WO2012137335A1 - Circuit connection material and use thereof, and connecting structure and method for producing same - Google Patents

Circuit connection material and use thereof, and connecting structure and method for producing same Download PDF

Info

Publication number
WO2012137335A1
WO2012137335A1 PCT/JP2011/058813 JP2011058813W WO2012137335A1 WO 2012137335 A1 WO2012137335 A1 WO 2012137335A1 JP 2011058813 W JP2011058813 W JP 2011058813W WO 2012137335 A1 WO2012137335 A1 WO 2012137335A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
conductive particles
particles
mass
insulating
Prior art date
Application number
PCT/JP2011/058813
Other languages
French (fr)
Japanese (ja)
Inventor
孝 中澤
小林 宏治
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to PCT/JP2011/058813 priority Critical patent/WO2012137335A1/en
Publication of WO2012137335A1 publication Critical patent/WO2012137335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating

Definitions

  • the present invention relates to a circuit connection material and use thereof, and a connection structure and a manufacturing method thereof.
  • the method of mounting a liquid crystal driving IC on a glass panel for liquid crystal display can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting.
  • COG mounting an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • COF mounting a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • the anisotropic conductivity here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.
  • Patent Document 1 As a method for solving these problems, as shown in Patent Document 1, by forming an insulating adhesive on at least one side of the anisotropic conductive adhesive, the bonding quality in COG mounting or COF mounting is improved. A method for preventing the reduction and a method for covering the entire surface of the conductive particles with an insulating film as exemplified in Patent Document 2 have been proposed.
  • the present invention has a sufficiently high adhesiveness in the connection of circuit electrodes with a narrow pitch and a narrow area, and also has insulation between adjacent circuit electrodes and conduction between opposing circuit electrodes on the same substrate. It is an object of the present invention to provide a circuit connection material having excellent properties, its use, a connection structure using the circuit connection material, and a method for manufacturing the connection structure.
  • the present invention provides a circuit connecting material comprising an adhesive composition and insulating coated conductive particles, wherein the elastic modulus at 40 ° C. after curing is 0.5 to 1.0 GPa.
  • Insulating coated conductive particles comprising conductive particles having base particles and a metal plating layer covering at least a part of the surface of the base particles; insulating fine particles covering at least a part of the surface of the conductive particles;
  • a circuit connecting material having a compressive elastic modulus of 800 to 3500 N / mm 2 at 20% compression deformation of the particle diameter of the conductive particles.
  • Such a circuit connection material has sufficiently high adhesiveness in connection of circuit electrodes with a narrow pitch and a small area, and also has insulation between adjacent circuit electrodes and conduction between opposing circuit electrodes on the same substrate. Excellent in properties.
  • the present inventors infer the reason why such an effect is obtained as follows. That is, by containing insulating coated conductive particles having a predetermined configuration, the electrodes can be connected to each other via the metal plating layer by eliminating the insulating adhesive component between the opposing electrodes, and adjacent circuit electrodes It is considered that the insulating property can be maintained by the presence of insulating fine particles covering the conductive particles. And it thinks that the adhesive force between the circuits to connect can be kept high by adjusting the elasticity modulus of a circuit connection material to a predetermined range.
  • the average particle size of the conductive particles is preferably 5.0 ⁇ m or less.
  • the present invention also provides a first circuit member having a first substrate and a first circuit electrode formed on the main surface thereof, and a second substrate and a second circuit formed on the main surface thereof.
  • a second circuit electrode wherein the second circuit electrode and the first circuit electrode are arranged to face each other, and the second circuit electrode is electrically connected to the first circuit electrode.
  • a connection structure including a circuit member and a connection portion interposed between the first circuit member and the second circuit member, wherein the connection portion is a cured product of the circuit connection material of the present invention.
  • connection structure has sufficiently high adhesiveness, and has a connection portion that is excellent in insulation between circuit electrodes adjacent to each other on the same substrate and in electrical conductivity between circuit electrodes facing each other, and therefore has excellent connection reliability. It becomes.
  • the present invention also includes an adhesive composition and insulating coated conductive particles, and has an elastic modulus of 0.5 to 1.0 GPa at 40 ° C. after curing. And a conductive particle having a metal plating layer covering at least a part of the surface of the substrate particle, and insulating fine particles covering at least a part of the surface of the conductive particle, and having a particle diameter of 20 of the conductive particle.
  • Use of a material having a compressive elastic modulus at% compressive deformation of 800 to 3500 N / mm 2 for circuit connection is provided.
  • the average particle diameter of the conductive particles is preferably 5.0 ⁇ m or less from the viewpoint of further improving the insulation between adjacent circuits.
  • the present invention further includes a first circuit member having a first substrate and a first circuit electrode formed on the main surface thereof, and a second circuit formed on the second substrate and the main surface thereof.
  • a connection part is formed between the pair of circuit members so that the first circuit electrode and the second circuit electrode arranged opposite to each other are electrically connected to each other.
  • connection portion having sufficiently high adhesiveness and excellent insulation between adjacent circuit electrodes and excellent conductivity between opposing circuit electrodes on the same substrate.
  • a connection structure having excellent connection reliability can be manufactured.
  • the circuit electrode in the connection of circuit electrodes having a narrow pitch and a small area, the circuit electrode has sufficiently high adhesiveness, insulation between adjacent circuit electrodes on the same substrate, and conduction between opposing circuit electrodes. It is possible to provide a circuit connection material having excellent properties and use thereof, a connection structure using the circuit connection material, and a method for manufacturing the connection structure.
  • the circuit connection material of the present invention is a circuit connection material containing an adhesive composition and insulating coated conductive particles, and has an elastic modulus at 40 ° C. of 0.5 to 1.0 GPa after curing, and has an insulating property.
  • the coated conductive particles comprise base particles and conductive particles having a metal plating layer that covers at least part of the surface of the base particles, and insulating fine particles that cover at least part of the surface of the conductive particles, and
  • the compressive elastic modulus at 20% compression deformation of the particle diameter of the conductive particles is 800 to 3500 N / mm 2 .
  • FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material.
  • a circuit connection material 50 shown in FIG. 1 is composed of a resin layer 12 made of an adhesive composition and a plurality of insulating coated conductive particles 10 dispersed in the resin layer 12, and has a film shape.
  • FIG. 2 is an external view of the insulating coated conductive particles according to the present embodiment
  • FIG. 3 is a cross-sectional view of the insulating coated conductive particles according to the present embodiment.
  • the insulating coated conductive particles 10 include conductive particles 8 having base particles 2 and a metal plating layer 4 covering at least a part of the surface of the base particles, and insulating properties covering at least a part of the surfaces of the conductive particles 8. It comprises fine particles 6.
  • the average particle diameter of the conductive particles 8 needs to be smaller than the minimum interval between the electrodes adjacent to each other on the same substrate from the viewpoint of ensuring insulation.
  • the average particle diameter of the conductive particles 8 is preferably larger than the variation. From such a viewpoint, the average particle diameter of the conductive particles 8 is preferably 5.0 ⁇ m or less, more preferably 1.0 to 5.0 ⁇ m, and preferably 2.0 to 4.0 ⁇ m. Further preferred.
  • the conductive particles 8 include base material particles 2 and a metal plating layer 4 that covers at least a part of the surface of the base material particles 2.
  • the average particle size of the substrate particles 2 is preferably 4.0 ⁇ m or less, more preferably 1.0 to 4.0 ⁇ m, and even more preferably 2.0 to 3.7 ⁇ m.
  • the conductive particles easily absorb the height variation of the chip bumps during mounting, and the conductivity is improved.
  • the thickness is 4.0 ⁇ m or less, the insulation resistance does not decrease and a short circuit defect is less likely to occur.
  • the base particle 2 is a resin particle made of resin. Since the substrate particles are resin particles, the contact area between the conductive particles and the electrode can be increased by deformation due to heating and pressurization. Although it does not specifically limit as resin used for a base particle, An acrylic resin, an olefin resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or these copolymers are mentioned, and what crossed these is used. Also good. Among these, crosslinked styrene particles are preferable from the viewpoint of easily adjusting the hardness of the conductive particles 8.
  • the metal plating layer 4 covering the surface of the substrate particles 2 may have a single layer structure, but it is preferable that at least a part of the metal plating layer 4 has a multilayer structure composed of a plurality of layers.
  • the outermost layer is preferably a gold layer from the viewpoint of corrosion resistance and conductivity, and the portion where the gold layer is the surface is more preferably 60% or more of the entire surface of the conductive particles 8.
  • a metal plating layer contains a gold layer and a nickel layer, and at least one part of this gold layer is provided outside the nickel layer.
  • the atomic ratio of nickel atoms to gold atoms on the surface of the conductive particles 8 is preferably 70% or less.
  • the atomic abundance ratio is measured by an X-ray photoelectron spectrometer.
  • the metal used for the metal plating layer 4 covering the surface of the base particle 2 is silver, copper, platinum, zinc, iron, palladium, tin, chromium, titanium, aluminum, cobalt, germanium, A metal such as cadmium, ITO, solder, or the like can be used.
  • Examples of the method for coating the substrate particles 2 with the metal plating layer 4 include electroless plating, displacement plating, electroplating, and sputtering.
  • the thickness of the metal plating layer is not particularly limited, but is preferably in the range of 0.005 to 1.0 ⁇ m, and more preferably in the range of 0.01 to 0.3 ⁇ m. If the thickness of the metal plating layer is less than 0.005 ⁇ m, there is a tendency to cause poor conduction, and if it exceeds 1.0 ⁇ m, the cost is increased.
  • the conductive particles 8 have a specific hardness in order to ensure good conduction during thermocompression bonding.
  • the 20% K value of the conductive particles 8 is less than 800 N / mm 2 , the binder resin (adhesive composition) between the conductive particles and the electrode terminals is not excluded because of being too soft, and the restoring force is low, so that the substrate or bump It is difficult to absorb the variation in height, and the continuity becomes unstable.
  • the 20% K value of the conductive particles 8 exceeds 3500 N / mm 2 , the conductive particles are too hard and cannot be flattened at the time of thermocompression bonding, and the contact area becomes narrow, and the conduction tends to become unstable.
  • the 20% K value in this embodiment is a smooth end face of a square column with a side of 50 ⁇ m using a micro compression tester (trade name “Fisherscope H100” manufactured by Fisher, Inc.), and the conductive particles are compressed at a compression speed of 0.33 mN / It can be determined by compressing at a maximum test load of 40 mN. The measurement is performed in a room temperature environment.
  • the load F (mN) at the time of 20% deformation and the particle diameter R ( ⁇ m) satisfy the relationship represented by the following formula (1). 0.1 ⁇ F / R ⁇ 0.3 (1)
  • the conductive particles 8 have a functional group on the surface, the conductive particles 8 are easily covered with the insulating fine particles 6.
  • the functional group is preferably at least one selected from a hydroxyl group, a carboxyl group, an alkoxy group, and an alkoxycarbonyl group.
  • the formation of these functional groups on the surface of the conductive particles 8 can be confirmed by an analysis technique such as X-ray electron spectroscopy or time-of-flight secondary ion mass spectrometry.
  • the functional group can be formed by attaching or bonding a compound having a group that forms a coordinate bond to the surface of the conductive particle 8 and the functional group to the surface of the conductive particle 8.
  • the group that forms a coordinate bond include a mercapto group, a sulfide group, or a disulfide group that forms a coordinate bond with gold when the surface of the conductive particle 8 is made of a gold layer. Therefore, it is preferable that a compound having a mercapto group, sulfide group or disulfide group and a functional group adheres to or binds to the surface of the conductive particles 8.
  • Examples of such a compound having a mercapto group, sulfide group or disulfide group and a functional group include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin and cysteine.
  • the above-mentioned compound such as mercaptoacetic acid is dissolved in an organic solvent such as methanol or ethanol at about 10 to 100 mmol / L, and the solution is dissolved in the solution.
  • an organic solvent such as methanol or ethanol at about 10 to 100 mmol / L
  • a method of dispersing the conductive particles 8 can be mentioned.
  • the insulating fine particles 6 are preferably inorganic oxide fine particles from the viewpoint of sufficiently increasing the conductivity between the facing circuit electrodes.
  • the inorganic oxide fine particles fine particles made of an oxide containing at least one element selected from silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium can be suitably used. These can be used alone or in combination of two or more.
  • the insulating fine particles 6 have a hydroxyl group on the surface. A part of this hydroxyl group may be modified to an amino group, a carboxyl group, or an epoxy group with a silane coupling agent or the like. Usually, when the particle diameter of the inorganic oxide fine particles is 500 nm or less, it is difficult to modify, and therefore it is preferable to use the insulating fine particles 6 without modification.
  • a hydroxyl group forms a strong bond with a functional group such as a hydroxyl group, a carboxyl group, an alkoxy group, or an alkoxycarbonyl group by a covalent bond or a hydrogen bond by dehydration condensation.
  • a functional group such as a hydroxyl group, a carboxyl group, an alkoxy group, or an alkoxycarbonyl group by a covalent bond or a hydrogen bond by dehydration condensation.
  • the conductive particles 8 and the insulating particles 6 have a strong bonding force.
  • the surface potential of the insulating fine particles 6 is preferably a negative potential. When the surface potential of the insulating fine particles 6 is a negative potential, the insulating fine particles 6 are easily bonded to the conductive particles 8 having a functional group.
  • the insulating fine particles 6 are particularly preferably water-dispersed colloidal silica (SiO 2 ) having a controlled particle size among the inorganic oxide fine particles. If it is water-dispersed colloidal silica (SiO 2 ), the insulation between adjacent circuit electrodes can be further improved. Since the water-dispersed colloidal silica has a hydroxyl group on the surface, it has advantages such as excellent bonding strength with the conductive particles 8, easy alignment of particle diameters, and low cost. In order to improve insulation reliability, it is desirable that the concentration of alkali metal ions and alkaline earth metal ions in the dispersion solution is 100 ppm or less. Further, inorganic oxide fine particles produced by a hydrolysis reaction of metal alkoxide, so-called sol-gel method, are preferable.
  • the average particle diameter of the insulating fine particles 6 is preferably 20 to 500 nm.
  • the insulating fine particles 6 covering the conductive particles 8 function well as an insulator as compared with the case where the particle size is less than 20 nm, and short-circuits between circuit electrodes adjacent to each other on the same substrate. Can be further suppressed.
  • the particle size is 500 nm or less, the conductivity between the facing circuit electrodes tends to be improved as compared with the case where the particle diameter exceeds 500 nm.
  • the particle size can be measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method.
  • the insulating fine particles 6 are harder than the conductive particles 8.
  • the insulating coated conductive particles 10 are not easily deformed when an anisotropic conductive adhesive film is produced. It can be confirmed that the insulating fine particles 6 are harder than the conductive particles 8 by measuring the hardness of the particles. Hardness can be measured by Mohs hardness (gold: 2.5, nickel: 3.8, silica: 7.0).
  • the insulating fine particles 6 cover the surface of the conductive particles 8 with one layer. When covered with one layer, it is easier to control the amount of the insulating fine particles 6 laminated than when a plurality of insulating fine particles 6 are laminated on the surface of the conductive particles 8.
  • the ratio of the surface where the conductive particles 8 are covered with the insulating fine particles 6, that is, the coverage of the surface of the conductive particles 8 with the insulating fine particles 6 is preferably 30 to 50%.
  • 100% refers to the case where the surface of the conductive particles 8 is a flat surface and the insulating fine particles 6 are finely packed in the flat surface.
  • the CV value of the said coverage is 20% or less.
  • the CV value is a value obtained by dividing the standard deviation of the coverage by the average value, and indicates variation.
  • the insulating coated conductive particles 10 according to the present embodiment can be obtained by coating the insulating fine particles 6 after adsorbing the polymer electrolyte on the surface of the conductive particles 8.
  • a layer-by-layer assembly In general, such a method is called a layer-by-layer assembly.
  • the alternate lamination method is described in G.H. This is a method for forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, 1992, p. 831).
  • the substrate is alternately immersed in an aqueous solution of a polymer electrolyte (polycation) having a positive charge and an aqueous solution of a polymer electrolyte (polyanion) having a negative charge, and is adsorbed onto the substrate by electrostatic attraction.
  • a combination of a polycation and a polyanion can be laminated to obtain a composite film (alternate laminated film).
  • the film is grown by electrostatic attraction between the material charge formed on the substrate and the material having the opposite charge in the solution due to electrostatic attraction.
  • charge neutralization occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more.
  • Lvov et al. also applied an alternate lamination method to fine particles and reported a method of laminating a polymer electrolyte having a charge opposite to the surface charge of the fine particles, using silica, titania, and ceria fine particle dispersions. (Langmuir, Vol. 13, 1997, p. 6195-6203).
  • silica fine particles having a negative surface charge and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having the opposite charge are alternately laminated to form silica. It is possible to form a fine particle laminated thin film in which fine particles and a polymer electrolyte are alternately laminated.
  • PDDA polydiallyldimethylammonium chloride
  • PEI polyethyleneimine
  • the conductive particles 8 are contained in a solution containing a compound having a mercapto group, sulfide group or disulfide group and at least one functional group selected from a hydroxyl group, a carboxyl group, an alkoxy group and an alkoxycarbonyl group.
  • the solution containing the polymer electrolyte used in the above production method is obtained by dissolving the polymer electrolyte in water or a mixed solvent of water and a water-soluble organic solvent.
  • water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like.
  • a polymer electrolyte that is soluble in water or a mixed solvent of water and a water-soluble organic solvent, is ionized in an aqueous solution, and has a functional group having a charge in the main chain or side chain. Of these, polycations are preferred.
  • Polycations having a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA), polyvinylpyridine (PVP), polylysine, polyacrylamide, or a copolymer containing at least one of these polycations can be used.
  • PEI polyethyleneimine
  • PAH polyallylamine hydrochloride
  • PDDA polydiallyldimethylammonium chloride
  • PVP polyvinylpyridine
  • polylysine polyacrylamide
  • copolymer containing at least one of these polycations can be used.
  • the adsorption of these polymer electrolytes on the surface of the conductive particles 8 can be confirmed by an analysis technique such as X-ray electron spectroscopy or time-of-flight secondary ion mass spectrometry.
  • polyethyleneimine has a high charge density and can be preferably used because of its strong binding force with the conductive particles 8.
  • the weight average molecular weight of the polymer electrolyte cannot be determined unconditionally because it depends on the type of polymer electrolyte to be used, but from the viewpoint of improving the water solubility and the amount of adsorption to the conductive particles 8, and the ease of handling, In general, about 500 to 200,000 is preferable.
  • a method of bringing the conductive particles 8 into contact with a solution containing the polymer electrolyte for example, a method of immersing the conductive particles 8 in a polymer electrolyte solution in which the polymer electrolyte is dissolved in water or a mixed solvent of water and a water-soluble organic solvent.
  • the concentration of the polymer electrolyte in the polymer electrolyte solution is usually 0.01 to 10 mass from the viewpoints of improving the water solubility and the amount of adsorption to the functional group-containing conductive particles and the ease of handling. % Is preferred.
  • the pH of the polymer electrolyte solution is not particularly limited.
  • water-soluble organic solvent for example, methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile and the like can be used.
  • the coverage of the surface of the conductive particles 8 with the insulating fine particles 6 can be controlled. Specifically, when a polymer electrolyte having a high charge density such as polyethyleneimine is used, the coverage by the insulating fine particles 6 tends to be high, and a polymer electrolyte having a low charge density such as polydiallyldimethylammonium chloride is used. When it is, there exists a tendency for the said coverage to become low.
  • the coverage tends to be high, and when the molecular weight of the polymer electrolyte is small, the coverage tends to be low. Furthermore, when the polymer electrolyte is used at a high concentration, the coverage tends to be high, and when the polymer electrolyte is used at a low concentration, the coverage tends to be low.
  • the excess polymer electrolyte that is not adsorbed on the surfaces of the conductive particles 8 is washed away.
  • the process and the process of washing away the excess insulating fine particles 6 not covering the conductive particles 8 after the step of bringing the insulating fine particles 6 into contact with the surfaces of the conductive particles 8 in the third step may be further provided.
  • the cleaning solvent used in the step of washing away the polymer electrolyte and the insulating fine particles 6 described above water, alcohol, acetone or the like can be used.
  • the polymer electrolyte adsorbed on the surface of the conductive particles 8 and / or the insulating fine particles 6 bonded to the surface of the conductive particles 8 directly or via the polymer electrolyte are the above-mentioned surplus polymer electrolyte and surplus. In the step of washing away the insulative fine particles 6, it is not usually peeled off.
  • the insulating fine particles 6 are brought into the polymer electrolyte solution, and the polymer electrolyte is dispersed in the insulating fine particles 6. Can be prevented. If cations and anions are mixed in the dispersion of insulating fine particles and the polymer electrolyte solution due to carry-in, aggregation and precipitation of the polymer electrolyte and the insulating fine particles may occur.
  • the bonding strength between the insulating fine particles 6 and the conductive particles 8 can be further enhanced by heating and drying the insulating coated conductive particles 10 produced as described above. This is because a chemical bond between a functional group such as a carboxyl group on the surface of the conductive particles 8 and a hydroxyl group on the surface of the insulating fine particles 6 is newly formed.
  • the insulating coated conductive particles 10 are preferably dried by heating in the range of 60 to 200 ° C. and 10 to 180 minutes. When the temperature is higher than 60 ° C., or when the heating time is 10 minutes or longer, compared with the case where the temperature is lower than 60 ° C. or the heating time is shorter than 10 minutes, the surface of the conductive particles 8 is insulated.
  • the fine particles 6 are difficult to peel off.
  • the conductive particles 8 are less likely to be deformed than when the temperature is higher than 200 ° C. or when the heating time is longer than 180 minutes. There is a tendency.
  • the coating amount of the insulating fine particles is preferably 0.2 to 2.6 parts by mass, and 0.8 to 2.0 parts by mass with respect to 100 parts by mass of the conductive particles. Is more preferable. If the coating ratio of the insulating fine particles to 100 parts by mass of the conductive particles is less than 0.2 parts by mass, it is difficult to obtain good insulation, and if it exceeds 2.6 parts by mass, the electrical resistance value of the circuit connection part tends to increase. Tend to be. Further, the coating ratio of the insulating fine particles is preferably 0.7 to 8.6 parts by mass, more preferably 1.0 to 8.0 parts by mass with respect to 100 parts by mass of the base particles.
  • the ratio of the insulating coated conductive particles 10 in the circuit connection material is 0.1 to 30 based on the entire circuit connection material from the viewpoint of improving the insulation between the adjacent circuit electrodes and the conductivity between the opposing circuit electrodes. % By volume is preferred, 0.5 to 25% by volume is more preferred, and 1 to 10% by volume is still more preferred.
  • the resin layer 12 preferably contains an epoxy resin and a latent curing agent. That is, the circuit connection material 50 can contain an adhesive composition containing an epoxy resin and a latent curing agent, and the insulating coated conductive particles 10. When the circuit connection material 50 is heated, a crosslinked structure is formed in the resin layer 12 by curing of the epoxy resin, and a cured product of the circuit connection material 50 is formed. In this case, the circuit connection material 50 functions as an epoxy curable adhesive.
  • Typical epoxy resins include bisphenol type epoxy resins that are glycidyl ethers of bisphenols such as bisphenol A, F, and AD, and epoxy novolac resins derived from phenol novolac or cresol novolac.
  • Other examples include naphthalene type epoxy resins having a naphthalene skeleton, glycidyl amine type epoxy resins, glycidyl ether type epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.
  • bisphenol type epoxy resins are preferred because they are widely available in grades with different molecular weights, and adhesiveness and reactivity can be arbitrarily set.
  • bisphenol type epoxy resins bisphenol F type epoxy resins are particularly preferable.
  • the viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin.
  • the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.
  • an epoxy resin having an impurity ion (Na + , Cl ⁇ etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.
  • the latent curing agent may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. Both can be used in combination.
  • catalytic curing agent examples include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin.
  • anionic polymerization type latent curing agent examples include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof.
  • the imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.
  • a photosensitive onium salt mainly used is an aromatic diazonium salt, an aromatic sulfonium salt, or the like
  • an aromatic diazonium salt mainly used is an aromatic diazonium salt, an aromatic sulfonium salt, or the like
  • an aliphatic sulfonium salt that is activated by heating to cure the epoxy resin.
  • This type of curing agent is preferred because it has the feature of fast curability.
  • the blending amount of the latent curing agent is preferably 30 to 60 parts by mass and more preferably 40 to 55 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the blending amount of the latent curing agent is less than 30 parts by mass, the tightening force on the adherend due to curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the insulating coating particle 10 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase.
  • the blending amount of the latent curing agent exceeds 60 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connection material tends to increase, and the adhesive strength tends to decrease.
  • the circuit connecting material is an epoxy resin adhesive
  • the film-forming material when the liquid is solidified and the constituent composition is made into a film shape, facilitates the handling of the film and imparts mechanical properties that do not easily tear, crack, or stick.
  • the film can be handled in a normal state (normal temperature and pressure).
  • the film forming material examples include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, and polyurethane resin.
  • a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
  • the phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol.
  • the phenoxy resin contains 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in the presence of a catalyst such as an alkali metal hydroxide at a temperature of 40 to 120 ° C. in a non-reactive solvent. It can be obtained by reacting.
  • a catalyst such as an alkali metal compound, an organophosphorus compound, or a cyclic amine compound, an amide, ether, ketone, lactone, alcohol, or the like having a boiling point of 120 ° C. or higher.
  • a product obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent under a reaction solid content of 50% by mass or less is preferable.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin can be used as the bifunctional epoxy resin.
  • Bifunctional phenols have two phenolic hydroxyl groups, and examples thereof include bisphenol compounds such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, and bisphenol S.
  • the phenoxy resin may be modified with a radical polymerizable functional group.
  • a phenoxy resin can be used individually by 1 type or in mixture of 2 or more types.
  • the resin layer 12 may contain a curing agent that generates free radicals and a radical polymerizable substance, instead of the epoxy resin and the latent curing agent.
  • the circuit connection material 50 preferably contains an adhesive composition containing a curing agent that generates free radicals, a radical polymerizable substance, and the insulating coated conductive particles 10.
  • the curing agent that generates free radicals used in the circuit connection material 50 is one that decomposes by heating of a peroxide compound, an azo compound, or the like to generate free radicals.
  • the target connection temperature, connection time, pot life It is selected as appropriate.
  • the blending amount is preferably 0.05 to 10% by mass, based on the total mass of the circuit connection material 50, and 0.1 to 5% by mass (0.05 to 10% with 100% by mass as the total mass of the circuit connection material 50). Part by mass, preferably 0.1 to 5 parts by mass).
  • the curing agent that generates free radicals can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like.
  • it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity. .
  • diacyl peroxide examples include 2,4-dichlorobenzoyl peroxide, 3,5,5, -trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, and benzoyl.
  • peroxydicarbonates examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate.
  • peroxyesters examples include 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynodecanoate, and t-hexylperoxyneodecane.
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis- (t-butylperoxy) decane.
  • dialkyl peroxides examples include ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
  • hydroperoxides examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • curing agents that generate free radicals can be used alone or in combination, and may be used in combination with a decomposition accelerator, an inhibitor, and the like.
  • a decomposition accelerator an inhibitor
  • the radical polymerizable substance used for the circuit connecting material 50 is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, citraconic imide resins, and nadiimide resins.
  • the blending amount of the radical polymerizable substance is preferably 20 to 50 parts by mass, and more preferably 30 to 40 parts by mass, where the total mass of the circuit connecting material 50 is 100 parts by mass.
  • the radical polymerizable substance can be used in any state of a monomer and an oligomer, and a monomer and an oligomer can be used in combination.
  • Examples of the acrylate include, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclo Examples include pentenyl acrylate, tricyclodecanyl acrylate, tris (acryloyloxyethyl) isocyanurate, and urethane acrylate.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
  • maleimide compound examples include those containing at least two maleimide groups in the molecule, such as 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′.
  • -P-phenylene bismaleimide N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethylbiphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismale N, N
  • the citraconic imide resin is obtained by polymerizing a citraconic imide compound having at least one citraconic imide group in the molecule.
  • the citraconic imide compound include phenyl citraconic imide, 1-methyl-2,4 -Biscitraconimide benzene, N, N'-m-phenylene biscitraconimide, N, N'-p-phenylene biscitraconimide, N, N'-4,4-biphenylenebiscitraconimide, N, N'-4 , 4- (3,3-Dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) biscitraconimide, N, N′-4,4- (3,3- Diethyldiphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethanebiscitraconimide, N'-4,4-
  • the nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule.
  • the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N, N′-m-phenylenebisnadiimide, N, N′-p-phenylenebisnadiimide, N, N′-4,4-biphenylenebisnadiimide, N, N′-4,4- (3,3-dimethyl Biphenylene) bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N′-4,4 -Diphenylmethane bisnadiimi
  • the circuit connection material 50 may contain other components in addition to the curing agent that generates free radicals and the radical polymerizable substance.
  • a thermoplastic resin and a thermosetting resin can be contained.
  • thermoplastic resin polyethylene resin, polyimide resin, polyvinyl chloride resin, polyphenylene oxide resin, polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenoxy resin, polystyrene resin, xylene resin, polyurethane resin, etc. are used. it can.
  • thermoplastic resin a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or higher and a molecular weight of 10,000 or more can be preferably used.
  • a phenoxy resin can be preferably used.
  • the phenoxy resin can be obtained by reacting a bifunctional phenol with epihalohydrin until it has a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin with a bifunctional phenol.
  • thermosetting resins examples include urea resins, melamine resins, phenol resins, xylene resins, epoxy resins, polyisocyanate resins, and the like.
  • thermoplastic resin When the above thermoplastic resin is contained, it is preferable because it is easy to handle and is excellent in stress relaxation during curing. Further, the thermoplastic resin and the thermosetting resin are more preferable when having a functional group such as a hydroxyl group because the adhesiveness is improved, and may be modified with an epoxy group-containing elastomer or a radical polymerizable functional group. Those modified with a radically polymerizable functional group are preferred because the heat resistance is improved.
  • the weight average molecular weight of the thermoplastic resin is preferably 10,000 or more from the viewpoint of film forming property, but if it is 1000000 or more, the mixing property tends to be poor.
  • regulated by this application means what was measured using the analytical curve by a standard polystyrene by the gel permeation chromatography method (GPC) according to the following conditions.
  • the circuit connection material 50 may contain a filler, a softening material, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, isocyanates, and the like. It can.
  • the inclusion of a filler is preferable because it improves connection reliability and the like. If the maximum diameter of the filler is less than the particle diameter of the insulating coating particles 10, it can be used, and the blending amount is preferably in the range of 5 to 60% by volume. If it exceeds 60% by volume, the effect of improving reliability is saturated.
  • a vinyl group, an acryl group, an amino group, an epoxy group, and an isocyanate group-containing material are preferable from the viewpoint of improving adhesiveness.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
  • the circuit connection material 50 has an elastic modulus at 40 ° C. of 0.5 to 1.0 GPa after curing, and more preferably 0.6 to 0.9 GPa. If the elastic modulus after curing of the circuit connection material is less than 0.5 GPa, the connection resistance between the opposing electrodes tends to increase, and if it exceeds 1.0 GPa, it tends to be difficult to obtain a sufficient adhesive force. .
  • the elastic modulus after curing of the circuit connecting material 50 is a thermosetting resin component such as an epoxy resin or a radical polymerizable substance contained in the adhesive composition, or a thermoplastic resin such as an elastomer (for example, acrylic rubber or urethane rubber). It can adjust to a predetermined range by adjusting the compounding quantity of a component and / or a polyfunctional component, respectively.
  • a thermosetting resin component such as an epoxy resin or a radical polymerizable substance contained in the adhesive composition
  • a thermoplastic resin such as an elastomer (for example, acrylic rubber or urethane rubber). It can adjust to a predetermined range by adjusting the compounding quantity of a component and / or a polyfunctional component, respectively.
  • the elastic modulus of the circuit connection material 50 after curing can be measured using, for example, a dynamic viscoelasticity measuring device (trade name “Solid analyzer RSA2” manufactured by Rheometric Scientific).
  • the circuit connection material includes, for example, chip components such as a semiconductor chip, a resistor chip and a capacitor chip, and circuit members having one or more circuit electrodes (connection terminals) such as a printed circuit board. It is preferably used to form a connected connection structure. That is, it contains an adhesive composition and insulating coated conductive particles, has an elastic modulus at 40 ° C. after curing of 0.5 to 1.0 GPa, and the insulating coated conductive particles are composed of substrate particles and the substrate.
  • a material having a compressive modulus of 800-3500 N / mm 2 can be used for circuit connection.
  • the circuit connection material according to the present embodiment is particularly useful in COF mounting having a narrower connection pitch.
  • FIG. 4 is a cross-sectional view showing an embodiment of a connection structure.
  • the connection structure 100 shown in FIG. 4 includes a first circuit member 20 having a first circuit electrode 23 formed on a first substrate 21 and a main surface 21a of the first substrate 21, a second substrate 31, and A second circuit member 30 having a second circuit electrode 33 formed on the main surface 31a, and disposed so that the second circuit electrode 33 and the first circuit electrode 23 face each other;
  • the connection part 50a interposed between the circuit member 20 and the second circuit member 30 is provided.
  • the first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected.
  • connection part 50a is a cured product formed by curing the circuit connection material 50, and is composed of a cured product 12a of the adhesive composition and the insulating coated conductive particles 10.
  • the connection portion 50a bonds the first circuit member 20 and the second circuit member 30 so that the first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected. .
  • the first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected through the insulating coated conductive particles 10.
  • the first substrate 21 is preferably a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin and polyimide resin.
  • the first circuit electrode 23 is formed from a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
  • the second substrate 31 is preferably a glass substrate.
  • the second circuit electrode 32 is preferably formed from a transparent conductive material. Typically, ITO is used as the transparent conductive material.
  • the circuit member connection structure 100 includes, for example, a first circuit member 20 having a first substrate and a first circuit electrode formed on the main surface thereof, and a second substrate and the main surface thereof.
  • the circuit-connecting material 50 and the first circuit-connecting material 50 formed on the support film are heated and pressed in a state of being bonded to the main surface of the second circuit member 30.
  • the second circuit member 30 is temporarily bonded.
  • the main surface of the first circuit member 20 is bonded to the circuit connection material 50 while aligning the first circuit electrode 23 and the second circuit electrode 33, A laminate can be prepared.
  • connection structure 100 connected in this way has conductivity between the circuit electrode 22 and the circuit electrode 32 facing each other, and insulation between the adjacent circuit electrodes 22 and the circuit electrodes 32 on the same substrate. And excellent.
  • circuit connection material Each component which comprises the circuit connection material in a present Example was prepared as follows.
  • the silica fine particles are coated so that the insulating fine particles are 1.2 to 1.8 parts by mass with respect to 100 parts by mass of the conductive particles A, thereby insulating the particles. Coated conductive particles A were obtained.
  • 4.0 ⁇ m conductive particles B were prepared. The conductive particles B were adjusted to have a 20% K value of 2300 to 2700 N / mm 2 . The load at the time of 20% deformation of the conductive particles B was 0.6 to 0.7 mN.
  • Coated conductive particles B were obtained.
  • a 3.0 ⁇ m conductive particle C was prepared.
  • the conductive particles C were adjusted to have a 20% K value of 5200 to 5600 N / mm 2 .
  • the load at the time of 20% deformation of the conductive particles C was 1.4 to 1.5 mN.
  • the surface of the conductive particles C is treated with a polyethyleneimine aqueous solution, and then the silica particles are coated so that the insulating fine particles are 1.2 to 1.8 parts by mass with respect to 100 parts by mass of the conductive particles C, thereby insulating the particles.
  • Coated conductive particles C were obtained.
  • PKHC Bisphenol A type phenoxy resin (Mw 45000, manufactured by Inchem Corporation, trade name) "UR-8200”: Polyester urethane (manufactured by Toyobo) “HTR-P3-TEA”: Copolymer of butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio 40/30/30/3) (Mw 850000, manufactured by Nagase ChemteX, trade name) "T-6075”: Urethane rubber (made by DIC Bayer, trade name) “HX3941HP”: an anionic polymerization type latent curing agent-containing epoxy resin (containing 35% by mass of an imidazole microcapsule type curing agent, product name, manufactured by Asahi Kasei Chemicals) "UA5500”: Urethane acrylate (trade name, manufactured by Shin-Nakamura Chemical
  • This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 ⁇ m.
  • Example 2 A circuit connection material was obtained in the same manner as in Example 1 except that 3 parts by mass of “insulating coated conductive particles A” was changed to 3 parts by mass of “insulating coated conductive particles B”.
  • This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 ⁇
  • composition of the circuit connection material prepared in the examples is shown in Table 1 in terms of parts by mass (in terms of nonvolatile content), and the composition of the circuit connection material prepared in the comparative example is shown in Table 2 in terms of parts by mass (in terms of nonvolatile content).
  • connection structure 1 A flexible circuit board (hereinafter referred to as “FPC-COF”) having a copper circuit with a line width of 25 ⁇ m, a pitch of 40 ⁇ m, and a thickness of 8 ⁇ m formed directly on a polyimide having a thickness of 38 ⁇ m using the above-described circuit connecting material; A glass substrate with an ITO layer having a thickness of 0.7 mm having a thin layer of indium oxide (ITO) was connected in the following procedure. 1) The circuit connecting material was temporarily connected to the ITO layer of the glass substrate by heating and pressing at 80 ° C. and 1 MPa for 5 seconds, and then the PET film was peeled off.
  • FPC-COF flexible circuit board
  • connection structure 1 After the FPC-COF circuit electrode and the ITO layer of the glass substrate face each other, the connection structure 1 is heated and pressed under the conditions of 190 ° C., 3 MPa, 10 seconds or 170 ° C., 3 MPa, 10 seconds. Was made.
  • the width between the glass substrate, FPC-COF and the substrate was 2 mm.
  • connection structure 2 Connection structure 1 except that the glass substrate with an ITO layer is changed to a glass substrate with an ITO comb circuit having a thickness of 0.7 mm having a thin layer of indium oxide (ITO) formed with a line width of 26 ⁇ m and a space width of 4 ⁇ m.
  • ITO indium oxide
  • connection structure of circuit members (3-1) Measurement of connection resistance The resistance value between circuits including the circuit connection part of the manufactured connection structure 1 was measured by a two-terminal method using a digital multimeter. . The connection resistance was measured immediately after the connection and after performing a high temperature and high humidity treatment for 500 hours in a constant temperature and humidity chamber at 85 ° C. and 85% RH. The results are shown in Table 3.
  • connection structure 1 A force necessary for peeling FPC-COF from the produced connection structure 1 was measured as an adhesive force. The measurement was performed using an adhesive force measuring device in accordance with JIS Z-0237, with a 90 degree peeling and a peeling speed of 50 mm / min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a circuit connection material containing an adhesive composition and insulator-coated conductive particles, that subsequent to curing has an elasticity of 0.5-1.0 GPa at 40ºC. The insulator-coated conductive particles are provided with conductive particles that have a base particle and a metal plating layer covering at least part of the base particle surface, and fine insulating particles covering at least part of the conductive particle surface. The circuit connection material exhibits a compressive elastic modulus of 800-3500 N/mm2 when the conductive particles undergo compressive deformation by 20% of the particle diameter.

Description

回路接続材料及びその使用並びに接続構造体及びその製造方法Circuit connection material and use thereof, and connection structure and manufacturing method thereof
 本発明は、回路接続材料及びその使用並びに接続構造体及びその製造方法に関する。 The present invention relates to a circuit connection material and use thereof, and a connection structure and a manufacturing method thereof.
 液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip-on-Glass)実装とCOF(Chip-on-Flex)実装の2種類に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方導電性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。 The method of mounting a liquid crystal driving IC on a glass panel for liquid crystal display can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting. In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The anisotropic conductivity here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.
 ところが、近年の液晶表示の高精細化のために液晶駆動用ICの回路電極である金バンプは狭ピッチ化、狭面積化しており、これにともなって、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させるといった問題が生じている。特に狭ピッチの金バンプが要求されるCOGではその傾向が顕著である。隣接する回路電極間に導電粒子が流出すると、金バンプとガラスパネルとの間に補足される異方導電性接着剤中の導電粒子数が減少し、対向する回路電極間の接続抵抗が上昇し、接続不良を起こすといった問題があった。 However, in recent years, gold bumps, which are circuit electrodes of liquid crystal driving ICs, have been narrowed in pitch and area in order to increase the definition of liquid crystal displays, and as a result, the conductive particles of anisotropic conductive adhesive have been reduced. There is a problem that a short circuit occurs between adjacent circuit electrodes. This tendency is particularly noticeable in COG, which requires a narrow pitch gold bump. When conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the gold bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes increases. There was a problem of poor connection.
 そこで、これらの問題を解決する方法として、特許文献1に例示されるように異方導電性接着剤の少なくとも片面に絶縁性の接着剤を形成することで、COG実装又はCOF実装における接合品質の低下を防ぐ方法や、特許文献2に例示されるように導電粒子の全表面を絶縁性の被膜で被覆する方法が提案されている。 Therefore, as a method for solving these problems, as shown in Patent Document 1, by forming an insulating adhesive on at least one side of the anisotropic conductive adhesive, the bonding quality in COG mounting or COF mounting is improved. A method for preventing the reduction and a method for covering the entire surface of the conductive particles with an insulating film as exemplified in Patent Document 2 have been proposed.
特開平8-279371号公報JP-A-8-279371 特許第2794009号公報Japanese Patent No. 2779409
 しかしながら、特許文献1のように異方導電性接着層の片面に絶縁性の接着層を形成する方法では、バンプ面積が3000μm未満の場合において、対向する回路電極間で安定した導通性を得るために十分な導電粒子を異方導電性接着剤組成物に含有させると、隣り合う電極間の絶縁性が十分ではなくなってしまう傾向がある。また、特許文献2のように、導電粒子の全表面を絶縁性の被膜で被覆する方法は、隣り合う電極間の絶縁性を高くすることができるものの、対向する回路電極間の導通性が低くなりやすく、未だ改善の余地がある。 However, in the method of forming the insulating adhesive layer on one side of the anisotropic conductive adhesive layer as in Patent Document 1, when the bump area is less than 3000 μm 2 , stable conductivity is obtained between the facing circuit electrodes. Therefore, when sufficient conductive particles are included in the anisotropic conductive adhesive composition, the insulation between adjacent electrodes tends to be insufficient. In addition, as in Patent Document 2, the method of covering the entire surface of the conductive particles with an insulating coating can increase the insulation between adjacent electrodes, but the conductivity between the facing circuit electrodes is low. There is still room for improvement.
 そこで、本発明は、狭ピッチ化、狭面積化された回路電極の接続において、十分に高い接着性を有すると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性に優れる回路接続材料及びその使用、並びに回路接続材料を用いた接続構造体及び同接続構造体の製造方法を提供することを目的とする。 Therefore, the present invention has a sufficiently high adhesiveness in the connection of circuit electrodes with a narrow pitch and a narrow area, and also has insulation between adjacent circuit electrodes and conduction between opposing circuit electrodes on the same substrate. It is an object of the present invention to provide a circuit connection material having excellent properties, its use, a connection structure using the circuit connection material, and a method for manufacturing the connection structure.
 上記目的を達成するために、本発明は、接着剤組成物と、絶縁被覆導電粒子とを含有する回路接続材料であって、硬化後の40℃での弾性率が0.5~1.0GPaであり、絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである回路接続材料を提供する。 In order to achieve the above object, the present invention provides a circuit connecting material comprising an adhesive composition and insulating coated conductive particles, wherein the elastic modulus at 40 ° C. after curing is 0.5 to 1.0 GPa. Insulating coated conductive particles comprising conductive particles having base particles and a metal plating layer covering at least a part of the surface of the base particles; insulating fine particles covering at least a part of the surface of the conductive particles; And a circuit connecting material having a compressive elastic modulus of 800 to 3500 N / mm 2 at 20% compression deformation of the particle diameter of the conductive particles.
 かかる回路接続材料は、狭ピッチ化、狭面積化された回路電極の接続において、十分に高い接着性を有すると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性に優れる。 Such a circuit connection material has sufficiently high adhesiveness in connection of circuit electrodes with a narrow pitch and a small area, and also has insulation between adjacent circuit electrodes and conduction between opposing circuit electrodes on the same substrate. Excellent in properties.
 このような効果が得られる理由を、本発明者らは以下のように推察する。すなわち、所定の構成を備える絶縁被覆導電粒子を含有することで、対向する電極間では絶縁性の接着剤成分を排除して金属めっき層を介して電極同士を接続でき、かつ、隣り合う回路電極間では導電粒子を被覆する絶縁性微粒子の存在により絶縁性を保つことができると考える。そして、回路接続材料の弾性率を所定の範囲に調整することで、接続する回路間の接着力を高く保つことできると考える。 The present inventors infer the reason why such an effect is obtained as follows. That is, by containing insulating coated conductive particles having a predetermined configuration, the electrodes can be connected to each other via the metal plating layer by eliminating the insulating adhesive component between the opposing electrodes, and adjacent circuit electrodes It is considered that the insulating property can be maintained by the presence of insulating fine particles covering the conductive particles. And it thinks that the adhesive force between the circuits to connect can be kept high by adjusting the elasticity modulus of a circuit connection material to a predetermined range.
 隣接回路間の絶縁性をより一層向上する観点から、上記導電粒子の平均粒径は、5.0μm以下であることが好ましい。 From the viewpoint of further improving the insulation between adjacent circuits, the average particle size of the conductive particles is preferably 5.0 μm or less.
 本発明はまた、第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材と、第二の基板及びこれの主面上に形成された第二の回路電極を有し、該第二の回路電極と第一の回路電極とが対向するように配置され、該第二の回路電極が第一の回路電極と電気的に接続されている第二の回路部材と、第一の回路部材及び第二の回路部材の間に介在する接続部とを備え、接続部が、上記本発明の回路接続材料の硬化物である接続構造体を提供する。 The present invention also provides a first circuit member having a first substrate and a first circuit electrode formed on the main surface thereof, and a second substrate and a second circuit formed on the main surface thereof. A second circuit electrode, wherein the second circuit electrode and the first circuit electrode are arranged to face each other, and the second circuit electrode is electrically connected to the first circuit electrode. Provided is a connection structure including a circuit member and a connection portion interposed between the first circuit member and the second circuit member, wherein the connection portion is a cured product of the circuit connection material of the present invention.
 かかる接続構造体は、十分に高い接着性を有すると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性に優れる接続部を備えるため、接続信頼性に優れるものとなる。 Such a connection structure has sufficiently high adhesiveness, and has a connection portion that is excellent in insulation between circuit electrodes adjacent to each other on the same substrate and in electrical conductivity between circuit electrodes facing each other, and therefore has excellent connection reliability. It becomes.
 また、本発明は、接着剤組成物と、絶縁被覆導電粒子とを含有し、硬化後の40℃での弾性率が0.5~1.0GPaであり、絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである材料の、回路接続のための使用を提供する。 The present invention also includes an adhesive composition and insulating coated conductive particles, and has an elastic modulus of 0.5 to 1.0 GPa at 40 ° C. after curing. And a conductive particle having a metal plating layer covering at least a part of the surface of the substrate particle, and insulating fine particles covering at least a part of the surface of the conductive particle, and having a particle diameter of 20 of the conductive particle. Use of a material having a compressive elastic modulus at% compressive deformation of 800 to 3500 N / mm 2 for circuit connection is provided.
 かかる材料を回路接続のために使用することにより、狭ピッチ化、狭面積化された回路電極の接続において、十分に高い接着性を発現できると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の優れた導通性を確保することができる。 By using such a material for circuit connection, it is possible to exhibit sufficiently high adhesiveness in the connection of circuit electrodes having a narrow pitch and a small area, and insulation between adjacent circuit electrodes on the same substrate. In addition, it is possible to ensure excellent conductivity between circuit electrodes facing each other.
 かかる材料を回路接続のために使用するとき、隣接回路間の絶縁性をより一層向上する観点から、上記導電粒子の平均粒径は、5.0μm以下であることが好ましい。 When such a material is used for circuit connection, the average particle diameter of the conductive particles is preferably 5.0 μm or less from the viewpoint of further improving the insulation between adjacent circuits.
 本発明はさらに、第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材並びに第二の基板及びこれの主面上に形成された第二の回路電極を有する第二の回路部材を備える一対の回路部材の間に、上記本発明の回路接続材料を介在させて積層体を得る工程と、積層体を加熱及び加圧して回路接続材料を硬化させることで、一対の回路部材の間に介在し、対向配置された第一の回路電極と第二の回路電極とが電気的に接続されるように一対の回路部材同士を接着する接続部を形成する工程と、を備える、接続構造体の製造方法を提供する。 The present invention further includes a first circuit member having a first substrate and a first circuit electrode formed on the main surface thereof, and a second circuit formed on the second substrate and the main surface thereof. A step of obtaining a laminate by interposing the circuit connection material of the present invention between a pair of circuit members having a second circuit member having an electrode, and heating and pressurizing the laminate to cure the circuit connection material Thus, a connection part is formed between the pair of circuit members so that the first circuit electrode and the second circuit electrode arranged opposite to each other are electrically connected to each other. A method for manufacturing a connection structure.
 このような製造方法であれば、十分に高い接着性を有すると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性に優れる接続部を形成することができるため、接続信頼性に優れる接続構造体を製造することができる。 With such a manufacturing method, it is possible to form a connection portion having sufficiently high adhesiveness and excellent insulation between adjacent circuit electrodes and excellent conductivity between opposing circuit electrodes on the same substrate. A connection structure having excellent connection reliability can be manufactured.
 本発明によれば、狭ピッチ化、狭面積化された回路電極の接続において、十分に高い接着性を有すると共に、同一基板上で隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性に優れる回路接続材料及びその使用、並びに回路接続材料を用いた接続構造体及び同接続構造体の製造方法を提供することができる。 According to the present invention, in the connection of circuit electrodes having a narrow pitch and a small area, the circuit electrode has sufficiently high adhesiveness, insulation between adjacent circuit electrodes on the same substrate, and conduction between opposing circuit electrodes. It is possible to provide a circuit connection material having excellent properties and use thereof, a connection structure using the circuit connection material, and a method for manufacturing the connection structure.
回路接続材料の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a circuit connection material. 本実施形態に係る絶縁被覆導電粒子の外観図である。It is an external view of the insulation coating electrically-conductive particle which concerns on this embodiment. 本実施形態に係る絶縁被覆導電粒子の断面図である。It is sectional drawing of the insulation coating electrically-conductive particle which concerns on this embodiment. 接続構造の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of a connection structure.
 以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. However, the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.
 本発明の回路接続材料は、接着剤組成物と、絶縁被覆導電粒子とを含有する回路接続材料であって、硬化後の40℃での弾性率が0.5~1.0GPaであり、絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである。 The circuit connection material of the present invention is a circuit connection material containing an adhesive composition and insulating coated conductive particles, and has an elastic modulus at 40 ° C. of 0.5 to 1.0 GPa after curing, and has an insulating property. The coated conductive particles comprise base particles and conductive particles having a metal plating layer that covers at least part of the surface of the base particles, and insulating fine particles that cover at least part of the surface of the conductive particles, and The compressive elastic modulus at 20% compression deformation of the particle diameter of the conductive particles is 800 to 3500 N / mm 2 .
 本実施形態に係る回路接続材料は、回路電極同士を電気的に接続するために用いられる接着剤である。図1は、回路接続材料の一実施形態を示す断面図である。図1に示す回路接続材料50は、接着剤組成物からなる樹脂層12と、樹脂層12内に分散している複数の絶縁被覆導電粒子10とから構成され、フィルム状の形状を有する。 The circuit connection material according to the present embodiment is an adhesive used for electrically connecting circuit electrodes. FIG. 1 is a cross-sectional view showing an embodiment of a circuit connecting material. A circuit connection material 50 shown in FIG. 1 is composed of a resin layer 12 made of an adhesive composition and a plurality of insulating coated conductive particles 10 dispersed in the resin layer 12, and has a film shape.
 以下、回路接続材料50を構成する材料について説明する。 Hereinafter, materials constituting the circuit connection material 50 will be described.
(絶縁被覆導電粒子)
 図2は、本実施形態に係る絶縁被覆導電粒子の外観図であり、図3は、本実施形態に係る絶縁被覆導電粒子の断面図である。絶縁被覆導電粒子10は、基材粒子2と該基材粒子表面の少なくとも一部を被覆する金属めっき層4とを有する導電粒子8と、該導電粒子8表面の少なくとも一部を被覆する絶縁性微粒子6とを備えるものである。
(Insulation coated conductive particles)
FIG. 2 is an external view of the insulating coated conductive particles according to the present embodiment, and FIG. 3 is a cross-sectional view of the insulating coated conductive particles according to the present embodiment. The insulating coated conductive particles 10 include conductive particles 8 having base particles 2 and a metal plating layer 4 covering at least a part of the surface of the base particles, and insulating properties covering at least a part of the surfaces of the conductive particles 8. It comprises fine particles 6.
 導電粒子8の平均粒径は、絶縁性を確保する観点から、同一基板上で互いに隣り合う電極間の最小の間隔よりも小さいことが必要である。また、導電粒子8の平均粒径は、同一基板上で電極の高さにばらつきがある場合、そのばらつきよりも大きいことが好ましい。このような観点から、導電粒子8の平均粒径は、5.0μm以下であることが好ましく、1.0~5.0μmであることがより好ましく、2.0~4.0μmであることが更に好ましい。 The average particle diameter of the conductive particles 8 needs to be smaller than the minimum interval between the electrodes adjacent to each other on the same substrate from the viewpoint of ensuring insulation. In addition, when there is a variation in the height of the electrodes on the same substrate, the average particle diameter of the conductive particles 8 is preferably larger than the variation. From such a viewpoint, the average particle diameter of the conductive particles 8 is preferably 5.0 μm or less, more preferably 1.0 to 5.0 μm, and preferably 2.0 to 4.0 μm. Further preferred.
 導電粒子8は、基材粒子2と、基材粒子2表面の少なくとも一部を被覆する金属めっき層4とを有する。基材粒子2の平均粒径は4.0μm以下であることが好ましく、1.0~4.0μmであることがより好ましく、2.0~3.7μmであることが更に好ましい。基材粒子2の平均粒径が1.0μm以上であると、実装時に導電粒子がチップバンプの高さばらつきを吸収し易く、導通性がより良好になる。4.0μm以下であると、絶縁抵抗が低下せず、ショート不良がより発生しにくくなる。 The conductive particles 8 include base material particles 2 and a metal plating layer 4 that covers at least a part of the surface of the base material particles 2. The average particle size of the substrate particles 2 is preferably 4.0 μm or less, more preferably 1.0 to 4.0 μm, and even more preferably 2.0 to 3.7 μm. When the average particle diameter of the substrate particles 2 is 1.0 μm or more, the conductive particles easily absorb the height variation of the chip bumps during mounting, and the conductivity is improved. When the thickness is 4.0 μm or less, the insulation resistance does not decrease and a short circuit defect is less likely to occur.
 基材粒子2は樹脂からなる樹脂粒子である。基材粒子が樹脂粒子であるために、加熱及び加圧による変形によって導電粒子と電極との接触面積を増加させることができる。基材粒子に用いられる樹脂としては特に限定しないが、アクリル樹脂、オレフィン樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものを使用してもよい。中でも、導電粒子8の硬度を調整しやすい観点から、架橋スチレン粒子が好ましい。 The base particle 2 is a resin particle made of resin. Since the substrate particles are resin particles, the contact area between the conductive particles and the electrode can be increased by deformation due to heating and pressurization. Although it does not specifically limit as resin used for a base particle, An acrylic resin, an olefin resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or these copolymers are mentioned, and what crossed these is used. Also good. Among these, crosslinked styrene particles are preferable from the viewpoint of easily adjusting the hardness of the conductive particles 8.
 基材粒子2表面を被覆する金属めっき層4は単層構造の部分があってもよいが、少なくとも一部が複数の層からなる多層構造であることが好ましい。多層構造の場合、耐食性や導電性の観点から最外層は金層であることが好ましく、金層が表面となる部分が導電粒子8表面全体において60%以上であることがより好ましい。また、金属めっき層が金層及びニッケル層を含み、該金層の少なくとも一部が該ニッケル層よりも外側に設けられていることが好ましい。さらに、導電粒子8表面における金原子に対するニッケル原子の原子存在比が70%以下であることが好ましい。該原子存在比は、X線光電子分光装置によって測定される。導電粒子8表面を上記構成とすることにより、絶縁性微粒子6が導電粒子8から剥離しにくくなり、隣接回路間の絶縁性が向上できる。 The metal plating layer 4 covering the surface of the substrate particles 2 may have a single layer structure, but it is preferable that at least a part of the metal plating layer 4 has a multilayer structure composed of a plurality of layers. In the case of a multilayer structure, the outermost layer is preferably a gold layer from the viewpoint of corrosion resistance and conductivity, and the portion where the gold layer is the surface is more preferably 60% or more of the entire surface of the conductive particles 8. Moreover, it is preferable that a metal plating layer contains a gold layer and a nickel layer, and at least one part of this gold layer is provided outside the nickel layer. Further, the atomic ratio of nickel atoms to gold atoms on the surface of the conductive particles 8 is preferably 70% or less. The atomic abundance ratio is measured by an X-ray photoelectron spectrometer. By making the surface of the conductive particles 8 have the above-described configuration, the insulating fine particles 6 are difficult to peel from the conductive particles 8, and the insulation between adjacent circuits can be improved.
 基材粒子2表面を被覆する金属めっき層4に用いられる金属として、金、ニッケルの他にも、銀、銅、白金、亜鉛、鉄、パラジウム、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属やITO、はんだ等を用いることができる。 In addition to gold and nickel, the metal used for the metal plating layer 4 covering the surface of the base particle 2 is silver, copper, platinum, zinc, iron, palladium, tin, chromium, titanium, aluminum, cobalt, germanium, A metal such as cadmium, ITO, solder, or the like can be used.
 基材粒子2を金属めっき層4で被覆する方法として、無電解めっき、置換めっき、電気めっき、スパッタリング等の方法が挙げられる。金属めっき層の厚みは特に限定しないが、0.005~1.0μmの範囲が好ましく、0.01~0.3μmの範囲がより好ましい。金属めっき層の厚みが0.005μm未満であると導通不良を起こし易い傾向があり、1.0μmを超えるとコストがかかる。 Examples of the method for coating the substrate particles 2 with the metal plating layer 4 include electroless plating, displacement plating, electroplating, and sputtering. The thickness of the metal plating layer is not particularly limited, but is preferably in the range of 0.005 to 1.0 μm, and more preferably in the range of 0.01 to 0.3 μm. If the thickness of the metal plating layer is less than 0.005 μm, there is a tendency to cause poor conduction, and if it exceeds 1.0 μm, the cost is increased.
 導電粒子8は、加熱圧着時に良好な導通を確保するため特定の硬さを有することが重要である。導電粒子8は、粒子直径を20%圧縮変形させたときの圧縮弾性率(以下、「20%K値」ともいう)が800~3500N/mmであり、1000~3000N/mmであることが好ましく、1100~2800N/mmであることがより好ましい。 It is important that the conductive particles 8 have a specific hardness in order to ensure good conduction during thermocompression bonding. Conductive particles 8, the compression modulus when the particle diameter is 20% compressive deformation (hereinafter, also referred to as "20% K value") of 800 ~ 3500N / mm 2 that is 1000 ~ 3000N / mm 2 Is preferable, and more preferably 1100 to 2800 N / mm 2 .
 導電粒子8の20%K値が800N/mm未満では、軟らかすぎて導電粒子と電極端子との間のバインダー樹脂(接着剤組成物)が排除されなかったり、復元力が低いため基板やバンプの高さのばらつきを吸収できなかったりして導通が不安定になりやすい。一方、導電粒子8の20%K値が3500N/mmを超えると、加熱圧着時に、導電粒子が硬すぎて扁平できず接触面積が狭くなったりして導通が不安定になりやすい。 When the 20% K value of the conductive particles 8 is less than 800 N / mm 2 , the binder resin (adhesive composition) between the conductive particles and the electrode terminals is not excluded because of being too soft, and the restoring force is low, so that the substrate or bump It is difficult to absorb the variation in height, and the continuity becomes unstable. On the other hand, if the 20% K value of the conductive particles 8 exceeds 3500 N / mm 2 , the conductive particles are too hard and cannot be flattened at the time of thermocompression bonding, and the contact area becomes narrow, and the conduction tends to become unstable.
 本実施形態における20%K値は、微小圧縮試験器(Fisher社製、商品名「Fisherscope H100」)を用いて一辺が50μmの四角柱の平滑端面で、上記導電粒子を圧縮速度0.33mN/秒、最大試験荷重40mNで圧縮し求めることができる。なお、測定は室温環境下で行う。 The 20% K value in this embodiment is a smooth end face of a square column with a side of 50 μm using a micro compression tester (trade name “Fisherscope H100” manufactured by Fisher, Inc.), and the conductive particles are compressed at a compression speed of 0.33 mN / It can be determined by compressing at a maximum test load of 40 mN. The measurement is performed in a room temperature environment.
 基材粒子を構成する樹脂粒子の種類、基材粒子が架橋樹脂粒子である場合にはその架橋密度、金属めっき層4を構成する金属の種類等を適宜変更することで、所定の範囲の20%K値を有する導電粒子8を得ることができる。また、種々のグレードの20%K値を有する導電粒子が、積水化学株式会社から入手可能である。 By appropriately changing the type of resin particles constituting the base particles, the cross-linking density when the base particles are cross-linked resin particles, the type of metal constituting the metal plating layer 4 and the like, a predetermined range of 20 Conductive particles 8 having a% K value can be obtained. Also, conductive particles having 20% K value of various grades are available from Sekisui Chemical Co., Ltd.
 また、導電粒子8において、20%変形時の荷重F(mN)と、粒子径R(μm)とが下記式(1)で表される関係を満たすことが望ましい。
  0.1≦F/R<0.3   (1)
In the conductive particles 8, it is desirable that the load F (mN) at the time of 20% deformation and the particle diameter R (μm) satisfy the relationship represented by the following formula (1).
0.1 ≦ F / R <0.3 (1)
 F/Rが0.1未満の場合、回路接続時に絶縁被覆導電粒子10が扁平しすぎて、絶縁被覆導電粒子10の弾性の回復が失われやすくなる。一方、F/Rが0.3以上の場合、絶縁被覆導電粒子10が扁平し難く、回路電極に対する十分な接触面積が得られ難くなくなるため、接続抵抗が上昇してしまう傾向がある。 When F / R is less than 0.1, the insulating coated conductive particles 10 are too flat at the time of circuit connection, and the elastic recovery of the insulating coated conductive particles 10 is likely to be lost. On the other hand, when F / R is 0.3 or more, the insulating coated conductive particles 10 are not easily flattened, and it is difficult to obtain a sufficient contact area with respect to the circuit electrode, so that the connection resistance tends to increase.
 導電粒子8はその表面に官能基を有すると、絶縁性微粒子6により被覆され易くなる。絶縁性微粒子6との結合力向上の観点から、官能基が、水酸基、カルボキシル基、アルコキシ基、アルコキシカルボニル基から選ばれる少なくとも1種であることが好ましい。導電粒子8の表面にこれらの官能基が形成されていることは、例えば、X線電子分光分析法、飛行時間型二次イオン質量分析法等の分析手法によって確認することができる。 If the conductive particles 8 have a functional group on the surface, the conductive particles 8 are easily covered with the insulating fine particles 6. From the viewpoint of improving the bonding strength with the insulating fine particles 6, the functional group is preferably at least one selected from a hydroxyl group, a carboxyl group, an alkoxy group, and an alkoxycarbonyl group. The formation of these functional groups on the surface of the conductive particles 8 can be confirmed by an analysis technique such as X-ray electron spectroscopy or time-of-flight secondary ion mass spectrometry.
 上記官能基は、導電粒子8表面に対して配位結合を形成する基と官能基とを有する化合物を、導電粒子8表面に付着又は結合させることにより形成できる。配位結合を形成する基として、例えば導電粒子8の表面が金層からなる場合、金に対して配位結合を形成するメルカプト基、スルフィド基又はジスルフィド基が挙げられる。従って、メルカプト基、スルフィド基又はジスルフィド基と官能基とを有する化合物が、導電粒子8表面に付着又は結合していることが好ましい。このような、メルカプト基、スルフィド基又はジスルフィド基と官能基とを有する化合物として、例えば、メルカプト酢酸、2-メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン及びシステインが挙げられる。 The functional group can be formed by attaching or bonding a compound having a group that forms a coordinate bond to the surface of the conductive particle 8 and the functional group to the surface of the conductive particle 8. Examples of the group that forms a coordinate bond include a mercapto group, a sulfide group, or a disulfide group that forms a coordinate bond with gold when the surface of the conductive particle 8 is made of a gold layer. Therefore, it is preferable that a compound having a mercapto group, sulfide group or disulfide group and a functional group adheres to or binds to the surface of the conductive particles 8. Examples of such a compound having a mercapto group, sulfide group or disulfide group and a functional group include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin and cysteine.
 導電粒子8表面に、官能基を形成させる具体的な方法として、例えば、メタノールやエタノール等の有機溶媒中にメルカプト酢酸等の上述の化合物を10~100mmol/L程度溶解し、その溶液の中に導電粒子8を分散する方法が挙げられる。 As a specific method for forming a functional group on the surface of the conductive particles 8, for example, the above-mentioned compound such as mercaptoacetic acid is dissolved in an organic solvent such as methanol or ethanol at about 10 to 100 mmol / L, and the solution is dissolved in the solution. A method of dispersing the conductive particles 8 can be mentioned.
 絶縁性微粒子6は、対向する回路電極間の導通性を十分高くする観点から、無機酸化物微粒子であることが好ましい。該無機酸化物微粒子として、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、マグネシウムより選ばれる少なくとも一つの元素を含む酸化物からなる微粒子を好適に用いることができる。これらは単独で又は2種類以上を組み合わせて用いることができる。 The insulating fine particles 6 are preferably inorganic oxide fine particles from the viewpoint of sufficiently increasing the conductivity between the facing circuit electrodes. As the inorganic oxide fine particles, fine particles made of an oxide containing at least one element selected from silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium can be suitably used. These can be used alone or in combination of two or more.
 絶縁性微粒子6は、その表面に水酸基を有する。なお、この水酸基の一部を、シランカップリング剤等でアミノ基やカルボキシル基、エポキシ基に変性してもよい。通常、無機酸化物微粒子の粒子径が500nm以下の場合には変性することは困難であるので、絶縁性微粒子6を変性せずに用いることが好ましい。 The insulating fine particles 6 have a hydroxyl group on the surface. A part of this hydroxyl group may be modified to an amino group, a carboxyl group, or an epoxy group with a silane coupling agent or the like. Usually, when the particle diameter of the inorganic oxide fine particles is 500 nm or less, it is difficult to modify, and therefore it is preferable to use the insulating fine particles 6 without modification.
 一般に水酸基は、水酸基、カルボキシル基、アルコキシ基、アルコキシカルボニル基等の官能基と、脱水縮合による共有結合や水素結合によって強固な結合を形成する。導電粒子8はその表面にこれらの官能基を有しているため、導電粒子8と絶縁性粒子6とは強固な結合力を有している。さらに、絶縁性微粒子6の表面電位が負電位であることが好ましい。絶縁性微粒子6の表面電位が負電位であると、官能基を有する導電粒子8に絶縁性微粒子6が結合しやすくなる。 Generally, a hydroxyl group forms a strong bond with a functional group such as a hydroxyl group, a carboxyl group, an alkoxy group, or an alkoxycarbonyl group by a covalent bond or a hydrogen bond by dehydration condensation. Since the conductive particles 8 have these functional groups on their surfaces, the conductive particles 8 and the insulating particles 6 have a strong bonding force. Furthermore, the surface potential of the insulating fine particles 6 is preferably a negative potential. When the surface potential of the insulating fine particles 6 is a negative potential, the insulating fine particles 6 are easily bonded to the conductive particles 8 having a functional group.
 絶縁性微粒子6が、無機酸化物微粒子の中でも粒子径を制御した水分散コロイダルシリカ(SiO)であることが特に好ましい。水分散コロイダルシリカ(SiO)であると、隣接回路電極間の絶縁性を更に良好にできる。水分散コロイダルシリカは表面に水酸基を有する為、導電粒子8との結合力に優れていること、粒子径を揃えやすいこと、安価であること等の利点も有する。絶縁信頼性向上のために、分散溶液中のアルカリ金属イオン及び、アルカリ土類金属イオン濃度が100ppm以下であることが望ましい。また、金属アルコキシドの加水分解反応、いわゆるゾルゲル法により製造される無機酸化物微粒子が好ましい。 The insulating fine particles 6 are particularly preferably water-dispersed colloidal silica (SiO 2 ) having a controlled particle size among the inorganic oxide fine particles. If it is water-dispersed colloidal silica (SiO 2 ), the insulation between adjacent circuit electrodes can be further improved. Since the water-dispersed colloidal silica has a hydroxyl group on the surface, it has advantages such as excellent bonding strength with the conductive particles 8, easy alignment of particle diameters, and low cost. In order to improve insulation reliability, it is desirable that the concentration of alkali metal ions and alkaline earth metal ions in the dispersion solution is 100 ppm or less. Further, inorganic oxide fine particles produced by a hydrolysis reaction of metal alkoxide, so-called sol-gel method, are preferable.
 絶縁性微粒子6の平均粒径が20~500nmであることが好ましい。粒径が20nm以上であると、20nm未満の場合と比較して、導電粒子8を被覆する絶縁性微粒子6が絶縁体として良好に機能して、同一基板上で互いに隣り合う回路電極間のショートを更に抑制できる。一方、粒径が500nm以下であると、500nmを超える場合と比較して、対向する回路電極間の導通性が向上する傾向にある。なお、上記粒径は、BET法による比表面積換算法又はX線小角散乱法により測定することができる。 The average particle diameter of the insulating fine particles 6 is preferably 20 to 500 nm. When the particle size is 20 nm or more, the insulating fine particles 6 covering the conductive particles 8 function well as an insulator as compared with the case where the particle size is less than 20 nm, and short-circuits between circuit electrodes adjacent to each other on the same substrate. Can be further suppressed. On the other hand, when the particle size is 500 nm or less, the conductivity between the facing circuit electrodes tends to be improved as compared with the case where the particle diameter exceeds 500 nm. The particle size can be measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method.
 絶縁性微粒子6が、導電粒子8よりも硬い粒子であることが好ましい。絶縁性微粒子6を導電粒子8よりも硬くすることで、異方導電性接着フィルムを作製する際に絶縁被覆導電粒子10が変形しにくくなる。なお、絶縁性微粒子6が導電粒子8よりも硬いことは粒子の硬度を測定することにより確認できる。硬度はモース硬度により測定できる(金:2.5、ニッケル:3.8、シリカ:7.0)。 It is preferable that the insulating fine particles 6 are harder than the conductive particles 8. By making the insulating fine particles 6 harder than the conductive particles 8, the insulating coated conductive particles 10 are not easily deformed when an anisotropic conductive adhesive film is produced. It can be confirmed that the insulating fine particles 6 are harder than the conductive particles 8 by measuring the hardness of the particles. Hardness can be measured by Mohs hardness (gold: 2.5, nickel: 3.8, silica: 7.0).
 絶縁性微粒子6が、導電粒子8の表面を一層で被覆していることが好ましい。一層で被覆した場合、導電粒子8の表面に絶縁性微粒子6を複数層積層した場合に比べて、絶縁性微粒子6の積層量を制御しやすい。 It is preferable that the insulating fine particles 6 cover the surface of the conductive particles 8 with one layer. When covered with one layer, it is easier to control the amount of the insulating fine particles 6 laminated than when a plurality of insulating fine particles 6 are laminated on the surface of the conductive particles 8.
 導電粒子8が絶縁性微粒子6によって被覆されている表面の割合、すなわち絶縁性微粒子6による導電粒子8表面の被覆率が30~50%であることが好ましい。なお、ここでいう100%とは、導電粒子8表面を平面とした場合に、その平面に絶縁性微粒子6が細密充填される場合をいう。また、上記被覆率のCV値が20%以下であることが好ましい。なお、CV値とは、被覆率の標準偏差を平均値で割った値であり、ばらつきを示す。上記被覆率が高い場合は、同一基板上で隣り合う回路電極間の絶縁性が高くなり、かつ、対向する回路電極間の導通性が低下する傾向がある。上記被覆率が低い場合は、上記導通性が高くなり、上記絶縁性が低下する傾向がある。 The ratio of the surface where the conductive particles 8 are covered with the insulating fine particles 6, that is, the coverage of the surface of the conductive particles 8 with the insulating fine particles 6 is preferably 30 to 50%. Here, 100% refers to the case where the surface of the conductive particles 8 is a flat surface and the insulating fine particles 6 are finely packed in the flat surface. Moreover, it is preferable that the CV value of the said coverage is 20% or less. The CV value is a value obtained by dividing the standard deviation of the coverage by the average value, and indicates variation. When the said coverage is high, there exists a tendency for the insulation between the circuit electrodes which adjoin on the same board | substrate to become high, and for the electrical conductivity between the circuit electrodes which oppose to fall. When the said coverage is low, the said electroconductivity becomes high and there exists a tendency for the said insulation to fall.
 本実施形態に係る絶縁被覆導電粒子10は、導電粒子8の表面上に高分子電解質を吸着させた後、絶縁性微粒子6を被覆して得ることができる。 The insulating coated conductive particles 10 according to the present embodiment can be obtained by coating the insulating fine particles 6 after adsorbing the polymer electrolyte on the surface of the conductive particles 8.
 一般に、このような方法は、交互積層法(Layer-by-Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films,210/211,1992,p.831)。この方法では、正電荷を有するポリマー電解質(ポリカチオン)の水溶液と負電荷を有するポリマー電解質(ポリアニオン)の水溶液とに、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンとの組が積層されて複合膜(交互積層膜)を得ることができる。 In general, such a method is called a layer-by-layer assembly. The alternate lamination method is described in G.H. This is a method for forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, 1992, p. 831). In this method, the substrate is alternately immersed in an aqueous solution of a polymer electrolyte (polycation) having a positive charge and an aqueous solution of a polymer electrolyte (polyanion) having a negative charge, and is adsorbed onto the substrate by electrostatic attraction. A combination of a polycation and a polyanion can be laminated to obtain a composite film (alternate laminated film).
 交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料とが静電気的に引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することはない。 In the alternate lamination method, the film is grown by electrostatic attraction between the material charge formed on the substrate and the material having the opposite charge in the solution due to electrostatic attraction. When charge neutralization occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more.
 また、Lvovらは交互積層法を微粒子に応用し、シリカやチタニア、セリアの各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir,Vol.13、1997、p.6195-6203)。この方法を用いると、負の表面電荷を有するシリカの微粒子とその反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)又はポリエチレンイミン(PEI)などとを交互に積層することで、シリカ微粒子と高分子電解質とが交互に積層された微粒子積層薄膜を形成することが可能である。 Lvov et al. Also applied an alternate lamination method to fine particles and reported a method of laminating a polymer electrolyte having a charge opposite to the surface charge of the fine particles, using silica, titania, and ceria fine particle dispersions. (Langmuir, Vol. 13, 1997, p. 6195-6203). By using this method, silica fine particles having a negative surface charge and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having the opposite charge, are alternately laminated to form silica. It is possible to form a fine particle laminated thin film in which fine particles and a polymer electrolyte are alternately laminated.
 絶縁被覆導電粒子10の製造方法として、メルカプト基、スルフィド基又はジスルフィド基と水酸基、カルボキシル基、アルコキシ基及びアルコキシカルボニル基から選ばれる少なくとも1種の官能基とを有する化合物を含む溶液に導電粒子8を接触させて、該化合物を導電粒子8表面に付着又は結合させる第1のステップと、高分子電解質を含む溶液に導電粒子8を接触させて、該高分子電解質を導電粒子8表面に付着させる第2のステップと、水酸基を表面に有する無機酸化物微粒子である絶縁性微粒子6を含む分散液に導電粒子8を接触させて、導電粒子8と導電粒子8表面の少なくとも一部を被覆する絶縁性微粒子6とを有する絶縁被覆導電粒子10を得る第3のステップと、をこの順に備える、製造方法が挙げられる。 As a method for producing the insulating coated conductive particles 10, the conductive particles 8 are contained in a solution containing a compound having a mercapto group, sulfide group or disulfide group and at least one functional group selected from a hydroxyl group, a carboxyl group, an alkoxy group and an alkoxycarbonyl group. A first step of contacting or bonding the compound to the surface of the conductive particles 8 and contacting the conductive particles 8 with a solution containing a polymer electrolyte to adhere the polymer electrolyte to the surface of the conductive particles 8 Insulating to cover at least a part of the surface of the conductive particles 8 and the conductive particles 8 by bringing the conductive particles 8 into contact with the second step and the dispersion containing the insulating fine particles 6 which are inorganic oxide fine particles having hydroxyl groups on the surface. And a third step of obtaining the insulating coated conductive particles 10 having the conductive fine particles 6 in this order.
 上記製造方法で用いられる高分子電解質を含む溶液は、水又は水と水溶性の有機溶媒の混合溶媒に高分子電解質を溶解したものである。使用できる水溶性の有機溶媒として、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどが挙げられる。高分子電解質として、水又は水と水溶性の有機溶媒との混合溶媒に可溶なものであり、水溶液中で電離し、荷電を有する官能基を主鎖又は側鎖に持つものを用いることができ、このうちポリカチオンが好ましい。ポリカチオンとして、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミドのいずれか、又はこれらのポリカチオンを少なくとも1種以上含む共重合体などを用いることができる。導電粒子8表面にこれらの高分子電解質が吸着されていることは、例えば、X線電子分光分析法、飛行時間型二次イオン質量分析法等の分析手法によって確認することができる。 The solution containing the polymer electrolyte used in the above production method is obtained by dissolving the polymer electrolyte in water or a mixed solvent of water and a water-soluble organic solvent. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like. A polymer electrolyte that is soluble in water or a mixed solvent of water and a water-soluble organic solvent, is ionized in an aqueous solution, and has a functional group having a charge in the main chain or side chain. Of these, polycations are preferred. Polycations having a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA), polyvinylpyridine (PVP), polylysine, polyacrylamide, or a copolymer containing at least one of these polycations can be used. The adsorption of these polymer electrolytes on the surface of the conductive particles 8 can be confirmed by an analysis technique such as X-ray electron spectroscopy or time-of-flight secondary ion mass spectrometry.
 上述のポリカチオンのうち、ポリエチレンイミンが高い電荷密度を有しており、導電粒子8との結合力が強いことから好ましく用いることができる。高分子電解質の重量平均分子量は、用いる高分子電解質の種類によるため一概に定めることができないが、水溶性及び導電粒子8への吸着量を良好にする観点、及び取扱いの容易さの観点から、一般に500~200000程度のものが好ましい。 Among the polycations described above, polyethyleneimine has a high charge density and can be preferably used because of its strong binding force with the conductive particles 8. The weight average molecular weight of the polymer electrolyte cannot be determined unconditionally because it depends on the type of polymer electrolyte to be used, but from the viewpoint of improving the water solubility and the amount of adsorption to the conductive particles 8, and the ease of handling, In general, about 500 to 200,000 is preferable.
 高分子電解質を含む溶液に導電粒子8を接触させる方法として、例えば高分子電解質を水又は水と水溶性の有機溶媒との混合溶媒に溶解した高分子電解質溶液に、導電粒子8を浸漬する方法が挙げられる。この場合、高分子電解質溶液中の高分子電解質の濃度は、水溶性及び官能基含有導電粒子への吸着量を良好にする観点、並びに取扱いの容易さの観点から、通常0.01~10質量%程度が好ましい。高分子電解質溶液のpHは、特に限定されない。 As a method of bringing the conductive particles 8 into contact with a solution containing the polymer electrolyte, for example, a method of immersing the conductive particles 8 in a polymer electrolyte solution in which the polymer electrolyte is dissolved in water or a mixed solvent of water and a water-soluble organic solvent. Is mentioned. In this case, the concentration of the polymer electrolyte in the polymer electrolyte solution is usually 0.01 to 10 mass from the viewpoints of improving the water solubility and the amount of adsorption to the functional group-containing conductive particles and the ease of handling. % Is preferred. The pH of the polymer electrolyte solution is not particularly limited.
 上記水溶性の有機溶媒として、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどを用いることができる。なお、高分子電解質を含む溶液として、エレクトロマイグレーションや腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン、アルカリ土類金属(Ca、Sr、Ba、Ra)イオン、及びハロゲン化物イオン(フッ素イオン、クロライドイオン、臭素イオン、ヨウ素イオン)を含まないものが好ましい。 As the water-soluble organic solvent, for example, methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile and the like can be used. In order to avoid electromigration and corrosion as a solution containing a polymer electrolyte, alkali metal (Li, Na, K, Rb, Cs) ions, alkaline earth metal (Ca, Sr, Ba, Ra) ions, and What does not contain halide ions (fluorine ions, chloride ions, bromine ions, iodine ions) is preferred.
 導電粒子8の表面に吸着される高分子電解質の種類や分子量、濃度を調整することによって、絶縁性微粒子6による導電粒子8表面の被覆率をコントロールすることができる。具体的にはポリエチレンイミン等、電荷密度の高い高分子電解質を用いた場合、絶縁性微粒子6による被覆率が高くなる傾向があり、ポリジアリルジメチルアンモニウムクロリド等、電荷密度の低い高分子電解質を用いた場合、上記被覆率が低くなる傾向がある。また、高分子電解質の分子量が大きい場合、上記被覆率が高くなる傾向があり、高分子電解質の分子量が小さい場合、上記被覆率が低くなる傾向がある。さらに、高分子電解質を高濃度で用いた場合、上記被覆率が高くなる傾向があり、高分子電解質を低濃度で用いた場合、上記被覆率が低くなる傾向がある。 By adjusting the type, molecular weight, and concentration of the polymer electrolyte adsorbed on the surface of the conductive particles 8, the coverage of the surface of the conductive particles 8 with the insulating fine particles 6 can be controlled. Specifically, when a polymer electrolyte having a high charge density such as polyethyleneimine is used, the coverage by the insulating fine particles 6 tends to be high, and a polymer electrolyte having a low charge density such as polydiallyldimethylammonium chloride is used. When it is, there exists a tendency for the said coverage to become low. Moreover, when the molecular weight of the polymer electrolyte is large, the coverage tends to be high, and when the molecular weight of the polymer electrolyte is small, the coverage tends to be low. Furthermore, when the polymer electrolyte is used at a high concentration, the coverage tends to be high, and when the polymer electrolyte is used at a low concentration, the coverage tends to be low.
 上述の絶縁被覆導電粒子10の製造方法が、第2のステップで導電粒子8表面に前記高分子電解質を接触させる工程の後に導電粒子8の表面に吸着されていない余剰の前記高分子電解質を洗い流す工程を、及び第3のステップで導電粒子8の表面に絶縁性微粒子6を接触させる工程の後に導電粒子8を被覆していない余剰の絶縁性微粒子6を洗い流す工程を更に備えていてもよい。 In the method of manufacturing the insulating coated conductive particles 10 described above, after the step of bringing the polymer electrolyte into contact with the surface of the conductive particles 8 in the second step, the excess polymer electrolyte that is not adsorbed on the surfaces of the conductive particles 8 is washed away. The process and the process of washing away the excess insulating fine particles 6 not covering the conductive particles 8 after the step of bringing the insulating fine particles 6 into contact with the surfaces of the conductive particles 8 in the third step may be further provided.
 上述の高分子電解質及び絶縁性微粒子6を洗い流す工程に用いる洗浄溶媒としては、水、アルコール、又はアセトンなどを用いることができる。なお、導電粒子8の表面に吸着している高分子電解質及び又は導電粒子8の表面に直接又は高分子電解質を介して結合している絶縁性微粒子6は、上述の余剰の高分子電解質及び余剰の絶縁性微粒子6を洗い流す工程では通常剥離しない。 As the cleaning solvent used in the step of washing away the polymer electrolyte and the insulating fine particles 6 described above, water, alcohol, acetone or the like can be used. Note that the polymer electrolyte adsorbed on the surface of the conductive particles 8 and / or the insulating fine particles 6 bonded to the surface of the conductive particles 8 directly or via the polymer electrolyte are the above-mentioned surplus polymer electrolyte and surplus. In the step of washing away the insulative fine particles 6, it is not usually peeled off.
 上述の余剰の高分子電解質を洗い流す工程、及び絶縁性微粒子6を洗い流す工程を行うことによって、絶縁性微粒子6が高分子電解質溶液に持ち込まれること、及び高分子電解質が絶縁性微粒子6の分散液に持ち込まれることを防止することができる。なお、持ち込みによって絶縁性微粒子の分散液及び高分子電解質溶液内でカチオン、アニオンが混ざってしまうと、高分子電解質と絶縁性微粒子との凝集や沈殿が発生する場合がある。 By performing the above-described step of washing away the excess polymer electrolyte and the step of washing away the insulating fine particles 6, the insulating fine particles 6 are brought into the polymer electrolyte solution, and the polymer electrolyte is dispersed in the insulating fine particles 6. Can be prevented. If cations and anions are mixed in the dispersion of insulating fine particles and the polymer electrolyte solution due to carry-in, aggregation and precipitation of the polymer electrolyte and the insulating fine particles may occur.
 以上のようにして作製された絶縁被覆導電粒子10を、加熱乾燥することにより絶縁性微粒子6と導電粒子8との結合力を一層強化することができる。これは、導電粒子8表面のカルボキシル基等の官能基と絶縁性微粒子6表面の水酸基との化学結合が新たに形成されることによる。絶縁被覆導電粒子10の加熱乾燥は60℃~200℃、10~180分の範囲で行うことが好ましい。温度が60℃より高い場合、又は加熱時間が10分以上である場合は、温度が60℃より低い場合、又は加熱時間が10分より短い場合と比較して、導電粒子8の表面から絶縁性微粒子6が剥離しにくい傾向がある。一方、温度が200℃より低い場合、又は加熱時間が180分より短い場合は、温度が200℃より高い場合、又は加熱時間が180分より長い場合と比較して、導電粒子8が変形しにくい傾向にある。 The bonding strength between the insulating fine particles 6 and the conductive particles 8 can be further enhanced by heating and drying the insulating coated conductive particles 10 produced as described above. This is because a chemical bond between a functional group such as a carboxyl group on the surface of the conductive particles 8 and a hydroxyl group on the surface of the insulating fine particles 6 is newly formed. The insulating coated conductive particles 10 are preferably dried by heating in the range of 60 to 200 ° C. and 10 to 180 minutes. When the temperature is higher than 60 ° C., or when the heating time is 10 minutes or longer, compared with the case where the temperature is lower than 60 ° C. or the heating time is shorter than 10 minutes, the surface of the conductive particles 8 is insulated. There is a tendency that the fine particles 6 are difficult to peel off. On the other hand, when the temperature is lower than 200 ° C. or when the heating time is shorter than 180 minutes, the conductive particles 8 are less likely to be deformed than when the temperature is higher than 200 ° C. or when the heating time is longer than 180 minutes. There is a tendency.
 絶縁被覆導電粒子10において、絶縁性微粒子の被覆量は、導電粒子100質量部に対して0.2~2.6質量部であることが好ましく、0.8~2.0質量部であることがより好ましい。導電粒子100質量部に対する絶縁性微粒子の被覆割合が0.2質量部未満では良好な絶縁性が得られ難くなり、2.6質量部を超えると、回路接続部分の電気抵抗値が上昇し易くなる傾向がある。また、絶縁性微粒子の被覆割合は、基材粒子100質量部に対して0.7~8.6質量部であることが好ましく、1.0~8.0質量部であることがより好ましい。 In the insulating coated conductive particles 10, the coating amount of the insulating fine particles is preferably 0.2 to 2.6 parts by mass, and 0.8 to 2.0 parts by mass with respect to 100 parts by mass of the conductive particles. Is more preferable. If the coating ratio of the insulating fine particles to 100 parts by mass of the conductive particles is less than 0.2 parts by mass, it is difficult to obtain good insulation, and if it exceeds 2.6 parts by mass, the electrical resistance value of the circuit connection part tends to increase. Tend to be. Further, the coating ratio of the insulating fine particles is preferably 0.7 to 8.6 parts by mass, more preferably 1.0 to 8.0 parts by mass with respect to 100 parts by mass of the base particles.
 回路接続材料中の絶縁被覆導電粒子10の割合は、隣り合う回路電極間の絶縁性及び対向する回路電極間の導通性を良好にする観点から、回路接続材料全体を基準として0.1~30体積%が好ましく、0.5~25体積%がより好ましく、1~10体積%が更に好ましい。 The ratio of the insulating coated conductive particles 10 in the circuit connection material is 0.1 to 30 based on the entire circuit connection material from the viewpoint of improving the insulation between the adjacent circuit electrodes and the conductivity between the opposing circuit electrodes. % By volume is preferred, 0.5 to 25% by volume is more preferred, and 1 to 10% by volume is still more preferred.
(接着剤組成物)
 次に、本実施形態に係る接着剤組成物について説明する。樹脂層12は、エポキシ樹脂と潜在性硬化剤とを含有することが好ましい。すなわち、回路接続材料50は、エポキシ樹脂と潜在性硬化剤とを含む接着剤組成物と、絶縁被覆導電粒子10とを含有することができる。回路接続材料50が加熱されたときにエポキシ樹脂の硬化により樹脂層12において架橋構造が形成され、回路接続材料50の硬化物が形成される。この場合、回路接続材料50は、エポキシ硬化型の接着剤として機能する。
(Adhesive composition)
Next, the adhesive composition according to this embodiment will be described. The resin layer 12 preferably contains an epoxy resin and a latent curing agent. That is, the circuit connection material 50 can contain an adhesive composition containing an epoxy resin and a latent curing agent, and the insulating coated conductive particles 10. When the circuit connection material 50 is heated, a crosslinked structure is formed in the resin layer 12 by curing of the epoxy resin, and a cured product of the circuit connection material 50 is formed. In this case, the circuit connection material 50 functions as an epoxy curable adhesive.
 エポキシ樹脂としては、ビスフェノールA、F、AD等のビスフェノールのグリシジルエーテルであるビスフェノール型エポキシ樹脂及びフェノールノボラック又はクレゾールノボラックから誘導されるエポキシノボラック樹脂が代表的なエポキシ樹脂である。その他の例として、ナフタレン骨格を有するナフタレン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、脂環式エポキシ樹脂及び複素環式エポキシ樹脂が挙げられる。これらは単独又は2種以上混合して用いられる。 Typical epoxy resins include bisphenol type epoxy resins that are glycidyl ethers of bisphenols such as bisphenol A, F, and AD, and epoxy novolac resins derived from phenol novolac or cresol novolac. Other examples include naphthalene type epoxy resins having a naphthalene skeleton, glycidyl amine type epoxy resins, glycidyl ether type epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. These are used individually or in mixture of 2 or more types.
 上記エポキシ樹脂の中でも、ビスフェノール型エポキシ樹脂が分子量の異なるグレードが広く入手可能で、接着性や反応性等を任意に設定できることから好ましい。ビスフェノール型エポキシ樹脂の中でも、ビスフェノールF型エポキシ樹脂が特に好ましい。ビスフェノールF型エポキシ樹脂の粘度は低く、フェノキシ樹脂との組み合わせて用いることにより、回路接続材料の流動性を容易に広範囲に設定できる。また、ビスフェノールF型エポキシ樹脂は、回路接続材料に良好な粘着性を付与し易いという利点も有する。 Among the above epoxy resins, bisphenol type epoxy resins are preferred because they are widely available in grades with different molecular weights, and adhesiveness and reactivity can be arbitrarily set. Among bisphenol type epoxy resins, bisphenol F type epoxy resins are particularly preferable. The viscosity of the bisphenol F type epoxy resin is low, and the fluidity of the circuit connecting material can be easily set in a wide range by using it in combination with the phenoxy resin. Further, the bisphenol F type epoxy resin has an advantage that it is easy to impart good adhesiveness to the circuit connecting material.
 不純物イオン(Na、Cl等)濃度又は加水分解性塩素が300ppm以下であるエポキシ樹脂を用いることが、エレクトロンマイグレーション防止のために好ましい。 It is preferable to use an epoxy resin having an impurity ion (Na + , Cl etc.) concentration or hydrolyzable chlorine of 300 ppm or less to prevent electron migration.
 潜在性硬化剤としては、エポキシ樹脂を硬化させることができるものであればよい。また、潜在性硬化剤は、エポキシ樹脂と反応して架橋構造中に取り込まれる化合物であってもよいし、エポキシ樹脂の硬化反応を促進する触媒型硬化剤であってもよい。両者を併用することも可能である。 Any latent curing agent may be used as long as it can cure the epoxy resin. The latent curing agent may be a compound that reacts with the epoxy resin and is incorporated into the crosslinked structure, or may be a catalytic curing agent that accelerates the curing reaction of the epoxy resin. Both can be used in combination.
 触媒型硬化剤としては、例えば、エポキシ樹脂のアニオン重合を促進するアニオン重合型潜在性硬化剤、及びエポキシ樹脂のカチオン重合を促進するカチオン重合型潜在性硬化剤が挙げられる。 Examples of the catalytic curing agent include an anionic polymerization latent curing agent that promotes anionic polymerization of an epoxy resin and a cationic polymerization latent curing agent that promotes cationic polymerization of an epoxy resin.
 アニオン重合型潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ素ホウ素-アミン錯体、アミンイミド、ポリアミンの塩、ジシアンジアミド及びこれらの変性物が挙げられる。イミダゾール系のアニオン重合型潜在性硬化剤は、例えば、イミダゾール又はその誘導体をエポキシ樹脂に付加して形成される。 Examples of the anionic polymerization type latent curing agent include imidazole series, hydrazide series, trifluoroboron-amine complex, amine imide, polyamine salt, dicyandiamide, and modified products thereof. The imidazole-based anionic polymerization latent curing agent is formed, for example, by adding imidazole or a derivative thereof to an epoxy resin.
 カチオン重合型潜在性硬化剤としては、例えば、エネルギー線照射によりエポキシ樹脂を硬化させる感光性オニウム塩(芳香族ジアゾニウム塩、芳香族スルホニウム塩等が主として用いられる)が好ましい。また、エネルギー線照射以外に加熱によって活性化しエポキシ樹脂を硬化させるものとして、脂肪族スルホニウム塩がある。この種の硬化剤は、速硬化性という特徴を有することから好ましい。 As the cationic polymerization type latent curing agent, for example, a photosensitive onium salt (mainly used is an aromatic diazonium salt, an aromatic sulfonium salt, or the like) that cures an epoxy resin by irradiation with energy rays. In addition to irradiation with energy rays, there is an aliphatic sulfonium salt that is activated by heating to cure the epoxy resin. This type of curing agent is preferred because it has the feature of fast curability.
 これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質、ニッケル、銅等の金属薄膜及びケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、可使時間が延長できるため好ましい。 When these latent curing agents are coated with a polymer material such as polyurethane or polyester, a metal thin film such as nickel or copper, and an inorganic material such as calcium silicate, the pot life can be extended. Therefore, it is preferable.
 潜在性硬化剤の配合量は、エポキシ樹脂100質量部に対して30~60質量部であることが好ましく、40~55質量部であることがより好ましい。潜在性硬化剤の配合量が30質量部未満であると回路接続材料の硬化収縮による被着体に対する締め付け力が低下する。その結果、絶縁被覆粒子10と回路電極との接触が保持されず、信頼性試験後の接続抵抗が上昇しやすくなる傾向がある。一方、潜在性硬化剤の配合量の60質量部を超えると締め付け力が強くなりすぎるため、回路接続材料の硬化物における内部応力が大きくなり、接着強度の低下を招き易くなる傾向がある。 The blending amount of the latent curing agent is preferably 30 to 60 parts by mass and more preferably 40 to 55 parts by mass with respect to 100 parts by mass of the epoxy resin. When the blending amount of the latent curing agent is less than 30 parts by mass, the tightening force on the adherend due to curing shrinkage of the circuit connecting material is reduced. As a result, the contact between the insulating coating particle 10 and the circuit electrode is not maintained, and the connection resistance after the reliability test tends to increase. On the other hand, if the blending amount of the latent curing agent exceeds 60 parts by mass, the tightening force becomes too strong, so that the internal stress in the cured product of the circuit connection material tends to increase, and the adhesive strength tends to decrease.
 回路接続材料がエポキシ樹脂系の接着剤である場合、フィルム形成材を含有することが好ましい。フィルム形成材は、液状物を固形化し構成組成物をフィルム形状とした場合に、そのフィルムの取扱いを容易とし、容易に裂けたり、割れたり、べたついたりしない機械的特性等を付与するものであり、通常の状態(常温常圧)でフィルムとしての取扱いができるものである。 When the circuit connecting material is an epoxy resin adhesive, it is preferable to contain a film forming material. The film-forming material, when the liquid is solidified and the constituent composition is made into a film shape, facilitates the handling of the film and imparts mechanical properties that do not easily tear, crack, or stick. The film can be handled in a normal state (normal temperature and pressure).
 フィルム形成材として、例えば、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂及びポリウレタン樹脂が挙げられる。フィルム形成材の中でも接着性、相溶性、耐熱性及び機械強度に優れることからフェノキシ樹脂が好ましい。 Examples of the film forming material include phenoxy resin, polyvinyl formal resin, polystyrene resin, polyvinyl butyral resin, polyester resin, polyamide resin, xylene resin, and polyurethane resin. Among the film forming materials, a phenoxy resin is preferable because of excellent adhesiveness, compatibility, heat resistance, and mechanical strength.
 フェノキシ樹脂は、2官能性フェノール類とエピハロヒドリンとを高分子化するまで反応させるか、又は2官能性エポキシ樹脂と2官能性フェノール類とを重付加させることにより得られる樹脂である。フェノキシ樹脂は、例えば、2官能性フェノール類1モルとエピハロヒドリン0.985~1.015モルとをアルカリ金属水酸化物等の触媒の存在下、非反応性溶媒中で40~120℃の温度で反応させることにより得ることができる。 The phenoxy resin is a resin obtained by reacting a bifunctional phenol and epihalohydrin until they are polymerized, or by polyaddition of a bifunctional epoxy resin and a bifunctional phenol. For example, the phenoxy resin contains 1 mol of a bifunctional phenol and 0.985 to 1.015 mol of epihalohydrin in the presence of a catalyst such as an alkali metal hydroxide at a temperature of 40 to 120 ° C. in a non-reactive solvent. It can be obtained by reacting.
 また、フェノキシ樹脂としては、樹脂の機械的特性や熱的特性の観点からは、特に2官能性エポキシ樹脂と2官能性フェノール類との配合当量比をエポキシ基/フェノール水酸基=1/0.9~1/1.1とし、アルカリ金属化合物、有機リン系化合物、環状アミン系化合物等の触媒の存在下、沸点が120℃以上のアミド系、エーテル系、ケトン系、ラクトン系、アルコール系等の有機溶剤中で、反応固形分が50質量%以下の条件で50~200℃に加熱して重付加反応させて得たものが好ましい。 Further, as the phenoxy resin, from the viewpoint of the mechanical properties and thermal properties of the resin, the blending equivalent ratio of the bifunctional epoxy resin and the bifunctional phenols is particularly preferably epoxy group / phenol hydroxyl group = 1 / 0.9. In the presence of a catalyst such as an alkali metal compound, an organophosphorus compound, or a cyclic amine compound, an amide, ether, ketone, lactone, alcohol, or the like having a boiling point of 120 ° C. or higher. A product obtained by polyaddition reaction by heating to 50 to 200 ° C. in an organic solvent under a reaction solid content of 50% by mass or less is preferable.
 2官能性エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂を用いることができる。2官能性フェノール類は2個のフェノール性水酸基を有するものであり、例えば、ハイドロキノン類、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS等のビスフェノール化合物が挙げられる。 Bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, and bisphenol S type epoxy resin can be used as the bifunctional epoxy resin. Bifunctional phenols have two phenolic hydroxyl groups, and examples thereof include bisphenol compounds such as hydroquinones, bisphenol A, bisphenol F, bisphenol AD, and bisphenol S.
 フェノキシ樹脂は、ラジカル重合性の官能基により変性されていてもよい。フェノキシ樹脂は、1種を単独で又は2種以上を混合して用いることができる。 The phenoxy resin may be modified with a radical polymerizable functional group. A phenoxy resin can be used individually by 1 type or in mixture of 2 or more types.
 樹脂層12は、エポキシ樹脂及び潜在性硬化剤に替えて、遊離ラジカルを発生する硬化剤と、ラジカル重合性物質とを含有することもできる。言い換えると、回路接続材料50は、遊離ラジカルを発生する硬化剤と、ラジカル重合性物質とを含む接着剤組成物と、絶縁被覆導電粒子10とを含有することが好ましい。回路接続材料50が加熱されたときにラジカル重合性物質の重合により樹脂層12において架橋構造が形成され、回路接続材料50の硬化物が形成される。この場合、回路接続材料50は、ラジカル硬化型の接着剤として機能する。 The resin layer 12 may contain a curing agent that generates free radicals and a radical polymerizable substance, instead of the epoxy resin and the latent curing agent. In other words, the circuit connection material 50 preferably contains an adhesive composition containing a curing agent that generates free radicals, a radical polymerizable substance, and the insulating coated conductive particles 10. When the circuit connection material 50 is heated, a crosslinked structure is formed in the resin layer 12 by polymerization of the radical polymerizable substance, and a cured product of the circuit connection material 50 is formed. In this case, the circuit connection material 50 functions as a radical curable adhesive.
 回路接続材料50に用いられる遊離ラジカルを発生する硬化剤は、過酸化化合物、アゾ系化合物などの加熱により分解して遊離ラジカルを発生するものであり、目的とする接続温度、接続時間、ポットライフ等により適宜選定される。配合量は回路接続材料50の全体質量を基準として、0.05~10質量%が好ましく、0.1~5質量%(回路接続材料50の全体質量を100質量部として、0.05~10質量部が好ましく、0.1~5質量部)がより好ましい。遊離ラジカルを発生する硬化剤は、具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイド等から選定できる。また、回路部材の接続端子の腐食を抑えるために、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイドから選定されることが好ましく、高反応性が得られるパーオキシエステルから選定されることがより好ましい。 The curing agent that generates free radicals used in the circuit connection material 50 is one that decomposes by heating of a peroxide compound, an azo compound, or the like to generate free radicals. The target connection temperature, connection time, pot life It is selected as appropriate. The blending amount is preferably 0.05 to 10% by mass, based on the total mass of the circuit connection material 50, and 0.1 to 5% by mass (0.05 to 10% with 100% by mass as the total mass of the circuit connection material 50). Part by mass, preferably 0.1 to 5 parts by mass). Specifically, the curing agent that generates free radicals can be selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like. Further, in order to suppress corrosion of the connection terminals of the circuit member, it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity. .
 ジアシルパーオキサイド類としては、例えば、2,4-ジクロロベンゾイルパーオキサイド、3,5,5,-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイドが挙げられる。 Examples of the diacyl peroxide include 2,4-dichlorobenzoyl peroxide, 3,5,5, -trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic peroxide, and benzoyl. Examples include peroxytoluene and benzoyl peroxide.
 パーオキシジカーボネート類としては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネートが挙げられる。 Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, and di (3-methyl-3-methoxybutylperoxy) dicarbonate.
 パーオキシエステル類としては、例えば、1,1,3,3,-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシノエデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3,-テトラメチルブチルパーオキシ-2-エチルヘキサノネート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ2-エチルヘキサノネート、t-ヘキシルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシ-2-エチルヘキサノネート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノネート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテートが挙げられる。 Examples of peroxyesters include 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxynodecanoate, and t-hexylperoxyneodecane. Noate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) Peroxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanate, t-hexylperoxy-2-ethylhexanate, t-butylperoxy-2-ethylhexanate, t- Butyl peroxyisobutyrate, 1,1-bis (t-butylperoxy) cyclohexane, t-hexyl peroxy Isopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoylperoxy) hexane, Examples thereof include t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, and t-butyl peroxyacetate.
 パーオキシケタール類としては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1、1-(t-ブチルパーオキシ)シクロドデカン、2,2-ビス-(t-ブチルパーオキシ)デカンが挙げられる。 Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-Butylperoxy) -3,3,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis- (t-butylperoxy) decane.
 ジアルキルパーオキサイド類としては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイドが挙げられる。 Examples of dialkyl peroxides include α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
 ハイドロパーオキサイド類としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイドが挙げられる。 Examples of hydroperoxides include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
 これらの遊離ラジカルを発生する硬化剤は、単独又は混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるため好ましい。 These curing agents that generate free radicals can be used alone or in combination, and may be used in combination with a decomposition accelerator, an inhibitor, and the like. In addition, it is preferable to use these hardeners coated with a polyurethane-based or polyester-based polymer substance to form microcapsules because the pot life is extended.
 回路接続材料50に用いられるラジカル重合性物質とは、ラジカルにより重合する官能基を有する物質であり、アクリレート、メタクリレート、マレイミド化合物、シトラコンイミド樹脂、ナジイミド樹脂等が挙げられる。ラジカル重合性物質の配合量は回路接続材料50の全体質量を100質量部として、20~50質量部が好ましく、30~40質量部がより好ましい。ラジカル重合性物質はモノマー及びオリゴマーのいずれの状態でも用いることが可能であり、モノマーとオリゴマーを併用することも可能である。 The radical polymerizable substance used for the circuit connecting material 50 is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylates, methacrylates, maleimide compounds, citraconic imide resins, and nadiimide resins. The blending amount of the radical polymerizable substance is preferably 20 to 50 parts by mass, and more preferably 30 to 40 parts by mass, where the total mass of the circuit connecting material 50 is 100 parts by mass. The radical polymerizable substance can be used in any state of a monomer and an oligomer, and a monomer and an oligomer can be used in combination.
 上記アクリレート(対応するメタクリレートも含む、以下同じ)としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシポリエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロイロキシエチル)イソシアヌレート、ウレタンアクリレートが挙げられる。これらは単独で又は2種類以上を組み合わせて用いることができ、必要によりハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。また、ジシクロペンテニル基及び/又はトリシクロデカニル基及び/又はトリアジン環を有する場合は、耐熱性が向上するので好ましい。 Examples of the acrylate (including the corresponding methacrylate, hereinafter the same) include, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylol propane triacrylate, tetramethylol methane tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxypolyethoxy) phenyl] propane, dicyclo Examples include pentenyl acrylate, tricyclodecanyl acrylate, tris (acryloyloxyethyl) isocyanurate, and urethane acrylate. These may be used alone or in combination of two or more, and a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary. Moreover, when it has a dicyclopentenyl group and / or a tricyclodecanyl group and / or a triazine ring, since heat resistance improves, it is preferable.
 上記マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するもので、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチルビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3’-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-4,8-(4-マレイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-マレイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-マレイミドフェノキシ)-2-シクロヘキシルベンゼン、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 Examples of the maleimide compound include those containing at least two maleimide groups in the molecule, such as 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′. -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethylbiphenylene) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N′- 4,4-diphenylmethane bismaleimide, N, N′-4,4-diphenylpropane bismaleimide, N, N′-3,3′-diphenylsulfone bismale N, N′-4,4-diphenyl ether bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-4,8- ( 4-maleimidophenoxy) phenyl) propane, 1,1-bis (4- (4-maleimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-maleimidophenoxy) -2-cyclohexyl Examples thereof include benzene and 2,2-bis (4- (4-maleimidophenoxy) phenyl) hexafluoropropane, which can be used alone or in combination of two or more.
 上記シトラコンイミド樹脂とは、分子中にシトラコンイミド基を少なくとも1個有しているシトラコンイミド化合物を重合させたもので、シトラコンイミド化合物としては、例えば、フェニルシトラコンイミド、1-メチル-2,4-ビスシトラコンイミドベンゼン、N,N’-m-フェニレンビスシトラコンイミド、N,N’-p-フェニレンビスシトラコンイミド、N,N’-4,4-ビフェニレンビスシトラコンイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスシトラコンイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスシトラコンイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスシトラコンイミド、N,N’-4,4-ジフェニルメタンビスシトラコンイミド、N,N’-4,4-ジフェニルプロパンビスシトラコンイミド、N,N’-4,4-ジフェニルエーテルビスシトラコンイミド、N,N’-4,4-ジフェニルスルホンビスシトラコンイミド、2,2-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-3,4-(4-シトラコンイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-シトラコンイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン、2,2-ビス(4-(4-シトラコンイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 The citraconic imide resin is obtained by polymerizing a citraconic imide compound having at least one citraconic imide group in the molecule. Examples of the citraconic imide compound include phenyl citraconic imide, 1-methyl-2,4 -Biscitraconimide benzene, N, N'-m-phenylene biscitraconimide, N, N'-p-phenylene biscitraconimide, N, N'-4,4-biphenylenebiscitraconimide, N, N'-4 , 4- (3,3-Dimethylbiphenylene) biscitraconimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) biscitraconimide, N, N′-4,4- (3,3- Diethyldiphenylmethane) biscitraconimide, N, N′-4,4-diphenylmethanebiscitraconimide, N'-4,4-diphenylpropane biscitraconimide, N, N'-4,4-diphenyl ether biscitraconimide, N, N'-4,4-diphenylsulfone biscitraconimide, 2,2-bis (4 -(4-citraconimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl-3,4- (4-citraconimidophenoxy) phenyl) propane, 1,1-bis (4- (4- Citraconimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4-citraconimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-citraconimidophenoxy) ) Phenyl) hexafluoropropane. These can be used alone or in combination of two or more.
 上記ナジイミド樹脂とは、分子中にナジイミド基を少なくとも1個有しているナジイミド化合物を重合したもので、ナジイミド化合物としては、例えば、フェニルナジイミド、1-メチル-2,4-ビスナジイミドベンゼン、N,N’-m-フェニレンビスナジイミド、N,N’-p-フェニレンビスナジイミド、N,N’-4,4-ビフェニレンビスナジイミド、N,N’-4,4-(3,3-ジメチルビフェニレン)ビスナジイミド、N,N’-4,4-(3,3-ジメチルジフェニルメタン)ビスナジイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスナジイミド、N,N’-4,4-ジフェニルメタンビスナジイミド、N,N’-4,4-ジフェニルプロパンビスナジイミド、N,N’-4,4-ジフェニルエーテルビスナジイミド、N,N’-4,4-ジフェニルスルホンビスナジイミド、2,2-ビス(4-(4-ナジイミドフェノキシ)フェニル)プロパン、2,2-ビス(3-s-ブチル-3,4-(4-ナジイミドフェノキシ)フェニル)プロパン、1,1-ビス(4-(4-ナジイミドフェノキシ)フェニル)デカン、4,4’-シクロヘキシリデン-ビス(1-(4-ナジイミドフェノキシ)フェノキシ)-2-シクロヘキシルベンゼン、2,2-ビス(4-(4-ナジイミドフェノキシ)フェニル)ヘキサフルオロプロパンが挙げられる。これらは単独で又は2種類以上を組み合わせて使用することができる。 The nadiimide resin is obtained by polymerizing a nadiimide compound having at least one nadiimide group in the molecule. Examples of the nadiimide compound include phenyl nadiimide, 1-methyl-2,4-bisnadiimidebenzene, N, N′-m-phenylenebisnadiimide, N, N′-p-phenylenebisnadiimide, N, N′-4,4-biphenylenebisnadiimide, N, N′-4,4- (3,3-dimethyl Biphenylene) bisnadiimide, N, N′-4,4- (3,3-dimethyldiphenylmethane) bisnadiimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bisnadiimide, N, N′-4,4 -Diphenylmethane bisnadiimide, N, N'-4,4-diphenylpropane bisnadiimide, N, N'-4,4-diphenyl -Terbisnadiimide, N, N'-4,4-diphenylsulfone bisnadiimide, 2,2-bis (4- (4-nadiimidophenoxy) phenyl) propane, 2,2-bis (3-s-butyl- 3,4- (4-Nadiimidophenoxy) phenyl) propane, 1,1-bis (4- (4-nadiimidophenoxy) phenyl) decane, 4,4′-cyclohexylidene-bis (1- (4- Nadiimidophenoxy) phenoxy) -2-cyclohexylbenzene, 2,2-bis (4- (4-nadiimidophenoxy) phenyl) hexafluoropropane. These can be used alone or in combination of two or more.
 回路接続材料50(樹脂層12)は、遊離ラジカルを発生する硬化剤及びラジカル重合性物質に加えて、他の成分を含有していてもよい。例えば、熱可塑性樹脂及び熱硬化性樹脂を含有することができる。 The circuit connection material 50 (resin layer 12) may contain other components in addition to the curing agent that generates free radicals and the radical polymerizable substance. For example, a thermoplastic resin and a thermosetting resin can be contained.
 上記熱可塑性樹脂としては、ポリエチレン樹脂、ポリイミド樹脂、ポリ塩化ビニル樹脂、ポリフェニレンオキサイド樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリアミド樹脂、ポリエステル樹脂、フェノキシ樹脂、ポリスチレン樹脂、キシレン樹脂、ポリウレタン樹脂等が使用できる。 As the above thermoplastic resin, polyethylene resin, polyimide resin, polyvinyl chloride resin, polyphenylene oxide resin, polyvinyl butyral resin, polyvinyl formal resin, polyamide resin, polyester resin, phenoxy resin, polystyrene resin, xylene resin, polyurethane resin, etc. are used. it can.
 また、熱可塑性樹脂としてTg(ガラス転移温度)が40℃以上で分子量10000以上の水酸基含有樹脂が好ましく使用することができ、例えばフェノキシ樹脂を好適に使用することができる。フェノキシ樹脂は、二官能フェノール類とエピハロヒドリンを高分子量になるまで反応させるか、又は二官能エポキシ樹脂と二官能フェノール類を重付加反応させることにより得られる。 Further, as the thermoplastic resin, a hydroxyl group-containing resin having a Tg (glass transition temperature) of 40 ° C. or higher and a molecular weight of 10,000 or more can be preferably used. For example, a phenoxy resin can be preferably used. The phenoxy resin can be obtained by reacting a bifunctional phenol with epihalohydrin until it has a high molecular weight or by polyaddition reaction of a bifunctional epoxy resin with a bifunctional phenol.
 熱硬化性樹脂としては、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、エポキシ樹脂、ポリイソシアネート樹脂等が挙げられる。 Examples of thermosetting resins include urea resins, melamine resins, phenol resins, xylene resins, epoxy resins, polyisocyanate resins, and the like.
 上記熱可塑性樹脂を含有した場合取り扱い性もよく硬化時の応力緩和に優れるため好ましい。また、上記熱可塑性樹脂及び熱硬化性樹脂は水酸基等の官能基を有する場合接着性が向上するためより好ましく、エポキシ基含有エラストマー、ラジカル重合性の官能基によって変性されていてもよい。ラジカル重合性の官能基で変性したものは耐熱性が向上するため好ましい。 When the above thermoplastic resin is contained, it is preferable because it is easy to handle and is excellent in stress relaxation during curing. Further, the thermoplastic resin and the thermosetting resin are more preferable when having a functional group such as a hydroxyl group because the adhesiveness is improved, and may be modified with an epoxy group-containing elastomer or a radical polymerizable functional group. Those modified with a radically polymerizable functional group are preferred because the heat resistance is improved.
 上記熱可塑性樹脂の重量平均分子量は10000以上であることが製膜性などの観点から好ましいが、1000000以上になると混合性が悪くなる傾向にある。なお、本願で規定する重量平均分子量とは、以下の条件に従ってゲルパーミエイションクロマトグラフィー法(GPC)により標準ポリスチレンによる検量線を用いて測定したもののことをいう。 The weight average molecular weight of the thermoplastic resin is preferably 10,000 or more from the viewpoint of film forming property, but if it is 1000000 or more, the mixing property tends to be poor. In addition, the weight average molecular weight prescribed | regulated by this application means what was measured using the analytical curve by a standard polystyrene by the gel permeation chromatography method (GPC) according to the following conditions.
 <GPC条件>
使用機器:日立L-6000型(日立製作所(株)製)
カラム:ゲルパックGL-R420+ゲルパックGL-R430+ゲルパックGL-R440(計3本)(日立化成工業(株)製)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:1.75mL/分
検出器:L-3300RI(日立製作所(株)製)
<GPC conditions>
Equipment used: Hitachi L-6000 (manufactured by Hitachi, Ltd.)
Column: Gel pack GL-R420 + Gel pack GL-R430 + Gel pack GL-R440 (3 in total) (manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.75 mL / min Detector: L-3300RI (manufactured by Hitachi, Ltd.)
 さらに、回路接続材料50(樹脂層12)は、充填材、軟化材、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤及びイソシアネート類等を含有することもできる。充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材の最大径が絶縁被覆粒子10の粒径未満であれば使用でき、配合量は、5~60体積%の範囲が好ましい。60体積%を超すと信頼性向上の効果が飽和する。カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基含有物が、接着性の向上の点から好ましい。必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。 Furthermore, the circuit connection material 50 (resin layer 12) may contain a filler, a softening material, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, isocyanates, and the like. it can. The inclusion of a filler is preferable because it improves connection reliability and the like. If the maximum diameter of the filler is less than the particle diameter of the insulating coating particles 10, it can be used, and the blending amount is preferably in the range of 5 to 60% by volume. If it exceeds 60% by volume, the effect of improving reliability is saturated. As a coupling agent, a vinyl group, an acryl group, an amino group, an epoxy group, and an isocyanate group-containing material are preferable from the viewpoint of improving adhesiveness. A polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be used as necessary.
 回路接続材料50は、硬化後の40℃における弾性率が0.5~1.0GPaであり、0.6~0.9GPaであることが更に好ましい。回路接続材料の硬化後の弾性率が0.5GPa未満では、対向する電極間の接続抵抗が上昇し易くなる傾向があり、1.0GPaを越えると、十分な接着力が得られ難い傾向がある。 The circuit connection material 50 has an elastic modulus at 40 ° C. of 0.5 to 1.0 GPa after curing, and more preferably 0.6 to 0.9 GPa. If the elastic modulus after curing of the circuit connection material is less than 0.5 GPa, the connection resistance between the opposing electrodes tends to increase, and if it exceeds 1.0 GPa, it tends to be difficult to obtain a sufficient adhesive force. .
 回路接続材料50の硬化後の弾性率は、接着剤組成物中に含まれるエポキシ樹脂やラジカル重合性物質等の熱硬化性樹脂成分、エラストマー(例えば、アクリルゴム、ウレタンゴム)等の熱可塑性樹脂成分及び/又は多官能性成分の配合量をそれぞれ調整することで所定の範囲に調整できる。 The elastic modulus after curing of the circuit connecting material 50 is a thermosetting resin component such as an epoxy resin or a radical polymerizable substance contained in the adhesive composition, or a thermoplastic resin such as an elastomer (for example, acrylic rubber or urethane rubber). It can adjust to a predetermined range by adjusting the compounding quantity of a component and / or a polyfunctional component, respectively.
 回路接続材料50の硬化後の弾性率は、例えば、動的粘弾性測定装置(Rheometric Scientific社製、商品名「Solid analyzer RSA2」)を用いて測定することができる。 The elastic modulus of the circuit connection material 50 after curing can be measured using, for example, a dynamic viscoelasticity measuring device (trade name “Solid analyzer RSA2” manufactured by Rheometric Scientific).
 本実施形態に係る回路接続材料は、例えば、半導体チップ、抵抗体チップ及びコンデンサチップ等のチップ部品、並びにプリント基板のような、1又は2以上の回路電極(接続端子)を有する回路部材同士が接続された接続構造体を形成するために好適に用いられる。すなわち、接着剤組成物と、絶縁被覆導電粒子とを含有し、硬化後の40℃での弾性率が0.5~1.0GPaであり、絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである材料を、回路接続のために使用することができる。本実施形態に係る回路接続材料は、より狭い接続ピッチを有するCOF実装において、特に有用である。 The circuit connection material according to the present embodiment includes, for example, chip components such as a semiconductor chip, a resistor chip and a capacitor chip, and circuit members having one or more circuit electrodes (connection terminals) such as a printed circuit board. It is preferably used to form a connected connection structure. That is, it contains an adhesive composition and insulating coated conductive particles, has an elastic modulus at 40 ° C. after curing of 0.5 to 1.0 GPa, and the insulating coated conductive particles are composed of substrate particles and the substrate. A conductive particle having a metal plating layer covering at least a part of the surface of the particle, and insulating fine particles covering at least a part of the surface of the conductive particle, and at 20% compression deformation of the particle diameter of the conductive particle A material having a compressive modulus of 800-3500 N / mm 2 can be used for circuit connection. The circuit connection material according to the present embodiment is particularly useful in COF mounting having a narrower connection pitch.
 図4は、接続構造体の一実施形態を示す断面図である。図4に示す接続構造体100は、第一の基板21及びこれの主面21a上に形成された第一の回路電極23を有する第一の回路部材20と、第二の基板31及びこれの主面31a上に形成された第二の回路電極33を有し、第二の回路電極33と第一の回路電極23とが対向するように配置された第二の回路部材30と、第一の回路部材20及び第二の回路部材30の間に介在する接続部50aとを備える。対向する第一の回路電極23と第二の回路電極33とは、電気的に接続されている。 FIG. 4 is a cross-sectional view showing an embodiment of a connection structure. The connection structure 100 shown in FIG. 4 includes a first circuit member 20 having a first circuit electrode 23 formed on a first substrate 21 and a main surface 21a of the first substrate 21, a second substrate 31, and A second circuit member 30 having a second circuit electrode 33 formed on the main surface 31a, and disposed so that the second circuit electrode 33 and the first circuit electrode 23 face each other; The connection part 50a interposed between the circuit member 20 and the second circuit member 30 is provided. The first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected.
 接続部50aは、回路接続材料50が硬化して形成された硬化物であり、接着剤組成物の硬化物12aと絶縁被覆導電粒子10とから構成される。接続部50aは、対向する第一の回路電極23と第二の回路電極33とが電気的に接続されるように、第一の回路部材20と第二の回路部材30とを接着している。対向する第一の回路電極23と第二の回路電極33とは、絶縁被覆導電粒子10を介して電気的に接続されている。 The connection part 50a is a cured product formed by curing the circuit connection material 50, and is composed of a cured product 12a of the adhesive composition and the insulating coated conductive particles 10. The connection portion 50a bonds the first circuit member 20 and the second circuit member 30 so that the first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected. . The first circuit electrode 23 and the second circuit electrode 33 facing each other are electrically connected through the insulating coated conductive particles 10.
 第一の基板21は、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂からなる群より選ばれる少なくとも1種の樹脂を含む樹脂フィルムであることが好ましい。第一の回路電極23は、電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム-錫酸化物からなる群より選ばれる少なくとも一種)から形成されている。 The first substrate 21 is preferably a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin and polyimide resin. The first circuit electrode 23 is formed from a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). Has been.
 第二の基板31はガラス基板であることが好ましい。第二の回路電極32は、好ましくは透明導電性材料から形成される。透明導電性材料としては典型的にはITOが用いられる。 The second substrate 31 is preferably a glass substrate. The second circuit electrode 32 is preferably formed from a transparent conductive material. Typically, ITO is used as the transparent conductive material.
 回路部材の接続構造体100は、例えば、第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材20並びに第二の基板及びこれの主面上に形成された第二の回路電極を有する第二の回路部材30を備える一対の回路部材の間に、上述のフィルム状の回路接続材料50を介在させて積層体を得る工程と、この積層体を加熱及び加圧して回路接続材料50を硬化させることで、一対の回路部材の間に介在し、対向配置された第一の回路電極23と第二の回路電極33とが電気的に接続されるように一対の回路部材同士を接着する接続部50aを形成する工程と、を備える製造方法によって、得られる。 The circuit member connection structure 100 includes, for example, a first circuit member 20 having a first substrate and a first circuit electrode formed on the main surface thereof, and a second substrate and the main surface thereof. A step of obtaining a laminate by interposing the above-mentioned film-like circuit connecting material 50 between a pair of circuit members including the second circuit member 30 having the formed second circuit electrode; and The circuit connection material 50 is cured by heating and pressurization, so that the first circuit electrode 23 and the second circuit electrode 33 that are disposed between and opposed to each other are electrically connected to each other. And a step of forming a connection portion 50a for bonding a pair of circuit members to each other.
 この方法においては、まず、支持フィルム上に形成されているフィルム状の回路接続材料50を第二の回路部材30の主面上に貼り合わせた状態で加熱及び加圧して回路接続材料50と第二の回路部材30とを仮接着する。そして、支持フィルムを剥離してから、第一の回路電極23と第二の回路電極33との位置合わせをしながら、第一の回路部材20の主面を回路接続材料50に貼り合わせて、積層体を準備することができる。なお、接続の際の加熱によって発生する揮発成分による接続への影響を防止するために、接続工程の前に回路部材を予め加熱処理しておくことが好ましい。 In this method, first, the circuit-connecting material 50 and the first circuit-connecting material 50 formed on the support film are heated and pressed in a state of being bonded to the main surface of the second circuit member 30. The second circuit member 30 is temporarily bonded. And after peeling the support film, the main surface of the first circuit member 20 is bonded to the circuit connection material 50 while aligning the first circuit electrode 23 and the second circuit electrode 33, A laminate can be prepared. In addition, in order to prevent the influence on the connection by the volatile component which generate | occur | produces by the heating in the case of a connection, it is preferable to heat-process a circuit member previously before a connection process.
 このようにして接続された接続構造体100は、対向する回路電極22と回路電極32との間の導通性と、同一基板上で隣り合う回路電極22同士及び回路電極32同士の間の絶縁性とに優れる。 The connection structure 100 connected in this way has conductivity between the circuit electrode 22 and the circuit electrode 32 facing each other, and insulation between the adjacent circuit electrodes 22 and the circuit electrodes 32 on the same substrate. And excellent.
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.
(1)回路接続材料の作製
 本実施例における回路接続材料を構成する各成分を以下の通り準備した。
(1) Preparation of circuit connection material Each component which comprises the circuit connection material in a present Example was prepared as follows.
(1-1)絶縁被覆導電粒子の準備
 まず、平均粒径2.9μmの架橋ポリスチレン粒子の表面に厚み0.07μmのニッケル層を無電解めっきで設け、更にその外層に厚み0.03μmの金層を無電解めっきで設けた平均粒径3.0μmの導電粒子Aを準備した。導電粒子Aは、20%K値が1100~1900N/mmとなるように調整されていた。なお、導電粒子Aの20%変形時の荷重は0.4~0.5mNであった。次いで、導電粒子Aの表面をポリエチレンイミン水溶液で処理した後、導電粒子A100質量部に対して、絶縁性微粒子が1.2~1.8質量部となるようにシリカ微粒子を被覆して、絶縁被覆導電粒子Aを得た。
(1-1) Preparation of Insulating Coated Conductive Particles First, a 0.07 μm thick nickel layer is provided on the surface of crosslinked polystyrene particles having an average particle diameter of 2.9 μm by electroless plating, and 0.03 μm thick gold is further formed on the outer layer. Conductive particles A having an average particle diameter of 3.0 μm provided with layers by electroless plating were prepared. The conductive particles A were adjusted so that the 20% K value was 1100 to 1900 N / mm 2 . The load at the time of 20% deformation of the conductive particles A was 0.4 to 0.5 mN. Next, after treating the surface of the conductive particles A with a polyethyleneimine aqueous solution, the silica fine particles are coated so that the insulating fine particles are 1.2 to 1.8 parts by mass with respect to 100 parts by mass of the conductive particles A, thereby insulating the particles. Coated conductive particles A were obtained.
 まず、平均粒径3.9μmの架橋ポリスチレン粒子の表面に厚み0.07μmのニッケル層を無電解めっきで設け、更にその外層に厚み0.03μmの金層を無電解めっきで設けた平均粒径4.0μmの導電粒子Bを準備した。導電粒子Bは、20%K値が2300~2700N/mmとなるように調整されていた。なお、導電粒子Bの20%変形時の荷重は0.6~0.7mNであった。次いで、導電粒子Bの表面をポリエチレンイミン水溶液で処理した後、導電粒子B100質量部に対して、絶縁性微粒子が1.0~1.6質量部となるようにシリカ微粒子を被覆して、絶縁被覆導電粒子Bを得た。 First, an average particle diameter in which a nickel layer having a thickness of 0.07 μm is provided on the surface of crosslinked polystyrene particles having an average particle diameter of 3.9 μm by electroless plating, and a gold layer having a thickness of 0.03 μm is provided on the outer layer by electroless plating. 4.0 μm conductive particles B were prepared. The conductive particles B were adjusted to have a 20% K value of 2300 to 2700 N / mm 2 . The load at the time of 20% deformation of the conductive particles B was 0.6 to 0.7 mN. Next, after the surface of the conductive particles B is treated with a polyethyleneimine aqueous solution, 100 parts by mass of the conductive particles B are coated with silica fine particles so that the insulating fine particles are 1.0 to 1.6 parts by mass, Coated conductive particles B were obtained.
 まず、平均粒径2.9μmの架橋ポリスチレン粒子の表面に厚み0.07μmのニッケル層を無電解めっきで設け、更にその外層に厚み0.03μmの金層を無電解めっきで設けた平均粒径3.0μmの導電粒子Cを準備した。導電粒子Cは、20%K値が5200~5600N/mmとなるように調整されていた。なお、導電粒子Cの20%変形時の荷重は1.4~1.5mNであった。次いで、導電粒子Cの表面をポリエチレンイミン水溶液で処理した後、導電粒子C100質量部に対して、絶縁性微粒子が1.2~1.8質量部となるようにシリカ微粒子を被覆して、絶縁被覆導電粒子Cを得た。 First, an average particle diameter in which a nickel layer having a thickness of 0.07 μm is provided on the surface of crosslinked polystyrene particles having an average particle diameter of 2.9 μm by electroless plating, and a gold layer having a thickness of 0.03 μm is provided on the outer layer by electroless plating. A 3.0 μm conductive particle C was prepared. The conductive particles C were adjusted to have a 20% K value of 5200 to 5600 N / mm 2 . The load at the time of 20% deformation of the conductive particles C was 1.4 to 1.5 mN. Next, the surface of the conductive particles C is treated with a polyethyleneimine aqueous solution, and then the silica particles are coated so that the insulating fine particles are 1.2 to 1.8 parts by mass with respect to 100 parts by mass of the conductive particles C, thereby insulating the particles. Coated conductive particles C were obtained.
(1-2)接着剤組成物を構成する各成分の準備
「PKHC」:ビスフェノールA型フェノキシ樹脂(Mw45000、インケム・コーポレーション製、商品名)
「UR-8200」:ポリエステルウレタン(東洋紡績製)
「HTR-P3-TEA」:ブチルアクリレート/エチルアクリレート/アクリロニトリル/グリシジルメタクリレート(質量比40/30/30/3)の共重合体(Mw850000、ナガセケムテックス製、商品名)
「T-6075」:ウレタンゴム(DICバイエル製、商品名)
「HX3941HP」:アニオン重合型潜在性硬化剤含有エポキシ樹脂(イミダゾール系マイクロカプセル型硬化剤を35質量%含有、旭化成ケミカルズ製、商品名)
「UA5500」:ウレタンアクリレート(新中村化学製、商品名)
「DCP-A」:ジシクロペンタジエン型ジアクリレート(東亞合成製、商品名)
「M-215」:イソシアヌル酸EO変成ジアクリレート(東亞合成製、商品名)
「パーヘキサ25O」:2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン(日本油脂製、商品名)
「SH6040」:シランカップリング剤(γ-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング・シリコーン(株)製、商品名)
「P-2M」:2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学製、商品名)
(1-2) Preparation of each component constituting adhesive composition “PKHC”: Bisphenol A type phenoxy resin (Mw 45000, manufactured by Inchem Corporation, trade name)
"UR-8200": Polyester urethane (manufactured by Toyobo)
“HTR-P3-TEA”: Copolymer of butyl acrylate / ethyl acrylate / acrylonitrile / glycidyl methacrylate (mass ratio 40/30/30/3) (Mw 850000, manufactured by Nagase ChemteX, trade name)
"T-6075": Urethane rubber (made by DIC Bayer, trade name)
“HX3941HP”: an anionic polymerization type latent curing agent-containing epoxy resin (containing 35% by mass of an imidazole microcapsule type curing agent, product name, manufactured by Asahi Kasei Chemicals)
"UA5500": Urethane acrylate (trade name, manufactured by Shin-Nakamura Chemical)
“DCP-A”: dicyclopentadiene type diacrylate (product name, manufactured by Toagosei Co., Ltd.)
“M-215”: Isocyanuric acid EO-modified diacrylate (product name)
“Perhexa25O”: 2,5-dimethyl-2,5-di (2-ethylhexanoyl) hexane (trade name, manufactured by NOF Corporation)
“SH6040”: Silane coupling agent (γ-glycidoxypropyltrimethoxysilane, manufactured by Toray Dow Corning Silicone Co., Ltd., trade name)
“P-2M”: 2-methacryloyloxyethyl acid phosphate (trade name, manufactured by Kyoeisha Chemical Co., Ltd.)
(実施例1)
 「HX3941HP」50質量部、「PKHC」の40質量%トルエン/酢酸エチル(=50/50)溶液37.5質量部(不揮発分換算で15質量部)、「HTR-P3-TEA」の10質量%トルエン/酢酸エチル(=50/50)溶液350質量部(不揮発分換算で35質量部)及び「SH6040」2質量部を配合し、更に、「絶縁被覆導電粒子A」3重量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが20μmであるフィルム状の回路接続材料を得た。
Example 1
50 parts by mass of “HX3941HP”, 37.5 parts by mass of a 40% by mass toluene / ethyl acetate (= 50/50) solution of “PKHC” (15 parts by mass in terms of nonvolatile content), and 10 mass of “HTR-P3-TEA” % Toluene / ethyl acetate (= 50/50) solution 350 parts by mass (35 parts by mass in terms of non-volatile content) and “SH6040” 2 parts by mass, and further “insulation coated conductive particles A” 3 parts by mass were added. . This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 μm.
(実施例2)
 「絶縁被覆導電粒子A」3質量部を「絶縁被覆導電粒子B」3質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Example 2)
A circuit connection material was obtained in the same manner as in Example 1 except that 3 parts by mass of “insulating coated conductive particles A” was changed to 3 parts by mass of “insulating coated conductive particles B”.
(実施例3)
 「UA5500」の70質量%トルエン溶液42.9質量部(不揮発分換算で30質量部)、「DCP-A」10質量部、「パーヘキサ25O」の50質量%炭化水素溶媒溶液8質量部(不揮発分換算で4質量部)、「UR-8200」の30質量%メチルエチルケトン/トルエン(=50/50)溶液を100質量部(不揮発分換算で30質量部)、「T-6075」の10質量%メチルエチルケトン溶液300質量部(不揮発分換算で30質量部)及び「P-2M」2質量部を配合し、更に、「絶縁被覆導電粒子A」3質量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが20μmであるフィルム状の回路接続材料を得た。
(Example 3)
42.9 parts by mass of 70% by weight toluene solution of “UA5500” (30 parts by mass in terms of non-volatile content), 10 parts by mass of “DCP-A”, 8 parts by mass of 50% by mass hydrocarbon solvent solution of “Perhexa25O” (non-volatile) 4 parts by mass), 30 parts by mass of “UR-8200” in methyl ethyl ketone / toluene (= 50/50) 100 parts by mass (30 parts by mass in terms of nonvolatile content), 10% by mass of “T-6075” 300 parts by mass of methyl ethyl ketone solution (30 parts by mass in terms of nonvolatile content) and 2 parts by mass of “P-2M” were blended, and 3 parts by mass of “insulating coated conductive particles A” were blended. This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 μm.
(比較例1)
 「絶縁被覆導電粒子A」3質量部を「絶縁被覆導電粒子C」3質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Comparative Example 1)
A circuit connection material was obtained in the same manner as in Example 1 except that 3 parts by mass of “insulating coated conductive particles A” was changed to 3 parts by mass of “insulating coated conductive particles C”.
(比較例2)
 「HX3941HP」60質量部、「PKHC」の40質量%トルエン/酢酸エチル(=50/50)溶液50質量部(不揮発分換算で20質量部)、「HTR-P3-TEA」の10質量%トルエン/酢酸エチル(=50/50)溶液200質量部(不揮発分換算で20質量部)及び「SH6040」2質量部を配合し、更に、「絶縁被覆導電粒子C」3重量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが20μmであるフィルム状の回路接続材料を得た。
(Comparative Example 2)
60 parts by mass of “HX3941HP”, 40 parts by mass of toluene / ethyl acetate (= 50/50) solution of “PKHC” (20 parts by mass in terms of nonvolatile content), 10% by mass of toluene of “HTR-P3-TEA” / 200 parts by mass of ethyl acetate (= 50/50) solution (20 parts by mass in terms of nonvolatile content) and 2 parts by mass of “SH6040” were further blended, and 3 parts by weight of “insulating coated conductive particles C” were further blended. This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 μm.
(比較例3)
 「絶縁被覆導電粒子A」3質量部を「導電粒子A」3質量部に変更した以外は、実施例1と同様にして回路接続材料を得た。
(Comparative Example 3)
A circuit connecting material was obtained in the same manner as in Example 1 except that 3 parts by mass of “insulating coated conductive particle A” was changed to 3 parts by mass of “conductive particle A”.
(比較例4)
 「絶縁被覆導電粒子A」3質量部を「絶縁被覆導電粒子C」3質量部に変更した以外は、実施例3と同様にして回路接続材料を得た。
(Comparative Example 4)
A circuit connecting material was obtained in the same manner as in Example 3 except that 3 parts by mass of “insulating coated conductive particles A” was changed to 3 parts by mass of “insulating coated conductive particles C”.
(比較例5)
 「UA5500」の70質量%トルエン溶液42.9質量部(不揮発分換算で30質量部)、「M-215」10質量部、「パーヘキサ25O」の50質量%炭化水素溶媒溶液8質量部(不揮発分換算で4質量部)、「UR-8200」の30質量%メチルエチルケトン/トルエン(=50/50)溶液を167質量部(不揮発分換算で50質量部)、「T-6075」の10質量%メチルエチルケトン溶液100質量部(不揮発分換算で10質量部)及び「P-2M」2質量部を配合し、更に、「絶縁被覆導電粒子C」3質量部を配合した。この混合溶液をアプリケータでPETフィルム上に塗布し、70℃10分の熱風乾燥により、接着剤層の厚みが20μmであるフィルム状の回路接続材料を得た。
(Comparative Example 5)
42.9 parts by mass of 70% by weight toluene solution of “UA5500” (30 parts by mass in terms of nonvolatile content), 10 parts by mass of “M-215”, 8 parts by mass of 50% by mass hydrocarbon solvent solution of “Perhexa25O” (nonvolatile 4 parts by mass), UR-8200, 30% by mass methyl ethyl ketone / toluene (= 50/50) solution, 167 parts by mass (50 parts by mass in terms of nonvolatile content), and 10% by mass of “T-6075” 100 parts by mass of methyl ethyl ketone solution (10 parts by mass in terms of nonvolatile content) and 2 parts by mass of “P-2M” were blended, and 3 parts by mass of “insulating coated conductive particles C” were blended. This mixed solution was applied onto a PET film with an applicator and dried with hot air at 70 ° C. for 10 minutes to obtain a film-like circuit connecting material having an adhesive layer thickness of 20 μm.
(比較例6)
 「絶縁被覆導電粒子A」3質量部を「導電粒子A」3質量部に変更した以外は、実施例3と同様にして回路接続材料を得た。
(Comparative Example 6)
A circuit connecting material was obtained in the same manner as in Example 3 except that 3 parts by mass of “insulating coated conductive particle A” was changed to 3 parts by mass of “conductive particle A”.
 実施例で作製した回路接続材料の組成を質量部(不揮発分換算)で表1に、比較例で作製した回路接続材料の組成を質量部(不揮発分換算)で表2にそれぞれ示す。 The composition of the circuit connection material prepared in the examples is shown in Table 1 in terms of parts by mass (in terms of nonvolatile content), and the composition of the circuit connection material prepared in the comparative example is shown in Table 2 in terms of parts by mass (in terms of nonvolatile content).
(1-3)回路接続材料の弾性率の測定
 実施例及び比較例で作製したフィルム状の回路接続材料を、180℃のオーブンで1時間硬化させ、得られた硬化物の弾性率を、動的粘弾性測定装置(Rheometric Scientific社製、商品名「Solid analyzer RSA2」)を用いて昇温速度10℃/分の条件で測定した。40℃における貯蔵弾性率を本発明に係る弾性率とした。
(1-3) Measurement of elastic modulus of circuit connecting material The film-like circuit connecting materials prepared in the examples and comparative examples were cured in an oven at 180 ° C. for 1 hour, and the elastic modulus of the obtained cured product was adjusted to be dynamic. The temperature was measured using a dynamic viscoelasticity measuring apparatus (trade name “Solid analyzer RSA2” manufactured by Rheometric Scientific) under the condition of a heating rate of 10 ° C./min. The storage elastic modulus at 40 ° C. was defined as the elastic modulus according to the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)回路部材の接続構造体の作製
(2-1)接続構造体1
 上述の回路接続材料を用いて、厚み38μmのポリイミド上に直接形成された、ライン幅25μm、ピッチ40μm、厚み8μmの銅回路を有するフレキシブル回路板(以下、「FPC-COF」という)と、全面に酸化インジウム(ITO)の薄層を有する厚み0.7mmのITO層付きガラス基板とを、以下の手順で接続した。
1)回路接続材料をガラス基板のITO層上に80℃、1MPa、5秒間加熱加圧して仮接続した後、PETフィルムを剥離した。
2)FPC-COFの回路電極とガラス基板のITO層が向かい合うように位置合わせした後、190℃、3MPa、10秒間又は170℃、3MPa、10秒間の条件で加熱及び加圧して接続構造体1を作製した。ガラス基板とFPC-COFと基板間の幅は2mmであった。
(2) Fabrication of circuit member connection structure (2-1) Connection structure 1
A flexible circuit board (hereinafter referred to as “FPC-COF”) having a copper circuit with a line width of 25 μm, a pitch of 40 μm, and a thickness of 8 μm formed directly on a polyimide having a thickness of 38 μm using the above-described circuit connecting material; A glass substrate with an ITO layer having a thickness of 0.7 mm having a thin layer of indium oxide (ITO) was connected in the following procedure.
1) The circuit connecting material was temporarily connected to the ITO layer of the glass substrate by heating and pressing at 80 ° C. and 1 MPa for 5 seconds, and then the PET film was peeled off.
2) After the FPC-COF circuit electrode and the ITO layer of the glass substrate face each other, the connection structure 1 is heated and pressed under the conditions of 190 ° C., 3 MPa, 10 seconds or 170 ° C., 3 MPa, 10 seconds. Was made. The width between the glass substrate, FPC-COF and the substrate was 2 mm.
(2-2)接続構造体2
 ITO層付きガラス基板を、ライン幅26μm、スペース幅4μmで形成された酸化インジウム(ITO)の薄層を有する厚み0.7mmのITOくし型回路付きガラス基板に変更した以外は、接続構造体1の作製と同様にして接続構造体2を作製した。
(2-2) Connection structure 2
Connection structure 1 except that the glass substrate with an ITO layer is changed to a glass substrate with an ITO comb circuit having a thickness of 0.7 mm having a thin layer of indium oxide (ITO) formed with a line width of 26 μm and a space width of 4 μm. A connection structure 2 was produced in the same manner as in the above.
(3)回路部材の接続構造の評価
(3-1)接続抵抗の測定
 作製した接続構造体1の回路接続部を含む回路間の抵抗値を、デジタルマルチメータを用いて2端子法で測定した。接続抵抗の測定は、接続直後、及び、85℃85%RHの恒温恒湿槽中に500時間保持する高温高湿処理を行った後にそれぞれ測定した。結果を表3に示す。
(3) Evaluation of connection structure of circuit members (3-1) Measurement of connection resistance The resistance value between circuits including the circuit connection part of the manufactured connection structure 1 was measured by a two-terminal method using a digital multimeter. . The connection resistance was measured immediately after the connection and after performing a high temperature and high humidity treatment for 500 hours in a constant temperature and humidity chamber at 85 ° C. and 85% RH. The results are shown in Table 3.
(3-2)絶縁抵抗の測定
 作製した接続体構造体2に、50Vの電圧を1分間印加し、基板上で隣り合う電極間の印加後の絶縁抵抗を、2端子測定法を用いマルチメータで測定した。また、接続体を85℃/85%RHの恒温恒湿槽中に500時間保持した後に取り出し30分以上経過後に、再度絶縁抵抗を測定した。
(3-2) Measurement of insulation resistance A voltage of 50 V is applied to the manufactured connector structure 2 for 1 minute, and the insulation resistance after application between adjacent electrodes on the substrate is measured using a two-terminal measurement method. Measured with Further, after the connected body was held in a constant temperature and humidity chamber of 85 ° C./85% RH for 500 hours, it was taken out, and after 30 minutes or more had elapsed, the insulation resistance was measured again.
(3-3)接着力の測定
 作製した接続構造体1からFPC-COFを剥離するために必要な力を接着力として測定した。測定は、JIS Z-0237に準拠し、90度剥離、剥離速度50mm/分として、接着力測定装置を用いて行った。
(3-3) Measurement of Adhesive Force A force necessary for peeling FPC-COF from the produced connection structure 1 was measured as an adhesive force. The measurement was performed using an adhesive force measuring device in accordance with JIS Z-0237, with a 90 degree peeling and a peeling speed of 50 mm / min.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 2…基材粒子、4…金属めっき層、6…絶縁性微粒子、8…導電粒子、10…絶縁被覆導電粒子、12a…接着剤組成物の硬化物、12…樹脂層、20…第一の回路部材、21…第一の基板、21a…第一の基板表面、22…第一の回路電極、30…第二の回路部材、31…第二の基板、31a…第二の基板表面、32…第二の回路電極、50a…接続部、50…回路接続材料、100…接続構造体。 DESCRIPTION OF SYMBOLS 2 ... Base particle, 4 ... Metal plating layer, 6 ... Insulating fine particle, 8 ... Conductive particle, 10 ... Insulation coating conductive particle, 12a ... Hardened | cured material of adhesive composition, 12 ... Resin layer, 20 ... 1st Circuit member, 21 ... first substrate, 21a ... first substrate surface, 22 ... first circuit electrode, 30 ... second circuit member, 31 ... second substrate, 31a ... second substrate surface, 32 2nd circuit electrode, 50a ... connection part, 50 ... circuit connection material, 100 ... connection structure.

Claims (6)

  1.  接着剤組成物と、絶縁被覆導電粒子とを含有する回路接続材料であって、
     硬化後の40℃での弾性率が0.5~1.0GPaであり、
     前記絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、前記導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである、回路接続材料。
    A circuit connection material containing an adhesive composition and insulating coated conductive particles,
    The elastic modulus at 40 ° C. after curing is 0.5 to 1.0 GPa,
    The insulating coated conductive particles comprise conductive particles having base particles and a metal plating layer covering at least a part of the surface of the base particles, and insulating fine particles covering at least a part of the surface of the conductive particles. A circuit connecting material having a compressive elastic modulus at a compressive deformation of 20% of the particle diameter of the conductive particles of 800 to 3500 N / mm 2 .
  2.  前記導電粒子の平均粒径が、5.0μm以下である、請求項1記載の回路接続材料。 The circuit connection material according to claim 1, wherein an average particle diameter of the conductive particles is 5.0 μm or less.
  3.  第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材と、
     第二の基板及びこれの主面上に形成された第二の回路電極を有し、該第二の回路電極と前記第一の回路電極とが対向するように配置され、該第二の回路電極が前記第一の回路電極と電気的に接続されている第二の回路部材と、
     前記第一の回路部材及び前記第二の回路部材の間に介在する接続部と、
    を備え、
     前記接続部が、請求項1又は2記載の回路接続材料の硬化物である、接続構造体。
    A first circuit member having a first substrate and a first circuit electrode formed on a main surface of the first substrate;
    A second substrate and a second circuit electrode formed on the main surface of the second substrate, the second circuit electrode and the first circuit electrode being arranged to face each other, and the second circuit A second circuit member having an electrode electrically connected to the first circuit electrode;
    A connecting portion interposed between the first circuit member and the second circuit member;
    With
    A connection structure, wherein the connection part is a cured product of the circuit connection material according to claim 1.
  4.  接着剤組成物と、絶縁被覆導電粒子とを含有し、
     硬化後の40℃での弾性率が0.5~1.0GPaであり、
     前記絶縁被覆導電粒子が、基材粒子と該基材粒子表面の少なくとも一部を被覆する金属めっき層とを有する導電粒子と、該導電粒子表面の少なくとも一部を被覆する絶縁性微粒子とを備え、かつ、前記導電粒子の粒子直径の20%圧縮変形時の圧縮弾性率が800~3500N/mmである材料の、回路接続のための使用。
    Containing an adhesive composition and insulating coated conductive particles;
    The elastic modulus at 40 ° C. after curing is 0.5 to 1.0 GPa,
    The insulating coated conductive particles comprise conductive particles having base particles and a metal plating layer covering at least a part of the surface of the base particles, and insulating fine particles covering at least a part of the surface of the conductive particles. Use of a material having a compressive elastic modulus at a compressive deformation of 20% of the particle diameter of the conductive particles of 800 to 3500 N / mm 2 for circuit connection.
  5.  前記導電粒子の平均粒径が、5.0μm以下である、請求項4記載の使用。 The use according to claim 4, wherein an average particle diameter of the conductive particles is 5.0 µm or less.
  6.  第一の基板及びこれの主面上に形成された第一の回路電極を有する第一の回路部材並びに第二の基板及びこれの主面上に形成された第二の回路電極を有する第二の回路部材を備える一対の回路部材の間に、請求項1又は2記載の回路接続材料を介在させて積層体を得る工程と、
     前記積層体を加熱及び加圧して前記回路接続材料を硬化させることで、前記一対の回路部材の間に介在し、対向配置された前記第一の回路電極と前記第二の回路電極とが電気的に接続されるように前記一対の回路部材同士を接着する接続部を形成する工程と、を備える、接続構造体の製造方法。
    A first circuit member having a first circuit electrode and a first circuit electrode formed on the main surface thereof, and a second circuit member having a second circuit electrode and a second circuit electrode formed on the main surface thereof. A step of obtaining a laminate by interposing the circuit connection material according to claim 1 between a pair of circuit members including the circuit member;
    The laminated body is heated and pressurized to cure the circuit connection material, so that the first circuit electrode and the second circuit electrode that are disposed opposite to each other and interposed between the pair of circuit members are electrically connected. Forming a connection part for bonding the pair of circuit members so as to be connected to each other.
PCT/JP2011/058813 2011-04-07 2011-04-07 Circuit connection material and use thereof, and connecting structure and method for producing same WO2012137335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058813 WO2012137335A1 (en) 2011-04-07 2011-04-07 Circuit connection material and use thereof, and connecting structure and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058813 WO2012137335A1 (en) 2011-04-07 2011-04-07 Circuit connection material and use thereof, and connecting structure and method for producing same

Publications (1)

Publication Number Publication Date
WO2012137335A1 true WO2012137335A1 (en) 2012-10-11

Family

ID=46968770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058813 WO2012137335A1 (en) 2011-04-07 2011-04-07 Circuit connection material and use thereof, and connecting structure and method for producing same

Country Status (1)

Country Link
WO (1) WO2012137335A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084173A1 (en) * 2012-11-28 2014-06-05 積水化学工業株式会社 Conductive particle with insulating particles, conductive material and connection structure
WO2014088095A1 (en) * 2012-12-06 2014-06-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
CN108780677A (en) * 2016-05-19 2018-11-09 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259766A (en) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd Connecting member for circuit
WO1998003047A1 (en) * 1996-07-15 1998-01-22 Hitachi Chemical Company, Ltd. Film-like adhesive for connecting circuit and circuit board
JP2007258141A (en) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd Conductive particles, adhesive composition, circuit connection material and connection structure, as well as connection method of circuit member
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
WO2009051067A1 (en) * 2007-10-18 2009-04-23 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259766A (en) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd Connecting member for circuit
WO1998003047A1 (en) * 1996-07-15 1998-01-22 Hitachi Chemical Company, Ltd. Film-like adhesive for connecting circuit and circuit board
JP2007258141A (en) * 2006-02-27 2007-10-04 Hitachi Chem Co Ltd Conductive particles, adhesive composition, circuit connection material and connection structure, as well as connection method of circuit member
WO2009017200A1 (en) * 2007-08-02 2009-02-05 Hitachi Chemical Company, Ltd. Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
WO2009051067A1 (en) * 2007-10-18 2009-04-23 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084173A1 (en) * 2012-11-28 2014-06-05 積水化学工業株式会社 Conductive particle with insulating particles, conductive material and connection structure
JP5530571B1 (en) * 2012-11-28 2014-06-25 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
KR20150090018A (en) * 2012-11-28 2015-08-05 세키스이가가쿠 고교가부시키가이샤 Conductive particle with insulating particles, conductive material and connection structure
KR102095291B1 (en) 2012-11-28 2020-03-31 세키스이가가쿠 고교가부시키가이샤 Conductive particle with insulating particles, conductive material and connection structure
WO2014088095A1 (en) * 2012-12-06 2014-06-12 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure
CN108780677A (en) * 2016-05-19 2018-11-09 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies

Similar Documents

Publication Publication Date Title
JP4293187B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP4737177B2 (en) Circuit connection structure
JP4743322B2 (en) Circuit connection material and circuit member connection structure
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP5051221B2 (en) Circuit member connection structure and circuit member connection method
JP5737278B2 (en) Circuit connection material, connection body, and method of manufacturing connection body
JP4967482B2 (en) Conductive particles, adhesive composition and circuit connecting material
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP5716763B2 (en) Circuit connection material and circuit member connection structure using the same
JP2017073386A (en) Circuit connecting material, connection structure of circuit member, and method for manufacturing connection structure of circuit member
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP2007224228A (en) Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal
JP2011105861A (en) Circuit-connecting material and connected structure
JPWO2009017001A1 (en) Circuit member connection structure
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
WO2012137335A1 (en) Circuit connection material and use thereof, and connecting structure and method for producing same
JP2011100605A (en) Circuit connecting material and connection structure of circuit member using the same
JP2019065062A (en) Conductive adhesive film
JP2007305583A (en) Circuit connection material and connection structure of circuit terminal using the same
JP4325379B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2011119154A (en) Connection method and connection structure
JP2011054988A (en) Circuit connecting material
JP5365666B2 (en) Circuit connection material, circuit terminal connection structure and connection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP