JP2002026070A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JP2002026070A
JP2002026070A JP2000202484A JP2000202484A JP2002026070A JP 2002026070 A JP2002026070 A JP 2002026070A JP 2000202484 A JP2000202484 A JP 2000202484A JP 2000202484 A JP2000202484 A JP 2000202484A JP 2002026070 A JP2002026070 A JP 2002026070A
Authority
JP
Japan
Prior art keywords
wiring board
electrodes
solder
chip
bare chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000202484A
Other languages
Japanese (ja)
Inventor
Masao Segawa
雅雄 瀬川
Michiko Oishi
美智子 大石
Jun Karasawa
純 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000202484A priority Critical patent/JP2002026070A/en
Publication of JP2002026070A publication Critical patent/JP2002026070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device with high productivity through simple processes as a semiconductor device manufactured by mounting a bare chip IC on a wiring board and the semiconductor device itself. SOLUTION: This semiconductor device has electrodes of the IC chip joined to electrodes 2a, 2b, 2c,..., 2d of the wiring board 1 across an anisotropic conductive materials 7 and 7a, have fusion type conductive particles 6a, 6b, 6c,..., 6 dispersed in insulating resin 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配線基板にベアチ
ップICを実装した半導体装置およびその製造方法に関
する。
The present invention relates to a semiconductor device having a bare chip IC mounted on a wiring board and a method of manufacturing the same.

【0002】[0002]

【従来の技術】シリコンのベアチップICを配線基板に
直接に実装する、ベアチップ実装技術は携帯電話やパソ
コン等の製造工程での適用を中心に進展を見せている。
特に、ベアチップICの接続用電極を配線基板に対向し
て、フェイスダウンボンディングするフリップチップ実
装技術が、最も高密度実装に優れているために実用化が
進んでいる。
2. Description of the Related Art Bare chip mounting technology, in which a silicon bare chip IC is directly mounted on a wiring board, has been progressing mainly in application to manufacturing processes of mobile phones and personal computers.
In particular, flip-chip mounting technology in which a connection electrode of a bare chip IC faces the wiring substrate and face-down bonding is performed has been put to practical use because it is excellent in the highest density mounting.

【0003】これらのフリップチップ実装の第1の例を
以下に説明する。
A first example of the flip chip mounting will be described below.

【0004】図9(a)から(f)はフリップチップ実
装の各工程ごとの模式説明図であり、図10は、そのう
ちの加熱工程での温度プロファイルと封止樹脂(封止樹
脂)の硬化反応率との関係を示すグラフである。
FIGS. 9 (a) to 9 (f) are schematic diagrams for each step of flip-chip mounting, and FIG. 10 is a diagram showing a temperature profile in the heating step and curing of the sealing resin (sealing resin). It is a graph which shows the relationship with a reaction rate.

【0005】まず、ガラスエポキシ板等の配線基材の表
面に銅パターン等の電極52、52、52…52
にはんだ処理した配線基板51と、接続電極54
54 、54…54の形成されたベアチップIC5
4とを準備する(a)。次に、配線基板51にフラック
ス59を塗布して、はんだ付け性を向上させるための表
面処理を行う。また、ベアチップIC54の接続電極5
、54、54…54には、錫と鉛系の共晶は
んだ等で、接続用のバンプ53、53を形成する
(b)。続いて、配線基板51の電極52、52
52…52とベアチップIC54の接続電極5
、54、54…54に形成されたバンプ53
、53を位置合わせして、ボンディングツール64
で加熱加圧して配線基板51にベアチップIC54を実
装する(c)。
First, a table of a wiring base material such as a glass epoxy plate is shown.
Electrodes 52 such as copper pattern on the surfacea, 52b, 52c... 52
nWiring board 51 soldered toa,
54 b, 54c… 54nChip IC5 formed with
4 is prepared (a). Next, a flux is attached to the wiring board 51.
Table for improving solderability by applying solder 59
Perform surface treatment. Also, the connection electrode 5 of the bare chip IC 54
4a, 54b, 54c… 54nThe tin-lead eutectic is
The connection bumps 53a, 53bForm
(B). Subsequently, the electrode 52 of the wiring board 51a, 52b,
52c... 52nAnd connection electrode 5 of bare chip IC 54
4a, 54b, 54c… 54nBump 53 formed on
a, 53bAlign the bonding tool 64
Heating and pressurizing to form bare chip IC 54 on wiring board 51
(C).

【0006】続いて、ベアチップIC54が実装された
配線基板51をリフロー炉(不図示)等を用いて加熱処
理を行なう。図10で、加熱温度T1によって示すよう
に、その際の加熱のピーク温度T1は240℃程度であ
る。この温度ではんだを溶融し、配線基板51とベアチ
ップIC54を電気的に接続する。その後に、ベアチッ
プIC54の接続面側に残存しているフラックス59を
溶剤等で除去する(d)。
Subsequently, the wiring board 51 on which the bare chip IC 54 is mounted is subjected to a heat treatment using a reflow furnace (not shown) or the like. As shown by the heating temperature T1 in FIG. 10, the peak temperature T1 of the heating at that time is about 240 ° C. The solder is melted at this temperature, and the wiring board 51 and the bare chip IC 54 are electrically connected. Thereafter, the flux 59 remaining on the connection surface side of the bare chip IC 54 is removed with a solvent or the like (d).

【0007】続いて、ベアチップIC54と配線基板5
1の接続強度の向上のために、べアチップIC54の接
続面と配線基板51との間と、側面に封止ようの封止樹
脂55を充填する。この封止樹脂55の充填は、ディス
ぺンサ63を用いて行い、ベアチップIC54の端面に
封止樹脂55を塗布して、毛細管現象によりべアチップ
IC54の接続面と配線基板51の間に樹脂充填を行な
う(e)。
Subsequently, the bare chip IC 54 and the wiring board 5
In order to improve the connection strength of No. 1, a sealing resin 55 for sealing is filled between the connection surface of the bare chip IC 54 and the wiring board 51 and the side surface. The filling of the sealing resin 55 is performed by using the disperser 63, the sealing resin 55 is applied to the end surface of the bare chip IC 54, and the resin is filled between the connection surface of the bare chip IC 54 and the wiring board 51 by a capillary phenomenon. (E).

【0008】その後、ベアチップIC54が実装された
配線基板51をオーブン(不図示)内に収納してオーブ
ン加熱工程を施す。その際の、オーブン内の加熱条件
は、例えば、図10で示した加熱温度T2を150℃で
1時間行い、封止樹脂55を硬化させる(f)。これら
の各工程により、半導体装置を製造している。
After that, the wiring board 51 on which the bare chip IC 54 is mounted is housed in an oven (not shown), and an oven heating step is performed. The heating condition in the oven at this time is, for example, heating temperature T2 shown in FIG. 10 at 150 ° C. for 1 hour to cure the sealing resin 55 (f). Through these steps, a semiconductor device is manufactured.

【0009】これらの工程で行なわれている加熱工程の
加熱条件は、図10に温度プロファイルと封止樹脂の硬
化反応率を示すように、まず、はんだ共晶温度以上の設
定温度(T1;240℃)での加熱を行ない、それによ
り、はんだ溶融によるバンプ接合プロセスを実施する。
The heating conditions in the heating step performed in these steps are as follows. First, as shown in FIG. 10, the temperature profile and the curing reaction rate of the sealing resin are set at a temperature equal to or higher than the solder eutectic temperature (T1; 240). C.), thereby performing a bump bonding process by solder melting.

【0010】このリフロー工程により、はんだ接続を行
った後に、封止樹脂を塗布し、はんだの融点温度未満の
設定温度による加熱硬化工程(加熱温度T2)による封
止樹脂の加熱硬化を行う。その結果、加熱硬化終了時
に、封止樹脂の硬化反応率は100%となる。この場
合、相互の温度の間では、T1(240℃)>T2(1
50℃)であるので、封止樹脂の樹脂封止の際に、はん
だ接合したはんだが溶融することはない。なお、これら
のリフロー工程と加熱硬化工程とは、別々の製造装置を
用いて行なわれている。
In this reflow step, after the solder connection is made, a sealing resin is applied, and the sealing resin is heated and cured in a heating and curing step (heating temperature T2) at a set temperature lower than the melting point of the solder. As a result, at the end of the heat curing, the curing reaction rate of the sealing resin becomes 100%. In this case, between the mutual temperatures, T1 (240 ° C.)> T2 (1
(50 ° C.), so that the solder joined with the solder does not melt during the sealing of the sealing resin. Note that the reflow step and the heat curing step are performed using different manufacturing apparatuses.

【0011】また、フリップチップの実装では、はんだ
と封止樹脂とを一括して加熱することによって接合する
方式も用いられている。
In flip chip mounting, a method is also used in which the solder and the sealing resin are joined together by heating them together.

【0012】この一括加熱方式について、第2の例とし
て以下に説明する。図11はフリップチップ実装の各工
程ごとの模式説明図であり、図12はそれに対応した温
度プロファイルと封止樹脂の硬化反応率との関係を示す
グラフである。
This batch heating method will be described below as a second example. FIG. 11 is a schematic explanatory view of each step of flip chip mounting, and FIG. 12 is a graph showing a relationship between a corresponding temperature profile and a curing reaction rate of the sealing resin.

【0013】まず、ガラスエポキシ基板等の配線基材の
表面に銅パターン等の電極72、72、72…7
にはんだ処理した配線基板71を準備する(a)。
次に、配線基板71の表面の所定個所に封止樹脂75を
ディスペンサ79で塗布する。また、ベアチップIC7
4の接続電極74、74、74…74に上述の
場合と同様に、錫と鉛系の共晶はんだ等で接続用のバン
プ73、73を形成する(b)。続いて、配線基板
71の電極72、72、72…72とベアチッ
プIC74の接続電極74、74、74…74
に形成されたバンプ73、73とを位置合わせし、
ボンディングツール84で加熱・加圧して、配線基板7
1にベアチップIC74を実装する(c)。
First, electrodes 72 a , 72 b , 72 c ... 7 of a copper pattern or the like are formed on the surface of a wiring base material such as a glass epoxy substrate.
A 2n soldered wiring board 71 is prepared (a).
Next, a sealing resin 75 is applied to a predetermined location on the surface of the wiring board 71 with a dispenser 79. In addition, bare chip IC7
Fourth connection electrode 74 a, 74 b, the 74 c ... 74 n as in the above, to form a bump 73 a, 73 b for connection eutectic solder of tin and lead-based (b). Subsequently, the electrode 72 a of the wiring board 71, 72 b, 72 c ... 72 n connected electrodes 74 of the bare chip IC74 a, 74 b, 74 c ... 74 n
Aligning the bump 73 a, 73 b formed,
The wiring board 7 is heated and pressed by the bonding tool 84.
1 is mounted with a bare chip IC 74 (c).

【0014】その後、ベアチップIC74が実装された
配線基板71をリフロー炉で熱処理を施す。その際の熱
処理の加熱条件は、図12で示すように、ピーク温度T
1は240℃程度ではんだを溶融し、配線基板71とベ
アチップIC74を電気的に接続する。この加熱によ
り、封止樹脂75ははんだ溶融と同時に加熱されて硬化
する(d)。
Thereafter, the wiring board 71 on which the bare chip IC 74 is mounted is subjected to a heat treatment in a reflow furnace. The heating conditions for the heat treatment at this time are as shown in FIG.
1 melts the solder at about 240 ° C. and electrically connects the wiring board 71 and the bare chip IC 74. Due to this heating, the sealing resin 75 is heated and cured simultaneously with the melting of the solder (d).

【0015】従って、この場合は上述の場合のように、
フラックスの塗布とフラックスの除去工程が不要であ
る。また、毛細管現象によりベアチップIC74の接続
面と配線基板71との間に封止樹脂を注入して充填する
工程が不要である。
Therefore, in this case, as in the above case,
No flux application and flux removal steps are required. Further, a step of injecting and filling the sealing resin between the connection surface of the bare chip IC 74 and the wiring board 71 due to the capillary phenomenon is unnecessary.

【0016】その後、ベアチップIC74が実装された
配線基板71をオーブン(不図示)内に収納してオーブ
ン加熱工程を施す。その際の、オーブン内の加熱条件
は、例えば、図12で示した加熱温度T2を150℃で
1時間行い封止樹脂を硬化させる(e)。これらの各工
程により、半導体装置を製造している。
Thereafter, the wiring board 71 on which the bare chip IC 74 is mounted is housed in an oven (not shown) and an oven heating step is performed. The heating condition in the oven at this time is, for example, heating temperature T2 shown in FIG. 12 at 150 ° C. for 1 hour to cure the sealing resin (e). Through these steps, a semiconductor device is manufactured.

【0017】その結果、加熱硬化終了時に、封止樹脂の
硬化反応率は100%となる。なお、これらのリフロー
工程と加熱硬化工程は、別々の製造装置を用いて行なわ
れている。
As a result, at the end of the heat curing, the curing reaction rate of the sealing resin becomes 100%. Note that the reflow step and the heat curing step are performed using different manufacturing apparatuses.

【0018】これらの加熱工程での加熱条件は、図12
に温度プロファイルと封止樹脂の硬化反応率を示すよう
に、まず、はんだ共晶温度以上の設定温度(T1)を行
ない、それにより、はんだ溶融によるバンプ接合プロセ
スを実施する。
The heating conditions in these heating steps are shown in FIG.
First, a set temperature (T1) equal to or higher than the solder eutectic temperature is performed so as to show the temperature profile and the curing reaction rate of the sealing resin, thereby performing a bump joining process by solder melting.

【0019】このリフロー工程により、はんだ接続を行
った後に、封止用の封止樹脂を塗布し、加熱硬化工程
(加熱温度T2)による封止樹脂の加熱硬化を行う。
After the solder connection is performed in this reflow step, a sealing resin for sealing is applied, and the sealing resin is heated and cured in a heating and curing step (heating temperature T2).

【0020】[0020]

【発明が解決しようとする課題】しかしながら、上述の
実装技術の第1の例では、フラックス塗布工程と、はん
だ接続後のフラックス除去工程が煩雑で好ましくない。
また、フリップチップ接続後の封止樹脂工程で、封止樹
脂をベアチップICと配線基板の間の狭いギヤップに侵
入させて充填させる必要があり、短時間で効率よく処理
するのが困難であった。
However, in the first example of the above-mentioned mounting technique, the flux applying step and the flux removing step after solder connection are complicated and not preferable.
In addition, in the sealing resin process after the flip chip connection, it is necessary to inject and fill the sealing resin into a narrow gap between the bare chip IC and the wiring board, and it is difficult to efficiently process the resin in a short time. .

【0021】また、ベアチップICの全面にバンプが配
置されるとフリップチップ接続が困難になる。さらに、
ベアチップICの全面に、エリヤバンプ配置で、かつ、
バンプピッチが300μm以下になると、封止樹脂の封
止工程がさらに困難になる。
Further, if bumps are arranged on the entire surface of the bare chip IC, flip chip connection becomes difficult. further,
Area bumps are arranged on the entire surface of the bare chip IC, and
If the bump pitch is 300 μm or less, the sealing resin sealing step becomes more difficult.

【0022】また、第2の例の場合は、プロセス上はん
だ溶融と絶縁樹脂の加熱硬化が同時に進行するために、
配線基板へのベアチップICの実装後に、不良のベアチ
ップICを剥離除去(リペア)することが出来ない。そ
のため、歩留りが低下する。
In the case of the second example, since the melting of the solder and the heat curing of the insulating resin proceed simultaneously in the process,
After mounting the bare chip IC on the wiring board, the defective bare chip IC cannot be removed and repaired. Therefore, the yield decreases.

【0023】さらに、これらの各例では、配線基板の電
極とベアチップICの電極との電気的な接続のために、
バンプ形成が必須となるため、実装コストが高く、低コ
ストが課題であった。
Further, in each of these examples, in order to electrically connect the electrode of the wiring board and the electrode of the bare chip IC,
Since bump formation is indispensable, mounting cost is high and low cost has been a problem.

【0024】本発明はこれらの事情にもとづいてなされ
たもので、配線基板にベアチップICを実装して製造す
る半導体装置で、簡便な工程で生産性の高い半導体装置
の製造方法と、それによる半導体装置を提供することを
目的としている。
The present invention has been made in view of the above circumstances, and relates to a semiconductor device manufactured by mounting a bare chip IC on a wiring board. It is intended to provide a device.

【0025】[0025]

【課題を解決するための手段】請求項1の発明による手
段によれば、配線基板の電極に異方性導電材を介してI
Cチップの電極が接合されている半導体装置において、
前記異方性導電材は、絶縁樹脂の中に前記絶縁樹脂の硬
化反応温度よりも高い融点を有する溶融形導電粒子が分
散されていることを特徴とする半導体装置である。
According to the first aspect of the present invention, an electrode on a wiring board is connected to an electrode via an anisotropic conductive material.
In a semiconductor device to which electrodes of a C chip are joined,
The semiconductor device is characterized in that the anisotropic conductive material has molten conductive particles having a melting point higher than a curing reaction temperature of the insulating resin dispersed in the insulating resin.

【0026】また請求項2の発明による手段によれば、
配線基板の電極と、ICチップの電極とを封止樹脂で固
定するとともに電気的に接合する半導体装置の製造方法
において、前記封止樹脂が硬化しない温度で前記封止樹
脂に分散させた前記溶融形導電粒子を溶融することによ
って前記配線基板の電極と前記ICチップとの電極とを
電気的に接続する接続工程と、前記配線基板の電極と前
記ICチップとの電極とが接続された後に、前記封止樹
脂を前記溶融形導電粒子が溶融しない温度で硬化させる
硬化工程とを有することを特徴とする半導体装置の製造
方法である。
According to the second aspect of the present invention,
In a method of manufacturing a semiconductor device in which an electrode of a wiring board and an electrode of an IC chip are fixed and electrically connected to each other with an encapsulating resin, the method of manufacturing a semiconductor device, wherein A step of electrically connecting the electrodes of the wiring board and the electrodes of the IC chip by melting the shaped conductive particles, and after the electrodes of the wiring board and the electrodes of the IC chip are connected, A curing step of curing the sealing resin at a temperature at which the molten conductive particles do not melt.

【0027】また請求項3の発明による手段によれば、
前記接続工程の後の前記硬化工程の前に、前記ICチッ
プの電極と前記配線基板の電極との導通検査を行なう工
程を設けたことを特徴とする半導体装置の製造方法であ
る。
According to the third aspect of the present invention,
A method of manufacturing a semiconductor device, further comprising a step of performing a continuity test between electrodes of the IC chip and electrodes of the wiring board before the curing step after the connecting step.

【0028】[0028]

【発明の実施の形態】以下、本発明の半導体装置とその
製造方法の実施の形態を、図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a semiconductor device and a method of manufacturing the same according to the present invention will be described below with reference to the drawings.

【0029】図1は本発明の第1実施の形態を示す半導
体装置の側面断面図である。配線基板1は、厚さ1.0
mm程度のガラスエポキシ材の基板の表面には、300
μmピッチの銅の配線パターンが形成され、その一部に
金めっき、あるいは、はんだめっきを施した電極2a、
2b、2c…2nが形成されている。なお、基板の材料
には、ガラスエポキシ材の他に、ポリイミドやセラミッ
クス等を用いることもできる。
FIG. 1 is a side sectional view of a semiconductor device according to a first embodiment of the present invention. The wiring board 1 has a thickness of 1.0
300 mm on the surface of the glass epoxy material substrate
A copper wiring pattern with a pitch of μm is formed, and a part of the electrode 2a is gold-plated or solder-plated.
2b, 2c... 2n are formed. In addition, as the material of the substrate, polyimide, ceramic, or the like can be used in addition to the glass epoxy material.

【0030】この電極2、2、2…2上には、
はんだバンプ3、3を介してICチップであるベア
チップIC4が実装されている。なお、ベアチップIC
4は表面に電気めっき法により、接続電極4、4
…4の上に、はんだバンプ3、3形成されて
いる。
On the electrodes 2 a , 2 b , 2 c ... 2 n ,
Bare chip IC4 is an IC chip through the solder bumps 3 a, 3 b are mounted. In addition, bare chip IC
Reference numeral 4 denotes connection electrodes 4 a , 4 b ,
Over 4 c ... 4 n, are solder bump 3 a, 3 b formed.

【0031】また、配線基板1とベアチップIC4との
間、および、ベアチップIC4の側面には、封止樹脂で
あるエポキシ樹脂等の絶縁樹脂5に溶融形導電粒子
、6 、6…6が分散された異方性導電材7が
充填されている。
The wiring board 1 and the bare chip IC 4
In between, and on the side surface of the bare chip IC 4, a sealing resin is used.
Fused conductive particles in insulating resin 5 such as epoxy resin
6a, 6 b, 6c… 6nIs dispersed in the anisotropic conductive material 7
Is filled.

【0032】溶融形導電粒子6、6、6…6
は、図2(a)から(b)に示すいずれかのものを、
単独又は任意に組合わせて用いることができる。
The molten conductive particles 6 a , 6 b , 6 c ... 6
n is any of those shown in FIGS. 2A to 2B,
They can be used alone or in any combination.

【0033】図2(a)に示した溶融形導電粒子6
、6…6は、粒径が30μm〜50μm程度の
はんだボール8の外側に、厚さ10μm〜20μm程度
のフラックス9の被膜がコーティグ処理により形成され
ている。なお、図示しないが、溶融形導電粒子の中央部
を粒径が20〜35μm程度のフラックスをコアとする
ボールで形成し、その外側をはんだ被膜で覆うというは
んだボールとフラックスの構成を逆にした構成であって
もよい。そのフラックスをコアとする溶融形導電粒子の
製法は、固形状のはんだとフラックスを、漸次、孔径が
小さく形成されている微小孔を通して、塑性変形させな
がら延ばして、中央部がフラックスで、その周囲がはん
だで構成される糸はんだを製作する。次に、その糸はん
だを、棒状に分断し、先端と後端を絞り成形すること
で、はんだボールを製造することが可能である。
The molten conductive particles 6 a , shown in FIG.
6 b, 6 c ... 6 n, the particle size is outside of the solder balls 8 of about 30-50 microns, coating of flux 9 having a thickness of about 10μm~20μm is formed by Kotigu process. Although not shown, the configuration of the solder ball and the flux, in which the central portion of the molten conductive particles is formed of a ball having a core of a flux having a particle size of about 20 to 35 μm and the outside thereof is covered with a solder coating, are reversed. It may be a configuration. The method of producing fused conductive particles with the flux as the core is to gradually extend the solid solder and flux through plastic micro-pores with a small hole diameter while plastically deforming them. Produces thread solder consisting of solder. Next, it is possible to manufacture a solder ball by dividing the thread solder into a rod shape and drawing the front end and the rear end by drawing.

【0034】図2(b)に示した溶融形導電粒子6
、6…6は、銅等によるメタルコア11の外側
に、はんだ12の接合材料を被覆し、さらにその外側に
フラックス9をコーティングにより被覆して形成したも
のである。
The molten conductive particles 6 a , shown in FIG.
6 b, 6 c ... 6 n is outside the metal core 11 of copper or the like, coated with a bonding material of solder 12, and is formed by further coated with a coating flux 9 on the outside.

【0035】図2(c)に示した溶融形導電粒子6
、6…6は、図2(b)に示した溶融形導電粒
子6、6、6…6の構造において、最外層のフ
ラックス9が被覆されていない構成のものである。この
場合、異方性導電材7に分散して使用する際は、別にフ
ラックスを分散させるか、あるいは、絶縁樹脂5にフラ
ックス作用を持たせるようにする。
The molten conductive particles 6 a , shown in FIG.
6 b, 6 c ... 6 n, in molten form conductive particles 6 a, 6 b, 6 c ... 6 n structure shown in FIG. 2 (b), having a structure in which the outermost layer of the flux 9 is not covered It is. In this case, when used by dispersing in the anisotropic conductive material 7, the flux is separately dispersed, or the insulating resin 5 has a flux action.

【0036】なお、溶融形導電粒子6、6、6
は錫・鉛・インジウム・ビスマス・金等の組合せか
らなる共晶形はんだ等としても応用することが可能であ
る。その場合の、はんだの組成は、鉛37%−錫63
%、鉛95%−錫5%、錫96.5%−銀3.5%、他
インジウム添加等で、フラックス9は主剤(アビチエン
酸等のロジン)+溶剤(アルコール等)である。
The molten conductive particles 6 a , 6 b , 6 c ...
6 n is can also be applied as a co-crystal form solder consisting of a combination of such tin-lead, indium, bismuth-gold. In that case, the composition of the solder was 37% lead-63 tin.
%, Lead 95% -tin 5%, tin 96.5% -silver 3.5%, and other indium additions. The flux 9 is a main agent (rosin such as abithienoic acid) + a solvent (alcohol or the like).

【0037】異方性導電材は、絶縁性の熱硬化形樹脂の
中に、上述の溶融形導電粒子のいずれかを10〜25%
程度を分散させることで製造されている。また、異方性
導電材の形状は、シート状もしくはぺースト状に形成す
ることができる。シート状の異方性導電材7の製造方法
は、硬化前のエポキシ樹脂に、溶融形導電粒子をあらか
じめ分散して混練し、その後にシート状に引き延ばし
て、仮硬化させる。また、絶縁性の熱硬化形樹脂の種類
は、アクリル(変性)樹脂、ポリイミド樹脂、ブタジエ
ン樹脂、フェノール樹脂等を用いることができる。
The anisotropic conductive material contains 10 to 25% of any of the above-mentioned molten conductive particles in an insulating thermosetting resin.
It is manufactured by dispersing the degree. Further, the shape of the anisotropic conductive material can be formed in a sheet shape or a paste shape. In the method of manufacturing the sheet-shaped anisotropic conductive material 7, the molten conductive particles are dispersed and kneaded in advance in the epoxy resin before curing, and then are stretched into a sheet shape and temporarily cured. Further, as the kind of the insulating thermosetting resin, an acrylic (modified) resin, a polyimide resin, a butadiene resin, a phenol resin, or the like can be used.

【0038】次に、本発明の第1の実施の形態である異
方性導電材を用いたフリップチップ実装方法を説明す
る。図3(a)〜(e)は、本発明のフリップチップ実
装方法の工程模式図である。なお、ボンディング装置
は、一般に用いられている装置を使用しているので、装
置関係の説明は省略する。
Next, a method of mounting a flip chip using an anisotropic conductive material according to a first embodiment of the present invention will be described. FIGS. 3A to 3E are process schematic diagrams of the flip chip mounting method of the present invention. The bonding apparatus uses a generally used apparatus, and a description of the apparatus will be omitted.

【0039】まず、厚さ1.0mm程度のガラスエポキ
シ材の基板の表面に、300μmピッチの銅の配線パタ
ーンが形成され、その一部に金めっき、あるいは、はん
だ処理を施した電極2、2、2…2が形成され
ている配線基板1を図示しないボンディング装置にセッ
トする(a)。
First, a copper wiring pattern having a pitch of 300 μm is formed on the surface of a glass epoxy material substrate having a thickness of about 1.0 mm, and a part of the electrode 2 a is subjected to gold plating or soldering. The wiring substrate 1 on which 2 b , 2 c ... 2 n are formed is set in a bonding device (not shown) (a).

【0040】次に、配線基板1の電極2、2、2
…2の形状、もしくは、チップの外形サイズ程度に外
形を切断したシート状の異方性導電材7を配線基板1上
に形成する。
Next, the electrodes 2 a , 2 b , 2 c of the wiring board 1 are
.. A sheet-shaped anisotropic conductive material 7 having a shape of 2 n or an outer shape cut to about the outer size of a chip is formed on the wiring board 1.

【0041】または、シート状の異方性導電材7の代わ
りに異方性導電ぺースト7を用いて、ディスペンサ1
3により、配線基板1の表面にディスペンス塗布する
(b)。
[0041] or by using an anisotropic conductive paste 7 a in place of a sheet-like anisotropic conductive material 7, the dispenser 1
3 is applied to the surface of the wiring substrate 1 by dispensing (b).

【0042】次に、ボンディングツール14に吸着さ
れ、接続電極4a、4b、4c…4n上に、はんだバン
プ3、3が予め形成されているベアチップIC4
を、はんだバンプ3、3を異方性導電材7(また
は、異方性導電ペースト7)を介して、配線基板1の
電極2、2、2…2に位置合わせして仮固定す
る(c)。この際は、異方性導電材7の絶縁樹脂5であ
るエポキシ樹脂の粘着力で、ベアチップIC4と配線基
板1とを固定することができる。また、ベアチップIC
4のはんだバンプ3、3と配線基板1の電極2
、2…2との間には、異方性導電材7の溶融形
導電粒子6、6、6…6の複数個が分散配置し
て介在している。
Next, adsorbed to the bonding tool 14, connecting electrodes 4a, 4b, on the 4c ... 4n, bare chip solder bump 3 a, 3 b are previously formed IC4
The solder bumps 3 a, 3 b anisotropic conductive material 7 (or anisotropic conductive paste 7 a) through the electrode 2 a of the wiring board 1, 2 b, 2 c ... aligned 2 n And temporarily fixed (c). At this time, the bare chip IC 4 and the wiring board 1 can be fixed by the adhesive force of the epoxy resin as the insulating resin 5 of the anisotropic conductive material 7. In addition, bare chip IC
4 solder bumps 3 a , 3 b and the electrodes 2 a ,
Between the 2 b, 2 c ... 2 n , melt-type conductive particles 6 a of the anisotropic conductive material 7, of 6 b, 6 c ... 6 n plurality is interposed and distributed.

【0043】次に、加熱ヒータ機能を具えたボンディン
グツール14を用いて、加熱のピーク温度150℃程度
で、加熱加圧してはんだを溶融することにより、配線基
板1の電極2、2、2…2とはんだバンプ
、3を接合して、配線基板1にチップベアチップ
IC4を電気的に接続する。なお、この接合の際に、異
方性導電材7の溶融形導電粒子6、6、6…6
の中のフラックス9がはんだの濡れ性を促進して、良好
なはんだ付けが達成できる(d)。
Next, by using a bonding tool 14 having a heater function, the solder is melted by heating and pressing at a heating peak temperature of about 150 ° C., so that the electrodes 2 a , 2 b , by joining 2 c ... 2 n and solder bump 3 a, 3 b, to electrically connect the chip bare chip IC4 on the wiring board 1. At the time of this joining, the molten conductive particles 6 a , 6 b , 6 c ... 6 n of the anisotropic conductive material 7 are used.
The flux 9 in the above promotes solder wettability, and good soldering can be achieved (d).

【0044】次に、異方性導電材7の絶縁樹脂5である
エポキシ樹脂を、150℃から200℃程度で加熱硬化
させる。この処理により、微細はんだ接続と絶縁樹脂5
による樹脂封止とを一括リフロー工程で実現できる
(e)。
Next, the epoxy resin, which is the insulating resin 5 of the anisotropic conductive material 7, is cured by heating at about 150 to 200.degree. By this processing, fine solder connection and insulating resin 5
Can be realized by a batch reflow process (e).

【0045】図4は、本発明のフリップチップ実装工程
のシーケンスを説明する温度プロファィルを示したチャ
ートである。
FIG. 4 is a chart showing a temperature profile for explaining the sequence of the flip chip mounting process of the present invention.

【0046】この実装工程では、はんだは、その溶融温
度が絶縁樹脂の硬化温度より低いものを用いている。ま
た、前半の工程で、はんだ接続(温度T2)を行い、後
半の工程で樹脂硬化(温度T1)を行っている。
In this mounting step, the solder used has a melting temperature lower than the curing temperature of the insulating resin. In the first half, solder connection (temperature T2) is performed, and in the second half, resin curing (temperature T1) is performed.

【0047】なお、絶縁樹脂の硬化のタイミングは、絶
縁樹脂の組成と硬化剤の組合せにより制御が可能である
ので、絶縁樹脂の反応硬化率を、はんだ接続時(温度T
2)では0%で、樹脂硬化時(温度T1)で100%に
なるように樹脂組成を制御する。例えば、エポキシ樹脂
の変性と硬化反応剤(アミン系等)の組合せにより硬化
温度が、120〜200℃以上の範囲内で調整が可能で
ある。
The timing of curing of the insulating resin can be controlled by a combination of the composition of the insulating resin and the curing agent.
In 2), the resin composition is controlled so that it is 0% and becomes 100% when the resin is cured (temperature T1). For example, the curing temperature can be adjusted within the range of 120 to 200 ° C. or more by a combination of the modification of the epoxy resin and a curing reactant (amine or the like).

【0048】また、硬化時間も数秒〜数時間で調整でき
る。短時間での硬化を実現するためには、硬化剤はマイ
クロカプセル化して用いると効果的である。特に、数秒
の硬化時間の場合は、硬化反応剤を薄い樹脂で覆い、所
望の温度(例えば、数10℃)で被膜を破る様なマイク
ロカプセルを用いることにより、硬化反応のタイミング
の制御が可能である。
Also, the curing time can be adjusted from several seconds to several hours. In order to realize curing in a short time, it is effective to use the curing agent in the form of microcapsules. In particular, when the curing time is several seconds, the timing of the curing reaction can be controlled by covering the curing reactant with a thin resin and using microcapsules that break the film at a desired temperature (for example, several tens of degrees Celsius). It is.

【0049】その際には、ボンディング装置のステージ
とボンディングツールとには、加熱ヒータを装備して、
温度プロフアイルの制御を可能にすることで容易に実現
できる。
At this time, the stage of the bonding apparatus and the bonding tool are equipped with a heater,
This can be easily realized by enabling control of the temperature profile.

【0050】この方式は、はんだ接合の際にベアチップ
IC4押圧して、電極間の接続を確実にできるメリット
がある。また、後の検査工程で、不具合品を発見した際
には、加熱することにより接続部を溶融して、ベアチッ
プICと配線基板とを分離し、不具合部品を交換して上
述のプロセスで接合して良品を製造することができる。
This method has an advantage that the bare chip IC 4 is pressed at the time of soldering to ensure the connection between the electrodes. Further, when a defective product is found in a later inspection process, the connecting portion is melted by heating, the bare chip IC is separated from the wiring board, the defective component is replaced, and the defective component is joined by the above process. Good products can be manufactured.

【0051】また、この第1の実施の形態には、はんだ
接続後に追加工程として、ベアチップICの接続検査を
行ない、不具合品を発見した際には、加熱することによ
り接続部を溶融して、接続の修正等を行なうことができ
る。
Also, in the first embodiment, as an additional step after solder connection, a bare chip IC connection inspection is performed, and when a defective product is found, the connection is melted by heating. Correction of connection and the like can be performed.

【0052】それは、図4で示したように、はんだ接続
していても絶縁樹脂は硬化していないので、もし、接続
不良やICチップの動作機能不良が確認されたときに
は、はんだ接続部を加熱溶融することで、ベアチップI
Cを配線基板から容易に取り外すことがでる。それによ
り、別のベアチップICを再搭載(リぺア)することも
できる。
As shown in FIG. 4, since the insulating resin is not cured even when the solder connection is made, if the connection failure or the malfunction of the operation of the IC chip is confirmed, the solder connection portion is heated. By melting, bare chip I
C can be easily removed from the wiring board. As a result, another bare chip IC can be mounted (rearranged).

【0053】図5に、この検査工程が付加されたプロセ
スの温度プロファイルを示す。この場合、はんだ接続後
に接続の電気検査を行うため、ベアチップICを実装し
た配線基板は、そのために、一度ボンディング装置から
取り外す。その後、必要に応じてリペア等の工程を行
い、それ以降に、樹脂硬化のためにオーブン乾燥等を行
う。
FIG. 5 shows a temperature profile of a process to which the inspection step is added. In this case, the wiring board on which the bare chip IC is mounted is once removed from the bonding apparatus in order to perform an electrical inspection of the connection after the solder connection. After that, a process such as repair is performed as necessary, and thereafter, oven drying or the like is performed to cure the resin.

【0054】なお、オーブン乾燥時には、絶縁樹脂の加
熱膨潤により、はんだ接続がオープンになる場合を防ぐ
ために、ベアチップICの裏面から押圧手段(不図示)
を用いて押圧して行なうのが好ましい。
During oven drying, a pressing means (not shown) is applied from the back surface of the bare chip IC to prevent the solder connection from being opened due to the heat swelling of the insulating resin.
It is preferable to carry out the pressing by using.

【0055】次に、本発明の第2の実施の形態について
説明する。
Next, a second embodiment of the present invention will be described.

【0056】図6は本発明の半導体装置の一例を示す、
第2実施の形態である半導体装置の側面断面図である。
FIG. 6 shows an example of the semiconductor device of the present invention.
FIG. 14 is a side sectional view of a semiconductor device according to a second embodiment;

【0057】配線基板21は、厚さ1.0mm程度のガ
ラスエポキシ材の基板の表面には、300μmピッチの
銅の配線パターンが形成され、その一部に金めっき、あ
るいは、はんだ処理を施した電極22、22、22
…22が形成されている。なお、基板の材料には、
ガラスエポキシ材の他に、ポリイミドやセラミックス等
を用いることもできる。
The wiring board 21 has a 300 μm pitch copper wiring pattern formed on the surface of a glass epoxy material substrate having a thickness of about 1.0 mm, and a part thereof is subjected to gold plating or soldering. Electrodes 22 a , 22 b , 22
c ... 22 n are formed. In addition, the material of the substrate
In addition to the glass epoxy material, polyimide, ceramic, or the like can be used.

【0058】この電極22、22、22…22
上には、接続電極24、24、24…24によ
り接合したベアチップIC24が実装されている。ま
た、配線基板21とベアチップIC24との間、およ
び、ベアチップIC24の側面には、エポキシ樹脂等の
絶縁樹脂25に溶融形導電粒子26、26、26
…26が分散された異方性導電材27が充填されてい
る。
The electrodes 22 a , 22 b , 22 c ... 22 n
A bare chip IC 24 joined by connection electrodes 24 a , 24 b , 24 c ... 24 n is mounted thereon. In addition, between the wiring board 21 and the bare chip IC 24 and on the side surface of the bare chip IC 24, an insulating resin 25 such as an epoxy resin is added to the molten conductive particles 26 a , 26 b and 26 c
... anisotropic conductive material 27 26 n are dispersed is filled.

【0059】なお、溶融形導電粒子26、26、2
…26および異方性導電材27については、第1
の実施の形態の際に説明したものと同様なので、その説
明は省略する。
The molten conductive particles 26 a , 26 b , 2
6 For c ... 26 n and the anisotropic conductive material 27, the first
Since this is the same as that described in the embodiment, the description thereof is omitted.

【0060】次に、本発明の第2の実施の形態の実装方
法を、図7(a)から(e)に示す工程模式図を参照し
て説明する。
Next, a mounting method according to a second embodiment of the present invention will be described with reference to schematic process diagrams shown in FIGS.

【0061】なお、第1の実施の形態と同様に、ボンデ
ィング装置は、一般に用いられている装置を用いている
ので、装置関係の説明は省略する。
As in the first embodiment, the bonding apparatus uses a generally used apparatus, and a description of the apparatus will be omitted.

【0062】まず、厚さ1.0mm程度のガラスエポキ
シ材の基板の表面に、300μmピッチの銅の配線パタ
ーンが形成され、その一部に金めっき、あるいは、はん
だ処理を施した電極22、22、22…22
形成されている配線基板1を図示しないボンディング装
置にセットする(a)。
First, a copper wiring pattern having a pitch of 300 μm is formed on the surface of a glass epoxy material substrate having a thickness of about 1.0 mm, and a part of the electrode 22 a is gold-plated or soldered. The wiring substrate 1 on which 22 b , 22 c ... 22 n are formed is set in a bonding device (not shown) (a).

【0063】次に、配線基板21の電極22、2
、22…22状、もしくは、チップの外形サイ
ズ程度に外形を切断したシート状の異方性導電材27を
配線基板21上に形成する。または、シート状の異方性
導電材27の代わりに異方性導電ぺースト27を用い
て、ディスペンサ33により、配線基板21の表面にデ
ィスペンス塗布する(b)。
Next, the electrodes 22 a , 2
2 b, 22 c ... 22 n shaped, or, to form a sheet-like anisotropic conductive material 27 obtained by cutting the outer shape contour about the size of the chip on the wiring board 21. Or by using an anisotropic conductive paste 27 a in place of a sheet-like anisotropic conductive material 27, the dispenser 33 dispenses applied to the surface of the wiring board 21 (b).

【0064】次に、ボンディングツール34に吸着され
て、接続電極24、24、24 …24が予め形
成されているベアチップIC24を溶融導形電粒子26
、26、26…26が分散している異方性導電
材27(または、異方性導電ペースト27)を介し
て、配線基板21の電極22、22、22…22
に位置合わせして仮固定する(c)。この際は、異方
性導電材27の絶縁樹脂25である、エポキシ樹脂の粘
着力で、ベアチップIC24と配線基板21とを固定す
ることができる。また、ベアチップIC24の接続電極
24、24、24…24と配線基板21の電極
22、22、22…22との間には、異方性導
電材27の溶融導形電粒子26、26、26…2
の複数個が分散配置して介在している。
Next, it is adsorbed by the bonding tool 34.
And the connection electrode 24a, 24b, 24 c… 24nIs pre-shaped
The formed bare chip IC 24 is fused with the fused conductive particles 26.
a, 26b, 26c… 26nAnisotropic conductive with dispersed
Material 27 (or anisotropic conductive paste 27)aThrough)
And the electrode 22 of the wiring board 21a, 22b, 22c… 22
nAnd temporarily fixed (c). In this case,
Of the epoxy resin, which is the insulating resin 25 of the conductive material 27,
The bare chip IC 24 and the wiring board 21 are fixed by force.
Can be Also, the connection electrode of the bare chip IC 24
24a, 24b, 24c… 24nAnd electrodes of the wiring board 21
22a, 22b, 22c… 22nBetween the anisotropic conduction
Fused conductive particles 26 of electric material 27a, 26b, 26c… 2
6nAre distributed and interposed.

【0065】なお、ベアチップIC24の接続電極24
、24、24…24は、例えばクロム、ニッケ
ル、金の金属を蒸着やスパッタ法で形成したバリヤメタ
ルも用い、その他にも、無電解ニッケルと金めっきの組
合せ処理たものを用いてもよい。また、第1の実施の形
態と同様に、はんだバンプ3a、3bを形成したものを
用いることもできる。いずれにしろ、溶融導電粒子のは
んだが溶融して濡れる、接続電極24、24、24
…24の表面処理であれば良い。
The connection electrode 24 of the bare chip IC 24
a , 24b , 24c ... 24n are, for example, a barrier metal formed by vapor deposition or sputtering of chromium, nickel, or gold, or a combination of electroless nickel and gold plating. Is also good. Further, similarly to the first embodiment, the one having the solder bumps 3a and 3b formed thereon can be used. In any case, the connection electrodes 24 a , 24 b , and 24 melt the solder of the molten conductive particles and get wet.
c ... Any surface treatment of 24 n may be used.

【0066】次に、加熱ヒータ機能を具えたボンディン
グツール34を用いて、加熱のピーク温度が240℃程
度で、はんだを溶融して、配線基板21の電極22
22 、22…22とベアチップIC24の接続電
極24、24、24…24とを電気的に接続す
る。なお、この接合の際に、異方性導電材27の溶融形
導電粒子の中のフラックス29がはんだの濡れ性を促進
して、良好なはんだ付けが達成できる(d)。
Next, a bond having a heater function
Using the gutool 34, the peak temperature of the heating is about 240 ° C.
The solder is melted at a time and the electrodes 22 of the wiring board 21 are melted.a,
22 b, 22c… 22nConnection between the chip and bare chip IC24
Pole 24a, 24b, 24c… 24nElectrically connect to
You. In addition, at the time of this joining, the molten form of the anisotropic conductive material 27 is used.
Flux 29 in conductive particles promotes solder wettability
Thus, good soldering can be achieved (d).

【0067】さらに、異方性導電材27の絶縁樹脂25
であるエポキシ樹脂を、150℃から200℃程度で加
熱硬化させる。この処理により、微細はんだ接続と樹脂
封止とを連続した製造工程が実現できる。
Further, the insulating resin 25 of the anisotropic conductive material 27
Is heated and cured at about 150 ° C. to 200 ° C. By this processing, a continuous manufacturing process of fine solder connection and resin sealing can be realized.

【0068】図8は、これらの実装工程のシーケンスを
説明する温度プロファィルを示したチャートである。
FIG. 8 is a chart showing a temperature profile for explaining the sequence of these mounting steps.

【0069】この実装工程では、はんだは、その溶融温
度が絶縁樹脂の硬化温度より高いものを用いている。ま
た、前半の工程で、はんだ接続(T2)を行い、後半の
工程で樹脂硬化(T1)を行っている。
In this mounting step, the solder used has a melting temperature higher than the curing temperature of the insulating resin. In the first half, solder connection (T2) is performed, and in the second half, resin curing (T1) is performed.

【0070】なお、第1の実施の形態で説明したよう
に、絶縁樹脂の硬化のタイミングは、絶縁樹脂の組成と
硬化剤の組合せで制御が可能であるので、それにより、
絶縁樹脂の反応硬化性を遅くすることを用いることで、
はんだ接続時には、絶縁樹脂が未硬化状態を維持する制
御を行なうことができる。
As described in the first embodiment, the curing timing of the insulating resin can be controlled by a combination of the composition of the insulating resin and the curing agent.
By slowing down the reaction curability of the insulating resin,
At the time of solder connection, control for maintaining the uncured state of the insulating resin can be performed.

【0071】なお、異方性導電材や異方性導電ペースト
に分散する溶融形導電粒子として、図2(a)から
(c)で示した形態の他に、使用温度によっては、はん
だボール8とフラックス9を分離して樹脂に混在分散す
る形態のものを用いることもできる。
As the molten conductive particles dispersed in the anisotropic conductive material or the anisotropic conductive paste, in addition to the forms shown in FIGS. And the flux 9 may be separated and mixed and dispersed in a resin.

【0072】以上に述べたように、本発明によれば、通
常の従来の製造工程で行なわれていたフラックス塗布と
洗浄工程が不要になり、かつ、封止樹脂工程が極めて簡
便にできるため、製造工程の簡素化が実現できる。
As described above, according to the present invention, the flux application and washing steps, which are performed in the conventional manufacturing process, become unnecessary, and the sealing resin process can be extremely simplified. Simplification of the manufacturing process can be realized.

【0073】また、配線基板へベアチップICを実装後
に、不良品が発生した場合には、それを剥離除去(リぺ
ア)できる工程を付加できるので、製造工程での損失の
縮減を行なうことができる。
Further, if a defective product is generated after the bare chip IC is mounted on the wiring board, a process capable of peeling and removing (repairing) the defective product can be added, so that the loss in the manufacturing process can be reduced. it can.

【0074】[0074]

【発明の効果】本発明によれば、簡便な製造プロセスを
用いることで、配線基板とベアチップICの各電極同士
の接続が良好な半導体装置とその製造方法を提供するこ
とができる。
According to the present invention, by using a simple manufacturing process, it is possible to provide a semiconductor device with good connection between the wiring substrate and each electrode of the bare chip IC and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例を示す第1実施の形態である半導
体装置の側面断面図。
FIG. 1 is a side sectional view of a semiconductor device according to a first embodiment showing an example of the present invention;

【図2】(a)から(c)は、本発明の溶融形導電粒子
の構造図。
FIGS. 2 (a) to 2 (c) are structural views of the molten conductive particles of the present invention.

【図3】(a)〜(e)は、本発明の第1実施の形態の
実装方法の工程模式図。
FIGS. 3A to 3E are process schematic diagrams of the mounting method according to the first embodiment of the present invention.

【図4】本発明の実装方法の温度プロファィルのチャー
ト。
FIG. 4 is a chart of a temperature profile of the mounting method of the present invention.

【図5】検査工程が付加されたプロセスの温度プロファ
イルのチャート。
FIG. 5 is a chart of a temperature profile of a process to which an inspection step is added.

【図6】本発明の一例を示す第2実施の形態である半導
体装置の側面断面図。
FIG. 6 is a side sectional view of a semiconductor device according to a second embodiment showing an example of the present invention;

【図7】(a)〜(e)は、本発明の第2の実施の形態
の実装方法の工程模式図。
FIGS. 7A to 7E are process schematic diagrams of a mounting method according to a second embodiment of the present invention.

【図8】本発明の第2の実施の形態の温度プロファィル
を示したチャート。
FIG. 8 is a chart showing a temperature profile according to the second embodiment of the present invention.

【図9】(a)〜(f)は、従来の実装方法の工程模式
図。
FIGS. 9A to 9F are process schematic diagrams of a conventional mounting method.

【図10】従来の実施の形態の温度プロファィルを示し
たチャート。
FIG. 10 is a chart showing a temperature profile according to a conventional embodiment.

【図11】(a)〜(e)は、従来の実装方法の工程模
式図。
FIGS. 11A to 11E are process schematic diagrams of a conventional mounting method.

【図12】従来の実施の形態の温度プロファィルを示し
たチャート。
FIG. 12 is a chart showing a temperature profile according to a conventional embodiment.

【符号の説明】[Explanation of symbols]

21…配線基板、2、2、2〜2、22、2
、22〜22…電極、3、3…バンプ、
4、24…ベアチップIC、5、25…絶縁樹脂、
、6、6〜6、26、26、26〜2
…溶融形導電粒子、7、27…異方性導電材
21 ... wiring board, 2 a, 2 b, 2 c ~2 n, 22 a, 2
2 b, 22 c ~22 n ... electrode, 3 a, 3 b ... bumps,
4, 24: bare chip IC, 5, 25: insulating resin,
6 a, 6 b, 6 c ~6 n, 26 a, 26 b, 26 c ~2
6 n ... melt-type conductive particles, 7, 27 ... anisotropic conductive material

フロントページの続き (72)発明者 唐沢 純 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 Fターム(参考) 4M109 AA01 BA03 CA04 EB11 5F044 KK01 LL05 LL09 QQ01 Continuing on the front page (72) Inventor Jun Karasawa 33rd Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term in the Toshiba Production Technology Center (reference) 4M109 AA01 BA03 CA04 EB11 5F044 KK01 LL05 LL09 QQ01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 配線基板の電極に異方性導電材を介して
ICチップの電極が接合されている半導体装置におい
て、 前記異方性導電材は、絶縁樹脂の中に前記絶縁樹脂の硬
化反応温度よりも高い融点を有する溶融形導電粒子が分
散されていることを特徴とする半導体装置。
1. A semiconductor device in which an electrode of an IC chip is joined to an electrode of a wiring board via an anisotropic conductive material, wherein the anisotropic conductive material is cured by a curing reaction of the insulating resin in the insulating resin. A semiconductor device, wherein molten conductive particles having a melting point higher than a temperature are dispersed.
【請求項2】 配線基板の電極と、ICチップの電極と
を封止樹脂で固定するとともに電気的に接合する半導体
装置の製造方法において、 前記封止樹脂が硬化しない温度で前記封止樹脂に分散さ
せた前記溶融形導電粒子を溶融することによって前記配
線基板の電極と前記ICチップとの電極とを電気的に接
続する接続工程と、前記配線基板の電極と前記ICチッ
プとの電極とが接続された後に、前記封止樹脂を前記溶
融形導電粒子が溶融しない温度で硬化させる硬化工程と
を有することを特徴とする半導体装置の製造方法。
2. A method for manufacturing a semiconductor device in which an electrode of a wiring board and an electrode of an IC chip are fixed with a sealing resin and electrically connected thereto, wherein the sealing resin is cured at a temperature at which the sealing resin does not cure. A connecting step of electrically connecting the electrodes of the wiring board and the electrodes of the IC chip by melting the dispersed molten conductive particles; and forming a connection between the electrodes of the wiring board and the electrodes of the IC chip. After the connection, a curing step of curing the sealing resin at a temperature at which the molten conductive particles do not melt.
【請求項3】 前記接続工程の後の前記硬化工程の前
に、前記ICチップの電極と前記配線基板の電極との導
通検査を行なう工程を設けたことを特徴とする請求項2
記載の半導体装置の製造方法。
3. The method according to claim 2, further comprising the step of conducting a continuity test between the electrodes of the IC chip and the electrodes of the wiring board before the curing step after the connecting step.
The manufacturing method of the semiconductor device described in the above.
JP2000202484A 2000-07-04 2000-07-04 Semiconductor device and its manufacturing method Pending JP2002026070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202484A JP2002026070A (en) 2000-07-04 2000-07-04 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202484A JP2002026070A (en) 2000-07-04 2000-07-04 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002026070A true JP2002026070A (en) 2002-01-25

Family

ID=18700005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202484A Pending JP2002026070A (en) 2000-07-04 2000-07-04 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002026070A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070827A1 (en) 2003-02-05 2004-08-19 Senju Metal Industry Co., Ltd. Method for interconnecting terminals and method for mounting semiconductor device
JP2005089559A (en) * 2003-09-16 2005-04-07 Denso Corp Method for connecting members using conductive adhesive
WO2006030674A1 (en) * 2004-09-15 2006-03-23 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and flip chip mounting element
JP2006147968A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Method and device for flip chip packaging
JP2006245189A (en) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Flip-chip mounting method and mounting structure of semiconductor device
WO2006103948A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
WO2006103949A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and method for connecting substrates
US20060282524A1 (en) * 2005-06-10 2006-12-14 Lacombe Jason N Apparatus, system, and method for facilitating communication between an enterprise information system and a client
WO2007029452A1 (en) * 2005-09-02 2007-03-15 Matsushita Electric Industrial Co., Ltd. Method of forming conductive pattern and wiring board
JP2007081198A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Method for conductive connection between terminals
US7416921B2 (en) 2004-11-09 2008-08-26 Fujitsu Limited Method for flip-chip mounting utilizing a delay curing-type adhesive with two-part hardening resin
WO2008111615A1 (en) 2007-03-12 2008-09-18 Senju Metal Industry Co., Ltd. Anisotropic electroconductive material
CN100442468C (en) * 2004-09-15 2008-12-10 松下电器产业株式会社 Flip chip mounting method and flip chip mounting element
JP2009065183A (en) * 2008-10-14 2009-03-26 Nec Electronics Corp Electronic apparatus and its manufacturing process
WO2010050185A1 (en) * 2008-10-27 2010-05-06 パナソニック株式会社 Semiconductor mounting structure and method for manufacturing same
US7726545B2 (en) 2005-03-16 2010-06-01 Panasonic Corporation Flip chip mounting process and bump-forming process using electrically-conductive particles as nuclei
US7905011B2 (en) 2006-03-16 2011-03-15 Panasonic Corporation Bump forming method and bump forming apparatus
US7910403B2 (en) 2005-03-09 2011-03-22 Panasonic Corporation Metal particles-dispersed composition and flip chip mounting process and bump-forming process using the same
JP2012058129A (en) * 2010-09-10 2012-03-22 Hideo Nishikawa Contactor and method of manufacturing the same
JP2012109454A (en) * 2010-11-18 2012-06-07 Panasonic Corp Electronic component connecting method
US8283246B2 (en) 2005-04-06 2012-10-09 Panasonic Corporation Flip chip mounting method and bump forming method
US8297488B2 (en) 2006-03-28 2012-10-30 Panasonic Corporation Bump forming method using self-assembling resin and a wall surface
US8709293B2 (en) 2004-12-17 2014-04-29 Panasonic Corporation Flip-chip mounting resin composition and bump forming resin composition

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100409423C (en) * 2003-02-05 2008-08-06 千住金属工业株式会社 Method for interconnecting terminals and method for mounting semiconductor device
WO2004070827A1 (en) 2003-02-05 2004-08-19 Senju Metal Industry Co., Ltd. Method for interconnecting terminals and method for mounting semiconductor device
KR101057608B1 (en) 2003-02-05 2011-08-18 고조 후지모토 How to connect between terminals and mounting method of semiconductor device
US7524748B2 (en) 2003-02-05 2009-04-28 Senju Metal Industry Co., Ltd. Method of interconnecting terminals and method of mounting semiconductor devices
JP2005089559A (en) * 2003-09-16 2005-04-07 Denso Corp Method for connecting members using conductive adhesive
WO2006030674A1 (en) * 2004-09-15 2006-03-23 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and flip chip mounting element
CN100442468C (en) * 2004-09-15 2008-12-10 松下电器产业株式会社 Flip chip mounting method and flip chip mounting element
US7759162B2 (en) 2004-09-15 2010-07-20 Panasonic Corporation Flip chip mounting process and flip chip assembly
US8012801B2 (en) 2004-09-15 2011-09-06 Panasonic Corporation Flip chip mounting process and flip chip assembly
US7416921B2 (en) 2004-11-09 2008-08-26 Fujitsu Limited Method for flip-chip mounting utilizing a delay curing-type adhesive with two-part hardening resin
JP2006147968A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Method and device for flip chip packaging
JP4543899B2 (en) * 2004-11-24 2010-09-15 パナソニック株式会社 Flip chip mounting method and flip chip mounting apparatus
US8709293B2 (en) 2004-12-17 2014-04-29 Panasonic Corporation Flip-chip mounting resin composition and bump forming resin composition
JP2006245189A (en) * 2005-03-02 2006-09-14 Matsushita Electric Ind Co Ltd Flip-chip mounting method and mounting structure of semiconductor device
US7910403B2 (en) 2005-03-09 2011-03-22 Panasonic Corporation Metal particles-dispersed composition and flip chip mounting process and bump-forming process using the same
US7726545B2 (en) 2005-03-16 2010-06-01 Panasonic Corporation Flip chip mounting process and bump-forming process using electrically-conductive particles as nuclei
US7820021B2 (en) 2005-03-29 2010-10-26 Panasonic Corporation Flip chip mounting method and method for connecting substrates
WO2006103949A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and method for connecting substrates
US7638883B2 (en) 2005-03-29 2009-12-29 Panasonic Corporation Flip chip mounting method and bump forming method
US7531385B1 (en) 2005-03-29 2009-05-12 Panasonic Corporation Flip chip mounting method and method for connecting substrates
WO2006103948A1 (en) 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
US7531387B1 (en) 2005-03-29 2009-05-12 Panasonic Corporation Flip chip mounting method and bump forming method
US8283246B2 (en) 2005-04-06 2012-10-09 Panasonic Corporation Flip chip mounting method and bump forming method
US8301750B2 (en) 2005-06-10 2012-10-30 International Business Machines Corporation Apparatus, system, and method for facilitating communication between an enterprise information system and a client
US20060282524A1 (en) * 2005-06-10 2006-12-14 Lacombe Jason N Apparatus, system, and method for facilitating communication between an enterprise information system and a client
US7640659B2 (en) 2005-09-02 2010-01-05 Panasonic Corporation Method for forming conductive pattern and wiring board
WO2007029452A1 (en) * 2005-09-02 2007-03-15 Matsushita Electric Industrial Co., Ltd. Method of forming conductive pattern and wiring board
JP2007081198A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Method for conductive connection between terminals
US7905011B2 (en) 2006-03-16 2011-03-15 Panasonic Corporation Bump forming method and bump forming apparatus
US8297488B2 (en) 2006-03-28 2012-10-30 Panasonic Corporation Bump forming method using self-assembling resin and a wall surface
EP2608642A1 (en) 2007-03-12 2013-06-26 Senju Metal Industry Co., Ltd. Anisotropic conductive material
US8343383B2 (en) 2007-03-12 2013-01-01 Senju Metal Industry Co., Ltd. Anisotropic conductive material
WO2008111615A1 (en) 2007-03-12 2008-09-18 Senju Metal Industry Co., Ltd. Anisotropic electroconductive material
JP2009065183A (en) * 2008-10-14 2009-03-26 Nec Electronics Corp Electronic apparatus and its manufacturing process
WO2010050185A1 (en) * 2008-10-27 2010-05-06 パナソニック株式会社 Semiconductor mounting structure and method for manufacturing same
CN101965632B (en) * 2008-10-27 2012-09-26 松下电器产业株式会社 Semiconductor mounting structure and method for manufacturing same
US8450859B2 (en) 2008-10-27 2013-05-28 Panasonic Corporation Semiconductor device mounted structure and its manufacturing method
JP5204241B2 (en) * 2008-10-27 2013-06-05 パナソニック株式会社 Semiconductor mounting structure and manufacturing method thereof
JP2012058129A (en) * 2010-09-10 2012-03-22 Hideo Nishikawa Contactor and method of manufacturing the same
JP2012109454A (en) * 2010-11-18 2012-06-07 Panasonic Corp Electronic component connecting method

Similar Documents

Publication Publication Date Title
JP2002026070A (en) Semiconductor device and its manufacturing method
KR100384314B1 (en) Method and device for mounting electronic component on circuit board
KR100746330B1 (en) Method for bonding between electrical devices using ultrasonication
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
US20090126876A1 (en) Flip chip mounting method and method for connecting substrates
WO2006112384A1 (en) Protruding electrode for connecting electronic component, electronic component mounted body using such electrode and methods for manufacturing such electrode and electronic component mounted body
KR20020036669A (en) Flip chip assembly structure for semiconductor device and method of assembling therefor
JP3326382B2 (en) Method for manufacturing semiconductor device
JP2009027173A (en) Method of manufacturing flip-chip package
JPWO2006126361A1 (en) Solder bump forming method and semiconductor element mounting method
JPH11186334A (en) Semiconductor mounting apparatus, manufacture thereof and anisotropically conductive material
JP2001332583A (en) Method of mounting semiconductor chip
AU695142B2 (en) Semiconductor unit package, semiconductor unit packaging method and encapsulant for use in semiconductor unit packaging
JP2011077307A (en) Semiconductor device and method of manufacturing semiconductor device
JP3558576B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2755696B2 (en) Semiconductor device and manufacturing method thereof
JPH09246319A (en) Flip chip mounting method
JPH114064A (en) Anisotropic conductive resin and mounting structure for electronic component using the same
JP3482840B2 (en) Method for manufacturing semiconductor device
JPH11176879A (en) Mounting method of semiconductor and anisotropic conductive bonding agent used in method thereof
JPH0547841A (en) Mounting method and structure of semiconductor apparatus
JP2004047773A (en) Method of manufacturing mounting board
JP2000058597A (en) Method of mounting electronic component
JP3078781B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2002016104A (en) Mounting method of semiconductor device and manufacturing method of semiconductor device mounted assembly