JP2921740B2 - Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same - Google Patents

Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Info

Publication number
JP2921740B2
JP2921740B2 JP7021355A JP2135595A JP2921740B2 JP 2921740 B2 JP2921740 B2 JP 2921740B2 JP 7021355 A JP7021355 A JP 7021355A JP 2135595 A JP2135595 A JP 2135595A JP 2921740 B2 JP2921740 B2 JP 2921740B2
Authority
JP
Japan
Prior art keywords
anisotropic conductive
inner core
particles
conductive particles
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7021355A
Other languages
Japanese (ja)
Other versions
JPH08193186A (en
Inventor
博之 熊倉
尚 安藤
幸男 山田
保博 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP7021355A priority Critical patent/JP2921740B2/en
Publication of JPH08193186A publication Critical patent/JPH08193186A/en
Application granted granted Critical
Publication of JP2921740B2 publication Critical patent/JP2921740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、異方性導電接着剤用導
電粒子及びそれを用いた異方性導電接着剤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to conductive particles for anisotropic conductive adhesives and to anisotropic conductive adhesives using the same.

【0002】[0002]

【従来の技術】近年の電子機器の小形化、高機能化の流
れの中で、接続すべき端子の面積と端子ピッチとが非常
に小さくなっている。このため、そのような端子間の接
続が可能な異方性導電接着剤が広く使用されるようにな
っている。例えば、液晶パネルを製造する際には、ガラ
ス基板に形成されたインジウム−すず−酸化物(IT
O)などの透明電極と、TABに形成された銅端子との
間の接続を取るために、異方性導電接着剤が使用されて
いる。
2. Description of the Related Art In recent years, with the trend toward miniaturization and high performance of electronic equipment, the area of terminals to be connected and the terminal pitch have become extremely small. For this reason, anisotropic conductive adhesives capable of connecting between such terminals have been widely used. For example, when manufacturing a liquid crystal panel, indium-tin-oxide (IT) formed on a glass substrate is used.
An anisotropic conductive adhesive is used to establish a connection between a transparent electrode such as O) and a copper terminal formed on TAB.

【0003】このような異方性導電接着剤としては、基
本的にエポキシ樹脂と硬化剤とからなる絶縁性接着成分
に導電粒子を分散させた一液性熱硬化型のものが主とし
て使用されている。この場合、導電粒子としては、ポリ
スチレンやポリジビニルベンゼンなどの絶縁性樹脂から
なる均質な絶縁性粒子に、無電解メッキ法などにより金
や銅などの導電材料のメッキ層を被覆した導電粒子が一
般に使用されている。
[0003] As such anisotropic conductive adhesive, a one-part thermosetting type in which conductive particles are dispersed in an insulating adhesive component basically comprising an epoxy resin and a curing agent is mainly used. I have. In this case, the conductive particles generally include conductive particles obtained by coating a homogeneous insulating particle made of an insulating resin such as polystyrene or polydivinylbenzene with a plating layer of a conductive material such as gold or copper by an electroless plating method or the like. in use.

【0004】ところで、このような導電粒子を用いた異
方性導電接着剤を使用して液晶パネルを製造する際に
は、図3に示すように、平坦なプレス台31に、ガラス
基板32とTAB33とを、ガラス基板32のITO電
極32aとTAB33の電極33aが対向するように載
置し、それらを導電粒子36を含有する所定の厚さの異
方性導電接着剤層34を介して平坦なプレスヘッド35
で熱圧着することが行われている。
When a liquid crystal panel is manufactured using an anisotropic conductive adhesive using such conductive particles, as shown in FIG. 3, a flat press table 31 and a glass substrate 32 are attached. The TAB 33 is placed so that the ITO electrode 32a of the glass substrate 32 and the electrode 33a of the TAB 33 face each other, and they are flattened via an anisotropic conductive adhesive layer 34 containing conductive particles 36 and having a predetermined thickness. Press head 35
Thermocompression bonding is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、導電粒
子を構成する絶縁性粒子として、ベンゾグアナミンなど
の比較的硬く変形しにくい絶縁性樹脂を用いて図3と同
様に熱圧着を行った場合に、図4に示すように、プレス
ヘッド35の当たり精度が十分でなく、わずかに傾斜し
た状態で熱圧着操作が行われると、異方性導電接着剤層
34内の導電粒子36aが十分につぶれないために導電
粒子36bが圧着されず、その結果、初期抵抗値が高く
なるという問題があった。また、プレスヘッド35の当
たり精度は良好であっても、図5に示すように、TAB
33がその電極としてバンプ37a〜37cを有するも
のである場合に、それらバンプ37a〜37cの厚み精
度が良好でなく不均一であるときにも、図4の場合と同
様に、導電粒子36aが十分につぶれないために導電粒
子36bが圧着されず、その結果、初期抵抗値が高くな
るという問題があった。
However, when thermocompression bonding is performed in the same manner as in FIG. 3 using insulating resin such as benzoguanamine which is relatively hard and hard to deform as the insulating particles constituting the conductive particles, FIG. As shown in FIG. 4, when the pressing accuracy of the press head 35 is not sufficient and the thermocompression bonding operation is performed in a slightly inclined state, the conductive particles 36a in the anisotropic conductive adhesive layer 34 are not sufficiently crushed. However, the conductive particles 36b are not pressed, and as a result, there is a problem that the initial resistance value is increased. Further, even if the hit accuracy of the press head 35 is good, as shown in FIG.
When the electrode 33 has the bumps 37a to 37c as its electrodes, and the thickness accuracy of the bumps 37a to 37c is not good and non-uniform, the conductive particles 36a can be sufficiently filled as in the case of FIG. As a result, the conductive particles 36b are not pressed, so that there is a problem that the initial resistance value is increased.

