JP2012119326A - Conductive particle, manufacturing method for the same, manufacturing method for insulation coated conductive particle, and anisotropic conductive adhesive film - Google Patents

Conductive particle, manufacturing method for the same, manufacturing method for insulation coated conductive particle, and anisotropic conductive adhesive film Download PDF

Info

Publication number
JP2012119326A
JP2012119326A JP2012009199A JP2012009199A JP2012119326A JP 2012119326 A JP2012119326 A JP 2012119326A JP 2012009199 A JP2012009199 A JP 2012009199A JP 2012009199 A JP2012009199 A JP 2012009199A JP 2012119326 A JP2012119326 A JP 2012119326A
Authority
JP
Japan
Prior art keywords
conductive particles
particles
group
functional group
insulating coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012009199A
Other languages
Japanese (ja)
Other versions
JP5472332B2 (en
Inventor
Kenji Takai
健次 高井
Yuko Nagahara
憂子 永原
Takuya Chayama
卓也 茶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012009199A priority Critical patent/JP5472332B2/en
Publication of JP2012119326A publication Critical patent/JP2012119326A/en
Application granted granted Critical
Publication of JP5472332B2 publication Critical patent/JP5472332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive adhesive film which can sufficiently prevent poor connection in connection of a circuit electrode in which pitch is narrowed and area is narrowed, to provide a method for manufacturing an insulation coated conductive particle capable of realizing the anisotropic conductive adhesive film, to provide a conductive particle capable of obtaining the insulation coated conductive particle, and to provide a method for manufacturing the conductive particle.SOLUTION: A conductive particle includes a gold layer with average film thickness of 300 Å or less formed on a nickel layer as the outermost layer, and an elemental composition ratio (Ni/Au) of nickel to gold on a surface of the conductive particle by X-ray photoelectron spectroscopy analysis is 0.4 or less.

Description

本発明は、導電粒子、その製造方法及び絶縁被覆導電粒子の製造方法、並びに異方導電性接着剤フィルムに関するものである。   The present invention relates to conductive particles, a method for producing the same, a method for producing insulating coated conductive particles, and an anisotropic conductive adhesive film.

液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip−on−Glass)実装とCOF(Chip−on−Flex)の2種類に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。ここでいう異方導電性とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。   The method of mounting the liquid crystal driving IC on the glass panel for liquid crystal display can be roughly classified into two types, COG (Chip-on-Glass) mounting and COF (Chip-on-Flex). In COG mounting, an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles. On the other hand, in COF mounting, a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and these are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles. The anisotropic conductivity here means conducting in the pressurizing direction and maintaining insulation in the non-pressurizing direction.

近年、液晶表示の高精細化に伴い、液晶駆動用ICの回路電極である金バンプは狭ピッチ化、狭面積化が進んでいる。このような状況下では、異方導電性接着剤の導電粒子が隣接する回路電極間に流出してショートを発生させることが問題となる。また、隣接する回路電極間に導電粒子が流出すると、金バンプとガラスパネルとの間に補足される異方導電性接着剤中の導電粒子数が減少し、対抗する回路電極間の接続抵抗が上昇し、接続不良を起こすことも問題となる。   In recent years, with the increase in definition of liquid crystal display, gold bumps, which are circuit electrodes of a liquid crystal driving IC, have been reduced in pitch and area. Under such circumstances, it becomes a problem that the conductive particles of the anisotropic conductive adhesive flow out between adjacent circuit electrodes and cause a short circuit. In addition, when conductive particles flow out between adjacent circuit electrodes, the number of conductive particles in the anisotropic conductive adhesive captured between the gold bump and the glass panel decreases, and the connection resistance between the opposing circuit electrodes is reduced. Raising and causing poor connections also becomes a problem.

そこで、これらの問題を解決する方法として、異方導電性接着剤の少なくとも片面に絶縁性の接着剤を形成することで、COF実装又はCOF実装における接合品質の低下を防ぐ方法(特許文献1を参照)、導電粒子の全表面を絶縁性の被膜で被覆する方法(特許文献2を参照)、及び、絶縁性の子粒子を導電性粒子表面に被覆させる方法(特許文献3及び4を参照)が提案されている。   Therefore, as a method for solving these problems, a method for preventing deterioration of bonding quality in COF mounting or COF mounting by forming an insulating adhesive on at least one side of the anisotropic conductive adhesive (see Patent Document 1). See), a method of coating the entire surface of the conductive particles with an insulating coating (see Patent Document 2), and a method of coating the surface of the conductive particles with insulating child particles (see Patent Documents 3 and 4). Has been proposed.

特開平8−279371号公報JP-A-8-279371 特許第2794009号公報Japanese Patent No. 2779409 特許第2748705号公報Japanese Patent No. 2748705 国際公開第03/02955号パンフレットInternational Publication No. 03/02955 Pamphlet

しかしながら、特許文献1のように異方導電性接着層の片面に絶縁性の接着層を形成する方法では、バンプ面積が3000μm2未満の場合において、対向する回路電極間で安定した導通性を得るために十分な導電粒子を異方導電性接着剤組成物に含有させると、隣り合う電極間の絶縁性が十分ではなくなってしまう。また、特許文献2のように、導電粒子の全表面を絶縁性の被膜で被覆する方法は、隣り合う電極間の絶縁性を高くすることができるものの、対向する回路電極間の導通性が低くなりやすく、未だ改善の余地がある。   However, in the method of forming an insulating adhesive layer on one side of the anisotropic conductive adhesive layer as in Patent Document 1, when the bump area is less than 3000 μm 2, in order to obtain stable conductivity between opposing circuit electrodes If sufficient anisotropic conductive particles are contained in the anisotropic conductive adhesive composition, insulation between adjacent electrodes will not be sufficient. In addition, as in Patent Document 2, the method of covering the entire surface of the conductive particles with an insulating coating can increase the insulation between adjacent electrodes, but the conductivity between the facing circuit electrodes is low. There is still room for improvement.

また、絶縁性の粒子を導電性の導電粒子の表面に被覆させる方法では、絶縁性粒子と導電粒子との接着性を確保するため、絶縁性粒子としてアクリル等の樹脂製のものを用いることが必要である。このため、回路を熱圧着する際に、樹脂製の絶縁性粒子が溶融して導電粒子の全表面が被覆されてしまい、導電粒子の全表面を絶縁性の被膜で被覆する方法と同様に、対向する回路電極間の導通性が不十分となる。   Further, in the method of coating the surface of the conductive particles with the insulating particles, it is preferable to use a resin made of a resin such as acrylic as the insulating particles in order to ensure adhesion between the insulating particles and the conductive particles. is necessary. For this reason, when the circuit is thermocompression bonded, the resin-made insulating particles are melted to cover the entire surface of the conductive particles, and in the same manner as the method of covering the entire surface of the conductive particles with the insulating film, The conductivity between the circuit electrodes facing each other becomes insufficient.

特許文献3及び4には、絶縁性の子粒子として、比較的高硬度で溶融温度が高い無機酸化物が記載されている。このような無機酸化物で導電粒子を被覆する方法として、例えば、特許文献4には、シリカ表面を3−イソシアネートプロピルトリエトキシシランで処理して表面にイソシアネート基を有するシリカを作成し、その一方で、金めっき層を最外層として有する金属表面粒子を2−アミノエタンチオールで処理して金属表面に官能基であるアミノ基を形成した導電粒子を作成し、この導電粒子のアミノ基と上記シリカのイソシアネート基とを反応させて絶縁被覆導電粒子を得る方法が記載されている。このような方法においては、粒子表面を金が完全に覆っていることが望ましい。しかし、近年、コスト低減の観点から、金膜厚を低減する傾向にある。金の平均膜厚が300Å以下になると、金が金の内側(通常はニッケル)の金属を完全に被覆することは難しい。この場合、絶縁性子粒子の被覆率をコントロールするのが難しくなる。また、上記従来の絶縁被覆導電粒子では、超音波分散が施されると絶縁性子粒子の被覆率が低下し、回路電極間の絶縁性及び対向する回路電極間の導通性の双方を十分確保することが困難となり、接続不良が発生する場合のあることが本発明者らの検討により判明している。   Patent Documents 3 and 4 describe inorganic oxides having relatively high hardness and high melting temperature as insulating child particles. As a method for coating conductive particles with such an inorganic oxide, for example, in Patent Document 4, silica having an isocyanate group on the surface is prepared by treating the silica surface with 3-isocyanatopropyltriethoxysilane, Then, the metal surface particles having the gold plating layer as the outermost layer were treated with 2-aminoethanethiol to form conductive particles having amino groups as functional groups on the metal surface, and the amino groups of the conductive particles and the silica A method of obtaining insulating coated conductive particles by reacting with an isocyanate group is described. In such a method, it is desirable that the particle surface is completely covered with gold. However, in recent years, the gold film thickness tends to be reduced from the viewpoint of cost reduction. When the average film thickness of gold is 300 mm or less, it is difficult for gold to completely cover the metal inside gold (usually nickel). In this case, it becomes difficult to control the coverage of the insulator particles. In addition, in the above conventional insulating coated conductive particles, when ultrasonic dispersion is applied, the coverage of the insulating particles decreases, and both insulation between circuit electrodes and conductivity between opposing circuit electrodes are sufficiently ensured. The present inventors have found that connection failure may occur.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤の実現を可能とする絶縁被覆導電粒子の製造方法、並びに、そのような絶縁被覆導電粒子を得ることを可能とする導電粒子及びその製造方法を提供することを目的とする。また、本発明は、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤フィルムを提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and it is possible to realize an anisotropic conductive adhesive that can sufficiently prevent poor connection in the connection of circuit electrodes with a narrow pitch and a small area. It is an object of the present invention to provide a method for producing insulating coated conductive particles, a conductive particle capable of obtaining such insulating coated conductive particles, and a method for producing the same. Another object of the present invention is to provide an anisotropic conductive adhesive film that can sufficiently prevent connection failure in connection of circuit electrodes having a narrow pitch and a small area.

上記課題を解決するために本発明は、ニッケル層上に形成された平均膜厚300Å以下の金層を最外層として有する導電粒子であって、X線光電子分光分析による導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)が0.4以下であることを特徴とする導電粒子を提供する。   In order to solve the above problems, the present invention provides a conductive particle having a gold layer with an average film thickness of 300 mm or less formed on a nickel layer as an outermost layer, the surface of the conductive particle by X-ray photoelectron spectroscopy analysis, Provided is a conductive particle having a gold elemental composition ratio (Ni / Au) of 0.4 or less.

本発明の導電粒子によれば、上記構成を有することにより、導電粒子表面に強固な官能基を十分形成することができる。このような本発明の導電粒子によれば、十分な量の絶縁性子粒子によって強固に被覆された絶縁被覆導電粒子を得ることが可能となる。そして、この絶縁被覆導電粒子によれば、超音波分散が施された場合であっても、回路電極間の絶縁性及び対向する回路電極間の導通性の双方を十分確保することができ、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤が有効に実現可能となる。   According to the conductive particle of the present invention, a strong functional group can be sufficiently formed on the surface of the conductive particle by having the above configuration. According to such conductive particles of the present invention, it is possible to obtain insulating coated conductive particles that are firmly coated with a sufficient amount of insulator particles. According to the insulating coated conductive particles, even when ultrasonic dispersion is applied, both insulation between circuit electrodes and conduction between opposing circuit electrodes can be sufficiently ensured. An anisotropic conductive adhesive that can sufficiently prevent poor connection can be effectively realized in the connection of pitched and narrowed circuit electrodes.

本発明の導電粒子は、絶縁性維持の観点から、粒径が4.0μm以下であることが好ましい。粒径が4.0μmを超える場合、ショート不良が発生しやすくなる傾向にある。   The conductive particles of the present invention preferably have a particle size of 4.0 μm or less from the viewpoint of maintaining insulation. When the particle diameter exceeds 4.0 μm, short-circuit defects tend to occur.

本発明はまた、本発明の導電粒子の製造方法であって、コア粒子の表面にニッケルめっきを施してニッケル層を形成する工程と、ニッケル層上に金めっきを施して金層を形成する工程と、形成された金層の表面に存在するニッケルを除去する工程とを備える導電粒子の製造方法を提供する。   The present invention is also a method for producing a conductive particle of the present invention, the step of forming a nickel layer by performing nickel plating on the surface of the core particle, and the step of forming a gold layer by applying gold plating on the nickel layer And a process for removing nickel present on the surface of the formed gold layer.

本発明の導電粒子の製造方法においては、シアン或いはEDTAを含む水溶液によって上記金層の表面に存在するニッケルを除去することができる。   In the method for producing conductive particles of the present invention, nickel present on the surface of the gold layer can be removed with an aqueous solution containing cyan or EDTA.

本発明はまた、本発明の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に所定の官能基が形成された官能基含有導電粒子を得る工程と、官能基含有導電粒子と絶縁性子粒子とを接触させる工程とを備える、上記官能基含有導電粒子の表面が上記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子の第1の製造方法を提供する。   The present invention also comprises contacting the outermost layer surface of the conductive particles of the present invention with a compound having a predetermined functional group and at least one group selected from the group consisting of a mercapto group, a sulfide group and a disulfide group, A functional group-containing conductive particle comprising: a step of obtaining a functional group-containing conductive particle having a predetermined functional group formed on the surface of the outermost layer of the conductive particle; and a step of bringing the functional group-containing conductive particle into contact with an insulator particle. A first method for producing insulating coated conductive particles whose surface is coated with the above insulator particles is provided.

本発明の絶縁被覆導電粒子の第1の製造方法によれば、本発明の導電粒子に対して上記一連の工程が施されることにより、超音波分散が施された場合であっても、回路電極間の絶縁性及び対向する回路電極間の導通性の双方を十分確保することができる絶縁被覆導電粒子を得ることができる。そして、得られる絶縁被覆導電粒子によれば、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤が有効に実現可能となる。   According to the first manufacturing method of the insulating coated conductive particles of the present invention, even when ultrasonic dispersion is performed by performing the above-described series of steps on the conductive particles of the present invention, the circuit Insulating coated conductive particles that can sufficiently ensure both the insulation between the electrodes and the conductivity between the opposing circuit electrodes can be obtained. In addition, according to the obtained insulating coated conductive particles, it is possible to effectively realize an anisotropic conductive adhesive that can sufficiently prevent connection failure in connection of circuit electrodes having a narrow pitch and a small area.

本発明はまた、本発明の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に所定の官能基が形成された官能基含有導電粒子を得る工程と、官能基含有導電粒子と高分子電解質とを接触させて、官能基含有導電粒子の表面が高分子電解質で被覆されてなる高分子電解質被覆導電粒子を得る工程と、高分子電解質被覆導電粒子と絶縁性子粒子とを接触させる工程とを備える、上記官能基含有導電粒子の表面が上記高分子電解質及び上記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子の第2の製造方法を提供する。   The present invention also comprises contacting the outermost layer surface of the conductive particles of the present invention with a compound having a predetermined functional group and at least one group selected from the group consisting of a mercapto group, a sulfide group and a disulfide group, A step of obtaining a functional group-containing conductive particle having a predetermined functional group formed on the surface of the outermost layer of the conductive particle, and contacting the functional group-containing conductive particle with the polymer electrolyte, the surface of the functional group-containing conductive particle is a polymer. A step of obtaining polymer electrolyte-coated conductive particles coated with an electrolyte; and a step of bringing the polymer electrolyte-coated conductive particles and insulator particles into contact with each other. A second method for producing insulating coated conductive particles coated with the insulating particles is provided.

本発明の絶縁被覆導電粒子の第2の製造方法によれば、本発明の導電粒子に対して上記一連の工程が施されることにより、超音波分散が施された場合であっても、回路電極間の絶縁性及び対向する回路電極間の導通性の双方を十分確保することができる絶縁被覆導電粒子を得ることができる。そして、得られる絶縁被覆導電粒子によれば、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤が有効に実現可能となる。   According to the second method for producing insulating coated conductive particles of the present invention, even if ultrasonic dispersion is performed by applying the above-described series of steps to the conductive particles of the present invention, a circuit is provided. Insulating coated conductive particles that can sufficiently ensure both the insulation between the electrodes and the conductivity between the opposing circuit electrodes can be obtained. In addition, according to the obtained insulating coated conductive particles, it is possible to effectively realize an anisotropic conductive adhesive that can sufficiently prevent connection failure in connection of circuit electrodes having a narrow pitch and a small area.

本発明の絶縁被覆導電粒子の第2の製造方法において、上記高分子電解質としてポリアミン類を用いることができる。   In the second method for producing insulating coated conductive particles of the present invention, polyamines can be used as the polymer electrolyte.

また、上記ポリアミン類は、高電荷密度の観点から、ポリエチレンイミンであることが好ましい。   Moreover, it is preferable that the said polyamine is a polyethyleneimine from a viewpoint of a high charge density.

本発明の絶縁被覆導電粒子の第1及び2の製造方法において、上記所定の官能基が、水酸基、カルボキシル基、アルコキシル基及びアルコキシカルボニル基のうちのいずれかであることが好ましい。   In the first and second methods for producing insulating coated conductive particles of the present invention, the predetermined functional group is preferably any one of a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group.

また、上記絶縁性子粒子が、無機酸化物であることが好ましい。更に、無機酸化物は、シリカ粒子であることが好ましい。   Moreover, it is preferable that the said insulator particle | grains are inorganic oxides. Furthermore, the inorganic oxide is preferably silica particles.

本発明はまた、本発明の絶縁被覆導電粒子の第1又は第2の製造方法の製造方法により得られる絶縁被覆導電粒子と、絶縁性樹脂組成物と、を含有する異方導電性接着剤組成物をフィルム状に形成してなることを特徴とする異方導電性接着剤フィルムを提供する。   The present invention also provides an anisotropic conductive adhesive composition comprising insulating coated conductive particles obtained by the production method of the first or second production method of insulating coated conductive particles of the present invention, and an insulating resin composition. An anisotropic conductive adhesive film characterized in that an object is formed into a film.

本発明によれば、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤の実現を可能とする絶縁被覆導電粒子の製造方法、並びに、そのような絶縁被覆導電粒子を得ることを可能とする導電粒子及びその製造方法を提供することができる。また、本発明によれば、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤フィルムを提供することができる。   According to the present invention, in the connection of circuit electrodes having a narrow pitch and a small area, a method for producing insulating coated conductive particles capable of realizing an anisotropic conductive adhesive that can sufficiently prevent connection failure, and its Thus, it is possible to provide a conductive particle and a method for producing the same, which can obtain such insulating coated conductive particles. In addition, according to the present invention, an anisotropic conductive adhesive film can be provided that can sufficiently prevent poor connection in connection of circuit electrodes having a narrow pitch and a small area.

本発明の一実施形態にかかる異方導電性接着剤フィルムの断面図である。It is sectional drawing of the anisotropic conductive adhesive film concerning one Embodiment of this invention. 本発明の一実施形態にかかる異方導電性接着剤フィルムを用いて接続される回路接続体の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the circuit connection body connected using the anisotropic conductive adhesive film concerning one Embodiment of this invention. 本発明の一実施形態にかかる異方導電性接着剤フィルムを用いて接続された回路接続体の断面図である。It is sectional drawing of the circuit connection body connected using the anisotropic conductive adhesive film concerning one Embodiment of this invention.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

まず、本発明の導電粒子について説明する。本発明の導電粒子は、ニッケル層上に形成された平均膜厚300Å以下の金層を最外層として有する導電粒子であって、X線光電子分光分析による導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)が0.4以下であることを特徴とする。   First, the conductive particles of the present invention will be described. The conductive particle of the present invention is a conductive particle having a gold layer with an average film thickness of 300 mm or less formed on a nickel layer as an outermost layer, and the elemental composition of nickel and gold on the surface of the conductive particle by X-ray photoelectron spectroscopy analysis The ratio (Ni / Au) is 0.4 or less.

導電粒子としては、コア粒子をめっきにより金属で被覆したものが挙げられる。   Examples of the conductive particles include those obtained by coating core particles with metal by plating.

コア粒子は、金属コア粒子、有機コア粒子及び無機コア粒子のいずれかを用いることができるが、導通信頼性の点で、有機コア粒子を用いることが好ましい。   As the core particles, any of metal core particles, organic core particles, and inorganic core particles can be used, but organic core particles are preferably used from the viewpoint of conduction reliability.

有機コア粒子の材質は、特に限定されないが、例えば、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂等が挙げられる。   The material of the organic core particles is not particularly limited, and examples thereof include acrylic resins such as polymethyl methacrylate and polymethyl acrylate, and polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polybutadiene.

有機コア粒子をめっき等で被覆する場合、その金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属やITO、はんだといった金属化合物が挙げられる。   When the organic core particles are coated by plating or the like, examples of the metal include gold, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, cadmium, and the like. And metal compounds such as ITO and solder.

有機コア粒子を被覆する金属層の構造は特に限定されないが、本発明においては、最外層が金層であり、その内側にニッケル層を有する二層構造が好ましい。なお、ニッケル層の内側に銅等の金属層が更に設けられていてもよい。   The structure of the metal layer covering the organic core particles is not particularly limited, but in the present invention, a two-layer structure in which the outermost layer is a gold layer and a nickel layer is provided inside thereof is preferable. A metal layer such as copper may be further provided inside the nickel layer.

上記のニッケル/金の二層構造は、例えば、有機コア粒子の表面に無電解ニッケルめっきを行った後、置換金めっきを行う方法により形成することができる。めっき以外の形成方法としてスパッタ法や蒸着法等も挙げられるが、数百Åレベルでの膜厚制御を視野に入れた場合、めっき法が好ましい。ニッケル層の厚みは特に限定されないが、100〜2000Åの範囲が好ましく、500〜1000Åの範囲がより好ましい。   The nickel / gold two-layer structure can be formed, for example, by a method in which the surface of the organic core particle is subjected to electroless nickel plating and then subjected to displacement gold plating. A sputtering method, a vapor deposition method, or the like can be given as a forming method other than plating, but the plating method is preferable when film thickness control at a level of several hundreds of millimeters is taken into consideration. The thickness of the nickel layer is not particularly limited, but is preferably in the range of 100 to 2000 mm, and more preferably in the range of 500 to 1000 mm.

有機コア粒子の表面にニッケルめっきによりニッケル層を形成する工程は、まずニッケルめっきを施す前にパラジウム触媒を有機コア粒子表面に付与し、その後無電解ニッケルめっきを施すことにより実施できる。   The step of forming a nickel layer on the surface of the organic core particles by nickel plating can be performed by first applying a palladium catalyst to the surface of the organic core particles before applying nickel plating, and then applying electroless nickel plating.

無電解ニッケルめっき液を構成する成分としては、例えば、硫酸ニッケルや塩化ニッケル等の水溶性ニッケル塩、次亜りん酸ナトリウム、水素化ほう素ナトリウム、ジメチルアミンボラン、ヒドラジン等の還元剤、クエン酸、酒石酸、ヒドロキシ酢酸、リンゴ酸、乳酸、グルコン酸、グリシン等のアミノ酸、エチレンジアミン、アルキルアミン等のアミン類、その他のアンモニウム、EDTA、ピロリン酸等が挙げられる。   Components constituting the electroless nickel plating solution include, for example, water-soluble nickel salts such as nickel sulfate and nickel chloride, reducing agents such as sodium hypophosphite, sodium borohydride, dimethylamine borane and hydrazine, citric acid And amino acids such as tartaric acid, hydroxyacetic acid, malic acid, lactic acid, gluconic acid and glycine, amines such as ethylenediamine and alkylamine, other ammonium, EDTA and pyrophosphoric acid.

無電解ニッケルめっき終了後は、水洗を短時間に効率よく行うことが好ましい。水洗時間が短いほど、ニッケル表面に酸化皮膜ができにくいため、置換金めっきが有利になる。また、通常、無電解ニッケルめっき終了後、メンブレンフィルタ等を用いて濾過が行われるが、この場合もニッケルの酸化を防ぐために濾過を迅速に行うことが好ましい。   After completion of electroless nickel plating, it is preferable to perform water washing efficiently in a short time. The shorter the washing time, the more difficult it is to form an oxide film on the nickel surface. Usually, after completion of electroless nickel plating, filtration is performed using a membrane filter or the like. In this case as well, it is preferable to perform filtration quickly in order to prevent oxidation of nickel.

続いて、ニッケル層上に置換金めっきにより平均膜厚300Å以下の金層を形成する。置換金めっきは、ニッケルめっき工程を経た後の粒子を置換金めっき液に浸漬することにより行うことができる。置換金めっき液の組成としては、エチレンジアミン四酢酸三ナトリウム、クエン酸二ナトリウム及びシアン化金カリウムを含み、水酸化ナトリウムでpHが調整された無電解めっき液等が挙げられる。   Subsequently, a gold layer having an average film thickness of 300 mm or less is formed on the nickel layer by displacement gold plating. The displacement gold plating can be performed by immersing the particles after the nickel plating step in a displacement gold plating solution. Examples of the composition of the displacement gold plating solution include electroless plating solution containing trisodium ethylenediaminetetraacetate, disodium citrate and potassium gold cyanide and adjusted to pH with sodium hydroxide.

近年、コスト低減の観点から、金の膜厚を低減して原価を抑制する傾向にあるが、金層の平均膜厚を300Å以下にすることによりコスト低減の要求を達成することが容易となる。   In recent years, from the viewpoint of cost reduction, there is a tendency to reduce the film thickness of gold and suppress the cost, but it becomes easy to achieve the cost reduction requirement by making the average thickness of the gold layer 300 mm or less. .

ところで、置換金めっきにより平均膜厚が300Å以下の金層を形成すると、金めっき表面にニッケルが露出しやすくなる傾向がある。厚み300Å以下の金めっき層を有する市販の導電粒子について、導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)(金の比率を1としたときのニッケルの比率)をX線光電子分光分析(ESCA)により測定したところ、表2に示すようにいずれも0.4を超す値を示すことが本発明者らの検討により判明している。なお、本明細書において、導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)は、表1に示すESCA条件により得られる値を指す。   By the way, when a gold layer having an average film thickness of 300 mm or less is formed by displacement gold plating, nickel tends to be exposed on the gold plating surface. For commercially available conductive particles having a gold plating layer with a thickness of 300 mm or less, the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles (the ratio of nickel when the gold ratio is 1) is X-ray photoelectron As measured by spectroscopic analysis (ESCA), it has been found by the present inventors that all of them show a value exceeding 0.4 as shown in Table 2. In this specification, the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles refers to a value obtained by ESCA conditions shown in Table 1.

Figure 2012119326
Figure 2012119326

Figure 2012119326
Figure 2012119326

表2に示すように、一般に市販されている金めっき粒子は表面のNi/Au比がかなり大きい。これに対して、本発明の導電粒子は、X線光電子分光分析による導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)が0.4以下であることが必要である。   As shown in Table 2, the commercially available gold-plated particles have a considerably large Ni / Au ratio on the surface. On the other hand, the conductive particles of the present invention require that the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles by X-ray photoelectron spectroscopy is 0.4 or less.

導電粒子表面のNi/Au比を下げる方法としては、例えば、以下の方法が挙げられる。   Examples of a method for reducing the Ni / Au ratio on the surface of the conductive particles include the following methods.

まず、置換金めっきにおいて金の被覆率が上がらない要因のひとつとして、金めっきが施されるニッケル表面の酸化がある。そのため、ニッケルめっき後の水洗時間を短くすること(具体的には常温で120秒以内)や、濾過時間を短くすることが、Ni/Au比を下げる方法として挙げられる。また、ニッケルめっき後にEDTAやシアンを含む洗浄液でニッケル層表面を洗浄することも、上記の問題を低減する方法として有効である。   First, one of the factors that does not increase the gold coverage in displacement gold plating is oxidation of the nickel surface on which gold plating is applied. Therefore, shortening the water washing time after nickel plating (specifically, within 120 seconds at room temperature) and shortening the filtration time are examples of methods for lowering the Ni / Au ratio. In addition, cleaning the nickel layer surface with a cleaning solution containing EDTA or cyan after nickel plating is also effective as a method for reducing the above problem.

また、置換金めっきは、既に形成されているニッケル層を溶解しながら金を析出させるため、どうしても金皮膜上にニッケル層が形成されやすい。そのため、溶出したニッケルを溶解する工程を置換金めっき後に設けることが有効である。   Moreover, since substitution gold plating deposits gold | metal | money, melt | dissolving the nickel layer already formed, a nickel layer is apt to be formed on a gold film by all means. Therefore, it is effective to provide a step of dissolving the eluted nickel after the displacement gold plating.

