酸エステ
ル共重合体、ポリアミド、ポリエステル、スチレン−イ
ソプレン共重合体、スチレン−ブタジェン共重合体、エ
チレン−プロピレン共重合体、アクリル酸エステル系ゴ
ム、ポリビニルアセタール、ナイロン、アクリロニトリ
ル−ブタジェン共重合体、スチレン−ブタジェン共重合
体、フェノキシ樹脂、固形エポキシ樹脂、ポリウレタン
などがある。
For the insulating layer 6, a thermoplastic insulator that exhibits fluidity when heated and pressurized can be used. That is, between the circuits to be connected by heating and pressurizing when connecting the circuit, the insulating layer 6 at the contact area between the conductive particles and the circuit or between the conductive particles flows and is removed from the contact area, so that the connected circuit Conductivity is obtained between the two. A typical material for these insulating layers 6 is a hot melt adhesive. Base polymers for hot melt adhesives that have heat softening properties and melting points are also useful, such as polyethylene, ethylene copolymers, ethylene-vinyl acetate copolymers, polypropylene, ethylene-acrylic acid copolymers, and ethylene-acrylic copolymers. Acid ester copolymer, polyamide, polyester, styrene-isoprene copolymer, styrene-butadiene copolymer, ethylene-propylene copolymer, acrylic ester rubber, polyvinyl acetal, nylon, acrylonitrile-butadiene copolymer, styrene -Butadiene copolymers, phenoxy resins, solid epoxy resins, polyurethanes, etc.

これらの絶縁層6が加熱加圧により流動性を示す条件と
しては、回路接続時の条件である80〜250℃及び0
. 1〜100kg/cm2であることが好ましい。8
0℃未満では回路接続部の耐熱性が低下するので好まし
くなく、250℃を超えると接続時に高温を必要とする
ため周辺の接続部品等に熱損傷を与えることから好まし
くない。
The conditions under which these insulating layers 6 exhibit fluidity by heating and pressurizing are 80 to 250°C and 0.
.. It is preferable that it is 1-100 kg/cm2. 8
If it is less than 0°C, the heat resistance of the circuit connection part will be reduced, which is undesirable, and if it exceeds 250°C, a high temperature will be required during connection, which will cause thermal damage to surrounding connected parts, which is undesirable.

また圧力は0 、 1 kg/cm”未満では回路と絶
縁性粒子あるいは絶縁性粒子同士の接触部における絶縁
層が十分に排除されないことから十分な導電性が得られ
ず、100 kg/cm2を超えると接続部品等に機械
的損傷を及ぼすことから好ましくない。これらのことか
ら、絶縁層は90〜220℃、1〜50 kg/cm2
で流動性を示すことが好ましい。
In addition, if the pressure is less than 0.1 kg/cm2, the insulating layer at the contact area between the circuit and the insulating particles or between the insulating particles will not be sufficiently removed, so sufficient conductivity will not be obtained, and if the pressure exceeds 100 kg/cm2 This is not preferable because it causes mechanical damage to connecting parts, etc. For these reasons, the insulation layer should be heated at 90 to 220°C and 1 to 50 kg/cm2.
It is preferable that the material exhibits fluidity at .

これらの絶縁層6を導電粒子4上に形成する方法として
は、静電塗装法、噴霧法、高速攪拌法、熱溶融被覆法及
び溶液塗布法などがある。これらの製法は例えば、■工
業調査会発行、小石真純著「微粒子設計」に詳しく記載
されている。
Methods for forming these insulating layers 6 on the conductive particles 4 include an electrostatic coating method, a spraying method, a high-speed stirring method, a hot melt coating method, and a solution coating method. These manufacturing methods are described in detail in, for example, ``Fine Particle Design'' by Masumi Koishi, published by Industrial Research Association.

上記の方法のうち、絶縁層6が汎用溶剤に可溶性の場合
には、溶液塗布法が簡単な設備で実施可能なことから好
適である。
Among the above methods, when the insulating layer 6 is soluble in a general-purpose solvent, the solution coating method is preferred because it can be carried out with simple equipment.

絶縁層6の厚みは0.1〜5μm程度が好ましい。0.
1μm未満では絶縁性が不足し、5μmを超えると絶縁
層の排除が十分にされ難いので十分な導電性が得にくい
The thickness of the insulating layer 6 is preferably about 0.1 to 5 μm. 0.
If the thickness is less than 1 μm, the insulation properties will be insufficient, and if the thickness exceeds 5 μm, it will be difficult to remove the insulating layer sufficiently, making it difficult to obtain sufficient conductivity.

次に、厚み制御粒子2について第4図〜第5図を用いて
説明する。
Next, the thickness control particles 2 will be explained using FIGS. 4 and 5.

厚み制御粒子2は、少なくとも回路接続時の条件下にお
いて導電性粒子4よりも硬質であることが必要である。
The thickness control particles 2 need to be harder than the conductive particles 4 at least under the conditions at the time of circuit connection.

また粒子分布の狭い均一粒径であることが、接続部の回
路の接続厚みを制御し易く好ましい。この厚み制御粒子
により加熱加圧時の回路間の厚みが制御される。
Further, it is preferable that the particles have a narrow particle distribution and a uniform particle size, since this makes it easier to control the connection thickness of the circuit at the connection portion. The thickness control particles control the thickness between the circuits during heating and pressurization.

厚み制御粒子の粒径は、絶縁性粒子1よりも小さい場合
(第1図)が好ましいが、大きな場合(第2図)でも絶
縁性粒子が凝集状の場合に適用できる。
It is preferable that the particle size of the thickness control particles is smaller than the insulating particles 1 (FIG. 1), but even if the particle size is larger (FIG. 2), it can be applied when the insulating particles are aggregated.

厚み制御粒子2は、第4図のようにそのまま用いてもよ
く、あるいは第5図のように前記厚み制御粒子の表面を
前述の熱可塑性絶縁層6で実質的に覆ってもよい。絶縁
層を設けることは導電性の厚み制御粒子を用いた場合の
絶縁性の向上に有効であり、また、厚み制御粒子を接着
剤3中へ均一に分散させるのに極めて有用である。
The thickness control particles 2 may be used as they are as shown in FIG. 4, or the surfaces of the thickness control particles 2 may be substantially covered with the thermoplastic insulating layer 6 described above as shown in FIG. Providing an insulating layer is effective for improving insulation when conductive thickness control particles are used, and is also extremely useful for uniformly dispersing the thickness control particles in the adhesive 3.

厚み制御粒子2は、例えばニッケル、銀等の導電粒子や
、セラミック、ガラス、シリカ等の球状あるいはミルド
ファイバー状粒子又は硬質樹脂などの絶縁粒子を単独若
しくは任意に混合して併用する。また添加量は必要に応
じて絶縁性接着剤に対し好ましくは01〜15体積%を
使用する。
The thickness control particles 2 are, for example, conductive particles such as nickel or silver, spherical or milled fiber particles such as ceramic, glass, or silica, or insulating particles such as hard resin, either singly or in combination as desired. The amount added is preferably 01 to 15% by volume based on the insulating adhesive, if necessary.

0、 1%未満では厚み制御の機能が低下し15体積%
を超えると回路に対する接着力が低下する。
If it is less than 0.1%, the thickness control function will deteriorate, and if it is less than 15% by volume.
If it exceeds this, the adhesive strength to the circuit will decrease.

同様な理由により、更に好ましくは0.5〜10体積%
、より更に好ましくは1〜8体積%使用する。
For the same reason, more preferably 0.5 to 10% by volume
, more preferably 1 to 8% by volume.

また回路の微細化に対応するには隣接回路との距離以下
の平均粒径を有する絶縁性粒子の適用か好ましい。
In addition, in order to cope with the miniaturization of circuits, it is preferable to use insulating particles having an average particle diameter less than the distance between adjacent circuits.

ここで本発明に用いる平均粒径は次式で求めるものとす
る。
Here, the average particle diameter used in the present invention is determined by the following formula.

D=Σnd/Σn       (1)(式中は、nは
dなる粒径の粒子の数を示す。これら粒径の観察方法と
しては、一般的に用いられる電子顕微鏡や光学顕微鏡、
コールタカウンター、光散乱法などがあり、本発明では
電子顕微鏡法による。またアスペクト比を有する粒子の
場合のdは長径とする。) 以上よりなる絶縁性粒子1と厚み制御粒子2を絶縁性接
着剤4中に含有させることで接続部材が得られる。
D=Σnd/Σn (1) (In the formula, n indicates the number of particles with a particle size of d. Methods for observing these particle sizes include commonly used electron microscopes, optical microscopes,
Coulter counter, light scattering method, etc. are available, and the present invention uses electron microscopy. Further, in the case of particles having an aspect ratio, d is the major axis. ) A connecting member can be obtained by incorporating the insulating particles 1 and thickness control particles 2 as described above into the insulating adhesive 4.

本発明で用いられる絶縁性接着剤3としては、基本的に
は絶縁性を示す通常の接着シート類に用いられる配合の
ものが適用可能である。通常の接着シート類に用いられ
る接着剤の配合は、凝集力を付与するための合成樹脂や
ゴム等からなるポリマー類と、その他必要に応じて用い
る粘着付与剤、粘着性調整剤、架橋剤、老化防止剤、界
面強化剤、分散剤等からなっている。
As the insulating adhesive 3 used in the present invention, it is basically possible to use a formulation that is used for ordinary adhesive sheets exhibiting insulating properties. The composition of adhesives used in ordinary adhesive sheets includes polymers such as synthetic resins and rubbers for imparting cohesive force, as well as tackifiers, tackiness modifiers, crosslinking agents, etc. used as necessary. It consists of anti-aging agents, interfacial strengthening agents, dispersants, etc.

また、エポキシ樹脂等の反応(硬化)型接着剤を絶縁性
接着剤の基本成分とした場合、高温時の凝集力が高いこ
とから接着部の保持性に優れるので信頼性に優れた接続
が可能となる。
In addition, when a reactive (curing) adhesive such as epoxy resin is used as the basic component of an insulating adhesive, its high cohesive strength at high temperatures provides excellent retention of the bonded area, allowing for highly reliable connections. becomes.

このとき、接着剤と絶縁性粒子1の絶縁層とは非相溶性
の組み合わせにすることが好ましく、そのための選択の
目安としては次のことが挙げられる。
At this time, it is preferable that the adhesive and the insulating layer of the insulating particles 1 be an incompatible combination, and the following can be cited as a guideline for selection for this purpose.

(1)相溶性の目安として一般によく用いられるSP値
(溶解性パラメータ:日本接着協会編 接着ハンドブッ
ク第2版P−46に詳しく記載されている。)が1.O
以上異なる組み合わせとして材料に極性差を設ける。(
2)絶縁粒子1の熱可塑性絶縁層の熱溶融温度あるいは
熱軟化温度を接着剤よりも10℃以上高くする。(3)
絶縁層を反応型とし硬化型とすることなどである。これ
らの目安は各材料で微妙に異なるので個々の検討が必要
であり、大事なことは回路の接続後においても絶縁回路
部における絶縁層は、そのまま保持(被覆)されている
ことである。
(1) The SP value (solubility parameter: detailed in the Adhesive Handbook, 2nd edition, page 46, edited by the Japan Adhesive Association), which is commonly used as a measure of compatibility, is 1. O
As the above different combinations, polarity differences are provided in the materials. (
2) The thermal melting temperature or thermal softening temperature of the thermoplastic insulating layer of the insulating particles 1 is set to be 10° C. or more higher than that of the adhesive. (3)
For example, the insulating layer may be of a reactive type or a hardening type. These guidelines differ slightly for each material, so individual consideration is required.What is important is that the insulating layer in the insulated circuit portion remains intact (covered) even after the circuit is connected.

回路接続時における流動性は、流動し易い順に接着剤〉
絶縁層〉加熱変形性導電粒子とすることが信頼性の高い
接続を得る点で好ましい。 ゛この理由は、回路接続時
の加熱加圧により先ず接着剤3が流動することで、絶縁
性粒子1と回路8あるいは9の表面から接着剤3が排除
され、続いて絶縁層6が軟化流動するにより導電粒子4
相互若しくは導電粒子と回路との接触が得られ、その後
で導電粒子4は厚み制御粒子の粒径まで変形されて導電
粒子4と回路とが面接触状態となり易いためである。
Adhesives are ranked in order of flowability when connecting circuits.
Insulating layer> Heat-deformable conductive particles are preferred from the viewpoint of obtaining a highly reliable connection.゛The reason for this is that the adhesive 3 first flows due to heat and pressure applied during circuit connection, and is removed from the surfaces of the insulating particles 1 and the circuit 8 or 9, and then the insulating layer 6 softens and flows. conductive particles 4
This is because contact between each other or the conductive particles and the circuit is obtained, and then the conductive particles 4 are deformed to the particle size of the thickness control particles, so that the conductive particles 4 and the circuit are likely to come into surface contact.

接着剤中に占める絶縁性粒子1の添加量は、その表面が
絶縁層で被覆されているために多量に添加することが可
能である。すなわち従来の回路の接続部材においては、
その添加量は一般的に5体積%以下と少量の添加により
隣接回路との絶縁性を制御していたが、本発明において
は好ましくは2〜50体積%と多量に添加することが可
能となった。
The amount of insulating particles 1 added to the adhesive can be increased because the surface thereof is covered with an insulating layer. In other words, in conventional circuit connection members,
In general, insulation with adjacent circuits has been controlled by adding a small amount of 5% by volume or less, but in the present invention, it is possible to add a large amount, preferably 2 to 50% by volume. Ta.

添加量が2体積%未満では微細回路部における導電性粒
子の数が少なすぎることから接続の信頼性が不足し、5
0体積%を超えると接着剤中への混合が困難となる。更
に好ましい添加量は5〜30体積%である。
If the amount added is less than 2% by volume, the number of conductive particles in the microcircuit part is too small, resulting in insufficient connection reliability.
If it exceeds 0% by volume, it will be difficult to mix it into the adhesive. A more preferable addition amount is 5 to 30% by volume.

接続部材用の組成物は上記絶縁性接着剤を溶剤に溶解す
るか、懸濁状に媒体中に分散させあるいは熱溶融するな
どにより液状とした後、絶縁性粒子1と厚み制御粒子を
ボールミルや攪拌装置によるなどの通常の分散方法によ
り混合するにより得ることができる。
The composition for the connection member is made into a liquid by dissolving the above-mentioned insulating adhesive in a solvent, dispersing it in a suspension state in a medium, or melting it with heat, and then processing the insulating particles 1 and the thickness control particles in a ball mill or It can be obtained by mixing by conventional dispersion methods, such as by using a stirring device.

上記の絶縁性粒子と厚み制御粒子を混合した接続部材用
組成物を用いて、接続を要する一方若しくは双方の回路
上にスクリーン印刷やロールコータ等の手段を用いて直
接回路上に接続部材を構成するか、あるいは第1図〜第
2図に示したようなフィルム状の接続部材としてもよい
。このとき、接続部材の厚みは特に規定しないか1〜5
0μmが好ましい。1μm未満では回路との接着性が十
分に得にくく、50μmを超えると回路の接続が短時間
の場合に接続時の熱伝達が不十分となり絶縁性粒子の絶
縁層が十分に流動することができないので十分な導電性
が得られない。そのため、接続部材の厚みは3〜30μ
mとすることが更に好ましい。
Using a composition for a connecting member that is a mixture of the above-mentioned insulating particles and thickness control particles, a connecting member is formed directly on one or both circuits that require connection using means such as screen printing or a roll coater. Alternatively, a film-like connecting member as shown in FIGS. 1 and 2 may be used. At this time, the thickness of the connecting member is either not specified or 1 to 5.
0 μm is preferable. If it is less than 1 μm, it is difficult to obtain sufficient adhesion with the circuit, and if it exceeds 50 μm, heat transfer during connection will be insufficient when the circuit is connected for a short time, and the insulating layer of insulating particles will not be able to flow sufficiently. Therefore, sufficient conductivity cannot be obtained. Therefore, the thickness of the connecting member is 3 to 30 μm.
It is more preferable to set it to m.

本発明になる接続部材の使用方法としては、例えば回路
にフィルム状接続部材を仮貼りした状態でセパレータの
ある場合にはそれを剥離し、あるいは上記接続部材用組
成物を回路上に塗布し必要に応じて溶剤や分散媒を除去
した状態で、その面にほかの接続すべき回路を位置合わ
せして、熱プレスや加熱ロール等により加熱加圧すれば
よい。
The method of using the connecting member of the present invention is, for example, by temporarily attaching a film-like connecting member to a circuit and peeling off the separator if there is one, or by applying the above-mentioned composition for connecting members onto the circuit as necessary. After removing the solvent or dispersion medium according to the requirements, other circuits to be connected may be aligned on that surface and heated and pressed using a hot press, heated rolls, or the like.

第6図は、接続部材として第1図に示した構成のうち厚
み制御粒子2を、第5図の絶縁層を有する粒子とした接
続部材を使用した場合であって、上記した方法により回
路を接続した状態を示す模式断面図である。回路接続時
の加熱加圧により接着剤3が軟化し加圧変形性導電粒子
4は厚み制御粒子2の粒径厚みまで変形して回路に面接
触状態となり信頼性が向上する。このとき、回路接続時
の加熱加圧により接着剤3が軟化流動すると、絶縁層6
も軟化し加圧部から排除される。すなわち回路部8−9
は、回路8あるいは9が絶縁部に較べて一般的に一定の
高さを有することや絶縁部である基板10.11よりも
回飴の方が硬度が高く変形性が少ない等の理由により、
絶縁部に較べ優先的に加熱加圧されるので、回路部8−
9間に存在する絶縁層は加圧の少ない絶縁部に流動排除
され導電性粒子4は加圧方向である回路8−9間におい
て絶縁層がなくなり導電性が得られる。この状態を第6
図A部に示したが、同一回路の区域内のみで導電粒子の
横方向の接触も得られることから、接触点数の増加によ
り接続信頼性が向上する。
FIG. 6 shows a case in which a connection member having the structure shown in FIG. 1 in which the thickness control particles 2 are particles having an insulating layer shown in FIG. FIG. 3 is a schematic cross-sectional view showing a connected state. The adhesive 3 is softened by heat and pressure during circuit connection, and the pressure-deformable conductive particles 4 are deformed to the particle size and thickness of the thickness control particles 2, bringing them into surface contact with the circuit, improving reliability. At this time, if the adhesive 3 softens and flows due to heating and pressure during circuit connection, the insulating layer 6
is also softened and removed from the pressurized area. That is, the circuit section 8-9
This is because the circuit 8 or 9 generally has a certain height compared to the insulating part, and the hardness of the candy is higher and less deformable than the board 10.11 which is the insulating part, etc.
Since it is heated and pressurized preferentially compared to the insulating part, the circuit part 8-
The insulating layer existing between circuits 9 and 9 flows and is removed to the insulating part where the pressure is low, and the conductive particles 4 have no insulating layer between circuits 8 and 9 in the pressurizing direction, and conductivity is obtained. This state is the sixth
As shown in part A of the figure, since lateral contact of the conductive particles is also obtained only within the same circuit area, connection reliability is improved by increasing the number of contact points.

絶縁層6は、第6図B部のように回路との接触部のみが
排除されてもよく、この場合は絶縁層6が回路面と接着
固定されるので個々の粒子が移動し難い構造となり、や
はり信頼性の向上に有効である。
The insulating layer 6 may have only the contact portion with the circuit removed as shown in part B of FIG. 6, and in this case, the insulating layer 6 is adhesively fixed to the circuit surface, resulting in a structure in which individual particles are difficult to move. , which is still effective in improving reliability.

以上の接続構造となった時点で、接着剤3は冷却若しく
は硬化反応により回路の接続が完了する。
When the above connection structure is achieved, the circuit connection is completed by cooling or hardening reaction of the adhesive 3.

すなわち、回路接続部8−9間は、厚み制御粒子2の粒
径分の厚みに制御された状態で導通接続が可能となり、
絶縁部8−8′間においては、絶縁層6を保持したまま
なので高度な絶縁性を保持できる。このとき、回路8−
9に沿うように導電粒子が変形しているので回路への接
触面積か増加し信頼性が向上する。
In other words, conductive connection between the circuit connection parts 8 and 9 is possible with the thickness controlled to be equal to the particle size of the thickness control particles 2,
Since the insulating layer 6 is maintained between the insulating parts 8 and 8', a high degree of insulation can be maintained. At this time, circuit 8-
Since the conductive particles are deformed along the line 9, the contact area with the circuit increases and reliability is improved.

[作用コ 本発明によれば、加熱により変形性を示す導電粒子の変
形量を、この導電粒子よりも少なくとも回路接続時の条
件下で硬質である厚み制御粒子の粒径によりコントロー
ルできるので、接続時の温度や圧力の管理中を広くする
ことが可能となり接続部の信頼性が向上する。
[Function] According to the present invention, the amount of deformation of conductive particles that exhibit deformability upon heating can be controlled by the particle size of the thickness control particles, which are harder than the conductive particles at least under the conditions during circuit connection. This makes it possible to control the temperature and pressure at a wider range of time, improving the reliability of the connection.

すなわち接続時の温度や圧力は導電粒子の変形が可能な
条件を下限とし、接続条件の温度や圧力の上限を周囲の
部材に悪影響のない範囲で高温度及び高圧力とすること
ができるので、例えば接着剤の硬化反応の時間短縮や、
導電粒子の変形に要する時間が短縮可能となりその結果
接続作業コスト低減効果も得られる。
In other words, the lower limit of the temperature and pressure during connection can be set to the conditions that allow deformation of the conductive particles, and the upper limit of the temperature and pressure of the connection conditions can be set to a high temperature and high pressure within a range that does not adversely affect surrounding members. For example, shortening the curing reaction time of adhesives,
The time required for deforming the conductive particles can be shortened, and as a result, the cost of connection work can be reduced.

また本発明は、絶縁性粒子と厚み制御粒子とを絶縁性接
着剤中に含有してなるために、回路の構造的接着を接着
剤により行うことができるので有効接着面積の拡大や高
強度接着を得ることが可能となり、接着部への応力集中
も少ない。
Furthermore, since the present invention contains insulating particles and thickness control particles in an insulating adhesive, structural adhesion of circuits can be performed with the adhesive, thereby increasing the effective adhesion area and providing high-strength adhesion. This makes it possible to obtain the desired properties, and there is less stress concentration on the bonded area.

更に表面を絶縁層で被覆形成してなる厚み制御粒子を用
いた場合は、絶縁層が流動して回路面に接着固定するの
で、厚み制御粒子や導電粒子が回路面に十分に固定され
信頼性が一層向上する。またこの場合、絶縁性粒子及び
厚み制御粒子の表面が処理されているので分散性が向上
し、これらを接着剤中に高濃度に分散させることかでき
る。
Furthermore, when using thickness-controlled particles whose surface is coated with an insulating layer, the insulating layer flows and is adhesively fixed to the circuit surface, so the thickness-controlled particles and conductive particles are sufficiently fixed to the circuit surface, increasing reliability. further improves. Furthermore, in this case, since the surfaces of the insulating particles and thickness control particles are treated, their dispersibility is improved, and they can be dispersed in the adhesive at a high concentration.

[発明の効果] 以上詳述したように、本発明の回路の接続部材を用いる
と微細回路の接続が可能で長期接続信頼性に優れた回路
接続を、広い接続条件下で簡単に安定して得ることがで
きる。
[Effects of the Invention] As detailed above, by using the circuit connecting member of the present invention, it is possible to connect fine circuits and to easily and stably connect circuits with excellent long-term connection reliability under a wide range of connection conditions. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明になる接続部材の一実施例を
示す模式断面図、第3図は本発明にかかる絶縁性粒子を
示す模式断面図、第4図〜第5図は本発明にかかる厚る
に制御粒子を示す模式断面図、第6図は本発明にかかる
接続部材を用いた回路接続部の模式断面図である。 符号の説明 1 絶縁性粒子    2 厚み制御粒子3 絶縁性接
着剤   4 導電粒子 5 金属薄層     6.6′熱可塑性絶縁層7 核
材       8.8′上部回路9.9′下部回路 
  10 上部基板11 下部基板 笈紬 第3図第4図第5図
1 and 2 are schematic cross-sectional views showing one embodiment of the connecting member according to the present invention, FIG. 3 is a schematic cross-sectional view showing insulating particles according to the present invention, and FIGS. FIG. 6 is a schematic cross-sectional view showing the controlled particles according to the present invention, and FIG. 6 is a schematic cross-sectional view of a circuit connection part using the connecting member according to the present invention. Explanation of symbols 1 Insulating particles 2 Thickness control particles 3 Insulating adhesive 4 Conductive particles 5 Metal thin layer 6.6' Thermoplastic insulating layer 7 Core material 8.8' Upper circuit 9. 9' Lower circuit
10 Upper board 11 Lower board Tsumugi Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 加熱により変形性を示す導電粒子の表面を熱可塑性
絶縁層で実質的に覆ってなる絶縁性粒子と前記絶縁性粒
子より硬質である厚み制御粒子とを加熱により塑性流動
性を示す絶縁性接着剤中に含有させたことを特徴とする
回路の接続部材。 2.加熱により変形性を示す導電粒子の表面を熱可塑性
絶縁層で実質的に覆ってなる絶縁性粒子と前記絶縁性粒
子より硬質である粒子の表面を熱可塑性絶縁層で実質的
に覆ってなる厚み制御粒子とを加熱により塑性流動性を
示す絶縁性接着剤中に含有させたことを特徴とする回路
の接続部材。
[Scope of Claims] 1. Insulating particles whose surfaces are substantially covered with a thermoplastic insulating layer and which exhibit deformability when heated, and thickness control particles that are harder than the insulating particles are made to plastically flow by heating. 1. A circuit connecting member, characterized in that the circuit connecting member is contained in an insulating adhesive exhibiting properties. 2. Insulating particles that are formed by substantially covering the surfaces of conductive particles that exhibit deformability when heated with a thermoplastic insulating layer; and thicknesses that are formed by substantially covering the surfaces of particles that are harder than the insulating particles with a thermoplastic insulating layer. 1. A circuit connecting member characterized in that control particles are contained in an insulating adhesive that exhibits plastic fluidity when heated.
JP2301667A 1990-11-07 1990-11-07 Connecting member for circuit Pending JPH04174980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2301667A JPH04174980A (en) 1990-11-07 1990-11-07 Connecting member for circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2301667A JPH04174980A (en) 1990-11-07 1990-11-07 Connecting member for circuit

Publications (1)

Publication Number Publication Date
JPH04174980A true JPH04174980A (en) 1992-06-23

Family

ID=17899682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2301667A Pending JPH04174980A (en) 1990-11-07 1990-11-07 Connecting member for circuit

Country Status (1)

Country Link
JP (1) JPH04174980A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0996321A2 (en) * 1998-10-22 2000-04-26 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
WO2000024005A1 (en) * 1998-10-19 2000-04-27 Dynal Particles As Particles
US6940180B1 (en) * 1996-09-05 2005-09-06 Seiko Epson Corporation Semiconductor device connecting structure, liquid crystal display unit based on the same connecting structure, and electronic apparatus using the same display unit
WO2005112527A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Connector employing flexible printed board
WO2007074652A1 (en) 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
WO2008023565A1 (en) 2006-08-25 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2009051043A1 (en) 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
US7566494B2 (en) 2005-09-02 2009-07-28 Cheil Industries, Inc. Insulated conductive particles and anisotropic conductive adhesive film using the same
JP2009277652A (en) * 2008-04-17 2009-11-26 Hitachi Chem Co Ltd Circuit connection material and connection structure for circuit member
US7815999B2 (en) 2004-05-12 2010-10-19 Cheil Industries, Inc. Insulated conductive particles and anisotropic conductive adhesive film containing the particles
US7879956B2 (en) 1997-03-31 2011-02-01 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
CN102195157A (en) * 2010-03-18 2011-09-21 Smk株式会社 Connector
JP2011198773A (en) * 2011-06-28 2011-10-06 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connected body
US20120002320A1 (en) * 2010-06-30 2012-01-05 Charles Allan Brown Particle-capturing device including a component configured to provide an additional function within an enclosure exclusive of capturing particles
WO2013114930A1 (en) * 2012-01-31 2013-08-08 株式会社村田製作所 Electroconductive paste for bonding metal terminal, electronic component having metal terminal, and method for manufacturing same
WO2022196265A1 (en) * 2021-03-19 2022-09-22 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power source apparatus, and multilayer substrate production method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940180B1 (en) * 1996-09-05 2005-09-06 Seiko Epson Corporation Semiconductor device connecting structure, liquid crystal display unit based on the same connecting structure, and electronic apparatus using the same display unit
US7084517B2 (en) 1996-09-05 2006-08-01 Seiko Epson Corporation Semiconductor device connecting structure, liquid crystal display unit based on the same connecting structure, and electronic apparatus using the same display unit
US7968196B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US8142605B2 (en) 1997-03-31 2012-03-27 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US7967943B2 (en) 1997-03-31 2011-06-28 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US7879956B2 (en) 1997-03-31 2011-02-01 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
US6787233B1 (en) 1998-10-19 2004-09-07 Dynal Biotech Asa Particles
WO2000024005A1 (en) * 1998-10-19 2000-04-27 Dynal Particles As Particles
EP0996321A3 (en) * 1998-10-22 2003-02-12 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
EP0996321A2 (en) * 1998-10-22 2000-04-26 Sony Chemicals Corporation Anisotropically electroconductive adhesive and adhesive film
US7815999B2 (en) 2004-05-12 2010-10-19 Cheil Industries, Inc. Insulated conductive particles and anisotropic conductive adhesive film containing the particles
WO2005112527A1 (en) * 2004-05-14 2005-11-24 Matsushita Electric Industrial Co., Ltd. Connector employing flexible printed board
US7566494B2 (en) 2005-09-02 2009-07-28 Cheil Industries, Inc. Insulated conductive particles and anisotropic conductive adhesive film using the same
EP2322585A1 (en) 2005-12-26 2011-05-18 Hitachi Chemical Co., Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
EP2348087A1 (en) 2005-12-26 2011-07-27 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
WO2007074652A1 (en) 2005-12-26 2007-07-05 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material and connecting structure of circuit member
WO2008023565A1 (en) 2006-08-25 2008-02-28 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
EP2339695A1 (en) 2006-08-25 2011-06-29 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same and production method thereof
WO2009051043A1 (en) 2007-10-15 2009-04-23 Hitachi Chemical Company, Ltd. Circuit connecting adhesive film and circuit connecting structure
JP2009277652A (en) * 2008-04-17 2009-11-26 Hitachi Chem Co Ltd Circuit connection material and connection structure for circuit member
CN102195157A (en) * 2010-03-18 2011-09-21 Smk株式会社 Connector
JP2011198542A (en) * 2010-03-18 2011-10-06 Smk Corp Connector
US20120002320A1 (en) * 2010-06-30 2012-01-05 Charles Allan Brown Particle-capturing device including a component configured to provide an additional function within an enclosure exclusive of capturing particles
US8427775B2 (en) * 2010-06-30 2013-04-23 HGST Netherlands B.V. Particle-capturing device including a component configured to provide an additional function within an enclosure exclusive of capturing particles
JP2011198773A (en) * 2011-06-28 2011-10-06 Sony Chemical & Information Device Corp Anisotropic conductive film, connection method, and connected body
WO2013114930A1 (en) * 2012-01-31 2013-08-08 株式会社村田製作所 Electroconductive paste for bonding metal terminal, electronic component having metal terminal, and method for manufacturing same
JPWO2013114930A1 (en) * 2012-01-31 2015-05-11 株式会社村田製作所 Conductive paste for joining metal terminals, electronic component with metal terminals, and manufacturing method thereof
US9396832B2 (en) 2012-01-31 2016-07-19 Murata Manufacutring Co., Ltd. Electroconductive paste for bonding metal terminal, electronic component with metal terminal, and method for manufacturing same
WO2022196265A1 (en) * 2021-03-19 2022-09-22 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power source apparatus, and multilayer substrate production method
JP2022144502A (en) * 2021-03-19 2022-10-03 Necプラットフォームズ株式会社 Multilayer substrate, integrated magnetic device, power supply, and manufacturing method of multilayer substrate

Similar Documents

Publication Publication Date Title
JPH04174980A (en) Connecting member for circuit
US5804882A (en) Semiconductor device having a semiconductor chip electrically connected to a wiring substrate
KR101193757B1 (en) Anisotropic conductive film, method for producing the same, and joined structure using the same
KR101150613B1 (en) Adhesive film, connecting method, and joined structure
JPH04259766A (en) Connecting member for circuit
JP4890053B2 (en) Anisotropic conductive film for microcircuit inspection
JPH09312176A (en) Connecting member, and structure and method for connecting electrodes using this connecting member
JP2895872B2 (en) Anisotropic conductive material, anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JPH08316625A (en) Method for connecting electrode and connection member used for it
JP2002026070A (en) Semiconductor device and its manufacturing method
JP2648712B2 (en) Anisotropic conductive adhesive, method for electrically connecting electrodes using the anisotropic conductive adhesive, and electric circuit board formed by the method
JP3724606B2 (en) Semiconductor chip connection structure and wiring board used therefor
JP3516379B2 (en) Anisotropic conductive film
JPH11186334A (en) Semiconductor mounting apparatus, manufacture thereof and anisotropically conductive material
TW200307029A (en) Conductive particle and adhesive agent
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JPH08148211A (en) Connection member and structure and method for connecting electrode using the same
JP3679618B2 (en) Insulating coating conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP6271048B2 (en) Anisotropic conductive film, connection method, and joined body
JP2004006417A (en) Connecting element and connection structure of electrode using this
KR100251675B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP4181231B2 (en) Method for manufacturing anisotropic conductive adhesive film
JP4925405B2 (en) Method for manufacturing connection structure
JP2007224112A (en) Anisotropic conductive adhesive sheet and method for producing the same