【0006】一方、導電粒子を構成する絶縁性粒子とし
て、アクリル樹脂やウレタン樹脂などの比較的柔らかく
変形しやすい絶縁性樹脂を用いた場合には、図6に示す
ようにプレスヘッド35の当たり精度が不十分であると
きでも、あるいは図7に示すようにTAB33のバンプ
37a〜37cの高さ精度が不十分であるときでも、異
方性導電接着剤層34内の導電粒子36a、36bが十
分につぶれるので初期導電性は比較的良好であるが、過
度につぶれることにより絶縁性接着成分34xが本来の
接着領域から排除され、また異方性導電接着剤層34の
層厚が薄くなり、その接着力が低下するという問題があ
る。また、熱ストレスが加えられた場合には、導電粒子
が熱圧着時に塑性変形を起こすために、エージング後の
抵抗値が上昇するという問題がある。
On the other hand, when a relatively soft and easily deformable insulating resin such as an acrylic resin or a urethane resin is used as the insulating particles constituting the conductive particles, as shown in FIG. When the height of the bumps 37a to 37c of the TAB 33 is insufficient, as shown in FIG. 7, the conductive particles 36a and 36b in the anisotropic conductive adhesive layer 34 are sufficient. The initial conductivity is relatively good because it is crushed, but excessively crushing causes the insulating adhesive component 34x to be removed from the original bonding area, and the layer thickness of the anisotropic conductive adhesive layer 34 to be reduced. There is a problem that the adhesive strength is reduced. Further, when thermal stress is applied, the conductive particles undergo plastic deformation during thermocompression bonding, so that there is a problem that the resistance value after aging increases.

【0007】このため、中間的な柔らかさと変形度合い
とを有する絶縁性樹脂から導電粒子を作製することも考
えられるが、この場合には、硬く変形しにくい絶縁性樹
脂及び柔らかく変形しやすい絶縁性樹脂の両者の利点を
保持したまま欠点を補うことはできず、両者の中間的な
特性を示すので、初期導電性が不十分となり、エージン
グ後の導通信頼性も不十分となるという問題がある。
For this reason, it is conceivable to produce conductive particles from an insulating resin having an intermediate softness and a degree of deformation. In this case, however, an insulating resin that is hard and hard to deform and an insulating resin that is soft and easily deformable are used. The disadvantage cannot be compensated for while maintaining the advantages of both resins, and they exhibit intermediate properties between the two, resulting in a problem that the initial conductivity becomes insufficient and the conduction reliability after aging becomes insufficient. .

【0008】以上にように、異方性導電接着剤用導電粒
子が熱圧着時に過度につぶれないようにするという要請
と、熱圧着時にプレスヘッドの当たり精度やTABのバ
ンプの高さ精度などが不十分な場合でも安定した導通が
得られるように十分につぶれるようにするという要請と
は互いに相反するものであり、従来これらの相反する要
請を同時に満足するような異方性導電接着剤用導電粒子
は存在しなかった。
As described above, the requirement that the conductive particles for the anisotropic conductive adhesive should not be excessively crushed during the thermocompression bonding, and the accuracy of the press head contact and the height accuracy of the TAB bump during the thermocompression bonding. The requirement of sufficient crushing so as to obtain stable conduction even when insufficient is mutually contradictory. Conventionally, a conductive material for an anisotropic conductive adhesive which satisfies these conflicting requirements at the same time. No particles were present.

【0009】本発明は、以上の従来技術の技術的課題を
解決しようとするものであり、上述した相反する二つの
要請を同時に満足する異方性導電接着剤用導電粒子を提
供し、更に異方性導電接着剤を提供することを目的とす
る。
The present invention is intended to solve the above-mentioned technical problems of the prior art, and provides conductive particles for an anisotropic conductive adhesive which simultaneously satisfy the above two contradictory requirements. An object of the present invention is to provide an isotropic conductive adhesive.

【0010】[0010]

【課題を解決するための手段】本発明者らは、異方性導
電接着剤用導電粒子を構成する絶縁性粒子として、比較
的硬く変形しにくい内核を比較的柔らかく変形しやすい
外層で被覆した多層構造のものを使用することより上述
の目的が達成できることを見出し、本発明を完成させる
に至った。
Means for Solving the Problems The present inventors coated an inner core that is relatively hard and hard to deform with an outer layer that is relatively soft and easily deformable as insulating particles constituting conductive particles for an anisotropic conductive adhesive. It has been found that the above object can be achieved by using a multilayer structure, and the present invention has been completed.

【0011】即ち、本発明は、絶縁性粒子とそれを被覆
する導電材料とからなる異方性導電接着剤用導電粒子に
おいて、該絶縁性粒子が少なくとも内核とそれを被覆す
る外層とから構成され、且つ外層が内核より柔らかく、
10%圧縮変位時における絶縁性粒子の内核の圧縮強度
が15kgf/mm 2 以上であり、外層の圧縮強度が5
kgf/mm 2 以下であり、内核の径が1μm以上であ
り、外層の厚みが0.5μm以上であり、絶縁性粒子の
径が2〜20μmであることを特徴とする異方性導電接
着剤用導電粒子を提供する。
That is, the present invention relates to a conductive particle for an anisotropic conductive adhesive comprising insulating particles and a conductive material covering the same, wherein the insulating particles comprise at least an inner core and an outer layer covering the inner core. And the outer layer is softer than the inner core,
Compressive strength of inner core of insulating particles at 10% compressive displacement
Is 15 kgf / mm 2 or more, and the compressive strength of the outer layer is 5
kgf / mm 2 or less, the diameter of the inner core is 1 μm or more, the thickness of the outer layer is 0.5 μm or more, and the diameter of the insulating particles is 2 to 20 μm. Provide conductive particles for use.

【0012】以下、本発明の異方性導電接着剤用導電粒
子を図面を参照しながら詳細に説明する。
Hereinafter, the conductive particles for anisotropic conductive adhesive of the present invention will be described in detail with reference to the drawings.

【0013】図1は本発明の好ましい態様の異方性導電
接着剤用導電粒子の断面図である。この導電粒子10
は、内核1とそれを被覆する外層2とからなる絶縁性粒
子3が導電材料層4で被覆された構造を有する。ここ
で、外層2が内核1より柔らかい材料から形成されてい
る。このような構造の導電粒子10は、図2(a)に示
すように、熱圧着時に内核1は過度につぶれないが、外
層2が十分につぶれる。従って、図2(b)に示すよう
に、プレスヘッド35の当たり精度が不十分な場合で
も、十分に外層2がつぶれて良好な導通を確保すること
ができる。しかも、内核1が過度につぶれないので、接
着剤層の厚みを過度に薄くすることがなく、十分な接着
力を確保することができる。更に、外層2が大きく塑性
変形するような熱圧着時の温度条件下でも、内核1が形
状を保持することができる温度であれば、熱圧着が可能
となるので、熱圧着条件の幅を広げることができる。
FIG. 1 is a sectional view of a conductive particle for an anisotropic conductive adhesive according to a preferred embodiment of the present invention. The conductive particles 10
Has a structure in which insulating particles 3 composed of an inner core 1 and an outer layer 2 covering the inner core 1 are covered with a conductive material layer 4. Here, the outer layer 2 is formed of a material softer than the inner core 1. In the conductive particle 10 having such a structure, as shown in FIG. 2A, the inner core 1 is not excessively crushed during thermocompression bonding, but the outer layer 2 is sufficiently crushed. Therefore, as shown in FIG. 2B, even when the contact accuracy of the press head 35 is insufficient, the outer layer 2 can be sufficiently collapsed to ensure good conduction. Moreover, since the inner core 1 is not excessively crushed, a sufficient adhesive force can be secured without excessively reducing the thickness of the adhesive layer. Further, even under the temperature condition at the time of thermocompression bonding in which the outer layer 2 undergoes large plastic deformation, as long as the inner core 1 can maintain its shape, thermocompression bonding can be performed. be able to.

【0014】本発明において、内核1と外層2との柔ら
かさの指標として、10%圧縮変位時における圧縮強度
を好ましく採用することができる。この理由は、10%
圧縮変位時における圧縮強度が、樹脂の種類に関係な
く、弾性変形の領域で固さを測る代用特性となるからで
ある。
In the present invention, as an index of the softness between the inner core 1 and the outer layer 2, the compressive strength at the time of 10% compressive displacement can be preferably used. The reason is 10%
This is because the compressive strength at the time of compressive displacement becomes a substitute characteristic for measuring hardness in a region of elastic deformation regardless of the type of resin.

【0015】圧縮強度という視点から内核1と外層2と
を比較した場合、内核1の圧縮強度は、外層2の圧縮強
度よりも高くなるようにする。具体的には、10%圧縮
変位時における絶縁性粒子3の内核1の圧縮強度は、低
すぎるとつぶれすぎるので好ましくは10kgf/mm
2以上、より好ましくは15kgf/mm2以上とする。
また、外層2の圧縮強度は、高過ぎると熱圧着時に十分
につぶれないので、好ましくは10kgf/mm2
満、より好ましくは5kgf/mm2以下とする。この
場合、内核1と外層2との圧縮強度差は、小さすぎると
本発明の効果が十分に得られなくなる傾向があるので、
好ましくは少なくとも4kgf/mm2となるようにす
る。
When the inner core 1 and the outer layer 2 are compared from the viewpoint of compressive strength, the compressive strength of the inner core 1 is set to be higher than the compressive strength of the outer layer 2. Specifically, the compressive strength of the inner core 1 of the insulating particles 3 at the time of a 10% compressive displacement is preferably 10 kgf / mm, since if the compressive strength is too low, the compressive strength is too high.
2 or more, more preferably 15 kgf / mm 2 or more.
The compressive strength of the outer layer 2, does not sufficiently crushed when too high thermocompression bonding, preferably less than 10 kgf / mm 2, more preferably from 5 kgf / mm 2 or less. In this case, if the difference in compressive strength between the inner core 1 and the outer layer 2 is too small, the effect of the present invention tends not to be sufficiently obtained.
Preferably, the pressure is at least 4 kgf / mm 2 .

【0016】なお、本発明において、導電粒子の10%
圧縮変位時の圧縮強度は室温下でのデータを適用しても
よい。
In the present invention, 10% of the conductive particles
The data at room temperature may be applied to the compressive strength at the time of compressive displacement.

【0017】また、内核1の径は、小さすぎると、例え
ば、TABとガラス基板との間の凹凸の中にもぐり込ん
で導通が不安定となる傾向があるために、1μm以上と
することが好ましい。一方、外層2の層厚は、小さすぎ
るとプレスヘッドの当たり精度が不十分な場合に十分に
つぶれず、やはり導通が不安定となる傾向があるため
に、0.5μm以上とすることが好ましい。なお、この
場合、絶縁性粒子の径が小さすぎると導通が不安定とな
り、大きすぎると接続時に端子間でショートが発生する
傾向があるので、内核1の径と外層2の層厚とは、絶縁
性粒子3の径が2〜20μmの範囲となるように設定す
る。
On the other hand, if the diameter of the inner core 1 is too small, for example, it tends to penetrate into irregularities between the TAB and the glass substrate and the conduction becomes unstable, so that the diameter is preferably 1 μm or more. . On the other hand, if the layer thickness of the outer layer 2 is too small, the layer will not be sufficiently collapsed when the contact accuracy of the press head is insufficient and the conduction tends to be unstable, so that it is preferably 0.5 μm or more. . In this case, if the diameter of the insulating particles is too small, conduction becomes unstable, and if the diameter is too large, a short circuit tends to occur between terminals during connection. Therefore, the diameter of the inner core 1 and the layer thickness of the outer layer 2 are: The diameter of the insulating particles 3 is set to be in the range of 2 to 20 μm.

【0018】以上説明した内核1や外層2の材料として
は、種々の絶縁性の合成樹脂、例えば、ポリスチレン、
ポリジビニルベンゼン、ベンゾグアナミン樹脂、メラミ
ン樹脂、アクリル−スチレン樹脂、ウレタン樹脂などの
中から適宜選択して使用することができる。
As the material of the inner core 1 and the outer layer 2 described above, various insulating synthetic resins, for example, polystyrene,
Polydivinylbenzene, benzoguanamine resin, melamine resin, acryl-styrene resin, urethane resin and the like can be appropriately selected and used.

【0019】なお、これらの合成樹脂の10%圧縮変位
時の圧縮強度は、使用する樹脂の種類や重合度などを適
宜調整することにより行うことができる。
The compressive strength of these synthetic resins at a 10% compressive displacement can be adjusted by appropriately adjusting the type of resin used, the degree of polymerization, and the like.

【0020】本発明において、絶縁性粒子3を被覆する
導電材料層4としては、従来より異方性導電接着剤用導
電粒子に使用している層を適用することができる。例え
ば、無電解金メッキ層や無電解銅/ニッケルメッキ層な
どを適用することができる。また、その層厚なども適宜
決定することができる。
In the present invention, as the conductive material layer 4 covering the insulating particles 3, a layer conventionally used for conductive particles for an anisotropic conductive adhesive can be applied. For example, an electroless gold plating layer, an electroless copper / nickel plating layer, or the like can be applied. Further, the layer thickness and the like can be appropriately determined.

【0021】図1の態様の導電粒子10は、その絶縁性
粒子3が内核1とそれを被覆する外層2とから構成され
る2層構造の絶縁性粒子3を使用した例であるが、本発
明の異方性導電接着剤用導電粒子は、2層構造の絶縁性
粒子3を使用したものに限られず、内核を取り巻く外層
が2層以上の絶縁性粒子を使用した態様も包含する。
The conductive particle 10 of the embodiment shown in FIG. 1 is an example in which the insulating particle 3 uses an insulating particle 3 having a two-layer structure composed of an inner core 1 and an outer layer 2 covering the inner core. The conductive particles for an anisotropic conductive adhesive of the present invention are not limited to those using the insulating particles 3 having a two-layer structure, but also include embodiments in which the outer layer surrounding the inner core uses two or more insulating particles.

【0022】本発明の異方性導電性接着剤用導電粒子
は、常法により製造することができ、例えば、図1の導
電粒子は、内核1となる樹脂粒子に、ハイブリダイゼー
ション装置(奈良機械社製)を用いて外層2となる樹脂
を被覆し、更にその外層上に無電解メッキ法により導電
材料層を形成することにより製造することができる。
The conductive particles for the anisotropic conductive adhesive of the present invention can be produced by a conventional method. For example, the conductive particles in FIG. Co., Ltd.) and a conductive material layer formed on the outer layer by an electroless plating method.

【0023】本発明の導電粒子を用いて異方性導電接着
剤を製造する場合、絶縁性接着成分100重量部に対
し、本発明の導電粒子を1〜23重量部、好ましくは3
〜15重量部配合する。ここで、接着成分としては、従
来公知の異方性導電接着剤において用いられている接着
成分と同様の構成とすることができ、例えば、基本的に
は、固形もしくは液状エポキシ樹脂などの重合成分とイ
ミダゾール系硬化剤や変性アミン系硬化剤などの硬化成
分とからなる絶縁性接着成分を使用することができる。
When an anisotropic conductive adhesive is produced using the conductive particles of the present invention, the conductive particles of the present invention are used in an amount of 1 to 23 parts by weight, preferably 3 to 100 parts by weight of the insulating adhesive component.
To 15 parts by weight. Here, the adhesive component may have the same configuration as the adhesive component used in the conventionally known anisotropic conductive adhesive. For example, basically, a polymerizable component such as a solid or liquid epoxy resin may be used. And an insulating adhesive component comprising a curing component such as an imidazole-based curing agent or a modified amine-based curing agent.

【0024】このような異方性導電接着剤は、常法によ
り製造することができ、絶縁性接着成分に、本発明の導
電粒子を添加し、更に必要に応じて分散助剤、熱可塑性
エラストマーなどの成膜成分や、脂肪族系石油樹脂など
の粘着成分を配合して、均一に分散させることにより製
造することができる。
Such an anisotropic conductive adhesive can be produced by a conventional method. The conductive particles of the present invention are added to an insulating adhesive component, and if necessary, a dispersing aid and a thermoplastic elastomer are added. It can be manufactured by blending a film-forming component such as, or an adhesive component such as an aliphatic petroleum resin, and uniformly dispersing them.

【0025】このような異方性導電接着剤の使用方法と
しては、従来の異方性導電接着剤と同様な方法により使
用することができる。特に好ましい使用態様としては、
粘着成分を添加した異方性導電接着剤を、シリコーン系
剥離剤などで剥離処理されたPETフィルムなどに塗布
して成膜することにより作製される異方性導電接着剤シ
ートを挙げることができる。
The anisotropic conductive adhesive can be used in the same manner as the conventional anisotropic conductive adhesive. As a particularly preferred use mode,
An anisotropic conductive adhesive sheet prepared by applying an anisotropic conductive adhesive to which an adhesive component has been added to a PET film or the like that has been subjected to a release treatment with a silicone-based release agent or the like and forming a film can be given. .

【0026】[0026]

【作用】本発明の異方性導電接着剤用導電粒子において
は、導電粒子を構成する絶縁性粒子の構造を、比較的硬
く変形しにくい内核を比較的柔らかく変形しやすい外層
で被覆したものとしている。従って、熱圧着時に内核は
過度につぶれないが、外層が十分につぶれる。よって、
プレスヘッドの当たり精度やTABのバンブ高さ精度な
どが不十分な場合でも、十分に外層がつぶれて良好な導
通を確保することが可能となる。しかも、内核が過度に
つぶれないので、接着剤層の厚みを過度に薄くすること
がなく、十分な接着力を確保することが可能となる。
In the conductive particles for anisotropic conductive adhesive of the present invention, the structure of the insulating particles constituting the conductive particles is obtained by covering the inner core, which is relatively hard and hard to deform, with the outer layer, which is relatively soft and easily deformable. I have. Therefore, the inner core does not collapse excessively during thermocompression bonding, but the outer layer collapses sufficiently. Therefore,
Even when the contact accuracy of the press head and the accuracy of the bump height of the TAB are insufficient, the outer layer can be sufficiently collapsed to ensure good conduction. Moreover, since the inner core is not excessively crushed, a sufficient adhesive force can be secured without excessively reducing the thickness of the adhesive layer.

【0027】[0027]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0028】実施例1〜14及び比較例1〜3 表1に示す10%圧縮変位時の圧縮強度を有する材料を
用い、表2の示す組み合わせと大きさに、ハイブリダイ
ゼーション装置(奈良機械社製)を用いて絶縁性粒子を
作製し、その外層上に約0.1μm厚の無電解ニッケル
メッキ層を形成し、更にそのニッケル層上に約500Å
厚の無電解金メッキ層を形成することにより異方性導電
接着剤用導電粒子A〜Mを作製した。ここで、導電粒子
A〜Jは、本発明の異方性導電接着剤用導電粒子であ
り、導電粒子K〜Mは外層が形成されていない比較のた
めの導電粒子である。
Examples 1 to 14 and Comparative Examples 1 to 3 Using a material having a compressive strength at 10% compressive displacement shown in Table 1 and a combination and size shown in Table 2, a hybridization device (manufactured by Nara Machine Co., Ltd.) ) To form an insulative particle, form an electroless nickel plating layer having a thickness of about 0.1 μm on the outer layer, and further form an electroless nickel plating layer having a thickness of about 500 μm on the nickel layer.
By forming a thick electroless gold plating layer, conductive particles A to M for an anisotropic conductive adhesive were produced. Here, the conductive particles A to J are the conductive particles for the anisotropic conductive adhesive of the present invention, and the conductive particles KM are conductive particles for comparison without an outer layer formed.

【0029】なお、表1の各樹脂の10%圧縮変位時の
圧縮データは、微小圧縮試験機(MCTM−200、島
津製作所製)を用い、試験荷重3.00(gf)、負荷
速度定数2(0.135gf/sec)、変位スケール
5.00(μm)、圧子50(μmφ)という条件で測
定した。
The compression data at 10% compression displacement of each resin in Table 1 was obtained using a micro compression tester (MCTM-200, manufactured by Shimadzu Corporation) using a test load of 3.00 (gf) and a load speed constant of 2 (0.135 gf / sec), displacement scale 5.00 (μm), and indenter 50 (μmφ).

【0030】[0030]

【表1】 圧縮強度 樹脂名 メーカー 主成分 (kgf/mm2) エホ゜スターGPH 日本化学工業(株) ヘ゛ンソ゛ク゛アナミン/メラミン 18.1 ミクロハ゜ールSP20525 積水ファインケミカル(株) シ゛ヒ゛ニルヘ゛ンセ゛ン 4.60 ミクロハ゜ールSP210 積水ファインケミカル(株) シ゛ヒ゛ニルヘ゛ンセ゛ン 23.9 10%架橋ホ゜リスチレン (株)山王 ホ゜リスチレン 4.37 15%架橋ホ゜リスチレン (株)山王 ホ゜リスチレン 9.23 [Table 1] Compressive strength Resin name Manufacturer Main component (kgf / mm 2 ) Ephostar GPH Nippon Kagaku Kogyo Co., Ltd. Pensoamine / Melamine 18.1 Microbar SP20525 Sekisui Fine Chemical Co., Ltd. 4.60 Microval SP210 Sekisui Fine Chemical Co., Ltd. Sekisui Fine Chemical Co., Ltd. 23.9 10% cross-linked polystyrene Co., Ltd. Sanno polystyrene 4.37 15% cross-linked polystyrene Co., Ltd. Sanno polystyrene 9.23

【0031】[0031]

【表2】 内核 外層 絶縁性粒子径導電粒子 材料 径(μm) 材料 層厚(μm) (μm) A エホ゜スターGPH 4.0 ミクロハ゜ールSP20525 0.5 5.0 B エホ゜スターGPH 3.0 ミクロハ゜ールSP20525 5.0 10.3 C エホ゜スターGPH 2.0 ミクロハ゜ールSP20525 8.0 18.0 D エホ゜スターGPH 4.0 ミクロハ゜ールSP20525 0.3 4.6 E エホ゜スターGPH 4.0 10%架橋ホ゜リスチレン 5.0 14.0 F エホ゜スターGPH 4.0 15%架橋ホ゜リスチレン 4.0 12.0 G ミクロハ゜ールSP210 5.0 15%架橋ホ゜リスチレン 2.0 9.0 H ミクロハ゜ールSP20525 4.0 10%架橋ホ゜リスチレン 1.0 6.0 I エホ゜スターGPH 0.8 ミクロハ゜ールSP20525 0.3 1.4 J エホ゜スターGPH 10.0 ミクロハ゜ールSP20525 6.0 22.0 K エホ゜スターGPH 4.6 − − 4.6 L ミクロハ゜ールSP210 5.0 − − 5.0 M 10%架橋ホ゜リスチレン 8.0 − − 8.0 [Table 2] An inner core layer insulating particle diameter conductive particle material diameter ([mu] m) material thickness (μm) (μm) A epo star GPH 4.0 Mikuroha ° Lumpur SP20525 0.5 5.0 B Epo Star GPH 3.0 Mikuroha ° Lumpur SP20525 5.0 10 .3 C Eposter GPH 2.0 Microjar SP20525 8.0 18.0 D Eposter GPH 4.0 Microjar SP20525 0.3 4.6 E Estar GPH 4.0 10% crosslinked polystyrene 5.0 14.0 F Estar GPH 4.0 15% crosslinked polystyrene 4.0 12.0 G micropoly SP210 5.0 15% crosslinked polystyrene 2.0 9.0 H micropoly SP20525 4.0 10% crosslinked polystyrene 1.0 6.0 I Epostar GPH 0.8 MICROVAL SP20525 0.3 1.4 J EHOSTAR GPH 10.0 MICROVAL SP20525 6.0 22.0 K EHOSTAR GPH .6 - - 4.6 L Mikuroha ° Lumpur SP210 5.0 - - 5.0 M 10% crosslinking port polystyrene 8.0 - - 8.0

【0032】これとは別に、40重量部のフェノキシ樹
脂(YP50、東都化成社製)、30重量部の液状エポ
キシ樹脂(EP828、油化シェル社製)及び30重量
部の潜在性硬化剤(HX3941HP、旭化成工業社
製)をトルエンで固形分70%に調整することにより異
方性導電接着剤のバインダーを調製した。
Separately, 40 parts by weight of a phenoxy resin (YP50, manufactured by Toto Kasei), 30 parts by weight of a liquid epoxy resin (EP828, manufactured by Yuka Shell) and 30 parts by weight of a latent curing agent (HX3941HP) (Manufactured by Asahi Kasei Corporation) was adjusted to a solid content of 70% with toluene to prepare a binder for an anisotropic conductive adhesive.

【0033】このバインダー100重量部に、表3(実
施例1〜14)及び表4(比較例1〜3)示す導電粒子
5重量部を添加し、均一に混合することにより異方性導
電接着剤を製造した。但し、実施例11〜14は導電粒
子Bをそれぞれ0.5重量部、10重量部、20重量部
及び25重量部添加した。
To 100 parts by weight of the binder, 5 parts by weight of the conductive particles shown in Table 3 (Examples 1 to 14) and Table 4 (Comparative Examples 1 to 3) were added and uniformly mixed to obtain anisotropic conductive adhesive. An agent was manufactured. However, in Examples 11 to 14, 0.5 parts by weight, 10 parts by weight, 20 parts by weight, and 25 parts by weight of the conductive particles B were respectively added.

【0034】得られた異方性導電接着剤を、剥離PET
フィルム上に乾燥厚で25μmとなるように塗布して異
方性導電接着剤シートをまず作製し、このシートを使用
してITOベタ電極が形成されたガラス基板上に異方性
導電接着剤層を貼着させた。
[0034] The obtained anisotropic conductive adhesive is peeled PET.
First, an anisotropic conductive adhesive sheet is prepared by coating the film to a dry thickness of 25 μm on a film, and the anisotropic conductive adhesive layer is formed on the glass substrate on which the ITO solid electrode is formed using the sheet. Was stuck.

【0035】次に、この接着剤層に、TABの70μm
ピッチの端子(25μm厚のCu/Snメッキ)を重ね
合わせて、それらを温度160℃、圧力30kg/cm
2で15秒間熱圧着することにより接続した。このと
き、プレス台の下部に一辺が15cmの正四方形の各頂
点となる位置にそれぞれマイクロジャッキを配し、プレ
スヘッド平面に対し、マイクロジャッキの高さを左右で
1mmずらしてプレスヘッドの当たり精度を低下させ
た。
Next, 70 μm of TAB was added to the adhesive layer.
Pitch terminals (25 μm thick Cu / Sn plating) are superimposed, and they are heated at a temperature of 160 ° C. and a pressure of 30 kg / cm.
The connection was made by thermocompression bonding at 2 for 15 seconds. At this time, micro jacks are placed at the bottom of the press table at each vertex of a square with a side of 15 cm, and the height of the micro jacks is shifted 1 mm left and right with respect to the plane of the press head, and the contact accuracy of the press head Decreased.

【0036】(評価)異方性導電接着剤で接着された基
板の接続部の導通信頼性及び隣接する2端子間の絶縁抵
抗について、それぞれ熱圧着後(初期)とエージング後
(85℃/85%RH/1000時間)に測定し、以下
の評価基準に従って評価した。その結果を表3(実施例
1〜14)及び表4(比較例1〜3)に示す。
(Evaluation) Regarding the conduction reliability of the connection portion of the substrate bonded with the anisotropic conductive adhesive and the insulation resistance between two adjacent terminals, after thermal compression bonding (initial) and after aging (85 ° C./85), respectively. % RH / 1000 hours) and evaluated according to the following evaluation criteria. The results are shown in Table 3 (Examples 1 to 14) and Table 4 (Comparative Examples 1 to 3).

【0037】接続部の導通信頼性評価基準 (1) 熱圧着後(初期)の場合 ランク 抵抗値 ○: 10Ω未満 △: 10〜20Ω ×: 20Ω以上 (2) エージング後の場合 ランク 状態 ○: 初期の2倍未満 △: 初期の2〜3倍 ×: 初期の3倍以上隣接する2端子間の絶縁抵抗 (1) 熱圧着後(初期)及び(2)エージング後の双
方の場合に共通 ランク 抵抗値 ○: 1×108Ω以上 △: 1×106Ω〜1×108Ω ×: 1×106Ω未満
Evaluation standard of conduction reliability of connection part (1) After thermocompression bonding (initial) Rank resistance value ○: less than 10Ω △: 10 to 20Ω ×: 20Ω or more (2) After aging Rank state ○: initial Less than 2 times of Δ: 2 to 3 times of initial ×: 3 times or more of initial Insulation resistance between two adjacent terminals (1) Rank resistance common in both cases after thermocompression bonding (initial) and after (2) aging Value ○: 1 × 10 8 Ω or more △: 1 × 10 6 Ω to 1 × 10 8 Ω ×: Less than 1 × 10 6 Ω

【0038】[0038]

【表3】 実 施 例 1 2 3 4 5 6 7 8 9 10 11 12 13 14 導電粒子 A B C D E F G H I J B B B B (評価) 導通信頼性 (1)初期 ○ ○ ○ ○ ○ ○ ○ ○ △ ○ ○ ○ ○ ○ (2)エーシ゛ンク゛ 後 ○ ○ ○ △ ○ ○ ○ △ △ ○ △ ○ ○ ○ 絶縁抵抗 (1)初期 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○(2)エーシ゛ンク゛ 後 ○ ○ ○ ○ ○ ○ ○ ○ ○ △ ○ ○ ○ △ [Table 3] Example 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 Conductive particles ABCDFGHIJBBBB (Evaluation) Conduction reliability (1) Initial ○ ○ ○ ○ ○ ○ ○ ○ ○ △ ○ ○ ○ ○ ○ (2) After the attack ○ ○ ○ ○ ○ ○ ○ ○ △ △ ○ △ ○ ○ ○ Insulation resistance (1) Initial ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ (2) After ○ ○ ○ ○ ○ ○ ○ ○ ○ △ ○ ○ ○ △

【0039】[0039]

【表4】 [Table 4]

【0040】表3の結果から、本発明の導電粒子A〜J
を使用した実施例1〜14の異方性導電接着剤は、導通
信頼性及び絶縁抵抗について「×」の評価はなく、実用
上問題のないものであった。
From the results shown in Table 3, the conductive particles A to J of the present invention were obtained.
The anisotropic conductive adhesives of Examples 1 to 14 using No. were not evaluated as “x” for conduction reliability and insulation resistance, and had no practical problem.

【0041】なお、実施例4のエージング後の導通信頼
性の評価が「△」である理由は、使用した導電粒子Dの
外層の厚みが0.3μmと薄いためと考えられる。これ
に関連して、外層の厚みが0.5μmである導電粒子A
を使用した実施例1のその評価は「○」である。従っ
て、外層の好ましい厚みは0.5μm程度以上であるこ
とがわかる。
The reason why the evaluation of conduction reliability after aging in Example 4 is “Δ” is considered to be because the thickness of the outer layer of the conductive particles D used is as thin as 0.3 μm. In this connection, conductive particles A having an outer layer thickness of 0.5 μm
The evaluation of Example 1 using “実 施” is “○”. Therefore, it is understood that the preferable thickness of the outer layer is about 0.5 μm or more.

【0042】また、実施例8のエージング後の導通信頼
性の評価が「△」である理由は、内核の10%圧縮変位
時の圧縮強度が4.60kgf/mm2と低いためと考
えられる。これに関連して、内核の10%圧縮変位時の
圧縮強度が18.1kgf/mm2の導電粒子A〜Dを
使用した実施例1〜4のその評価は「○」である。従っ
て、内核の好ましい10%圧縮変位時の圧縮強度は、両
者のほぼ中間的な値である10kgf/mm2程度以上
であることがわかる。
The reason why the evaluation of conduction reliability after aging in Example 8 is "△" is considered that the compressive strength at the time of 10% compression displacement of the inner core is as low as 4.60 kgf / mm 2 . In this connection, the evaluation of Examples 1-4 using conductive particles A-D having a compressive strength of 18.1 kgf / mm < 2 > at 10% compressive displacement of the inner core is "O". Accordingly, it can be seen that the compressive strength of the inner core at the time of the preferable 10% compressive displacement is about 10 kgf / mm 2 or more, which is an almost intermediate value between the two .

【0043】実施例9のエージング後の導通信頼性の評
価が「△」である理由は、実施例4と同様に使用した導
電粒子Iの外層の厚みが0.3μmと薄いためと考えら
れる。また、初期の導通信頼性の評価が「△」である理
由は、内核の径が0.8μmと小さいためと考えられ
る。これに関連して、内核の径が2μmの導電粒子Cを
使用した実施例3のその評価は「○」である。従って、
内核の好ましい径は両者のほぼ中間的な値である1μm
程度以上であることがわかる。
The reason why the evaluation of conduction reliability after aging in Example 9 is “△” is considered that the thickness of the outer layer of the conductive particles I used in the same manner as in Example 4 is as thin as 0.3 μm. The reason why the evaluation of the initial conduction reliability is “△” is considered that the diameter of the inner core is as small as 0.8 μm. In this connection, the evaluation of Example 3 using conductive particles C having an inner core diameter of 2 μm is “○”. Therefore,
The preferred diameter of the inner core is 1 μm, which is an intermediate value between the two.
It turns out that it is more than about.

【0044】実施例10のエージング後の絶縁抵抗の評
価が「△」である理由は、使用した導電粒子Jの絶縁性
粒子径が22μmと大きいためと考えられる。これに関
連して、絶縁性粒子径が18μmの導電粒子Cを使用し
た実施例3のその評価は「○」である。従って、絶縁性
粒子の径を両者のほぼ中間的な値である20μm程度以
下とすることが好ましいことがわかる。
The reason why the evaluation of the insulation resistance after aging in Example 10 is “Δ” is considered to be because the insulating particles of the conductive particles J used were as large as 22 μm. In this connection, the evaluation of Example 3 using the conductive particles C having an insulating particle diameter of 18 μm is “「 ”. Therefore, it is understood that it is preferable that the diameter of the insulating particles is set to about 20 μm or less, which is an intermediate value between the two.

【0045】実施例11のエージング後の導電信頼性の
評価が「△」である理由は、使用した導電粒子Bの配合
量がバインダー100重量部に対し0.5重量部と小さ
いためと考えられる。従って、導電粒子の配合量は1重
量以上とすることが好ましいことがわかる。
The reason why the evaluation of the conductive reliability after aging in Example 11 is “△” is considered that the amount of the conductive particles B used was as small as 0.5 part by weight with respect to 100 parts by weight of the binder. . Therefore, it is understood that the amount of the conductive particles is preferably set to 1 weight or more.

【0046】実施例14のエージング後の絶縁抵抗の評
価が「△」である理由は、使用した導電粒子Bの配合量
がバインダー100重量部に対し25重量部と大きいた
めと考えられる。従って、導電粒子の配合量は23重量
程度以下とすることが好ましいことがわかる。
The reason why the evaluation of the insulation resistance after aging in Example 14 is “Δ” is considered to be because the amount of the conductive particles B used was as large as 25 parts by weight with respect to 100 parts by weight of the binder. Therefore, it is understood that the compounding amount of the conductive particles is preferably set to about 23 weight or less.

【0047】一方、比較例1及び2においては、使用し
た導電粒子K及びLの絶縁性粒子が2層構造となってお
らず、比較的硬い内核のみから構成されているので、プ
レス精度が不十分な条件下では初期及びエージング後の
導通信頼性はいずれも不十分であった。また、比較例3
においては、使用した導電粒子Mの絶縁性粒子が2層構
造となっておらず、比較的柔らかい内核のみから構成さ
れているので、エージング後の導通信頼性が不十分であ
った。
On the other hand, in Comparative Examples 1 and 2, since the used insulating particles of the conductive particles K and L did not have a two-layer structure and consisted only of a relatively hard inner core, the press accuracy was poor. Under sufficient conditions, both the initial and after aging conduction reliability were insufficient. Comparative Example 3
In the above, the insulating particles of the conductive particles M used did not have a two-layer structure and consisted only of a relatively soft inner core, so that the conduction reliability after aging was insufficient.

【0048】[0048]

【発明の効果】本発明の異方性導電接着剤用導電粒子
は、熱圧着時に過度につぶれないが、プレスヘッドの当
たり精度などが不十分な場合でも安定した導通が得られ
る程度には十分につぶれることができる。従って、本発
明の導電粒子を使用した異方性導電接着剤は、接続する
端子間には高い導通信頼性を実現でき、接続しない隣接
する端子間には高い絶縁抵抗を実現することができる。
The conductive particles for the anisotropic conductive adhesive of the present invention do not excessively crush during thermocompression bonding, but are sufficient to obtain stable conduction even when the hitting accuracy of the press head is insufficient. Can be crushed. Therefore, the anisotropic conductive adhesive using the conductive particles of the present invention can realize high conduction reliability between connected terminals and can realize high insulation resistance between adjacent terminals that are not connected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の異方性導電接着剤用導電粒子の断面図
である。
FIG. 1 is a cross-sectional view of the conductive particles for an anisotropic conductive adhesive of the present invention.

【図2】本発明の異方性導電接着剤用導電粒子の熱圧着
時のつぶれた様子の説明図(同図(a))と、それをプ
レス精度が不十分な場合に適用したときの説明図(同図
(b))である。
FIG. 2 is an explanatory view (FIG. 2 (a)) of a state in which the conductive particles for anisotropic conductive adhesive of the present invention are crushed during thermocompression bonding, and FIG. It is explanatory drawing (the same figure (b)).

【図3】異方性導電接着剤を使用してガラス基板とTA
Bとを接続する場合の説明図である。
FIG. 3 shows a glass substrate and a TA using an anisotropic conductive adhesive.
FIG. 4 is an explanatory diagram in the case of connecting B.

【図4】プレス精度が不十分な場合のガラス基板とTA
Bとの接続状態説明図である。
FIG. 4 shows a glass substrate and TA when press accuracy is insufficient.
FIG. 6 is an explanatory diagram of a connection state with B.

【図5】TABのバンブ高さ精度が不十分な場合のガラ
ス基板とTABとの接続状態説明図である。
FIG. 5 is an explanatory diagram of a connection state between the glass substrate and the TAB when the accuracy of the bump height of the TAB is insufficient.

【図6】プレス精度が不十分な場合のガラス基板とTA
Bとの接続状態説明図である。
FIG. 6 shows a glass substrate and TA when press accuracy is insufficient.
FIG. 6 is an explanatory diagram of a connection state with B.

【図7】TABのバンブ高さ精度が不十分な場合のガラ
ス基板とTABとの接続状態説明図である。
FIG. 7 is an explanatory diagram of a connection state between the glass substrate and the TAB when the bump height accuracy of the TAB is insufficient.

【符号の説明】[Explanation of symbols]

1 内核 2 外層 3 絶縁性粒子 4 導電材料層 10 導電粒子 31 プレス台 32 ガラス基板 33 TAB 34 異方性導電接着剤層 35 プレスヘッド 36a,36b 導電粒子 37a,37b バンプ Reference Signs List 1 inner core 2 outer layer 3 insulating particle 4 conductive material layer 10 conductive particle 31 press table 32 glass substrate 33 TAB 34 anisotropic conductive adhesive layer 35 press head 36a, 36b conductive particle 37a, 37b bump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須賀 保博 栃木県鹿沼市さつき町12−3 ソニーケ ミカル株式会社内 (56)参考文献 特開 平7−50104(JP,A) 特開 平6−203640(JP,A) (58)調査した分野(Int.Cl.6,DB名) C09J 9/02 H01B 1/00 H01L 21/60 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Suga 12-3 Satsuki-cho, Kanuma City, Tochigi Prefecture Sony Chemical Corporation (56) References JP-A-7-50104 (JP, A) JP-A-6-203640 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C09J 9/02 H01B 1/00 H01L 21/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁性粒子とそれを被覆する導電材料と
からなる異方性導電接着剤用導電粒子において、該絶縁
性粒子が少なくとも内核とそれを被覆する外層とから構
成され、且つ外層が内核より柔らかく、10%圧縮変位
時における絶縁性粒子の内核の圧縮強度が15kgf/
mm 2 以上であり、外層の圧縮強度が5kgf/mm 2
下であり、内核の径が1μm以上であり、外層の厚みが
0.5μm以上であり、絶縁性粒子の径が2〜20μm
であることを特徴とする異方性導電接着剤用導電粒子。
1. A conductive particle for an anisotropic conductive adhesive comprising insulating particles and a conductive material covering the same, wherein the insulating particles comprise at least an inner core and an outer layer covering the inner core, and the outer layer is Softer than inner core, 10% compression displacement
The compressive strength of the inner core of the insulating particles is 15 kgf /
and mm 2 or more, the compressive strength of the outer layer is 5kgf / mm 2 or more
Below, the diameter of the inner core is 1 μm or more, the thickness of the outer layer is 0.5 μm or more, and the diameter of the insulating particles is 2 to 20 μm.
Conductive particles for an anisotropic conductive adhesive, characterized in that:
【請求項2】 絶縁性接着成分100重量部に対し、請
求項1に記載の導電粒子を1〜23重量部含有する異方
性導電接着剤。
2. An anisotropic conductive adhesive containing 1 to 23 parts by weight of the conductive particles according to claim 1 based on 100 parts by weight of an insulating adhesive component.
JP7021355A 1995-01-13 1995-01-13 Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same Expired - Lifetime JP2921740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021355A JP2921740B2 (en) 1995-01-13 1995-01-13 Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021355A JP2921740B2 (en) 1995-01-13 1995-01-13 Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Publications (2)

Publication Number Publication Date
JPH08193186A JPH08193186A (en) 1996-07-30
JP2921740B2 true JP2921740B2 (en) 1999-07-19

Family

ID=12052795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021355A Expired - Lifetime JP2921740B2 (en) 1995-01-13 1995-01-13 Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same

Country Status (1)

Country Link
JP (1) JP2921740B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033022A (en) * 2000-07-13 2002-01-31 Mitsui Takeda Chemicals Inc Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
US6352775B1 (en) 2000-08-01 2002-03-05 Takeda Chemical Industries, Ltd. Conductive, multilayer-structured resin particles and anisotropic conductive adhesives using the same
JP4026812B2 (en) * 2002-07-15 2007-12-26 宇部日東化成株式会社 Conductive particles and method for producing the same
CN100441613C (en) * 2005-08-19 2008-12-10 湖北省化学研究院 Preparation of polymer composite conductive microsphere for aeolotropic conductive adhensive membrane
JP4962706B2 (en) 2006-09-29 2012-06-27 日本化学工業株式会社 Conductive particles and method for producing the same
JP4860587B2 (en) * 2007-10-01 2012-01-25 日揮触媒化成株式会社 Method for producing novel conductive fine particles and use of the fine particles
CN102136314B (en) * 2010-12-06 2012-05-23 苏州纳微生物科技有限公司 Preparation method of composite microspheres, anisotropy conducting material and anisotropy conducting film
JPWO2019155924A1 (en) * 2018-02-06 2020-12-03 三菱マテリアル株式会社 Silver coated resin particles
CN111718449A (en) * 2020-07-02 2020-09-29 长春工业大学 Preparation method of polymer metal composite microspheres

Also Published As

Publication number Publication date
JPH08193186A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
EP1085567B1 (en) COG Assembly and connecting material to be used therein
JP2000195339A (en) Anisotropic conductive adhesive film
KR20040063547A (en) Method of microelectrode connection and connected srtucture thereby
JPH07230840A (en) Connecting member and electrode connecting structure using the same
EP0734576B1 (en) Anisotropic, electrically conductive adhesive film
US6426021B2 (en) Anisotropically electroconductive adhesive material and connecting method
JP2921740B2 (en) Conductive particles for anisotropic conductive adhesive and anisotropic conductive adhesive using the same
US6514433B1 (en) Connecting material
KR20100100792A (en) Nonconductive adhesive composition and film and methods of making
JPH08148213A (en) Connection member and structure and method for connecting electrode using the same
TW503403B (en) Anisotropically electroconductive connecting material
JPH07157720A (en) Film having anisotropic electrical conductivity
JP3622792B2 (en) Connection member and electrode connection structure and connection method using the connection member
JP3027115B2 (en) Anisotropic conductive adhesive film
US20010020697A1 (en) Thermosetting adhesive material
JPH08188760A (en) Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JPS63231889A (en) Circuit connection member
JP2954241B2 (en) Anisotropic conductive film
JPH08148210A (en) Connection member
JP4155470B2 (en) Electrode connection method using connecting members
JP3447569B2 (en) Anisotropic conductive film and electrode connection structure using the same
JP3256659B2 (en) Anisotropic conductive thin film and method for connecting polymer substrate using the anisotropic conductive thin film
JP2001337340A (en) Liquid crystal display device, method of manufacture thereof, anisotropic conductive film, and external circuit mounting method
JP2000332391A (en) Method of connecting ic chip
JP5223946B2 (en) Adhesive film for circuit connection, circuit connection structure using the same, and circuit member connection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term