上記の工程としては、例えば、シアン或いはEDTA(エチレンジアミン四酢酸、或いはその塩)を含む水溶液、好ましくは、0.01〜0.1モル/リットルのEDTAを含む水溶液や0.01〜0.1モル/リットルのシアン化物イオン(シアン化ナトリウム等)を含む水溶液で金めっき表面を洗浄する方法が挙げられる。これにより、金層上に存在するニッケルを除去することができる。   Examples of the step include an aqueous solution containing cyan or EDTA (ethylenediaminetetraacetic acid or a salt thereof), preferably an aqueous solution containing 0.01 to 0.1 mol / liter of EDTA or 0.01 to 0.1. A method of washing the gold plating surface with an aqueous solution containing mol / liter cyanide ions (such as sodium cyanide) can be mentioned. Thereby, nickel existing on the gold layer can be removed.

また、プラズマや他の物理的手法により金層表面に存在するニッケルを除去する工程を設けてもよい。   Further, a step of removing nickel existing on the gold layer surface by plasma or other physical methods may be provided.

以上のような手段により、導電粒子表面におけるニッケル及び金の元素組成比(Ni/Au)を0.4以下とすることができる。   By the means as described above, the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles can be reduced to 0.4 or less.

本発明の導電粒子は、後の工程で、最外層である金層と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させることにより、粒子上に強固な官能基を形成することが可能になる。粒子表面にニッケルが存在していると、粒子上に強固な官能基を形成することが難しくなるが、本発明の導電粒子によれば、表面におけるニッケル及び金の元素組成比(Ni/Au)が0.4以下であることにより、導電粒子表面に強固な官能基を十分な量形成することができる。なお、ニッケル及び金の元素組成比(Ni/Au)が0.4を超えると、絶縁性子粒子によって被覆された絶縁被覆導電粒子を作製したときに、絶縁性子粒子の剥離の問題が生じやすくなる。   The conductive particles of the present invention comprise, in a later step, a gold layer that is the outermost layer, a compound having at least one group selected from the group consisting of a mercapto group, a sulfide group, and a disulfide group and a predetermined functional group. By bringing it into contact, it is possible to form a strong functional group on the particle. When nickel is present on the particle surface, it is difficult to form a strong functional group on the particle, but according to the conductive particle of the present invention, the elemental composition ratio of nickel and gold on the surface (Ni / Au) Is 0.4 or less, a sufficient amount of strong functional groups can be formed on the surface of the conductive particles. When the elemental composition ratio (Ni / Au) of nickel and gold exceeds 0.4, the problem of exfoliation of the insulator particles tends to occur when the insulating coated conductive particles coated with the insulator particles are produced. .

本発明の導電粒子の粒径は、接続する基板の電極の最小間隔よりも小さいことが好ましく、電極の高さにばらつきがある場合には、高さのばらつきよりも大きいことが好ましい。このような観点から、本発明の導電粒子の粒径は、1〜10μmの範囲が好ましく、1〜5μmの範囲がより好ましく、2.0〜4.0μmの範囲がさらにより好ましく、2.0〜3.5μmの範囲が特に好ましい。   The particle diameter of the conductive particles of the present invention is preferably smaller than the minimum distance between the electrodes of the substrate to be connected, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in the height. From such a viewpoint, the particle size of the conductive particles of the present invention is preferably in the range of 1 to 10 μm, more preferably in the range of 1 to 5 μm, still more preferably in the range of 2.0 to 4.0 μm, and 2.0 A range of ˜3.5 μm is particularly preferred.

次に、本発明に係る絶縁被覆導電粒子及びその製造方法について説明する。   Next, the insulating coated conductive particles and the manufacturing method thereof according to the present invention will be described.

本発明に係る絶縁被覆導電粒子は、上記本発明の導電粒子を絶縁性子粒子で被覆することにより得ることができる。   The insulating coated conductive particles according to the present invention can be obtained by coating the conductive particles of the present invention with insulating particles.

絶縁性子粒子としては、無機酸化物微粒子が好ましい。有機微粒子を用いると、異方導電性接着剤を作製する工程で絶縁性子粒子が変形しやすいため安定した特性が得られ難くなる。   As the insulator particles, inorganic oxide fine particles are preferable. When organic fine particles are used, it is difficult to obtain stable characteristics because the insulator particles are easily deformed in the step of producing the anisotropic conductive adhesive.

無機酸化物微粒子としては、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、マグネシウムの各元素を含む酸化物が好ましい。これらは単独で又は二種類以上を混合して使用することができる。   The inorganic oxide fine particles are preferably oxides containing silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium. These can be used alone or in admixture of two or more.

無機酸化物微粒子は、絶縁信頼性の観点から、分散溶液中のアルカリ金属イオン及びアルカリ土類金属イオン濃度が100ppm以下となるものが好ましい。このような無機酸化物微粒子として、例えば、金属アルコキシドの加水分解反応、いわゆるゾルゲル法により製造されるものが好適に用いることができる。   From the viewpoint of insulation reliability, the inorganic oxide fine particles preferably have an alkali metal ion and alkaline earth metal ion concentration of 100 ppm or less in the dispersion solution. As such inorganic oxide fine particles, for example, those produced by hydrolysis reaction of metal alkoxide, so-called sol-gel method, can be suitably used.

無機酸化物微粒子の大きさは、BET法による比表面積換算法又はX線小角散乱法で測定された粒子径が20nm〜500nmであることが好ましい。無機酸化物微粒子の粒子径が20nmよりも小さいと、導電粒子に吸着された無機酸化物微粒子が絶縁膜として作用しにくくなり、一部にショートが発生しやすくなる。一方、無機酸化物微粒子の粒子径が500nmよりも大きいと、接続回路の加圧方向の導電性が得られにくくなる。   As for the size of the inorganic oxide fine particles, the particle diameter measured by the specific surface area conversion method by the BET method or the X-ray small angle scattering method is preferably 20 nm to 500 nm. If the particle diameter of the inorganic oxide fine particles is smaller than 20 nm, the inorganic oxide fine particles adsorbed on the conductive particles are less likely to act as an insulating film, and a short circuit is likely to occur in part. On the other hand, when the particle diameter of the inorganic oxide fine particles is larger than 500 nm, it is difficult to obtain the conductivity in the pressurizing direction of the connection circuit.

上記の酸化物の中でも、絶縁性に優れ、粒子径が制御されていることから、水分散コロイダルシリカ(SiO2)が好ましい。このような無機酸化物微粒子は、例えば、スノーテックス、スノーテックスUP(日産化学工業社製)、クオートロンPLシリーズ(扶桑化学工業社製)等が市販品として入手可能である。また、水分散コロイダルシリカ(SiO2)は、粒子径を揃えやすい、安価であるといった特徴以外に、表面に水酸基を有することから導電粒子との結合性に優れるという利点を有する。   Among the above oxides, water-dispersed colloidal silica (SiO 2) is preferable because of excellent insulating properties and controlled particle size. As such inorganic oxide fine particles, for example, Snowtex, Snowtex UP (manufactured by Nissan Chemical Industries, Ltd.), Quatron PL series (manufactured by Fuso Chemical Industries, Ltd.) and the like are commercially available. Further, water-dispersed colloidal silica (SiO2) has the advantage that it has excellent bonding properties with conductive particles because it has a hydroxyl group on the surface, in addition to the features that the particle diameter is easily adjusted and is inexpensive.

なお、無機酸化物表面の水酸基は、シランカップリング剤等でアミノ基やカルボキシル基、エポキシ基に変性することが可能であるが、無機酸化物の粒子径が500nm未満の場合、変性が困難となる傾向にある。シリカ等の酸化物は、官能基で修飾させた後に行う遠心分離や濾過の際に凝集してしまうという不具合を発生しやすい。そのため、上記の粒子径を有する無機酸化物微粒子は、官能基の変性を行わずに導電粒子に被覆することが望ましい。   The hydroxyl group on the surface of the inorganic oxide can be modified to an amino group, a carboxyl group, or an epoxy group with a silane coupling agent or the like. However, when the particle size of the inorganic oxide is less than 500 nm, modification is difficult. Tend to be. Oxides such as silica are liable to cause a problem that they are aggregated during centrifugation or filtration after modification with a functional group. Therefore, it is desirable that the inorganic oxide fine particles having the above particle diameter are coated on the conductive particles without modifying the functional group.

ところで、水酸基は、一般的に、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基などの官能基と強固な結合を形成することができる基として知られている。水酸基と上記の官能基との結合様式としては、脱水縮合による共有結合や水素結合が挙げられる。本発明においては、導電粒子表面にこれらの官能基を形成して官能基含有導電粒子を得た後、この官能基含有導電粒子を絶縁性子粒子で被覆して絶縁被覆導電粒子を得る方法が好ましい。   By the way, a hydroxyl group is generally known as a group capable of forming a strong bond with a functional group such as a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group. Examples of the bonding mode between the hydroxyl group and the functional group include a covalent bond by dehydration condensation and a hydrogen bond. In the present invention, a method is preferred in which these functional groups are formed on the surface of the conductive particles to obtain the functional group-containing conductive particles, and then the functional group-containing conductive particles are coated with the insulator particles to obtain the insulating coated conductive particles. .

このような絶縁被覆導電粒子の製造方法の第1実施形態として、上記本発明の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に所定の官能基が形成された官能基含有導電粒子を得る工程と、官能基含有導電粒子と絶縁性子粒子とを接触させる工程とを備え、上記官能基含有導電粒子の表面が上記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子を得る方法が挙げられる。   As a first embodiment of the method for producing such insulating coated conductive particles, the outermost layer surface of the conductive particles of the present invention, at least one group selected from the group consisting of mercapto groups, sulfide groups and disulfide groups and a predetermined A step of obtaining a functional group-containing conductive particle in which a predetermined functional group is formed on the surface of the outermost layer of the conductive particle, and contacting the functional group-containing conductive particle with the insulator particle And a step of obtaining insulating coated conductive particles obtained by coating the surfaces of the functional group-containing conductive particles with the insulator particles.

また、別の好適な第2実施形態として、上記本発明の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に所定の官能基が形成された官能基含有導電粒子を得る工程と、官能基含有導電粒子と高分子電解質とを接触させて、官能基含有導電粒子の表面が高分子電解質で被覆されてなる高分子電解質被覆導電粒子を得る工程と、高分子電解質被覆導電粒子と絶縁性子粒子とを接触させる工程とを備え、上記官能基含有導電粒子の表面が上記高分子電解質及び上記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子を得る方法が挙げられる。   As another preferred second embodiment, the outermost layer surface of the conductive particles of the present invention, at least one group selected from the group consisting of a mercapto group, a sulfide group and a disulfide group and a predetermined functional group are provided. A functional group-containing conductive particle in which a predetermined functional group is formed on the surface of the outermost layer of the conductive particle, the functional group-containing conductive particle and the polymer electrolyte are contacted, A functional group-containing conductive particle comprising: a step of obtaining a polymer electrolyte-coated conductive particle whose surface is coated with a polymer electrolyte; and a step of bringing the polymer electrolyte-coated conductive particle into contact with an insulator particle. A method of obtaining insulating coated conductive particles whose surface is coated with the polymer electrolyte and the insulator particles.

本発明の導電粒子は金層を最外層として有しているため、金に対して配位結合を形成するメルカプト基、スルフィド基、ジスルフィド基のいずれかを有する化合物を用いて、金表面に水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基などの所定の官能基を形成することができる。このような化合物として、具体的には、メルカプト酢酸、2−メルカプトエタノール、メルカプト酢酸メチル、メルカプトコハク酸、チオグリセリン、システイン等が挙げられる。   Since the conductive particles of the present invention have a gold layer as the outermost layer, a compound having any one of a mercapto group, a sulfide group, and a disulfide group that forms a coordinate bond with gold is used to form a hydroxyl group on the gold surface. A predetermined functional group such as a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group can be formed. Specific examples of such a compound include mercaptoacetic acid, 2-mercaptoethanol, methyl mercaptoacetate, mercaptosuccinic acid, thioglycerin, and cysteine.

本発明の導電粒子の表面におけるニッケル/金比は0.4以下であるため、導電粒子表面上に強固に官能基を形成することができる。   Since the nickel / gold ratio on the surface of the conductive particle of the present invention is 0.4 or less, the functional group can be firmly formed on the surface of the conductive particle.

本発明の導電粒子の最外層表面と、上記化合物とを接触させる方法としては、特に限定されないが、例えば、メタノールやエタノール等の有機溶媒中にメルカプト酢酸等の化合物を10〜100mmol/l程度分散し、その中に本発明の導電粒子を分散させる方法が挙げられる。   The method for bringing the outermost layer surface of the conductive particles of the present invention into contact with the above compound is not particularly limited. For example, a compound such as mercaptoacetic acid is dispersed in an amount of about 10 to 100 mmol / l in an organic solvent such as methanol or ethanol. And the method of disperse | distributing the electrically-conductive particle of this invention in that is mentioned.

官能基含有導電粒子が、水酸基、カルボキシル基、アルコキシル基、アルコキシカルボニル基を有する導電粒子の場合、表面電位(ゼータ電位)は通常(pHが中性領域であれば)マイナスである。一方、絶縁性子粒子として水酸基を有する無機酸化物を用いる場合、その表面電位も通常マイナスである。このような場合、表面電位がマイナスの粒子の周囲に表面電位がマイナスの粒子を被覆するのは難しいため、上記第2実施形態の方法により絶縁被覆導電粒子を製造することが好ましい。
より具体的な製造方法としては、官能基を有する導電粒子(官能基含有導電粒子)を、(1)高分子電解質溶液に分散し、導電粒子の表面に高分子電解質を吸着させた後、リンスする工程、(2)(1)の工程で得られた高分子電解質被覆導電粒子を無機酸化物微粒子などの絶縁性子粒子の分散溶液に分散し、高分子電解質被覆導電粒子の表面に絶縁性子粒子を吸着させた後、リンスする工程を行うことで、高分子電解質と絶縁性子粒子とが積層された絶縁性被覆膜で皮膜された絶縁被覆導電粒子を製造できる。このような方法は、交互積層法(Layer−by−Layer assembly)と呼ばれる。交互積層法は、G.Decherらによって1992年に発表された有機薄膜を形成する方法である(Thin Solid Films, 210/211, p831(1992))。この方法では、正電荷を有するポリマー電解質(ポリカチオン)と負電荷を有するポリマー電解質(ポリアニオン)の水溶液に、基材を交互に浸漬することで基板上に静電的引力によって吸着したポリカチオンとポリアニオンの組が積層されて複合膜(交互積層膜)を得ることができる。
When the functional group-containing conductive particles are conductive particles having a hydroxyl group, a carboxyl group, an alkoxyl group, or an alkoxycarbonyl group, the surface potential (zeta potential) is usually negative (if the pH is neutral). On the other hand, when an inorganic oxide having a hydroxyl group is used as the insulator particles, the surface potential is usually negative. In such a case, since it is difficult to coat particles having a negative surface potential around particles having a negative surface potential, it is preferable to manufacture the insulating coated conductive particles by the method of the second embodiment.
As a more specific manufacturing method, conductive particles having functional groups (functional group-containing conductive particles) are dispersed in (1) a polymer electrolyte solution, the polymer electrolyte is adsorbed on the surface of the conductive particles, and then rinsed. (2) The polymer electrolyte-coated conductive particles obtained in the step (1) are dispersed in a dispersion solution of insulator particles such as inorganic oxide fine particles, and the insulator particles are formed on the surface of the polymer electrolyte-coated conductive particles. Insulating coated conductive particles coated with an insulating coating film in which a polymer electrolyte and insulating particles are laminated can be manufactured by performing a rinsing step after adsorbing the particles. Such a method is called an alternating lamination method (Layer-by-Layer assembly). The alternate lamination method is described in G.H. This is a method of forming an organic thin film published in 1992 by Decher et al. (Thin Solid Films, 210/211, p831 (1992)). In this method, a polycation adsorbed on a substrate by electrostatic attraction by alternately immersing the base material in an aqueous solution of a polymer electrolyte having a positive charge (polycation) and a polymer electrolyte having a negative charge (polyanion). A combination of polyanions can be laminated to obtain a composite film (alternate laminated film).

交互積層法では、静電的な引力によって、基材上に形成された材料の電荷と、溶液中の反対電荷を有する材料が引き合うことにより膜成長するので、吸着が進行して電荷の中和が起こるとそれ以上の吸着が起こらなくなる。したがって、ある飽和点までに至れば、それ以上膜厚が増加することはない。また、Lvovらは交互積層法を、微粒子に応用し、シリカやチタニア、セリアの各微粒子分散液を用いて、微粒子の表面電荷と反対電荷を有する高分子電解質を交互積層法で積層する方法を報告している(Langmuir、Vol.13、(1997)p6195−6203)。この方法を用いると、負の表面電荷を有するシリカの微粒子とその反対電荷を持つポリカチオンであるポリジアリルジメチルアンモニウムクロライド(PDDA)またはポリエチレンイミン(PEI)などとを交互に積層することで、シリカ微粒子と高分子電解質が交互に積層された微粒子積層薄膜を形成することが可能である。   In the alternating layering method, the film is grown by attracting the charge of the material formed on the substrate and the material having the opposite charge in the solution by electrostatic attraction, so that the adsorption proceeds and the charge is neutralized. When this occurs, no further adsorption occurs. Therefore, when reaching a certain saturation point, the film thickness does not increase any more. Lvov et al. Also applied an alternate lamination method to fine particles, using a fine particle dispersion of silica, titania, and ceria to laminate a polymer electrolyte having a charge opposite to the surface charge of the fine particles by the alternate lamination method. (Langmuir, Vol. 13, (1997) p6195-6203). By using this method, silica fine particles having a negative surface charge and polydiallyldimethylammonium chloride (PDDA) or polyethyleneimine (PEI), which are polycations having the opposite charge, are alternately laminated to form silica. It is possible to form a fine particle laminated thin film in which fine particles and a polymer electrolyte are alternately laminated.

上記(1)及び(2)の工程に示されるように、被処理粒子を高分子電解質溶液又は無機酸化物微粒子などの絶縁性子粒子の分散液に浸漬後、反対電荷を有する絶縁性子粒子の分散液又は高分子電解質溶液に浸漬する前に、溶媒のみのリンスによって余剰の高分子電解質溶液又は絶縁性子粒子の分散液を洗い流すことが好ましい。   As shown in the steps (1) and (2) above, after the particles to be treated are immersed in a dispersion of insulator particles such as polymer electrolyte solution or inorganic oxide fine particles, dispersion of insulator particles having opposite charges is performed. Before immersing in the liquid or polymer electrolyte solution, it is preferable to wash away the excess polymer electrolyte solution or the dispersion of the insulator particles by rinsing with only the solvent.

このようなリンスに用いる溶媒としては、水、アルコール、アセトンなどが挙げられる。過剰な高分子電解質溶液又は絶縁性子粒子の分散液除去の点から、比抵抗値が18MΩ・cm以上のイオン交換水(いわゆる超純水)を用いることが好ましい。なお、被処理粒子に吸着した高分子電解質及び絶縁性子粒子は、このリンスの工程で剥離することはない。   Examples of the solvent used for such rinsing include water, alcohol, and acetone. From the viewpoint of removing an excessive polymer electrolyte solution or dispersion of insulator particles, it is preferable to use ion-exchanged water (so-called ultrapure water) having a specific resistance of 18 MΩ · cm or more. The polymer electrolyte and the insulator particles adsorbed on the particles to be treated are not peeled off in this rinsing step.

また、上記のリンスを行うことによって、高分子電解質が無機酸化物微粒子などの絶縁性子粒子の分散液に持ち込まれること、及び、無機酸化物微粒子などの絶縁性子粒子が高分子電解質溶液に持ち込まれることを防止することができる。なお、持ち込みによって溶液内でカチオン及びアニオンが混ざると、高分子電解質と無機酸化物微粒子などの絶縁性子粒子の凝集や沈殿が発生する場合がある。   Also, by performing the above-described rinsing, the polymer electrolyte is brought into a dispersion of insulator particles such as inorganic oxide fine particles, and the insulator particles such as inorganic oxide fine particles are brought into the polymer electrolyte solution. This can be prevented. In addition, when cations and anions are mixed in the solution by being brought in, aggregation or precipitation of the insulator particles such as the polymer electrolyte and the inorganic oxide fine particles may occur.

本実施形態において使用される高分子電解質溶液としては、高分子電解質を、水又は水と水溶性の有機溶媒の混合溶媒に溶解したものが挙げられる。水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどが挙げられる。   Examples of the polymer electrolyte solution used in this embodiment include a polymer electrolyte dissolved in water or a mixed solvent of water and a water-soluble organic solvent. Examples of the water-soluble organic solvent include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile, and the like.

高分子電解質としては、水溶性又は水と有機溶媒との混合液に可溶なものであり、水溶液中で電離し、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。このような高分子としてはポリカチオンが好ましい。また、ポリカチオンとしては、ポリアミン類等のように正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミド、並びに、これらのモノマー単位を少なくとも1種以上を含む共重合体などが挙げられる。   As the polymer electrolyte, a polymer that is water-soluble or soluble in a mixed solution of water and an organic solvent, is ionized in an aqueous solution, and has a functional group having a charge in the main chain or side chain. it can. Such a polymer is preferably a polycation. Polycations having a positively charged functional group such as polyamines such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethylammonium chloride (PDDA) , Polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of these monomer units.

上記のポリカチオンのうちポリエチレンイミンは、電荷密度が高く、官能基含有導電粒子との結合力が強いことから好ましく用いることができる。   Among the above polycations, polyethyleneimine is preferably used because it has a high charge density and a strong binding force with the functional group-containing conductive particles.

高分子電解質の分子量は、用いる高分子電解質の種類により一概には定めることができないが、一般に、500〜200,000程度のものが好ましい。   The molecular weight of the polymer electrolyte cannot be determined unconditionally depending on the type of polymer electrolyte used, but is generally about 500 to 200,000.

また、高分子電解質は、エレクトロマイグレーションや腐食を避けるために、アルカリ金属(Li、Na、K、Rb、Cs)イオン、及びアルカリ土類金属(Ca、Sr、Ba、Ra)イオン、ハロゲン化物イオン(フッ素イオン、クロライドイオン、臭素イオン、ヨウ素イオン)を含まないものが好ましい。   In addition, in order to avoid electromigration and corrosion, the polymer electrolyte has alkali metal (Li, Na, K, Rb, Cs) ions, alkaline earth metal (Ca, Sr, Ba, Ra) ions, halide ions. Those not containing (fluorine ion, chloride ion, bromine ion, iodine ion) are preferred.

高分子電解質溶液中の高分子電解質の濃度は、0.01〜10質量%程度が好ましい。高分子電解質溶液のpHは、特に限定されない。   The concentration of the polymer electrolyte in the polymer electrolyte solution is preferably about 0.01 to 10% by mass. The pH of the polymer electrolyte solution is not particularly limited.

上記の高分子電解質溶液を用いることにより、官能基を形成した本発明の導電粒子の表面に欠陥なく均一に絶縁性子粒子を被覆することができ、狭ピッチの回路電極間の絶縁性と対向する回路電極間の導通性の双方を十分確保することができる絶縁被覆導電粒子をより有効に実現できる。   By using the above-mentioned polymer electrolyte solution, the surface of the conductive particles of the present invention in which the functional group is formed can be uniformly coated with the insulator particles without any defects, and the insulation between the narrow pitch circuit electrodes is opposed. Insulating coated conductive particles that can sufficiently ensure both electrical conductivity between circuit electrodes can be realized more effectively.

本実施形態においては、官能基含有導電粒子の表面に吸着される高分子電解質の種類や分子量、濃度を調整することによって、官能基含有導電粒子が絶縁性子粒子によって被覆されている表面の割合、すなわち被覆率をコントロールすることができる。   In this embodiment, by adjusting the type, molecular weight, and concentration of the polymer electrolyte adsorbed on the surface of the functional group-containing conductive particles, the ratio of the surface where the functional group-containing conductive particles are covered with the insulator particles, That is, the coverage can be controlled.

具体的にはポリエチレンイミン等、電荷密度の高い高分子電解質を用いた場合、絶縁性子粒子の被覆率が高くなる傾向があり、ポリジアリルジメチルアンモニウムクロリド等、電荷密度の低い高分子電解質を用いた場合、上記被覆率が低くなる傾向がある。また、高分子電解質の分子量が大きい場合、上記被覆率が高くなる傾向があり、高分子電解質の分子量が小さい場合、上記被覆率が低くなる傾向がある。なお、結合力という観点で見た場合、高分子電解質の分子量は10,000以上が好ましい。さらに、高分子電解質を高濃度で用いた場合、上記被覆率が高くなる傾向があり、高分子電解質4を低濃度で用いた場合、上記被覆率が低くなる傾向がある。   Specifically, when a polymer electrolyte with a high charge density such as polyethyleneimine is used, the coverage of the insulator particles tends to be high, and a polymer electrolyte with a low charge density such as polydiallyldimethylammonium chloride was used. In such a case, the coverage tends to be low. Moreover, when the molecular weight of the polymer electrolyte is large, the coverage tends to be high, and when the molecular weight of the polymer electrolyte is small, the coverage tends to be low. From the viewpoint of bonding strength, the molecular weight of the polymer electrolyte is preferably 10,000 or more. Furthermore, when the polymer electrolyte is used at a high concentration, the coverage tends to be high, and when the polymer electrolyte 4 is used at a low concentration, the coverage tends to be low.

上記被覆率が高い場合は、同一基板上で隣り合う回路電極間の絶縁性が高くなり、対向する回路電極間の導通性が低下する傾向があり、上記被覆率が低い場合は、上記導通性が高くなり、上記絶縁性が低下する傾向がある。   When the coverage is high, the insulation between adjacent circuit electrodes on the same substrate tends to be high, and the conductivity between opposing circuit electrodes tends to decrease. When the coverage is low, the conductivity is low. Tends to be high, and the insulating properties tend to decrease.

絶縁性子粒子は、官能基含有導電粒子又は高分子電解質被覆導電粒子の表面を一層で被覆していることが好ましい。官能基含有導電粒子又は高分子電解質被覆導電粒子の表面に絶縁性子粒子を複数層積層すると、絶縁性子粒子の積層量のコントロールが困難になる傾向がある。絶縁性子粒子による官能基含有導電粒子又は高分子電解質被覆導電粒子の表面の被覆率は20〜100%の範囲であることが好ましく、30%〜60%の範囲であることがより好ましい。   The insulator particles preferably cover the surface of the functional group-containing conductive particles or the polymer electrolyte-coated conductive particles in a single layer. When a plurality of layers of insulating particles are laminated on the surface of the functional group-containing conductive particles or polymer electrolyte-coated conductive particles, it tends to be difficult to control the amount of the insulating particles stacked. The coverage of the surface of the functional group-containing conductive particles or polymer electrolyte-coated conductive particles by the insulator particles is preferably in the range of 20 to 100%, more preferably in the range of 30% to 60%.

以上のようにして作製された絶縁被覆導電粒子を、加熱乾燥することにより絶縁性子粒子と官能基含有導電粒子又は高分子電解質被覆導電粒子との結合力を一層強化することができる。また加熱を真空で行なうことが、金属のさび防止の観点から好ましい。結合力が増す理由としては、官能基含有導電粒子の表面のカルボキシル基等の官能基と絶縁性粒子の表面の水酸基との化学結合が新たに形成されることによるものや、官能基含有導電粒子の表面のカルボキシル基等の官能基と高分子電解質被覆導電粒子のアミノ基等の官能基との脱水縮合によるものなどが考えられる。絶縁被覆導電粒子の加熱乾燥は60℃〜200℃、10〜180分の範囲で行うことが好ましい。温度が60℃より低い場合、または加熱時間が10分より短い場合は、絶縁性子粒子が剥離し易い傾向があり、温度が200℃より高い場合、または加熱時間が180分より長い場合は、絶縁被覆導電粒子が変形する傾向がある。   The bonding strength between the insulating particles and the functional group-containing conductive particles or the polymer electrolyte-coated conductive particles can be further enhanced by heating and drying the insulating coated conductive particles produced as described above. In addition, it is preferable to perform the heating in vacuum from the viewpoint of preventing rust of the metal. The reason why the bonding force is increased is that a chemical bond between a functional group such as a carboxyl group on the surface of the functional group-containing conductive particle and a hydroxyl group on the surface of the insulating particle is newly formed, or a functional group-containing conductive particle It is possible to use a product obtained by dehydration condensation between a functional group such as a carboxyl group on the surface of the polymer electrolyte and a functional group such as an amino group of the polymer electrolyte-coated conductive particles. It is preferable to perform the heat drying of the insulating coated conductive particles at 60 ° C. to 200 ° C. for 10 to 180 minutes. When the temperature is lower than 60 ° C. or when the heating time is shorter than 10 minutes, the insulator particles tend to peel off, and when the temperature is higher than 200 ° C. or when the heating time is longer than 180 minutes, the insulating particles are insulated. The coated conductive particles tend to be deformed.

次に、本発明の異方導電性接着剤フィルムについて説明する。   Next, the anisotropic conductive adhesive film of the present invention will be described.

図1は、本発明の一実施形態にかかる異方導電性接着剤フィルムの断面図である。本実施形態の異方導電性接着剤フィルム50は、上述の通り作製した本発明に係る絶縁被覆導電粒子10が接着剤としても機能する絶縁性の樹脂組成物12の中に分散している異方導電性接着剤組成物をフィルム状に形成したものである。なお、図1において、絶縁被覆導電粒子10は、官能基含有導電粒子8の表面が高分子電解質及び絶縁性子粒子6で被覆されてなるものであるが、高分子電解質は便宜上図示していない。   FIG. 1 is a cross-sectional view of an anisotropic conductive adhesive film according to an embodiment of the present invention. The anisotropic conductive adhesive film 50 of the present embodiment is different in that the insulating coated conductive particles 10 according to the present invention produced as described above are dispersed in an insulating resin composition 12 that also functions as an adhesive. A one-sided conductive adhesive composition is formed into a film. In FIG. 1, the insulating coated conductive particles 10 are obtained by coating the surface of the functional group-containing conductive particles 8 with the polymer electrolyte and the insulator particles 6, but the polymer electrolyte is not shown for convenience.

本実施形態にかかる異方導電性接着剤組成物に用いられる樹脂組成物12としては、熱反応性樹脂と硬化剤との混合物を用いることができる。このうち、エポキシ樹脂と潜在性硬化剤との混合物を用いることが好ましい。潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、及びジシアンジアミド等を用いることができる。本発明の別の実施形態として、樹脂組成物12には、ラジカル反応性樹脂と有機過酸化物との混合物や紫外線などのエネルギー線硬化性樹脂を用いることができる。   As the resin composition 12 used in the anisotropic conductive adhesive composition according to this embodiment, a mixture of a heat-reactive resin and a curing agent can be used. Among these, it is preferable to use a mixture of an epoxy resin and a latent curing agent. As the latent curing agent, imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like can be used. As another embodiment of the present invention, the resin composition 12 may be a mixture of a radical reactive resin and an organic peroxide or an energy ray curable resin such as ultraviolet rays.

エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF、又はビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラック又はクレゾールノボラックとから誘導されるエポキシノボラック樹脂、ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等を単独で又は2種以上を混合して用いることができる。これらのエポキシ樹脂は、エレクトロマイグレーション防止の観点から、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることが好ましい。 Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, etc., epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and skeletons containing naphthalene rings. It is possible to use various epoxy compounds having two or more glycidyl groups in one molecule, such as naphthalene-based epoxy resin, glycidylamine, glycidyl ether, biphenyl, alicyclic, etc., alone or in combination of two or more. it can. From the viewpoint of preventing electromigration, these epoxy resins are preferably high-purity products in which impurity ions (Na + , Cl −, etc.), hydrolyzable chlorine, etc. are reduced to 300 ppm or less.

樹脂組成物12には、回路接着後の応力を低減するため、又は接着性を向上するために、上述の成分に加えてブタジエンゴム、アクリルゴム、スチレン−ブタジエンゴム、シリコーンゴム等を混合することができる。   In order to reduce the stress after circuit adhesion or to improve the adhesion, the resin composition 12 is mixed with butadiene rubber, acrylic rubber, styrene-butadiene rubber, silicone rubber, etc. in addition to the above-mentioned components. Can do.

異方導電性接着剤組成物は、フィルム形成性の観点から樹脂組成物12にフェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂(フィルム形成性高分子)を配合することが好ましい。これらのフィルム形成性高分子を配合することは、反応性樹脂の硬化時の応力を緩和できる観点からも好ましい。また、接着性向上の観点から、フィルム形成性高分子が水酸基等の官能基を有することがより好ましい。なお、異方導電性接着剤組成物はペースト状にしてもよい。   In the anisotropic conductive adhesive composition, it is preferable to blend a thermoplastic resin (film-forming polymer) such as a phenoxy resin, a polyester resin, or a polyamide resin with the resin composition 12 from the viewpoint of film-forming property. Mixing these film-forming polymers is also preferable from the viewpoint of reducing stress during curing of the reactive resin. Further, from the viewpoint of improving adhesiveness, it is more preferable that the film-forming polymer has a functional group such as a hydroxyl group. The anisotropic conductive adhesive composition may be paste-like.

フィルム形成は、エポキシ樹脂、アクリルゴム、潜在性硬化剤を含む樹脂組成物12を有機溶剤に溶解又は分散して液状化し、絶縁被覆導電粒子10を加えて分散させ、剥離性基材上に塗布して硬化剤の活性温度以下で溶剤を除去することにより行われる。有機溶剤としては、樹脂組成物12の溶解性向上の観点から、芳香族炭化水素系と含酸素系との混合溶剤が好ましい。   For film formation, a resin composition 12 containing an epoxy resin, acrylic rubber, and a latent curing agent is dissolved or dispersed in an organic solvent to liquefy, and the insulating coating conductive particles 10 are added and dispersed, and applied onto a peelable substrate. Then, the solvent is removed below the activation temperature of the curing agent. As the organic solvent, from the viewpoint of improving the solubility of the resin composition 12, a mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type is preferable.

異方導電性接着剤組成物中の絶縁被覆導電粒子10の割合は、隣り合う電極間の絶縁性及び対向する電極間の導通性を良好にする観点から、異方導電性接着剤組成物全体を基準として、0.1〜30体積%が好ましく、1〜25体積%がより好ましい。   The ratio of the insulating coated conductive particles 10 in the anisotropic conductive adhesive composition is the entire anisotropic conductive adhesive composition from the viewpoint of improving the insulation between adjacent electrodes and the conductivity between opposing electrodes. Is preferably 0.1 to 30% by volume, more preferably 1 to 25% by volume.

異方導電性接着剤フィルム50の厚みは、絶縁被覆導電粒子10の粒径及び異方導電性接着剤組成物の特性を考慮して相対的に決定されるが、1〜100μmが好ましく、3〜50μmがより好ましい。異方導電性接着剤フィルム50の厚みが1μm以下では充分な接着性が得られない傾向があり、100μm以上では対向する回路電極間の導通性を得るために多量の絶縁被覆導電粒子10を必要とする傾向があり現実的ではない。   The thickness of the anisotropic conductive adhesive film 50 is relatively determined in consideration of the particle size of the insulating coated conductive particles 10 and the characteristics of the anisotropic conductive adhesive composition, but is preferably 1 to 100 μm. -50 μm is more preferable. If the anisotropic conductive adhesive film 50 has a thickness of 1 μm or less, sufficient adhesiveness tends to be not obtained. If the thickness is 100 μm or more, a large amount of insulating coated conductive particles 10 are required to obtain conductivity between opposing circuit electrodes. This is not realistic.

図2は、本発明の一実施形態にかかる異方導電性接着剤フィルムを用いて接続される回路接続体の製造方法を示す断面図である。なお、図2において官能基含有導電粒子8の表面に吸着されている高分子電解質は便宜上図示していない。   FIG. 2 is a cross-sectional view illustrating a method for manufacturing a circuit connection body connected using an anisotropic conductive adhesive film according to an embodiment of the present invention. In FIG. 2, the polymer electrolyte adsorbed on the surface of the functional group-containing conductive particles 8 is not shown for convenience.

第一の回路部材は第一の基板21の表面21a上に第一の電極22を備える。第二の回路部材は第二の基板31の表面31a上に第二の電極32を備える。ここでいう基板とは、ガラス基板やポリイミド等のテープ基板、ドライバーIC等のベアチップ、リジット型のパッケージ基板等が挙げられる。   The first circuit member includes a first electrode 22 on the surface 21 a of the first substrate 21. The second circuit member includes a second electrode 32 on the surface 31 a of the second substrate 31. Examples of the substrate include a glass substrate, a tape substrate such as polyimide, a bare chip such as a driver IC, and a rigid package substrate.

第一の回路部材20と第二の回路部材30との間に、上述した異方導電性接着剤フィルム50を介在させる。このとき、第一の回路電極22及び第二の回路電極32が相互に対向するように、第一の回路部材20及び第二の回路部材30を配置する。   The above-described anisotropic conductive adhesive film 50 is interposed between the first circuit member 20 and the second circuit member 30. At this time, the first circuit member 20 and the second circuit member 30 are arranged so that the first circuit electrode 22 and the second circuit electrode 32 face each other.

次に、回路部材20及び回路部材30を介して異方導電性接着剤フィルム50を加熱しながら図2の矢印A及び矢印Bの方向に加圧して回路接続体を形成する。硬化処理は、紫外線照射や加熱など一般的な方法により行うことが可能であり、その方法は樹脂組成物12により適宜選択される。   Next, while the anisotropic conductive adhesive film 50 is heated through the circuit member 20 and the circuit member 30, pressure is applied in the directions of arrows A and B in FIG. 2 to form a circuit connector. The curing treatment can be performed by a general method such as ultraviolet irradiation or heating, and the method is appropriately selected depending on the resin composition 12.

図3は、本発明の一実施形態にかかる異方導電性接着剤フィルムを用いて接続された回路接続体の断面図である。このようにして接続された回路接続体は、対向する回路電極22と回路電極32との間の導通性と、同一基板上で隣り合う回路電極22同士及び回路電極32同士の間の絶縁性とに優れる。なお、図3において官能基含有導電粒子8の表面に吸着されている高分子電解質は便宜上図示していない。   FIG. 3 is a cross-sectional view of a circuit connection body connected using an anisotropic conductive adhesive film according to an embodiment of the present invention. The circuit connection body connected in this way has conductivity between the circuit electrode 22 and the circuit electrode 32 facing each other, and insulation between the circuit electrodes 22 adjacent to each other and between the circuit electrodes 32 on the same substrate. Excellent. In FIG. 3, the polymer electrolyte adsorbed on the surface of the functional group-containing conductive particles 8 is not shown for convenience.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

<導電粒子の作製>
(導電粒子1)
平均粒径3.8μmの架橋ポリスチレン粒子1gを、パラジウム触媒であるアトテックネネオガント834(アトテックジャパン株式会社製:商品名)を8質量%含有するパラジウム触媒化液100mLに添加し、これを30℃で30分攪拌した後、φ3μmのメンブレンフィルタで濾過し、水洗を行うことにより、パラジウム触媒が付与された樹脂微粒子を得た。次に、この樹脂微粒子を、pH6.0に調整された0.5質量%ジメチルアミンボラン液に添加し、表面が活性化された樹脂微粒子を得た。
<Preparation of conductive particles>
(Conductive particles 1)
1 g of crosslinked polystyrene particles having an average particle diameter of 3.8 μm was added to 100 mL of a palladium-catalyzed solution containing 8% by mass of Atotech Nene Gantt 834 (manufactured by Atotech Japan Co., Ltd .: trade name) which is a palladium catalyst. After stirring for 30 minutes at 0 ° C., the mixture was filtered through a 3 μm membrane filter and washed with water to obtain resin fine particles provided with a palladium catalyst. Next, the resin fine particles were added to a 0.5% by mass dimethylamine borane liquid adjusted to pH 6.0 to obtain resin fine particles whose surface was activated.

次に、表面が活性化された樹脂微粒子を蒸留水に浸漬し、超音波分散した。その後、懸濁液を50℃で攪拌しながら、硫酸ニッケル6水和物50g/L、次亜リン酸ナトリウム一水和物20g/L、ジメチルアミンボラン2.5g/L、及びクエン酸50g/LからなるpHを7.5に調整した無電解めっき液Aを徐々に添加し、樹脂微粒子の無電解ニッケルめっきを行った。このとき、サンプリングと原子吸光分析によって、ニッケルの膜厚を確認し、ニッケル膜厚が700Åになった時点で無電解めっき液Aの添加を中止した。濾過後、100mLの純水による洗浄を60秒間行い、表面に700Åのニッケル膜を有する樹脂微粒子Aを作製した。   Next, the resin fine particles whose surface was activated were immersed in distilled water and ultrasonically dispersed. Then, while stirring the suspension at 50 ° C., nickel sulfate hexahydrate 50 g / L, sodium hypophosphite monohydrate 20 g / L, dimethylamine borane 2.5 g / L, and citric acid 50 g / L The electroless plating solution A having a pH of L adjusted to 7.5 was gradually added to perform electroless nickel plating of the resin fine particles. At this time, the film thickness of nickel was confirmed by sampling and atomic absorption analysis, and the addition of the electroless plating solution A was stopped when the nickel film thickness reached 700 mm. After filtration, washing with 100 mL of pure water was performed for 60 seconds to produce resin fine particles A having a 700-mm nickel film on the surface.

続いて、0.03モル/リットルのエチレンジアミン四酢酸四ナトリウム、0.04モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液を作製し、このめっき液で樹脂微粒子Aを、液温60℃の条件で、金めっきの平均膜厚が200Åとなるまで処理した。処理後の樹脂微粒子Aを濾過し、100mLの純水による洗浄を60秒間行い、ニッケル膜上に平均膜厚が200Åの金膜が形成された最外層を有する樹脂微粒子Bを作製した。次に、樹脂微粒子Bを、0.03モル/リットルのエチレンジアミン四酢酸四ナトリウム、0.04モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化ナトリウムを含み、水酸化ナトリウムでpH6に調整された液で、60℃1分の条件で処理し、表面のニッケル除去を行った。その後、表面のニッケル除去を行った粒子をイソプロピルアルコールに浸漬し、真空乾燥機にて乾燥処理して、導電粒子1を作製した。   Subsequently, it contains 0.03 mol / liter tetrasodium ethylenediaminetetraacetate, 0.04 mol / liter trisodium citrate and 0.01 mol / liter potassium gold cyanide, adjusted to pH 6 with sodium hydroxide. A plating solution was prepared, and resin fine particles A were treated with this plating solution at a liquid temperature of 60 ° C. until the average film thickness of the gold plating reached 200 mm. The treated resin fine particles A were filtered and washed with 100 mL of pure water for 60 seconds to produce resin fine particles B having an outermost layer in which a gold film having an average film thickness of 200 mm was formed on a nickel film. Next, the resin fine particle B contains 0.03 mol / liter tetrasodium ethylenediaminetetraacetate, 0.04 mol / liter trisodium citrate and 0.01 mol / liter sodium cyanide. The solution was adjusted to pH 6 and treated at 60 ° C. for 1 minute to remove nickel on the surface. Thereafter, the particles from which nickel was removed from the surface were immersed in isopropyl alcohol and dried by a vacuum drier to produce conductive particles 1.

(導電粒子2)
0.03モル/リットルのエチレンジアミン四酢酸四ナトリウム、0.04モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化金カリウムを含み、水酸化ナトリウムでpH6に調整されためっき液の代わりにシアン化金カリウム含有の市販置換金めっき液(IM−GoldST:日本高純度化学製)を用いて金めっきの平均膜厚が280Åとなるまで樹脂微粒子Aを処理したこと以外は、導電粒子1と同様にして導電粒子2を作製した。
(Conductive particles 2)
Plating solution containing 0.03 mol / liter tetrasodium ethylenediaminetetraacetate, 0.04 mol / liter trisodium citrate and 0.01 mol / liter potassium gold cyanide and adjusted to pH 6 with sodium hydroxide Except that the resin fine particles A were treated using a commercially available replacement gold plating solution containing gold potassium cyanide (IM-GoldST: manufactured by Nihon Kojun Kagaku Kagaku) instead of the resin until the average film thickness of the gold plating was 280 mm. Conductive particles 2 were produced in the same manner as particles 1.

(導電粒子3)
金めっき後、0.03モル/リットルのエチレンジアミン四酢酸四ナトリウム及び0.04モル/リットルのクエン酸三ナトリウムを含み、水酸化ナトリウムでpH6に調整された液を用い、60℃1分の条件で表面のニッケル除去を行ったこと以外は、導電粒子2と同様にして導電粒子3を作製した。
(Conductive particles 3)
After gold plating, using a solution containing 0.03 mol / liter tetrasodium ethylenediaminetetraacetate and 0.04 mol / liter trisodium citrate, adjusted to pH 6 with sodium hydroxide, conditions at 60 ° C. for 1 minute Conductive particles 3 were produced in the same manner as the conductive particles 2 except that the surface nickel was removed.

(導電粒子4)
金めっき後、0.04モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化ナトリウムを含み、水酸化ナトリウムでpH6に調整された液を用い、60℃1分の条件で表面のニッケル除去を行ったこと以外は、導電粒子2と同様にして導電粒子4を作製した。
(Conductive particles 4)
After gold plating, using a solution containing 0.04 mol / liter trisodium citrate and 0.01 mol / liter sodium cyanide, adjusted to pH 6 with sodium hydroxide, at 60 ° C. for 1 minute. The conductive particles 4 were produced in the same manner as the conductive particles 2 except that the nickel removal was performed.

(導電粒子5)
平均粒径3.8μmの架橋ポリスチレン粒子1gの代わりに、平均粒径3.5μmの架橋ポリスチレン粒子1gを用いたこと以外は、導電粒子1と同様にして導電粒子5を作製した。
(Conductive particles 5)
Conductive particles 5 were produced in the same manner as the conductive particles 1 except that 1 g of crosslinked polystyrene particles having an average particle size of 3.5 μm was used instead of 1 g of crosslinked polystyrene particles having an average particle size of 3.8 μm.

(導電粒子6)
平均粒径3.8μmの架橋ポリスチレン粒子1gの代わりに、平均粒径3.0μmの架橋ポリスチレン粒子1gを用いたこと以外は、導電粒子1と同様にして導電粒子6を作製した。
(Conductive particles 6)
Conductive particles 6 were produced in the same manner as the conductive particles 1 except that 1 g of crosslinked polystyrene particles having an average particle size of 3.0 μm was used instead of 1 g of crosslinked polystyrene particles having an average particle size of 3.8 μm.

(導電粒子7)
平均粒径3.8μmの架橋ポリスチレン粒子1gの代わりに、平均粒径2.5μmの架橋ポリスチレン粒子1gを用い、φ3μmのメンブレンフィルタに代えて、φ1μmのメンブレンフィルタを用いたこと以外は、導電粒子1と同様にして導電粒子7を作製した。
(Conductive particles 7)
Conductive particles, except that 1 g of crosslinked polystyrene particles having an average particle size of 2.5 μm were used instead of 1 g of crosslinked polystyrene particles having an average particle size of 3.8 μm, and a φ1 μm membrane filter was used in place of the φ3 μm membrane filter. In the same manner as in Example 1, conductive particles 7 were produced.

(導電粒子8)
置換金めっきの浸漬時間を調整して、金めっきの平均膜厚を150Åとしたこと以外は、導電粒子1と同様にして導電粒子8を作製した。
(Conductive particles 8)
The conductive particles 8 were produced in the same manner as the conductive particles 1 except that the immersion gold plating time was adjusted so that the average thickness of the gold plating was 150 mm.

(導電粒子9)
0.03モル/リットルのエチレンジアミン四酢酸四ナトリウム、0.04モル/リットルのクエン酸三ナトリウム及び0.01モル/リットルのシアン化ナトリウムを含み、水酸化ナトリウムでpH6に調整された液にて、60℃1分の条件で表面のニッケル除去を行う工程を省略したこと以外は、導電粒子1と同様にして導電粒子9を作製した。
(Conductive particles 9)
In a solution containing 0.03 mol / liter tetrasodium ethylenediaminetetraacetate, 0.04 mol / liter trisodium citrate and 0.01 mol / liter sodium cyanide, adjusted to pH 6 with sodium hydroxide Conductive particles 9 were produced in the same manner as the conductive particles 1 except that the step of removing nickel on the surface at 60 ° C. for 1 minute was omitted.

(導電粒子10)
無電解ニッケルめっきを施した樹脂微粒子を濾過した後、100mLの純水による洗浄を600秒行ったこと以外は、導電粒子1と同様にして導電粒子10を作製した。
(Conductive particles 10)
The conductive particles 10 were produced in the same manner as the conductive particles 1 except that the resin fine particles subjected to electroless nickel plating were filtered and then washed with 100 mL of pure water for 600 seconds.

(導電粒子11)
平均粒径3.75μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された市販の導電粒子(AUEL00375AS:積水化学工業株式会社製)を導電粒子11とした。
(Conductive particles 11)
Commercially available conductive particles (AUEL00375AS: manufactured by Sekisui Chemical Co., Ltd.) obtained by applying nickel plating and gold plating with an average film thickness of 280 mm to a plastic having an average particle size of 3.75 μm were used as the conductive particles 11.

(導電粒子12)
平均粒径3μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された市販の導電粒子(AU203A:積水化学工業株式会社製)を導電粒子12とした。
(Conductive particles 12)
The conductive particles 12 were made of commercially available conductive particles (AU203A: manufactured by Sekisui Chemical Co., Ltd.) obtained by applying nickel plating and gold plating with an average film thickness of 280 mm to a plastic having an average particle diameter of 3 μm.

(導電粒子13)
平均粒径3μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された市販の導電粒子(AU203AF:積水化学工業株式会社製)を導電粒子13とした。
(Conductive particles 13)
Commercially available conductive particles (AU203AF: manufactured by Sekisui Chemical Co., Ltd.) obtained by applying nickel plating and gold plating with an average film thickness of 280 mm to plastic having an average particle diameter of 3 μm were used as the conductive particles 13.

上記で得られた導電粒子1〜13について、下記に示す方法に従って、X線光電子分光分析(ESCA)による導電粒子表面のニッケル及び金の元素組成比(Ni/Au)を求めた。   For the conductive particles 1 to 13 obtained above, the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles by X-ray photoelectron spectroscopy (ESCA) was determined according to the method described below.

(ESCAによる導電粒子表面のNi/Auの比)
導電粒子1〜13をそれぞれ平面状導電テープ上に散布して敷き詰め、測定試料とした。この試料のΦ1.1mmの円内の導電粒子表面について、表3に示す測定条件にてESCAにより成分比観察を行った。なお、測定粒子数は1万個以上とした。
(Ni / Au ratio of conductive particle surface by ESCA)
Conductive particles 1 to 13 were respectively spread and spread on a planar conductive tape to obtain a measurement sample. With respect to the surface of the conductive particles in the Φ1.1 mm circle of this sample, the component ratio was observed by ESCA under the measurement conditions shown in Table 3. The number of measured particles was 10,000 or more.

Figure 2012119326
Figure 2012119326

ところで、ESCAで導電粒子を測定した場合、ニッケルや金以外にも炭素や酸素といった成分が検出される。CやOは空気中での有機物汚染であるため、これらの成分は無視して、Ni/Au比を求めた。なお、参考のため、導電粒子11及び12についての成分観察結果(原子%)を表4に示す。この場合、導電粒子11のNi/Au比は0.62、導電粒子12のNi/Au比は0.77と計算される。   By the way, when conductive particles are measured by ESCA, components such as carbon and oxygen are detected in addition to nickel and gold. Since C and O are organic contaminants in the air, these components were ignored and the Ni / Au ratio was determined. For reference, Table 4 shows the component observation results (atomic%) for the conductive particles 11 and 12. In this case, the Ni / Au ratio of the conductive particles 11 is calculated as 0.62, and the Ni / Au ratio of the conductive particles 12 is calculated as 0.77.

Figure 2012119326
Figure 2012119326

得られた結果を表5に示す。表5には、コア粒子の粒径、導電粒子作製時の履歴として、ニッケルめっき後の水洗時間、金めっきの平均膜厚及び金めっき後の洗浄方法も合わせて示す。なお、金めっきの平均膜厚については、下記の方法により算出した。   The results obtained are shown in Table 5. Table 5 also shows the particle size of the core particles and the history of the production of the conductive particles, the washing time after nickel plating, the average film thickness of gold plating, and the cleaning method after gold plating. In addition, about the average film thickness of gold plating, it computed with the following method.

(金めっきの平均膜厚)
導電粒子を50vol%王水に浸漬して金めっきを溶解させた後、樹脂粒子をφ3μmのメンブレンフィルタで濾別して取り除き、原子吸光分析により金元素の含有量を測定した。得られた値とコア粒子の粒径から金めっきの厚みを換算し、これを金めっきの平均膜厚とした。
(Average film thickness of gold plating)
The conductive particles were immersed in 50 vol% aqua regia to dissolve the gold plating, and then the resin particles were removed by filtration with a φ3 μm membrane filter, and the content of the gold element was measured by atomic absorption analysis. The thickness of the gold plating was converted from the obtained value and the particle size of the core particles, and this was used as the average thickness of the gold plating.

Figure 2012119326
Figure 2012119326

<絶縁被覆導電粒子の作製>
上記で得られた導電粒子1〜13を用い、下記の手順で絶縁被覆導電粒子1〜16を作製した。
<Preparation of insulating coated conductive particles>
Using the conductive particles 1 to 13 obtained above, the insulating coated conductive particles 1 to 16 were produced according to the following procedure.

(絶縁被覆導電粒子1)
まず、メルカプト酢酸8mmolをメタノール200mlに溶解させた反応液を作製した。次に、導電粒子1を1g、上記反応液に加え、スリーワンモーターと直径45mmの攪拌羽を用いて室温で2時間攪拌した。反応後の導電粒子をメタノールで洗浄後、φ3μmのメンブレンフィルタで濾過して、表面にカルボキシル基を有する官能基含有導電粒子1gを得た。
(Insulation coated conductive particles 1)
First, a reaction solution in which 8 mmol of mercaptoacetic acid was dissolved in 200 ml of methanol was prepared. Next, 1 g of conductive particles 1 was added to the reaction solution, and the mixture was stirred at room temperature for 2 hours using a three-one motor and a stirring blade having a diameter of 45 mm. After the reaction, the conductive particles were washed with methanol, and then filtered through a φ3 μm membrane filter to obtain 1 g of functional group-containing conductive particles having a carboxyl group on the surface.

次に、重量平均分子量70000の30質量%ポリエチレンイミン水溶液(和光純薬工業株式会社製、商品名:30%ポリエチレンイミン P−70溶液)を超純水で希釈して0.3質量%ポリエチレンイミン水溶液を得た。この0.3質量%ポリエチレンイミン水溶液に上記の官能基含有導電粒子1gを加えて室温(25℃)で15分間攪拌し、φ3μmのメンブレンフィルタで濾過して、高分子電解質が表面に吸着した粒子(母粒子)を得た。この母粒子を、超純水200gに混合して室温(25℃)で5分攪拌し、φ3μmのメンブレンフィルタで濾過し、濾過して得られた粒子を該メンブレンフィルタ上で200gの超純水で2回洗浄して、母粒子に吸着していないポリエチレンイミンを除去した。   Next, a 30% by mass polyethyleneimine aqueous solution (trade name: 30% polyethyleneimine P-70 solution, manufactured by Wako Pure Chemical Industries, Ltd.) having a weight average molecular weight of 70,000 is diluted with ultrapure water to obtain 0.3% by mass polyethyleneimine. An aqueous solution was obtained. Particles with the polymer electrolyte adsorbed on the surface by adding 1 g of the above functional group-containing conductive particles to this 0.3 mass% polyethyleneimine aqueous solution, stirring for 15 minutes at room temperature (25 ° C.), and filtering through a φ3 μm membrane filter (Base particle) was obtained. The mother particles are mixed with 200 g of ultrapure water, stirred at room temperature (25 ° C.) for 5 minutes, filtered through a 3 μm membrane filter, and 200 g of ultrapure water is obtained by filtering the obtained particles. Was washed twice to remove polyethyleneimine not adsorbed on the mother particles.

ポリエチレンイミンを除去後、母粒子1gを、コロイダルシリカ分散液(濃度20質量%、扶桑化学工業社製、商品名:クオートロンPL−13、平均粒子径130nm)を超純水で希釈して得られた0.1質量%シリカ分散液に混合して室温(25℃)で15分間攪拌し、φ3μmのメンブレンフィルタで濾過した。濾過後、母粒子を超純水200gに入れて室温(25℃)で5分攪拌してφ3μmのメンブレンフィルタで濾過し、該メンブレンフィルタ上で母粒子を200gの超純水で2回洗浄して、余剰のシリカを除去した。その後、この母粒子を80℃、30分間の条件で乾燥、次いで120℃、1時間の条件で加熱乾燥して、絶縁被覆導電粒子1を得た。   After removing polyethyleneimine, 1 g of mother particles can be obtained by diluting a colloidal silica dispersion (concentration 20 mass%, manufactured by Fuso Chemical Industries, trade name: Quatron PL-13, average particle size 130 nm) with ultrapure water. The mixture was mixed with 0.1% by mass silica dispersion, stirred at room temperature (25 ° C.) for 15 minutes, and filtered through a membrane filter having a diameter of 3 μm. After filtration, the mother particles are placed in 200 g of ultrapure water, stirred for 5 minutes at room temperature (25 ° C.), filtered through a 3 μm membrane filter, and the mother particles are washed twice with 200 g of ultrapure water on the membrane filter. Then, excess silica was removed. Thereafter, the mother particles were dried at 80 ° C. for 30 minutes, and then heated and dried at 120 ° C. for 1 hour to obtain insulating coated conductive particles 1.

(絶縁被覆導電粒子2)
導電粒子1の代わりに導電粒子2を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子2を作製した。
(Insulation coated conductive particles 2)
Insulating coated conductive particles 2 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 2 were used instead of the conductive particles 1.

(絶縁被覆導電粒子3)
導電粒子1の代わりに導電粒子3を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子3を作製した。
(Insulation coated conductive particles 3)
The insulating coated conductive particles 3 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 3 were used instead of the conductive particles 1.

(絶縁被覆導電粒子4)
導電粒子1の代わりに導電粒子4を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子4を作製した。
(Insulation coated conductive particles 4)
Insulating coated conductive particles 4 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 4 were used instead of the conductive particles 1.

(絶縁被覆導電粒子5)
導電粒子1の代わりに導電粒子5を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子5を作製した。
(Insulation coating conductive particles 5)
Insulating coated conductive particles 5 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 5 were used instead of the conductive particles 1.

(絶縁被覆導電粒子6)
導電粒子1の代わりに導電粒子6を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子6を作製した。
(Insulation coated conductive particles 6)
Insulating coated conductive particles 6 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 6 were used instead of the conductive particles 1.

(絶縁被覆導電粒子7)
導電粒子1の代わりに導電粒子7を用い、φ3μmのメンブレンフィルタ(ミリポア社製)の代わりにφ1μmのメンブレンフィルタを用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子7を作製した。
(Insulation coating conductive particles 7)
Insulating coated conductive particles 7 are formed in the same manner as the insulating coated conductive particles 1 except that the conductive particles 7 are used instead of the conductive particles 1 and a φ1 μm membrane filter is used instead of the φ3 μm membrane filter (Millipore). Produced.

(絶縁被覆導電粒子8)
導電粒子1の代わりに導電粒子8を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子8を作製した。
(Insulation coated conductive particles 8)
Insulating coated conductive particles 8 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 8 were used instead of the conductive particles 1.

(絶縁被覆導電粒子9)
導電粒子1の代わりに導電粒子9を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子9を作製した。
(Insulation coated conductive particles 9)
Insulating coated conductive particles 9 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 9 were used instead of the conductive particles 1.

(絶縁被覆導電粒子10)
導電粒子1の代わりに導電粒子10を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子10を作製した。
(Insulation coated conductive particles 10)
Insulating coated conductive particles 10 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 10 were used instead of the conductive particles 1.

(絶縁被覆導電粒子11)
導電粒子1の代わりに導電粒子11を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子11を作製した。
(Insulation coated conductive particles 11)
The insulating coated conductive particles 11 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 11 were used instead of the conductive particles 1.

(絶縁被覆導電粒子12)
導電粒子1の代わりに導電粒子12を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子12を作製した。
(Insulation coated conductive particles 12)
Insulating coated conductive particles 12 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 12 were used instead of the conductive particles 1.

(絶縁被覆導電粒子13)
導電粒子1の代わりに導電粒子13を用いたこと以外は、絶縁被覆導電粒子1と同様にして絶縁被覆導電粒子13を作製した。
(Insulation coated conductive particles 13)
Insulating coated conductive particles 13 were produced in the same manner as the insulating coated conductive particles 1 except that the conductive particles 13 were used instead of the conductive particles 1.

(絶縁被覆導電粒子14)
平均粒径3.75μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された後、アクリルナノ粒子によって絶縁被覆された市販の絶縁被覆導電粒子(AUEL00375AS−GD:積水化学工業株式会社製)を絶縁被覆導電粒子14とした。
(Insulation coating conductive particles 14)
A commercially available insulating coated conductive particle (AUEL00375AS-GD: Sekisui Chemical Co., Ltd.) coated with acrylic nanoparticles after nickel plating and gold plating with an average film thickness of 280 mm are applied to a plastic having an average particle diameter of 3.75 μm. Made of the insulating coated conductive particles 14.

(絶縁被覆導電粒子15)
平均粒径3μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された後、アクリルナノ粒子によって絶縁被覆された市販の絶縁被覆導電粒子(AU203A−GD:積水化学工業株式会社製)を絶縁被覆導電粒子15とした。
(Insulation coating conductive particles 15)
A commercially available insulating coated conductive particle (AU203A-GD: manufactured by Sekisui Chemical Co., Ltd.) coated with acrylic nanoparticles after nickel plating and gold plating with an average film thickness of 280 mm are applied to a plastic having an average particle diameter of 3 μm. Was used as the insulating coated conductive particles 15.

(絶縁被覆導電粒子16)
平均粒径3μmのプラスチックに、ニッケルめっきと平均膜厚280Åの金めっきが施された後、アクリルナノ粒子によって絶縁被覆された市販の絶縁被覆導電粒子(AU203AF−GD:積水化学工業株式会社製)を絶縁被覆導電粒子16とした。
(Insulation coating conductive particles 16)
A commercially available insulating coated conductive particle (AU203AF-GD: manufactured by Sekisui Chemical Co., Ltd.) coated with acrylic nanoparticles after nickel plating and gold plating with an average film thickness of 280 mm are applied to a plastic having an average particle diameter of 3 μm. Was used as the insulating coated conductive particles 16.

<異方導電性接着剤フィルムの作製>
(実施例1)
フェノキシ樹脂(ユニオンカーバイド社製、商品名:PKHC)100gと、アクリルゴム(ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、グリシジルメタクリレート3質量部の共重合体、重量平均分子量:85万)75gとを、酢酸エチル300gに溶解し、樹脂濃度30質量%の溶液を得た。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エボキシ当量185、旭化成エポキシ株式会社製、商品名:ノバキュアHX−3941)300gを加えて撹拌し、樹脂組成物溶液を作製した。
<Production of anisotropic conductive adhesive film>
Example 1
100 g of phenoxy resin (Union Carbide, trade name: PKHC), acrylic rubber (40 parts by mass of butyl acrylate, 30 parts by mass of ethyl acrylate, 30 parts by mass of acrylonitrile, 3 parts by mass of glycidyl methacrylate, weight average molecular weight: 850,000) 75 g was dissolved in 300 g of ethyl acetate to obtain a solution having a resin concentration of 30% by mass. To this solution, 300 g of liquid epoxy (Eboxy equivalent 185, manufactured by Asahi Kasei Epoxy Co., Ltd., trade name: Novacure HX-3941) containing a microcapsule-type latent curing agent was added and stirred to prepare a resin composition solution.

4gの絶縁被覆導電粒子1を、酢酸エチル10gに混合し、超音波分散した。なお、超音波分散は、20Lのビーカーに混合物を入れ、「US107」(藤本科学社製、商品名)を用いて、38kHz、400Wの条件で1分間行った。得られた分散液を上記樹脂組成物溶液に分散して異方導電性接着剤組成物を得た。なお、分散液は、絶縁被覆導電粒子が異方導電性接着剤組成物全量に対して21体積%となるように調製した。   4 g of the insulation-coated conductive particles 1 were mixed with 10 g of ethyl acetate and ultrasonically dispersed. The ultrasonic dispersion was carried out for 1 minute under conditions of 38 kHz and 400 W using “US107” (trade name, manufactured by Fujimoto Kagaku Co., Ltd.) in a 20 L beaker. The obtained dispersion was dispersed in the resin composition solution to obtain an anisotropic conductive adhesive composition. In addition, the dispersion liquid was prepared so that insulation coating electroconductive particle might be 21 volume% with respect to the anisotropic conductive adhesive composition whole quantity.

上記で得られた異方導電性接着剤組成物を、シリコーン処理したポリエチレンテレフタレートフイルムであるセパレータ(厚み40μm)上にロールコータで塗布し、90℃で10分間乾燥して厚み25μmの異方導電性接着剤フィルムを作製した。   The anisotropic conductive adhesive composition obtained above was applied on a separator (thickness 40 μm), which was a polyethylene-treated polyethylene terephthalate film, with a roll coater, dried at 90 ° C. for 10 minutes, and an anisotropic conductive film having a thickness of 25 μm. Adhesive film was prepared.

(実施例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子2を用いたこと以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 2)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 2 were used instead of the insulating coated conductive particles 1.

(実施例3)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子3を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 3)
An anisotropic conductive adhesive film was prepared in the same manner as in Example 1 except that the insulating coated conductive particles 3 were used instead of the insulating coated conductive particles 1.

(実施例4)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子4を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
Example 4
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 4 were used instead of the insulating coated conductive particles 1.

(実施例5)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子5を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 5)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 5 were used instead of the insulating coated conductive particles 1.

(実施例6)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子6を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 6)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 6 were used instead of the insulating coated conductive particles 1.

(実施例7)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子7を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 7)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 7 were used instead of the insulating coated conductive particles 1.

(実施例8)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子8を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Example 8)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 8 were used instead of the insulating coated conductive particles 1.

(比較例1)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子9を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 1)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 9 were used instead of the insulating coated conductive particles 1.

(比較例2)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子10を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 2)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 10 were used instead of the insulating coated conductive particles 1.

(比較例3)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子11を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 3)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 11 were used instead of the insulating coated conductive particles 1.

(比較例4)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子12を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 4)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 12 were used instead of the insulating coated conductive particles 1.

(比較例5)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子13を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 5)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 13 were used instead of the insulating coated conductive particles 1.

(比較例6)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子14を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 6)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 14 were used instead of the insulating coated conductive particles 1.

(比較例7)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子15を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 7)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 15 were used instead of the insulating coated conductive particles 1.

(比較例8)
絶縁被覆導電粒子1の代わりに絶縁被覆導電粒子16を用いた以外は、実施例1と同様にして異方導電性接着剤フィルムを作製した。
(Comparative Example 8)
An anisotropic conductive adhesive film was produced in the same manner as in Example 1 except that the insulating coated conductive particles 16 were used instead of the insulating coated conductive particles 1.

[子粒子被覆率]
異方導電性接着剤組成物の作成において、酢酸エチル中に絶縁被覆導電粒子を超音波分散するときに絶縁性子粒子が導電粒子から剥離する場合がある。この絶縁性子粒子剥離の度合いを調べるために、超音波分散前後の絶縁被覆導電粒子の子粒子被覆率をSEMの画像解析により求めた。なお、子粒子被覆率は、絶縁被覆導電粒子の直径の半分の大きさを直径とする円をSEM画像に描き、この円内における絶縁性子粒子の数に基づいて下記式より算出した。
子粒子の被覆率(%)=([絶縁性子粒子の投影面積]×[測定範囲の絶縁性子粒子の数]/[測定範囲の絶縁被覆導電粒子の表面積])×100
[Child particle coverage]
In the production of the anisotropic conductive adhesive composition, when the insulating coated conductive particles are ultrasonically dispersed in ethyl acetate, the insulator particles may be peeled off from the conductive particles. In order to investigate the degree of peeling of the insulator particles, the child particle coverage of the insulation coated conductive particles before and after ultrasonic dispersion was determined by image analysis of SEM. In addition, the child particle coverage was calculated from the following formula based on the number of the insulating child particles in the circle, in which a circle having a diameter half the diameter of the insulating coated conductive particles was drawn on the SEM image.
Coverage ratio of child particles (%) = ([projected area of insulator particles] × [number of insulator particles in measurement range] / [surface area of insulation coated conductive particles in measurement range]) × 100

[実装試験]
上記で得られた実施例1〜8及び比較例1〜8の異方導電性接着剤フィルムを用いて接続サンプルを作製し、これらの接続サンプルについて下記の絶縁抵抗測定及び導通抵抗測定を行った。
[Mounting test]
Connection samples were prepared using the anisotropic conductive adhesive films of Examples 1 to 8 and Comparative Examples 1 to 8 obtained above, and the following insulation resistance measurement and conduction resistance measurement were performed on these connection samples. .

(接続サンプルの作製)
作製した異方導電性接着剤フィルムを用いて、金バンプ(面積:30μm×90μm、スペース10μm、高さ:15μm、バンプ数:362)付きチップ(1.7mm×17mm、厚み:0.5mm)とAl回路付きガラス基板(ジオマテック製、厚み:0.7mm)との接続を、以下の通り行った。
(Preparation of connection sample)
Using the produced anisotropic conductive adhesive film, a chip (1.7 mm × 17 mm, thickness: 0.5 mm) with gold bumps (area: 30 μm × 90 μm, space 10 μm, height: 15 μm, number of bumps: 362) And a glass substrate with an Al circuit (Geomatic, thickness: 0.7 mm) were connected as follows.

所定のサイズ(2mm×19mm)に切断した異方導電性接着剤フィルムを、そのセパレータが設けられた面とは反対側の面をAl回路付きガラス基板(厚み:0.7mm)のA1回路が形成された面に向けて、Al回路付きガラス基板の表面上に80℃、0.98MPa(10kgf/cm)で貼り付けた。その後、Al回路付きガラス基板に貼り付けた異方導電性接着剤フィルムからセパレータを剥離し、異方導電性接着剤フィルムを介して、チップの金バンプとAl回路付きガラス基板との位置合わせを行った。次いで、チップの金バンプが設けられた面を異方導電性接着剤フィルムのAl回路付きガラス基板が貼り付けられた面とは反対側の面に向けて、190℃、40g/バンプ、10秒の条件で加熱及び加圧を行って本接続を行い、接続サンプルを得た。 An anisotropic conductive adhesive film cut into a predetermined size (2 mm × 19 mm), and the surface opposite to the surface provided with the separator is an A1 circuit of a glass substrate with an Al circuit (thickness: 0.7 mm). Attached at 80 ° C. and 0.98 MPa (10 kgf / cm 2 ) onto the surface of the glass substrate with an Al circuit toward the formed surface. After that, the separator is peeled off from the anisotropic conductive adhesive film attached to the glass substrate with Al circuit, and the gold bumps of the chip and the glass substrate with Al circuit are aligned through the anisotropic conductive adhesive film. went. Next, the surface on which the gold bumps of the chip are provided is directed to a surface opposite to the surface on which the glass substrate with an Al circuit of the anisotropic conductive adhesive film is attached, at 190 ° C., 40 g / bump, 10 seconds. This connection was made by heating and pressurizing under the conditions described above to obtain a connection sample.

(絶縁抵抗測定)
異方導電性接着剤フィルムは互いに隣接するチップ電極間の絶縁抵抗が高く、対向するチップ電極/ガラス電極間の導通抵抗が低いことが重要である。そこで、まず、各実施例及び各比較例の異方導電性接着剤フィルムを用いて作製した各接続サンプルの絶縁抵抗測定を行った。20個の接続サンプルを用意し、互いに隣接するチップ電極間の絶縁抵抗を測定した。絶縁抵抗の最小値と、絶縁抵抗が109(Ω)以上のものを良品と判定した場合の歩留まり(良品の割合)とを調べた。
(Insulation resistance measurement)
It is important that the anisotropic conductive adhesive film has a high insulation resistance between adjacent chip electrodes and a low conduction resistance between the facing chip electrodes / glass electrodes. Then, first, the insulation resistance measurement of each connection sample produced using the anisotropic conductive adhesive film of each example and each comparative example was performed. Twenty connection samples were prepared, and the insulation resistance between adjacent chip electrodes was measured. The minimum value of the insulation resistance and the yield (ratio of non-defective products) when the insulation resistance of 109 (Ω) or more was judged as a non-defective product were examined.

[導通抵抗測定]
次に、接続体サンプルの導通抵抗測定を行った。14個の接続サンプルを用意し、対向する、チップ電極とガラス電極との間の導通抵抗を測定し、その平均値を算出して初期の導通抵抗を求めた。次に、各接続体サンプルを、気温85℃、湿度85%の吸湿条件で1000時間保管した後、対向する、チップ電極とガラス電極との間の導通抵抗を測定し、その平均値を算出して吸湿条件に保管した後(吸湿試験後)の導通抵抗を求めた。

Figure 2012119326
[Conduction resistance measurement]
Next, the conduction resistance of the connection body sample was measured. Fourteen connection samples were prepared, the conduction resistance between the chip electrode and the glass electrode facing each other was measured, and the average value was calculated to obtain the initial conduction resistance. Next, after each connected body sample was stored for 1000 hours under a moisture absorption condition of an air temperature of 85 ° C. and a humidity of 85%, the conduction resistance between the chip electrode and the glass electrode facing each other was measured, and the average value was calculated. The conduction resistance after storage under moisture absorption conditions (after the moisture absorption test) was determined.
Figure 2012119326

実施例1〜8で用いた絶縁被覆導電粒子は、超音波分散の前後で殆ど子粒子剥離が発生しないことが確認された。なお、この理由として、絶縁被覆導電粒子の作製に用いた導電粒子表面のAuの比率が高いため、粒子表面にチオールが化学吸着しやすく、絶縁子粒子が強固に結合できることが考えられる。また、実施例1〜8の異方導電性接着剤フィルムによれば、狭ピッチの電極間の絶縁性を十分確保でき回路電極を歩留まりよく接続することができるともに、接続された電極間は吸湿試験後も十分に低い導通抵抗を維持できることが確認された。   It was confirmed that the insulating coated conductive particles used in Examples 1 to 8 hardly peeled off the child particles before and after ultrasonic dispersion. In addition, it is conceivable that the reason is that since the ratio of Au on the surface of the conductive particles used for the production of the insulating coated conductive particles is high, thiol is easily chemically adsorbed on the particle surface and the insulator particles can be firmly bonded. In addition, according to the anisotropic conductive adhesive films of Examples 1 to 8, it is possible to sufficiently ensure insulation between narrow pitch electrodes and connect circuit electrodes with a high yield, and the connected electrodes absorb moisture. It was confirmed that a sufficiently low conduction resistance could be maintained after the test.

これに対して、比較例1〜8の異方導電性接着剤フィルムは、絶縁不良が発生しやすいことが分かった。なお、比較例1〜8の異方導電性接着剤フィルムに含まれる絶縁被覆導電粒子は、表面のニッケル/金比が0.4を超える導電粒子を用いて作製されたものであり、超音波分散によりシリカが導電粒子から剥離しやすいことが分かった。また、異方導電性接着剤フィルムに配合後の絶縁被覆導電粒子をメチルエチルケトンで溶出し、SEM観察したところ子粒子が剥離していることも確認された。   On the other hand, it turned out that the anisotropic conductive adhesive film of Comparative Examples 1-8 tends to generate | occur | produce an insulation defect. Insulating coated conductive particles contained in the anisotropic conductive adhesive films of Comparative Examples 1 to 8 were produced using conductive particles having a nickel / gold ratio of more than 0.4 on the surface, and ultrasonic waves It was found that silica was easily peeled from the conductive particles by dispersion. Moreover, when the insulation coating electroconductive particle after mix | blending with an anisotropic conductive adhesive film was eluted with methyl ethyl ketone and SEM observation was carried out, it was also confirmed that the child particle has peeled.

以上のように、本発明によれば、狭ピッチ化、狭面積化された回路電極の接続において、接続不良を十分防止できる異方導電性接着剤フィルム、その実現を可能とする絶縁被覆導電粒子及びその製造方法、並びに、そのような絶縁被覆導電粒子を得ることを可能とする導電粒子及びその製造方法を提供することができる。   As described above, according to the present invention, an anisotropic conductive adhesive film that can sufficiently prevent poor connection in connection of circuit electrodes having a narrow pitch and a small area, and insulating coated conductive particles that can be realized. In addition, it is possible to provide a conductive particle capable of obtaining such insulating coated conductive particles and a method of manufacturing the same.

6…絶縁性粒子、8…官能基含有導電粒子、10…絶縁被覆導電粒子、12…樹脂組成物、20…第一の回路部材、21…第一の基板、21a…第一の基板表面、22…第一の回路電極、30…第二の回路部材、31…第二の基板、31a…第二の基板表面、32…第二の回路電極。   6 ... Insulating particles, 8 ... Functional group-containing conductive particles, 10 ... Insulating coated conductive particles, 12 ... Resin composition, 20 ... First circuit member, 21 ... First substrate, 21a ... First substrate surface, 22 ... 1st circuit electrode, 30 ... 2nd circuit member, 31 ... 2nd board | substrate, 31a ... 2nd board | substrate surface, 32 ... 2nd circuit electrode.

Claims (10)

ニッケル層上に形成された平均膜厚300Å以下の金層を最外層として有する導電粒子であって、
X線光電子分光分析による前記導電粒子の表面におけるニッケル及び金の元素組成比(Ni/Au)が0.4以下であることを特徴とする導電粒子。
Conductive particles having a gold layer with an average film thickness of 300 mm or less formed on the nickel layer as an outermost layer,
Conductive particles characterized in that the elemental composition ratio (Ni / Au) of nickel and gold on the surface of the conductive particles by X-ray photoelectron spectroscopy is 0.4 or less.
前記導電粒子の粒径が4.0μm以下であることを特徴とする請求項1に記載の導電粒子。   The conductive particles according to claim 1, wherein a particle diameter of the conductive particles is 4.0 μm or less. 請求項1又は2に記載の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に前記所定の官能基が形成された官能基含有導電粒子を得る工程と、
前記官能基含有導電粒子と絶縁性子粒子とを接触させる工程と、
を備える、前記官能基含有導電粒子の表面が前記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子の製造方法。
The outermost layer surface of the conductive particles according to claim 1 or 2, and a compound having at least one group selected from the group consisting of a mercapto group, a sulfide group, and a disulfide group and a predetermined functional group, are contacted, Obtaining functional group-containing conductive particles in which the predetermined functional group is formed on the outermost surface of the conductive particles;
Contacting the functional group-containing conductive particles and the insulator particles;
A method for producing insulating coated conductive particles, wherein the surface of the functional group-containing conductive particles is coated with the insulator particles.
請求項1又は2に記載の導電粒子の最外層表面と、メルカプト基、スルフィド基及びジスルフィド基からなる群より選択される少なくとも一つの基と所定の官能基とを有する化合物とを接触させて、導電粒子の最外層表面に前記所定の官能基が形成された官能基含有導電粒子を得る工程と、
前記官能基含有導電粒子と高分子電解質とを接触させて、前記官能基含有導電粒子の表面が前記高分子電解質で被覆されてなる高分子電解質被覆導電粒子を得る工程と、
前記高分子電解質被覆導電粒子と絶縁性子粒子とを接触させる工程と、
を備える、前記官能基含有導電粒子の表面が前記高分子電解質及び前記絶縁性子粒子で被覆されてなる絶縁被覆導電粒子の製造方法。
The outermost layer surface of the conductive particles according to claim 1 or 2, and a compound having at least one group selected from the group consisting of a mercapto group, a sulfide group, and a disulfide group and a predetermined functional group, are contacted, Obtaining functional group-containing conductive particles in which the predetermined functional group is formed on the outermost surface of the conductive particles;
Contacting the functional group-containing conductive particles with a polymer electrolyte to obtain polymer electrolyte-coated conductive particles in which the surface of the functional group-containing conductive particles is coated with the polymer electrolyte;
Contacting the polymer electrolyte-coated conductive particles and the insulator particles;
A method for producing insulating coated conductive particles, wherein the surface of the functional group-containing conductive particles is coated with the polymer electrolyte and the insulator particles.
前記高分子電解質がポリアミン類であることを特徴とする請求項4に記載の絶縁被覆導電粒子の製造方法。   The method for producing insulating coated conductive particles according to claim 4, wherein the polymer electrolyte is a polyamine. 前記ポリアミン類がポリエチレンイミンであることを特徴とする請求項5に記載の絶縁被覆導電粒子の製造方法。   The method for producing insulating coated conductive particles according to claim 5, wherein the polyamine is polyethyleneimine. 前記所定の官能基が、水酸基、カルボキシル基、アルコキシル基及びアルコキシカルボニル基のうちのいずれかであることを特徴とする請求項3〜6のいずれか一項に記載の絶縁被覆導電粒子の製造方法。   The method for producing insulating coated conductive particles according to any one of claims 3 to 6, wherein the predetermined functional group is any one of a hydroxyl group, a carboxyl group, an alkoxyl group, and an alkoxycarbonyl group. . 前記絶縁性子粒子が、無機酸化物であることを特徴とする請求項3〜7のいずれか一項に記載の絶縁被覆導電粒子の製造方法。   The method for producing insulating coated conductive particles according to any one of claims 3 to 7, wherein the insulator particles are inorganic oxides. 前記無機酸化物が、シリカ粒子であることを特徴とする請求項8に記載の絶縁被覆導電粒子の製造方法。   The method for producing insulating coated conductive particles according to claim 8, wherein the inorganic oxide is silica particles. 請求項3〜9のいずれか一項に記載の絶縁被覆導電粒子の製造方法により得られる絶縁被覆導電粒子と、絶縁性樹脂組成物と、を含有する異方導電性接着剤組成物、
をフィルム状に形成してなることを特徴とする異方導電性接着剤フィルム。
An anisotropic conductive adhesive composition comprising insulating coated conductive particles obtained by the method for producing insulating coated conductive particles according to any one of claims 3 to 9, and an insulating resin composition,
An anisotropic conductive adhesive film characterized by being formed into a film.
JP2012009199A 2007-10-02 2012-01-19 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film Active JP5472332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009199A JP5472332B2 (en) 2007-10-02 2012-01-19 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007258638 2007-10-02
JP2007258638 2007-10-02
JP2012009199A JP5472332B2 (en) 2007-10-02 2012-01-19 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008256443A Division JP4957695B2 (en) 2007-10-02 2008-10-01 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film

Publications (2)

Publication Number Publication Date
JP2012119326A true JP2012119326A (en) 2012-06-21
JP5472332B2 JP5472332B2 (en) 2014-04-16

Family

ID=40704707

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008256443A Active JP4957695B2 (en) 2007-10-02 2008-10-01 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP2012009199A Active JP5472332B2 (en) 2007-10-02 2012-01-19 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008256443A Active JP4957695B2 (en) 2007-10-02 2008-10-01 Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film

Country Status (2)

Country Link
JP (2) JP4957695B2 (en)
KR (2) KR101294946B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375374B2 (en) * 2009-07-02 2013-12-25 日立化成株式会社 Circuit connection material and circuit connection structure
JP4993230B2 (en) * 2009-09-08 2012-08-08 積水化学工業株式会社 Conductive particles with insulating particles, method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5554077B2 (en) * 2009-09-15 2014-07-23 株式会社日本触媒 Insulating fine particle-coated conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molded body
WO2011123263A1 (en) 2010-03-31 2011-10-06 3M Innovative Properties Company Electronic articles for displays and methods of making same
JP5883283B2 (en) * 2011-12-12 2016-03-09 株式会社日本触媒 Conductive particles and anisotropic conductive materials
CN103443869B (en) * 2012-02-21 2015-10-21 积水化学工业株式会社 The manufacture method of electroconductive particle, electroconductive particle, electric conducting material and connection structural bodies
US8802989B2 (en) 2012-03-26 2014-08-12 Sekisui Chemical Co., Ltd. Conductive material and connection structure
JP6392617B2 (en) * 2013-10-02 2018-09-19 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR20210130152A (en) 2019-02-28 2021-10-29 세키스이가가쿠 고교가부시키가이샤 Electroconductive particle, electrically-conductive material, and bonded structure
IT202100026681A1 (en) * 2021-10-18 2023-04-18 Torino Politecnico PROCESS FOR THE PRODUCTION OF NANO-COATED FERROMAGNETIC MATERIALS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748705B2 (en) * 1991-02-14 1998-05-13 日立化成工業株式会社 Circuit connection members
JP2004107734A (en) * 2002-09-19 2004-04-08 Murata Mfg Co Ltd Electronic component and its plating process
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
JP2007141968A (en) * 2005-11-15 2007-06-07 Sharp Corp Circuit board manufacturing method, and semiconductor device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748705B2 (en) * 1991-02-14 1998-05-13 日立化成工業株式会社 Circuit connection members
JP2004107734A (en) * 2002-09-19 2004-04-08 Murata Mfg Co Ltd Electronic component and its plating process
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
JP2007141968A (en) * 2005-11-15 2007-06-07 Sharp Corp Circuit board manufacturing method, and semiconductor device manufacturing method

Also Published As

Publication number Publication date
KR101294946B1 (en) 2013-08-08
KR20090034289A (en) 2009-04-07
KR20130001711A (en) 2013-01-04
JP2009102731A (en) 2009-05-14
JP4957695B2 (en) 2012-06-20
JP5472332B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP5151920B2 (en) Conductive particles and method for producing conductive particles
JP4784713B1 (en) Method for producing coated particles
JP5440645B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
KR101261184B1 (en) Coated conductive particles and method for producing same
JP5549069B2 (en) Particulate conductive material for anisotropic conductive adhesive, method for producing the same, and anisotropic conductive adhesive
JP4640532B2 (en) Coated conductive particles
JP4640531B2 (en) Conductive particles
WO2011002084A1 (en) Conductive particle
JP4715969B1 (en) Conductive particles
JP5589361B2 (en) Conductive particles and method for producing the same
JP6507551B2 (en) Conductive particles
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP5549352B2 (en) Conductive particles, adhesive composition, circuit connection material, and connection structure
JP5626288B2 (en) Conductive particle, anisotropic conductive adhesive, connection structure, and manufacturing method of connection structure
JP6507552B2 (en) Conductive particles

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5472332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment