WO2012002508A1 - Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure - Google Patents

Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure Download PDF

Info

Publication number
WO2012002508A1
WO2012002508A1 PCT/JP2011/065095 JP2011065095W WO2012002508A1 WO 2012002508 A1 WO2012002508 A1 WO 2012002508A1 JP 2011065095 W JP2011065095 W JP 2011065095W WO 2012002508 A1 WO2012002508 A1 WO 2012002508A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
insulating
conductive
insulating particles
conductive particles
Prior art date
Application number
PCT/JP2011/065095
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 真原
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2011540626A priority Critical patent/JP5060655B2/en
Priority to CN2011800310591A priority patent/CN102959641B/en
Priority to KR1020127033761A priority patent/KR101321636B1/en
Publication of WO2012002508A1 publication Critical patent/WO2012002508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures

Definitions

  • the present invention relates to, for example, conductive particles with insulating particles that can be used for electrical connection between electrodes, and an anisotropic conductive material and a connection structure using the conductive particles with insulating particles.
  • Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known.
  • anisotropic conductive materials conductive particles are dispersed in a binder resin.
  • the anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
  • Patent Document 1 discloses conductive with insulating particles having conductive particles and insulating particles fixed to the surface of the conductive particles and having adhesive properties. Particles are disclosed.
  • the insulating particles include hard particles and a polymer resin layer covering the surfaces of the hard particles.
  • a physical / mechanical hybridization method is used as an immobilization method in order to immobilize the insulating particles on the surface of the conductive particles.
  • Patent Document 2 includes conductive particles having a polar group on at least a part of a surface, and an insulating material that covers at least a part of the surface of the conductive particles and includes insulating particles.
  • a conductive particle with insulating particles is disclosed.
  • the insulating material includes a polymer electrolyte that can adsorb the polar group, and inorganic oxide particles that can adsorb the polymer electrolyte.
  • the inorganic oxide particles are insulating particles.
  • the insulating particles are easily detached from the surface of the conductive particles.
  • the insulating particles may be easily detached from the surface of the conductive particles.
  • An object of the present invention is to provide a conductive particle with an insulating particle that can improve the conduction reliability when the insulating particle is difficult to be detached from the surface of the conductive particle. It is to provide an anisotropic conductive material and a connection structure using conductive particles with insulating particles.
  • conductive particles having a conductive layer on at least a surface, and insulating particles attached to the surface of the conductive particles, and the insulating particles include an insulating particle body and A layer covering at least a part of the surface of the insulating particle body and formed of a polymer compound, and the insulating particle body and the layer are chemically bonded.
  • Conductive particles with insulating particles are provided.
  • the insulating particle body is an inorganic particle.
  • the layer is more flexible than the insulating particle body.
  • the insulating particle main body having a reactive functional group on the surface and a polymer compound or a compound that becomes the polymer compound are used.
  • the insulating particle body and the layer are chemically bonded by chemically bonding the layer formed of the polymer compound to the reactive functional group on the surface of the insulating particle body.
  • the insulating particles are obtained.
  • the insulating particles are friction by mixing using the insulating particle body and a polymer compound or a compound that becomes the polymer compound. Not formed.
  • a conductive particle-containing liquid with insulating particles obtained by adding 3 parts by weight of conductive particles with insulating particles to 100 parts by weight of ethanol is 20 ° C.
  • the ultrasonic treatment is performed for 5 minutes under the condition of 38 kHz or 40 kHz, the residual ratio of the insulating particles obtained by the following formula (1) is 60 to 95%.
  • Residual rate of insulating particles (%) (coverage after ultrasonic treatment / coverage before ultrasonic treatment) ⁇ 100 Equation (1)
  • the coverage which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, is 40% or more. .
  • the coverage is preferably over 50%.
  • the anisotropic conductive material according to the present invention includes conductive particles with insulating particles configured according to the present invention and a binder resin.
  • the anisotropic conductive material according to the present invention is preferably an anisotropic conductive paste.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection The portion is formed of conductive particles with insulating particles configured according to the present invention, or is formed of an anisotropic conductive material including the conductive particles with insulating particles and a binder resin.
  • the insulating particles attached to the surface of the conductive particles having at least the conductive layer on the surface are the insulating particle main body and at least the surface of the insulating particle main body. And a layer formed of a polymer compound that covers a part of the region, and since the insulating particle body and the layer are chemically bonded to each other, the insulating particle is exposed from the surface of the conductive particle. Can be prevented from unintentionally desorbing.
  • the conductive particles with insulating particles according to the present invention are used to connect the electrodes, even if a plurality of conductive particles with insulating particles come into contact, the insulating particles are not insulated between adjacent conductive particles. Since particles exist, it is difficult to electrically connect adjacent electrodes that should not be connected. For this reason, the conduction
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles shown in FIG.
  • FIG. 5 is a schematic diagram for explaining a method for evaluating the coverage.
  • FIG. 6 is a cross-sectional view showing a conventional conductive particle with insulating particles using a hybridization method.
  • FIG. 1 is a sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • 1 includes the conductive particles 2 and a plurality of insulating particles 3 attached to the surface of the conductive particles 2.
  • the insulating particles 3 have an insulating particle body 5 and a layer 6 that covers the surface of the insulating particle body 5 and is formed of a polymer compound.
  • the insulating particles 3 are made of an insulating material.
  • the insulating particle body 5 and the layer 6 are chemically bonded. Specifically, the surface of the insulating particle body 5 and the inner surface of the layer 6 are chemically bonded.
  • the layer 6 covers the entire surface of the insulating particle body 5. Therefore, the layer 6 is disposed between the conductive particles 2 and the insulating particle main body 5.
  • the layer 6 may be present so as to cover at least a part of the surface of the insulating particle main body, and may not cover the entire surface of the insulating particle main body.
  • the layer 6 is preferably disposed between the conductive particles and the insulating particle main body.
  • the conductive particles 2 have base material particles 11 and a conductive layer 12 provided on the surface of the base material particles 11.
  • the conductive layer 12 covers the surface of the base particle 11.
  • the conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive layer 12.
  • the conductive particles 2 have a conductive layer 12 on the surface.
  • FIG. 2 is a sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
  • the conductive particles 22 includes the conductive particles 22 and the plurality of insulating particles 3 attached to the surface of the conductive particles 22.
  • the conductive particles 22 have base material particles 11 and a conductive layer 31 provided on the surface of the base material particles 11.
  • the conductive particles 22 have a plurality of core substances 32 on the surface of the substrate particles 11.
  • the conductive layer 31 covers the base particle 11 and the core substance 32.
  • the conductive particles 22 have a plurality of protrusions 33 on the surface.
  • the surface of the conductive layer 31 is raised by the core substance 32, and a plurality of protrusions 33 are formed.
  • FIG. 3 is a sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • the conductive particle 41 with insulating particles shown in FIG. 3 includes conductive particles 42 and a plurality of insulating particles 3 attached to the surface of the conductive particles 42.
  • the conductive particles 42 have base material particles 11 and a conductive layer 46 provided on the surface of the base material particles 11.
  • the conductive layer 46 includes a first conductive layer 46a provided on the surface of the base particle 11 and a second conductive layer 46b provided on the surface of the first conductive layer 46a.
  • the conductive particles 42 have a plurality of core substances 47 on the surface of the first conductive layer 46a.
  • the second conductive layer 46 b covers the first conductive layer 46 a and the core substance 47.
  • the substrate particles 11 and the core substance 47 are arranged with a space therebetween.
  • a first conductive layer 46 a exists between the base particle 11 and the core substance 47.
  • the conductive particles 42 By covering the core substance 47 with the second conductive layer 46b, the conductive particles 42 have a plurality of protrusions 48 on the surface.
  • the surfaces of the conductive layer 46 and the second conductive layer 46b are raised by the core material 47, and a plurality of protrusions 48 are formed.
  • the insulating particles 3 include an insulating particle body 5 and a layer 6 that covers the surface of the insulating particle body 5 and is formed of a polymer compound. Furthermore, the insulating particle body 5 and the layer 6 are chemically bonded. As a result, when the conductive particles with insulating particles 1, 21, 41 are added to the binder resin and kneaded, the insulating particles 3 are less likely to be detached from the surfaces of the conductive particles 2, 22, 42. Furthermore, when a plurality of conductive particles with insulating particles come into contact with each other, the insulating particles are hardly detached from the surfaces of the conductive particles 2, 22, and 42.
  • the conductive particles with insulating particles 1, 21, 41 can sufficiently ensure the continuity of the upper and lower electrodes to be connected.
  • the residual rate of the insulating particles 3 is preferably 60 to 95%.
  • the residual rate of the insulating particles 3 is more preferably 70% or more, and more preferably 90% or less.
  • the surfaces of the conductive particles 2, 22, 42 are added when the conductive particles 1, 21, 41 with insulating particles are added to the binder resin and kneaded. Insulating particles 3 are more difficult to detach from the electrode, and when electrodes are connected using conductive particles with insulating particles 1, 21 and 41, more leakage occurs between adjacent electrodes that should not be connected. It becomes difficult.
  • the residual ratio of the insulating particles is less than or equal to the above upper limit, the high conductivity of the upper and lower electrodes to be connected can be sufficiently ensured.
  • the “residual ratio of the insulating particles” and the coverage which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, are obtained as follows.
  • the coverage is as follows.
  • One insulating particle B1 present in the circle on the outer surface (outer peripheral edge) of the conductive layer insulating property present on the circumference of the outer surface (outer peripheral edge) of the conductive layer of the conductive particle A with insulating particles
  • the number of particles B2 is counted as 0.5, and is represented by the ratio of the projected area of the insulating particles to the projected area of the conductive particles A with insulating particles.
  • Coverage (%) (((number of insulating particles in circle) ⁇ 1 + (number of insulating particles on the circumference) ⁇ 0.5) ⁇ projection area of insulating particles) / (with insulating particles) Projected area of conductive particles) ⁇ 100 (2)
  • conductive particles with insulating particles 3 parts by weight are added to 100 parts by weight of ethanol to obtain a conductive particle-containing liquid with insulating particles.
  • This conductive particle-containing liquid with insulating particles is subjected to ultrasonic treatment while being stirred for 5 minutes at 20 ° C. and 38 kHz or 40 kHz with a 400 W ultrasonic cleaner.
  • 100 conductive particles with insulating particles are observed by observation with an SEM, and the portion of the conductive particles with insulating particles covered by the insulating particles occupying the entire surface area of the conductive particles.
  • a coverage ratio X2 (%) also referred to as an adhesion ratio X2 (%)
  • the residual rate of the insulating particles is a value represented by the following formula (1) from the coverage X1 and the coverage X2.
  • Residual ratio of insulating particles (coverage ratio X2 after ultrasonic treatment / coverage ratio X1 before ultrasonic treatment) ⁇ 100 (1)
  • the coverage of the insulating particles is preferably 40% or more.
  • the said coverage shows the area of the part coat
  • the coverage is preferably 90% or less, more preferably 80% or less, and most preferably 70% or less.
  • the coverage of the insulating particles is 70% or less, the insulating particles can be sufficiently eliminated without applying heat and pressure more than necessary when the electrodes are connected.
  • the coverage may exceed 45%, may exceed 50%, may exceed 55%, and may exceed 60%.
  • the insulating particles 3 are detached from the surfaces of the conductive particles 2, 22, 42. It becomes difficult to separate. For example, when the conductive particles 1, 21, 41 with insulating particles are added to the binder resin and kneaded, the insulating particles 3 are not easily detached from the surfaces of the conductive particles 2, 22, 42. For this reason, when the conductive particles 1, 21, 41 with insulating particles are used for the connection between the electrodes, the insulating particles 3 exist between the adjacent conductive particles 2, 22, 42. It is difficult to electrically connect adjacent electrodes that should not be connected. Therefore, when the electrodes are connected using the conductive particles with insulating particles 1, 21, 41, the conduction reliability can be improved.
  • the conductive particles with insulating particles have a layer formed of a polymer compound using a polymer compound or a compound that becomes a polymer compound so as to cover at least a part of the surface of the insulating particle body. It is preferably obtained through a step of forming and obtaining insulating particles and a step of attaching the insulating particles to the surface of the conductive particles having at least the surface of the conductive layer to obtain conductive particles with insulating particles.
  • the variation coefficient of the particle diameter of the conductive particles with insulating particles is preferably 8% or less, more preferably 5% or less.
  • CV value ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of conductive particles with insulating particles Dn: Average value of particle diameter of conductive particles with insulating particles
  • the compression elastic modulus of the conductive particles with insulating particles is preferably 1 GPa or more, more preferably 2 GPa or more, preferably 7 GPa or less, and more preferably 5 GPa or less.
  • the compression recovery rate of the conductive particles with insulating particles is preferably 20% or more, more preferably 30% or more, preferably 60% or less, more preferably 50% or less.
  • the compressive elastic modulus (10% K value) of the conductive particles with insulating particles at 20 ° C. is measured as follows.
  • the conductive particles with insulating particles are compressed under the conditions of a compression rate of 0.33 mN / sec and a maximum test load of 20 mN on the end face of a diamond cylinder having a diameter of 50 ⁇ m.
  • the load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • the above-described compression elastic modulus universally and quantitatively represents the hardness of the conductive particles with insulating particles.
  • the hardness of the conductive particles with insulating particles can be expressed quantitatively and uniquely.
  • the compression recovery rate can be measured as follows.
  • ⁇ Sprinkle conductive particles with insulating particles on the sample stage With respect to one dispersed conductive particle with insulating particles, a load is applied to the reversal load value (5.00 mN) in the center direction of the conductive particles with insulating particles using a micro compression tester. Thereafter, the load is gradually reduced to the load value for origin (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation.
  • the load speed is 0.33 mN / sec.
  • the micro compression tester for example, “Fischer Scope H-100” manufactured by Fischer is used.
  • Compression recovery rate (%) [(L1-L2) / L1] ⁇ 100
  • L1 Compressive displacement from the load value for the origin to the reverse load value when applying the load
  • L2 Compressive displacement from the reverse load value to the load value for the origin when releasing the load
  • Conductive particles with insulating particles can be obtained by attaching the insulating particles to the surface of conductive particles having at least a conductive layer on the surface.
  • the conductive particles only need to have a conductive layer on at least the surface.
  • the conductive particles may be conductive particles having base material particles and a conductive layer provided on the surface of the base material particles, or may be metal particles whose entirety is a conductive layer.
  • the base particles and the conductive material provided on the surface of the base particles are used. Conductive particles having a layer are preferred.
  • Examples of the substrate particles include resin particles, inorganic particles, organic-inorganic hybrid particles, and metal particles.
  • the base material particles are preferably resin particles formed of a resin.
  • the conductive particles with insulating particles are compressed by placing the conductive particles with insulating particles between the electrodes and then pressing them.
  • the substrate particles are resin particles, the conductive particles are easily deformed during the above-described pressure bonding, and the contact area between the conductive particles and the electrode can be increased. For this reason, the conduction
  • the resin for forming the resin particles examples include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, and polyphenylene.
  • examples thereof include oxides, polyacetals, polyimides, polyamideimides, polyetheretherketones, and polyethersulfones. Since the hardness of the base particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • Examples of the inorganic substance for forming the inorganic particles include silica and carbon black.
  • Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the metal for forming the conductive layer is not particularly limited. Furthermore, when the conductive particles are metal particles that are conductive layers as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, copper, palladium, platinum, palladium, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, and silicon. And alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable.
  • ITO tin-doped indium oxide
  • hydroxyl groups often exist on the surface of the conductive layer due to oxidation.
  • hydroxyl groups are present on the surface of a conductive layer formed of nickel by oxidation.
  • Such a conductive layer having a hydroxyl group is easily chemically bonded to the insulating particles, for example, chemically bonded to the insulating particles having a hydroxyl group.
  • the conductive layer is formed of one layer.
  • the conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers.
  • the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable.
  • the connection resistance between the electrodes can be further reduced.
  • the corrosion resistance can be further enhanced.
  • the method for forming the conductive layer on the surface of the substrate particles is not particularly limited.
  • a method for forming the conductive layer for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc.
  • the method by electroless plating is preferable.
  • the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
  • the average particle diameter of the conductive particles is preferably in the range of 0.5 to 100 ⁇ m.
  • the average particle diameter of the conductive particles is more preferably 1 ⁇ m or more, and more preferably 20 ⁇ m or less.
  • the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles with insulating particles.
  • the “average particle size” of the conductive particles indicates a number average particle size.
  • the average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness of the conductive layer is preferably in the range of 0.005 to 1 ⁇ m.
  • the thickness of the conductive layer is more preferably 0.01 ⁇ m or more, and more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently bonded at the time of connection between the electrodes. Can be deformed.
  • the thickness of the outermost conductive layer is in the range of 0.001 to 0.5 ⁇ m, particularly when the outermost layer is a gold layer. It is preferable that A more preferable lower limit of the thickness of the outermost conductive layer is 0.01 ⁇ m, and a more preferable upper limit is 0.1 ⁇ m.
  • the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer can be made uniform, corrosion resistance can be sufficiently enhanced, and the connection resistance between the electrodes can be increased. It can be made sufficiently low. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
  • the thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles preferably have protrusions on the surface of the conductive layer, and the protrusions are preferably plural.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles.
  • the oxide film can be effectively eliminated by the protrusions by disposing the conductive particles between the electrodes and pressing them. For this reason, an electrode and a conductive layer can be contacted still more reliably and the connection resistance between electrodes can be made low.
  • the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction
  • a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the base particles, and by electroless plating on the surface of the base particles examples include forming a conductive layer, then attaching a core substance, and further forming a conductive layer by electroless plating.
  • a conductive substance that becomes the core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle, for example, a fan.
  • the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
  • the conductive particles may have a first conductive layer on the surface of the base particle, and may have a second conductive layer on the first conductive layer.
  • a core substance may be attached to the surface of the first conductive layer.
  • the core material is preferably covered with a second conductive layer.
  • the thickness of the first conductive layer is preferably in the range of 0.05 to 0.5 ⁇ m.
  • the conductive particles form a first conductive layer on the surface of the base particle, and then a core material is deposited on the surface of the first conductive layer, and then the first conductive layer and the core material are formed. It is preferably obtained by forming a second conductive layer on the surface.
  • Examples of the conductive substance constituting the core substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene. Among them, metal is preferable because conductivity can be increased.
  • the metal examples include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead.
  • examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, and tin-lead-silver alloys. Of these, nickel, copper, silver or gold is preferable.
  • the metal constituting the core material may be the same as or different from the metal constituting the conductive layer.
  • the shape of the core substance is not particularly limited.
  • the shape of the core substance is preferably a lump.
  • Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
  • the insulating particles are particles having insulating properties. Insulating particles are smaller than conductive particles. When the electrodes are connected using conductive particles with insulating particles, the insulating particles can prevent a short circuit between adjacent electrodes. Specifically, when the conductive particles with a plurality of insulating particles are in contact with each other, there are insulating particles between the conductive particles in the conductive particles with a plurality of insulating particles. Short circuit between the electrodes adjacent in the lateral direction can be prevented. Note that the insulating particles between the conductive layer and the electrode can be easily excluded by pressurizing the conductive particles with insulating particles with the two electrodes when connecting the electrodes. In the case where protrusions are provided on the surface of the conductive particles, the insulating particles between the conductive layer and the electrode can be more easily eliminated. Furthermore, since the protruding portion facilitates contact with the electrode, connection reliability is improved.
  • Examples of the material constituting the insulating particles include an insulating resin and an insulating inorganic substance.
  • the insulating resin the said resin quoted as resin for forming the resin particle which can be used as a base particle is mentioned.
  • As said insulating inorganic substance the said inorganic substance quoted as an inorganic substance for forming the inorganic particle which can be used as a base particle is mentioned.
  • the insulating resin that is the material of the insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, heat Examples thereof include curable resins and water-soluble resins.
  • thermoplastic resin examples include vinyl polymers and vinyl copolymers.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, etc.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
  • the insulating particle body is preferably inorganic particles.
  • the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, and silica particles.
  • the insulating particle body is preferably silica particles.
  • the silica particles include pulverized silica and spherical silica, and spherical silica is preferably used.
  • the silica particles preferably have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface, and more preferably have a hydroxyl group.
  • Inorganic particles are relatively hard, especially silica particles are relatively hard.
  • conductive particles with insulating particles using such hard insulating particles as insulating particles are added to a binder resin and kneaded, the insulating particles are hard, so that the insulating particles are removed from the surface of the conductive particles. There is a tendency to detach easily.
  • the conductive particles with insulating particles according to the present invention are used, since the insulating particles have a layer formed of the above polymer compound, even if a hard insulating particle body is used, During kneading, it is possible to prevent the insulating particles having a hard insulating particle body from being detached.
  • the layer formed of the above polymer compound serves as a flexible layer, for example.
  • the polymer compound in the layer formed of the polymer compound or the compound that becomes the polymer compound by polymerization or the like is preferably a compound having a polymerizable reactive functional group.
  • the polymerizable reactive functional group is preferably an unsaturated double bond.
  • a compound having an unsaturated double bond (a compound that becomes a polymer compound) may be subjected to a polymerization reaction on the surface of the insulating particle main body, and the reactive functional group on the surface of the polymer compound and the insulating particle main body. And may be reacted.
  • the polymer compound or the compound to be the polymer compound include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group.
  • the polymer compound or the compound to be the polymer compound is (meth) It preferably has at least one reactive functional group selected from the group consisting of an acryloyl group, a glycidyl group and a vinyl group.
  • the polymer compound or the compound to be the polymer compound preferably has a (meth) acryloyl group.
  • Specific examples of the compound having the (meth) acryloyl group include methacrylic acid, hydroxyethyl acrylate, and ethylene glycol dimethacrylate.
  • epoxy compound examples include bisphenol A type epoxy resin and resorcinol glycidyl ether.
  • Specific examples of the compound having a vinyl group include styrene and vinyl acetate.
  • the weight average molecular weight of the polymer compound is preferably 1000 or more.
  • the upper limit of the weight average molecular weight of the polymer compound is not particularly limited, but the polymer compound preferably has a weight average molecular weight of 20000 or less.
  • the weight average molecular weight indicates a value in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the method for forming the layer formed of the polymer compound on the surface of the insulating particle body is not particularly limited. Using a polymer compound or a compound that becomes a polymer compound so as to cover at least a part of the surface of the insulating particle main body, a layer formed of the polymer compound is formed to obtain insulating particles. preferable.
  • a method for forming a layer formed of the polymer compound a compound having a reactive double bond and a hydroxyl group is formed on an insulating particle body having a reactive functional group such as a vinyl group on the surface. And a method of polymerizing on the surface. However, methods other than this forming method may be used.
  • the insulating particle body and the layer are chemically bonded.
  • This chemical bond includes a covalent bond, a hydrogen bond, an ionic bond, a coordination bond, and the like. Of these, a covalent bond is preferable, and a chemical bond using a reactive functional group is preferable.
  • Examples of the reactive functional group that forms the chemical bond include a vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, and thiol group.
  • a vinyl group and a (meth) acryloyl group are preferable.
  • the insulating particle body having a reactive functional group on the surface is preferable.
  • the insulating particles subjected to surface treatment using a compound having a reactive functional group as the insulating particle main body is preferable to use a particle body.
  • Examples of the reactive functional group on the surface of the insulating particle body include a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group.
  • the reactive functional group on the surface of the insulating particle body is at least one reactive functional group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. Is preferred.
  • Examples of the compound (surface treatment substance) for introducing the reactive functional group onto the surface of the insulating particle body include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group. It is done.
  • a silane compound having a vinyl group As a compound (surface treatment substance) for introducing a vinyl group as the reactive functional group onto the surface of the insulating particle body, a silane compound having a vinyl group, a titanium compound having a vinyl group, and a vinyl group are used.
  • the phosphoric acid compound etc. which have are mentioned.
  • the surface treatment substance is preferably a silane compound having a vinyl group.
  • Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
  • a silane compound having a (meth) acryloyl group and a (meth) acryloyl group And a phosphoric acid compound having a (meth) acryloyl group As a compound (surface treatment substance) for introducing the (meth) acryloyl group which is the reactive functional group onto the surface of the insulating particle main body, a silane compound having a (meth) acryloyl group and a (meth) acryloyl group And a phosphoric acid compound having a (meth) acryloyl group.
  • the surface treatment substance is also preferably a silane compound having a (meth) acryloyl group.
  • silane compound having a (meth) acryloyl group examples include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
  • the insulating particles are not formed by friction by mixing using the insulating particle body and the polymer compound or the compound to be the polymer compound. Moreover, it is preferable that the surface of the insulating particle body is not covered with the layer using a hybridization method.
  • the layer is easily detached from the surface of the insulating particle body.
  • the fragments of the layer formed during kneading easily adhere to the surface of the insulating particles. For this reason, a layer or a fragment of the layer detached on the surface of the conductive layer of the conductive particles with insulating particles tends to adhere, and the conduction reliability in the connection structure tends to decrease.
  • the insulating particles are not formed by friction due to mixing. It is preferable not to use a hybridization method.
  • the amount of the polymer compound or the compound that becomes the polymer is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 100 parts by weight of the insulating particle body. Is 500 parts by weight or less, more preferably 300 parts by weight or less.
  • a favorable layer can be formed as the usage-amount of the said high molecular compound is more than the said minimum and below the said upper limit.
  • Examples of specific production conditions for the layer formed of the polymer compound include the following production conditions.
  • a solvent such as water
  • 1 to 3 parts by weight of an insulating particle body having a reactive functional group on the surface and 0.1 to 20 parts by weight of a compound having a reactive double bond and a hydroxyl group
  • 0.01 to 5 parts by weight of a crosslinking agent, 0.1 to 5 parts by weight of a dispersant, and 0.1 to 5 parts by weight of a thermal polymerization initiator are added.
  • the temperature is raised to a temperature higher than the reaction temperature of the thermal polymerization initiator in an oil bath, polymerization is started, and the state is maintained for 5 hours or longer to react. Thereafter, unreacted compounds are removed using a centrifuge to obtain insulating particles in which the surface of the insulating particle body is covered with the layer.
  • Examples of the compound having a hydroxyl group for introducing a hydroxyl group on the surface of the insulating particles include a P—OH group-containing compound and a Si—OH group-containing compound.
  • P—OH group-containing compound examples include acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate. Only one type of P—OH group-containing compound may be used, or two or more types may be used in combination.
  • Si—OH group-containing compound examples include vinyltrihydroxysilane and 3-methacryloxypropyltrihydroxysilane.
  • said Si-OH group containing compound only 1 type may be used and 2 or more types may be used together.
  • insulating particles having a hydroxyl group on the surface can be obtained by a treatment using a silane coupling agent.
  • silane coupling agent include hydroxytrimethoxysilane.
  • the particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles with insulating particles, and the like.
  • the average particle diameter of the insulating particles is preferably in the range of 0.005 to 1 ⁇ m.
  • the average particle diameter of the insulating particles is more preferably 0.01 ⁇ m or more, and more preferably 0.5 ⁇ m or less.
  • the average particle diameter of the insulating particles is equal to or more than the above lower limit, the conductive particles in the plurality of conductive particles with insulating particles are in contact with each other when the conductive particles with insulating particles are dispersed in the binder resin. It becomes difficult.
  • the average particle diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, There is no need to heat to high temperatures.
  • the “average particle size” of the insulating particles indicates the number average particle size.
  • the average particle size of the insulating particles is determined using a particle size distribution measuring device or the like.
  • the average particle size of the insulating particles is preferably 1/3 or less of the average particle size of the conductive particles, and more preferably 1/5 or less.
  • the average particle diameter of the insulating particles is preferably 1/1000 or more of the average particle diameter of the conductive particles, more preferably 1/100 or more, and most preferably 1/10 or more.
  • the average particle diameter of the insulating particles is 1/5 or less of the average particle diameter of the conductive particles, for example, when manufacturing the conductive particles with insulating particles, the insulating particles are further separated on the surface of the conductive particles. It can be attached efficiently.
  • the average particle diameter of the insulating particles is preferably 0.5 times or more, more preferably 1 or more times the thickness of the conductive layer in the conductive particles.
  • the average particle size of the insulating particles is preferably 20 times or less, more preferably 10 times or less the thickness of the conductive layer in the conductive particles.
  • the average particle size of the insulating particles is preferably at least 0.5 times the average particle size of the core substance, more preferably at least 1 time.
  • the average particle size of the insulating particles is preferably 20 times or less, more preferably 10 times or less, the average particle size of the core substance.
  • the “average particle size” of the core material indicates the number average particle size.
  • the average particle size of the core substance is determined using a particle size distribution measuring device or the like.
  • the elastic modulus of the insulating particle main body is preferably 1/1 or less, more preferably 1/2 or less, of the elastic modulus of the conductive layer in the conductive particles.
  • the elastic modulus of the insulating particle body is preferably 1/100 or more, and more preferably 1/50 or more, of the elastic modulus of the conductive layer in the conductive particles.
  • the above elastic modulus is measured according to JIS K7208 using a precision universal testing machine.
  • the sphericity of the insulating particles is preferably 50 nm or less.
  • the coefficient of variation (CV value) of the insulating particles is preferably 1% or more, preferably 10% or less, more preferably 8% or less.
  • Two or more kinds of insulating particles having different particle diameters may be used.
  • the average particle size of the small insulating particles is preferably 1/2 or less of the average particle size of the large insulating particles.
  • the number of small insulating particles is preferably 1 ⁇ 4 or less of the number of large insulating particles.
  • the layer formed of the polymer compound preferably has higher flexibility than the insulating particle body.
  • a layer formed of a polymer compound formed of an organic compound has higher flexibility than inorganic particles.
  • the flexibility between the layer and the insulating particle body can be evaluated, for example, by measuring the compression recovery rate. Further, by measuring the compression recovery rate of the insulating particles rather than the compression recovery rate of the insulating particle main body and the compression recovery rate of the layer, and calculating the difference from the value of the compression recovery rate of the insulating particles, the layer and The flexibility with the insulating particle body can be determined.
  • the compression recovery rate can be calculated, for example, by calculating the ratio of the amount of change in particle size when the weight is released to the amount of change in particle size when a constant load is applied to the insulating particles.
  • insulating particles whose surfaces are coated with a layer formed of a polymer compound are compressed with a force of 1 N at 20 ° C. using a micro compression tester (manufactured by Shimadzu Corporation), and then subjected to weighting.
  • the compression recovery rate can be measured by measuring the deformation of the particles when the is opened.
  • the insulating particles were put into a 1 cm 3 (inner diameter 1 cm ⁇ width 1 cm ⁇ height 1 cm) stainless steel cup so as to be closely packed, and then 0.90 cm 2 (length 0.95 cm ⁇ width 0.3 mm).
  • a 95 cm) stainless steel lid may be installed so as to be movable, a compression test may be performed from the top of the lid, and the compression recovery rate may be measured from the movement range of the lid.
  • Examples of the method for attaching the insulating particles to the surfaces of the conductive particles and the conductive layer include chemical methods and physical or mechanical methods.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition.
  • the hybridization method tends to cause the detachment of the insulating particles
  • the method of attaching the insulating particles to the surfaces of the conductive particles and the conductive layer is a method other than the hybridization method. Is preferred. Among these, a method of attaching the insulating particles to the surface of the conductive layer through a chemical bond is preferable because the insulating particles are not easily detached.
  • the insulating particles are preferably not attached by a hybridization method. It is preferable that the polymer compound is not attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles. Such conductive particles with insulating particles can be obtained without using a hybridization method.
  • the portions 102 b other than the portions 102 a on the surface of the conductive particles 102 are attached to the portions 102 b.
  • the polymer compound 104 adheres. This is because in the hybridization method, a compressive shear force is applied, the insulating particles are repeatedly attached and detached, and the insulating particles are gradually attached.
  • the layer formed of the polymer compound of the insulating particles is peeled off by the compressive shearing force, and the peeled polymer compound is attached to a portion other than the portion where the insulating particles are attached on the surface of the conductive particles.
  • the polymer compound adhering to the portion other than the portion to which the insulating particles adhere on the surface of the conductive particles increases the volume resistivity of the conductive particles or decreases the connection resistance between the electrodes.
  • the conductive particles are put in a solvent such as water, and the insulating particles are gradually added while stirring. After sufficiently stirring, the conductive particles with insulating particles are separated and dried by a vacuum dryer or the like to obtain conductive particles with insulating particles.
  • the conductive layer preferably has a reactive functional group capable of reacting with insulating particles on the surface.
  • the insulating particles preferably have a reactive functional group capable of reacting with the conductive layer on the surface. These reactive functional groups make it difficult for the insulating particles to be unintentionally detached from the surface of the conductive particles.
  • an appropriate group is selected in consideration of reactivity. Examples of the reactive functional group include a hydroxyl group, a vinyl group, and an amino group. Since the reactivity is excellent, the reactive functional group is preferably a hydroxyl group.
  • the conductive particles preferably have a hydroxyl group on the surface.
  • the insulating particles preferably have a hydroxyl group on the surface.
  • the anisotropic conductive material according to the present invention includes the conductive particles with insulating particles of the present invention and a binder resin.
  • the insulating particles are not easily detached from the surface of the conductive particles when the conductive particles with insulating particles are dispersed in the binder resin.
  • the binder resin is not particularly limited. In general, an insulating resin is used as the binder resin.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the anisotropic conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, and an antioxidant.
  • various additives such as a heat stabilizer, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
  • the method for dispersing the conductive particles with insulating particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used.
  • Examples of a method for dispersing conductive particles with insulating particles in a binder resin include, for example, a method in which conductive particles with insulating particles are added to a binder resin and then kneaded and dispersed with a planetary mixer or the like.
  • Conductive particles with particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, kneaded and dispersed with a planetary mixer, etc., and the binder resin is water or organic Examples include a method of adding conductive particles with insulating particles after diluting with a solvent or the like, and kneading and dispersing with a planetary mixer or the like.
  • the anisotropic conductive material according to the present invention can be used as an anisotropic conductive paste or an anisotropic conductive film.
  • the anisotropic conductive material according to the present invention is used as a film-like adhesive such as an anisotropic conductive film
  • the film-like adhesive including the conductive particles with insulating particles is used as the insulating particles.
  • a film-like adhesive that does not contain attached conductive particles or conductive particles may be laminated.
  • the anisotropic conductive material according to the present invention is preferably an anisotropic conductive paste.
  • An anisotropic conductive paste is excellent in handleability and circuit fillability.
  • a relatively large force is imparted to the conductive particles with insulating particles, but by using the conductive particles with insulating particles of the present invention, insulation from the surface of the conductive particles is achieved. It is possible to suppress the separation of the particles.
  • the content of the binder resin is preferably in the range of 10 to 99.99% by weight.
  • the content of the binder resin is more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and more preferably 99.9% by weight or more.
  • the conductive particles with insulating particles can be efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the anisotropic conductive material Can be further increased.
  • the content of the conductive particles with insulating particles is preferably in the range of 0.01 to 40% by weight.
  • the content of the conductive particles with the upper insulating particles is more preferably 0.1% by weight or more, more preferably 20% by weight or less, and still more preferably 15% by weight or less.
  • the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be further enhanced.
  • connection structure By connecting the connection target members using the conductive particles with insulating particles of the present invention or using an anisotropic conductive material containing the conductive particles with insulating particles and a binder resin, a connection structure Can be obtained.
  • the connection structure includes a first connection target member, a second connection target member, and a connection portion that electrically connects the first and second connection target members.
  • the connection structure is preferably formed of conductive particles with insulating particles or formed of an anisotropic conductive material including the conductive particles with insulating particles and a binder resin.
  • the connecting portion itself is formed of conductive particles with insulating particles. That is, the first and second connection target members are electrically connected by the conductive particles in the conductive particles with insulating particles.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 1 with insulating particles shown in FIG.
  • connection part 54 is formed of an anisotropic conductive material including the conductive particles 1 with insulating particles and a binder resin.
  • the conductive particles 1 with insulating particles are schematically shown for convenience of illustration. Instead of the conductive particles 1 with insulating particles, conductive particles 21 and 41 with insulating particles may be used.
  • the first connection object member 52 has a plurality of electrodes 52b on the upper surface 52a.
  • the second connection target member 53 has a plurality of electrodes 53b on the lower surface 53a.
  • the electrode 52b and the electrode 53b are electrically connected by one or more conductive particles 1 with insulating particles. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1 with insulating particles.
  • connection structure is not particularly limited.
  • the anisotropic conductive material is disposed between a first connection target member and a second connection target member to obtain a laminate, and then the laminate is heated and
  • the method of pressurizing is mentioned.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the insulating particles 3 existing between the conductive particles 2 and the electrodes 52b and 53b can be eliminated.
  • the insulating particles 3 existing between the conductive particles 2 and the electrodes 52b and 53b are melted or deformed, so that the surface of the conductive particles 2 Is partially exposed.
  • a large force is applied during the heating and pressurization, so that some of the insulating particles 3 are peeled off from the surface of the conductive particles 2 and the surface of the conductive particles 2 is partially exposed.
  • the portion where the surface of the conductive particle 2 is exposed contacts the electrodes 52b and 53b, whereby the electrodes 52b and 53b can be electrically connected via the conductive particle 2.
  • connection target member examples include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as circuit boards such as printed boards, flexible printed boards, and glass boards.
  • the anisotropic conductive material is in a paste form, and is preferably applied on the connection target member in a paste state.
  • the conductive particles with insulating particles and the anisotropic conductive material are preferably used for connection of a connection target member that is an electronic component.
  • the conductive particles with insulating particles according to the present invention are particularly suitable for COG having a glass substrate and a semiconductor chip as connection target members, or FOG having a glass substrate and a flexible printed circuit board (FPC) as connection target members. Is done.
  • the conductive particles with insulating particles according to the present invention may be used for COG or FOG.
  • the first and second connection target members are preferably a glass substrate and a semiconductor chip, or a glass substrate and a flexible printed board.
  • the first and second connection target members may be a glass substrate and a semiconductor chip, or may be a glass substrate and a flexible printed board.
  • bumps are provided on a semiconductor chip used in a COG having a glass substrate and a semiconductor chip as connection target members.
  • the bump size is preferably an electrode area of 1000 ⁇ m 2 or more and 10,000 ⁇ m 2 or less.
  • the electrode space in the semiconductor chip provided with the bump (electrode) is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 10 ⁇ m or less.
  • the conductive particles with insulating particles according to the present invention are preferably used.
  • the electrode space is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the metal oxide include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Conductive particles: Conductive particles (average particle diameter: 3.01 ⁇ m, conductive layer thickness: 0.2 ⁇ m) having a nickel plating layer (conductive layer) formed on the surface of divinylbenzene resin particles were prepared.
  • silica particles average particle size 200 nm
  • insulating particles having vinyl groups as reactive functional groups on the surface were obtained as insulating particle bodies.
  • 10 parts by weight of silica particles were dispersed in 400 ml of a liquid in which water and ethanol were mixed at a weight ratio of 1: 9 using a three-one motor to obtain a first dispersion.
  • 0.1 part by weight of vinyltriethoxysilane was dispersed in 100 ml of a mixture of water and ethanol in a weight ratio of 1: 9 to obtain a second dispersion.
  • the second dispersion was dropped into the first dispersion over 10 minutes to obtain a mixed solution.
  • the resulting mixture was stirred for 30 minutes.
  • the mixed solution was filtered, dried at 100 ° C. for 2 hours, and then sieved to obtain an insulating particle body.
  • the mixture was cooled, solid-liquid separation was performed twice with a centrifuge, excess monomers were removed by washing, and insulating particles whose entire surface was coated with the polymer compound were obtained. Next, the obtained insulating particles were dispersed in 30 mL of pure water to obtain a dispersion of insulating particles.
  • the average particle diameter of the insulating particles coated with the polymer compound was 324 nm.
  • a 1 L separable flask was charged with 250 mL of pure water, 50 mL of ethanol, and 15 parts by weight of the conductive particles, and stirred sufficiently to obtain a liquid containing conductive particles.
  • the dispersion liquid of the insulating particles was dropped over 10 minutes while applying ultrasonic waves, and then heated to 40 ° C. and stirred for 1 hour. Then, it filtered and it was made to dry at 100 degreeC with a vacuum dryer for 8 hours, and the electroconductive particle with an insulating particle was obtained.
  • Example 2 When obtaining insulating particles whose entire surface is coated with a polymer compound, the compound that becomes the polymer compound was changed to 2.5 parts by weight of methacrylic acid and 1.2 parts by weight of divinylbenzene. In the same manner as in Example 1, conductive particles with insulating particles were obtained.
  • the average particle diameter of the insulating particles coated with the polymer compound in the state of dispersion of the insulating particles was 335 nm.
  • Example 3 The surface of the silica particles was coated with methacryloxypropyltriethoxysilane to obtain insulating particles having methacryloyl groups on the surface as the insulating particle main body, and the entire surface was made of a polymer compound using the insulating particle main body.
  • Example 1 except that when the coated insulating particles were obtained, the compound to be a polymer compound was changed to 2.2 parts by weight of vinyl acetate and 1.0 part by weight of N, N-methylenebisacrylamide. In the same manner, conductive particles with insulating particles were obtained.
  • the insulating particle body was obtained in the same manner as in Example 1 except that 10 parts by weight of silica particles and 0.1 part by weight of methacryloxypropyltriethoxysilane were used when obtaining the insulating particle body. It was.
  • the average particle diameter of the insulating particles covered with the polymer compound in the state of the dispersion of the insulating particles was 326 nm.
  • Example 4 Conductivity in which nickel powder (100 nm) is attached as a core material to the surface of divinylbenzene resin particles, and a nickel plating layer (conductive layer) is formed on the surface of divinylbenzene particles to which nickel powder is attached Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that particles (average particle size: 3.03 ⁇ m, conductive layer thickness: 0.21 ⁇ m) were used.
  • Example 5 When obtaining insulating particles whose entire surface is coated with the polymer compound, the compound to be the polymer compound was changed to 0.4 parts by weight of methacrylic acid and 0.05 parts by weight of ethylene glycol dimethacrylate. Except that, conductive particles with insulating particles were obtained in the same manner as Example 1.
  • the average particle diameter of the insulating particles coated with the polymer compound in the state of dispersion of the insulating particles was 248 nm.
  • the insulating particles when the insulating particles are attached to the surface of the conductive particles, the insulating particles (not coated with the polymer compound) having the vinyl group on the surface are used as pure water as a dispersion of the insulating particles.
  • a dispersion liquid dispersed in 30 mL was used.
  • Example 6 Using the physical / mechanical hybridization method, the insulating particles produced in Example 1 were attached to the conductive particles prepared in Example 1 to obtain conductive particles with insulating particles.
  • Insulating particles are provided in the same manner as in Example 1 except that polymer fine particles (average particle size 240 nm) (not coated with a polymer compound) made of a polymer of divinylbenzene are used as the insulating particles. Conductive particles were obtained.
  • conductive particles with insulating particles 3 parts by weight was added to 100 parts by weight of ethanol to obtain a conductive particle-containing liquid with insulating particles.
  • This conductive particle-containing liquid with insulating particles was subjected to ultrasonic treatment while being stirred for 5 minutes at 20 ° C. and 38 kHz with a 400 W ultrasonic cleaner.
  • 100 conductive particles with insulating particles are observed by observation with an SEM, and the portion of the conductive particles with insulating particles covered by the insulating particles occupying the entire surface area of the conductive particles.
  • the coverage X2 which is the projected area, was determined.
  • the remaining rate of the insulating particles at 38 kHz was obtained from the following formula (1) from the coverage X1 and the coverage X2.
  • Residual ratio of insulating particles (coverage ratio X2 after ultrasonic treatment / coverage ratio X1 before ultrasonic treatment) ⁇ 100 (1)
  • the residual rate of the insulating particles at 40 kHz was obtained in the same manner except that the sonication conditions were changed from 38 kHz to 40 kHz.
  • connection structure 1 (COG1)
  • the conductive particles with insulating particles of Examples and Comparative Examples were added to “Struct Bond XN-5A” manufactured by Mitsui Chemicals so as to have a content of 10% by weight, and dispersed to obtain an anisotropic conductive paste. It was.
  • a transparent glass substrate having an ITO electrode pattern having an L / S of 20 ⁇ m / 20 ⁇ m on the upper surface was prepared.
  • the semiconductor chip which has a copper electrode pattern which L / S is 20 micrometers / 20 micrometers on the lower surface was prepared.
  • the electrode area of the bump of this semiconductor chip was 2000 ⁇ m 2 .
  • the obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other.
  • a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer.
  • COG1 connection structure
  • connection structure (COG1)
  • the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance with a tester. When the resistance exceeded 500 M ⁇ , the result was judged as “O” as no leakage, and when the resistance was 500 M ⁇ or less, the result was judged as “x” as a leakage.
  • connection structure 2 (COG2) A transparent glass substrate having an ITO electrode pattern having an L / S of 30 ⁇ m / 30 ⁇ m on the upper surface was prepared. Moreover, the semiconductor chip which has a copper electrode pattern whose L / S is 30 micrometers / 30 micrometers on the lower surface was prepared. The electrode area of the bump of this semiconductor chip was 3000 ⁇ m 2 . A connection structure (COG2) was obtained in the same manner as in the production of the connection structure (2) except that the connection target members were changed.
  • connection structure 3 The conductive particles with insulating particles of Examples and Comparative Examples were added to “Struct Bond XN-5A” manufactured by Mitsui Chemicals so that the content was 5% by weight, and dispersed to obtain an anisotropic conductive paste. It was.
  • a transparent glass substrate having an ITO electrode pattern with an L / S of 30 ⁇ m / 30 ⁇ m on the upper surface was prepared.
  • the flexible printed circuit board which has a copper electrode pattern which L / S is 30 micrometers / 30 micrometers on the lower surface was prepared.
  • the obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 50 ⁇ m to form an anisotropic conductive paste layer.
  • the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
  • the layer formed of the polymer compound is more flexible than the silica particles by measuring the compression recovery rate of the insulating particles by the method described above. Confirmed that it was high.
  • Example 6 since the physical / mechanical hybridization method is used, the portion where the polymer compound is attached to the portion other than the portion where the insulating particles are attached on the surface of the conductive particles. was there. Thus, if the polymer compound is attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles, the conduction reliability may be lowered depending on the case.
  • Conductive particles Conductive particles (average particle diameter: 3.01 ⁇ m, conductive layer thickness: 0.2 ⁇ m) having a nickel plating layer (conductive layer) formed on the surface of divinylbenzene resin particles were prepared.
  • insulating particles The surface of silica particles (average particle size 200 nm) produced using the sol-gel method was coated with vinyltriethoxysilane, and insulating particles having vinyl groups as reactive functional groups on the surface were obtained as insulating particle bodies. .
  • the mixture was cooled, solid-liquid separation was performed twice with a centrifuge, excess monomers were removed by washing, and insulating particles whose entire surface was coated with the polymer compound were obtained. Next, the obtained insulating particles were dispersed in 30 mL of pure water to obtain a dispersion of insulating particles.
  • a 1 L separable flask was charged with 250 mL of pure water, 50 mL of ethanol, and 15 parts by weight of the conductive particles, and stirred sufficiently to obtain a liquid containing conductive particles.
  • the dispersion liquid of the insulating particles was dropped over 10 minutes while applying ultrasonic waves, and then heated to 40 ° C. and stirred for 1 hour. Then, it filtered and it was made to dry at 100 degreeC with a vacuum dryer for 8 hours, and the electroconductive particle with an insulating particle was obtained.
  • Example 8 When obtaining insulating particles whose entire surface is coated with a polymer compound, the compound that becomes the polymer compound was changed to 0.33 parts by weight of methacrylic acid and 0.05 parts by weight of divinylbenzene. In the same manner as in Example 7, conductive particles with insulating particles were obtained.
  • Example 9 The surface of the silica particles was coated with methacryloxypropyltriethoxysilane to obtain insulating particles having methacryloyl groups on the surface as the insulating particle main body, and the entire surface was made of a polymer compound using the insulating particle main body.
  • Example 7 except that when the coated insulating particles were obtained, the polymer compound was changed to 0.28 parts by weight of vinyl acetate and 0.05 parts by weight of N, N-methylenebisacrylamide. In the same manner, conductive particles with insulating particles were obtained.
  • Example 10 Conductivity in which nickel powder (100 nm) is attached as a core material to the surface of divinylbenzene resin particles, and a nickel plating layer (conductive layer) is formed on the surface of divinylbenzene particles to which nickel powder is attached
  • Conductive particles with insulating particles were obtained in the same manner as in Example 7, except that particles (average particle size: 3.03 ⁇ m, conductive layer thickness: 0.21 ⁇ m) were used.
  • Example 11 Using the physical / mechanical hybridization method, the insulating particles produced in Example 7 were attached to the conductive particles prepared in Example 7 to obtain conductive particles with insulating particles.
  • the layer formed of the polymer compound is more flexible than the silica particles by measuring the compression recovery rate of the insulating particles by the method described above. Confirmed that it was high.
  • Example 11 since the physical / mechanical hybridization method is used, the portion where the polymer compound is attached to the portion other than the portion where the insulating particles are attached on the surface of the conductive particles. was there. Thus, if the polymer compound is attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles, the conduction reliability may be lowered depending on the case.
  • Example 12 In the same manner as in Example 1 except that polymer fine particles (average particle diameter 200 nm) having a hydroxy group on the surface, prepared by polymerizing methacrylic acid and ethylene glycol dimethacrylate instead of silica particles, were used. Conductive particles with insulating particles were obtained.
  • Example 12 The conductive particles with insulating particles obtained in Example 12 were evaluated in the same manner as in Examples 1 to 6 and Comparative Examples 1 and 2.
  • the shell layer formed of the polymer compound is more flexible than the core particles formed of the polymer by measuring the compression recovery rate of the insulating particles. Was confirmed to be high.
  • the Cv values of the conductive particles with insulating particles obtained in Examples 1 to 11 and Comparative Examples 1 and 2 are 4.6, the 10% K value at 20 ° C. is 4650 N / mm 2 , and the compression at 20 ° C. The recovery rate was 51%.

Abstract

Disclosed is a conductive particle with insulative particles attached thereto, wherein the insulative particles do not come off the surface of the conductive particle so easily, and hence, reliability in the conductivity thereof can be increased upon connecting electrodes therewith. The conductive particle (1) with insulative particles attached thereto is provided with: a conductive particle (2) that has a conductive layer (12) on at least the surface thereof; and insulative particles (3) adhered to the surface of the conductive particle (2). The insulative particle (3) is comprised of an insulative particle body (5); and a layer (6) covering at least a portion of the surface of the insulative particle body (5), and which is formed of a high polymer. The insulative particle body (5) and the layer (6) are chemically bonded.

Description

絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体Conductive particles with insulating particles, anisotropic conductive material, and connection structure
 本発明は、例えば、電極間の電気的な接続に用いることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体に関する。 The present invention relates to, for example, conductive particles with insulating particles that can be used for electrical connection between electrodes, and an anisotropic conductive material and a connection structure using the conductive particles with insulating particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。これらの異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。
 上記異方性導電材料は、ICチップとフレキシブルプリント回路基板との接続、及びICチップとITO電極を有する回路基板との接続等に使用されている。例えば、ICチップの電極と回路基板の電極との間に異方性導電材料を配置した後、加熱及び加圧することにより、これらの電極を電気的に接続できる。
Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In these anisotropic conductive materials, conductive particles are dispersed in a binder resin.
The anisotropic conductive material is used for connection between an IC chip and a flexible printed circuit board, connection between an IC chip and a circuit board having an ITO electrode, and the like. For example, after disposing an anisotropic conductive material between the electrode of the IC chip and the electrode of the circuit board, these electrodes can be electrically connected by heating and pressing.
 上記導電性粒子の一例として、下記の特許文献1には、導電性粒子と、該導電性粒子の表面に固定化されており、固着性を有する絶縁性粒子とを有する絶縁性粒子付き導電性粒子が開示されている。上記絶縁性粒子は、硬質粒子と、該硬質粒子の表面を被覆している高分子樹脂層とを有する。ここでは、導電性粒子の表面に絶縁性粒子を固定化させるために、固定化方法として物理的/機械的ハイブリダイゼーション法を用いている。 As an example of the conductive particles, the following Patent Document 1 discloses conductive with insulating particles having conductive particles and insulating particles fixed to the surface of the conductive particles and having adhesive properties. Particles are disclosed. The insulating particles include hard particles and a polymer resin layer covering the surfaces of the hard particles. Here, a physical / mechanical hybridization method is used as an immobilization method in order to immobilize the insulating particles on the surface of the conductive particles.
 下記の特許文献2には、表面の少なくとも一部に極性基を有する導電性粒子と、該導電性粒子の表面の少なくとも一部を被覆しており、かつ絶縁性粒子を含む絶縁性材料とを有する絶縁性粒子付き導電性粒子が開示されている。上記絶縁性材料は、具体的には、上記極性基と吸着可能な高分子電解質と、上記高分子電解質と吸着可能な無機酸化物粒子とを含む。この無機酸化物粒子は、絶縁性粒子である。 Patent Document 2 below includes conductive particles having a polar group on at least a part of a surface, and an insulating material that covers at least a part of the surface of the conductive particles and includes insulating particles. A conductive particle with insulating particles is disclosed. Specifically, the insulating material includes a polymer electrolyte that can adsorb the polar group, and inorganic oxide particles that can adsorb the polymer electrolyte. The inorganic oxide particles are insulating particles.
特表2007-537570号公報Special table 2007-537570 gazette 特開2008-120990号公報JP 2008-120990 A
 特許文献1,2に記載のような従来の絶縁性粒子付き導電性粒子では、絶縁性粒子が導電性粒子の表面から脱離しやすい。例えば、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際に、導電性粒子の表面から、絶縁性粒子が容易に脱離することがある。 In the conventional conductive particles with insulating particles as described in Patent Documents 1 and 2, the insulating particles are easily detached from the surface of the conductive particles. For example, when the conductive particles with insulating particles are dispersed in the binder resin, the insulating particles may be easily detached from the surface of the conductive particles.
 特に、特許文献1に記載のように、導電性粒子の表面に絶縁性粒子を固定化させるために、物理的/機械的ハイブリダイゼーション法を用いた場合には、絶縁性粒子が導電性粒子の表面から脱離しやすい。 In particular, as described in Patent Document 1, when a physical / mechanical hybridization method is used to immobilize the insulating particles on the surface of the conductive particles, the insulating particles are made of conductive particles. Easily detached from the surface.
 本発明の目的は、導電性粒子の表面から絶縁性粒子が脱離し難く、従って電極間の接続に用いられた場合に、導通信頼性を高めることができる絶縁性粒子付き導電性粒子、並びに該絶縁性粒子付き導電性粒子を用いた異方性導電材料及び接続構造体を提供することである。 An object of the present invention is to provide a conductive particle with an insulating particle that can improve the conduction reliability when the insulating particle is difficult to be detached from the surface of the conductive particle. It is to provide an anisotropic conductive material and a connection structure using conductive particles with insulating particles.
 本発明の広い局面によれば、導電層を少なくとも表面に有する導電性粒子と、該導電性粒子の表面に付着している絶縁性粒子とを備え、上記絶縁性粒子が、絶縁性粒子本体と、該絶縁性粒子本体の表面の少なくとも一部の領域を覆っておりかつ高分子化合物により形成された層とを有し、上記絶縁性粒子本体と上記層とが化学的に結合している、絶縁性粒子付き導電性粒子が提供される。 According to a wide aspect of the present invention, it comprises conductive particles having a conductive layer on at least a surface, and insulating particles attached to the surface of the conductive particles, and the insulating particles include an insulating particle body and A layer covering at least a part of the surface of the insulating particle body and formed of a polymer compound, and the insulating particle body and the layer are chemically bonded. Conductive particles with insulating particles are provided.
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、上記絶縁性粒子本体は無機粒子である。 In a specific aspect of the conductive particles with insulating particles according to the present invention, the insulating particle body is an inorganic particle.
 本発明に係る絶縁性粒子付き導電性粒子の他の特定の局面では、上記層は上記絶縁性粒子本体よりも、柔軟性が高い。 In another specific aspect of the conductive particles with insulating particles according to the present invention, the layer is more flexible than the insulating particle body.
 本発明に係る絶縁性粒子付き導電性粒子のさらに他の特定の局面では、反応性官能基を表面に有する上記絶縁性粒子本体と、高分子化合物又は該高分子化合物となる化合物とを用いて、上記絶縁性粒子本体の表面の反応性官能基に、上記高分子化合物により形成された層を化学的に結合させることにより、上記絶縁性粒子本体と上記層とが化学的に結合している上記絶縁性粒子が得られている。 In still another specific aspect of the conductive particles with insulating particles according to the present invention, the insulating particle main body having a reactive functional group on the surface and a polymer compound or a compound that becomes the polymer compound are used. The insulating particle body and the layer are chemically bonded by chemically bonding the layer formed of the polymer compound to the reactive functional group on the surface of the insulating particle body. The insulating particles are obtained.
 本発明に係る絶縁性粒子付き導電性粒子の別の特定の局面では、上記絶縁性粒子は、上記絶縁性粒子本体と高分子化合物又は該高分子化合物となる化合物とを用いた混合による摩擦で形成されていない。 In another specific aspect of the conductive particles with insulating particles according to the present invention, the insulating particles are friction by mixing using the insulating particle body and a polymer compound or a compound that becomes the polymer compound. Not formed.
 本発明に係る絶縁性粒子付き導電性粒子の別の特定の局面では、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び38kHz又は40kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率が60~95%である。 In another specific aspect of the conductive particles with insulating particles according to the present invention, a conductive particle-containing liquid with insulating particles obtained by adding 3 parts by weight of conductive particles with insulating particles to 100 parts by weight of ethanol is 20 ° C. When the ultrasonic treatment is performed for 5 minutes under the condition of 38 kHz or 40 kHz, the residual ratio of the insulating particles obtained by the following formula (1) is 60 to 95%.
 絶縁性粒子の残存率(%)=(超音波処理後の被覆率/超音波処理前の被覆率)×100 ・・・式(1) Residual rate of insulating particles (%) = (coverage after ultrasonic treatment / coverage before ultrasonic treatment) × 100 Equation (1)
 本発明に係る絶縁性粒子付き導電性粒子の別の特定の局面では、上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率が40%以上である。上記被覆率は50%を超えることが好ましい。 In another specific aspect of the conductive particles with insulating particles according to the present invention, the coverage, which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, is 40% or more. . The coverage is preferably over 50%.
 本発明に係る異方性導電材料は、本発明に従って構成された絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。本発明に係る異方性導電材料は、異方性導電ペーストであることが好ましい。 The anisotropic conductive material according to the present invention includes conductive particles with insulating particles configured according to the present invention and a binder resin. The anisotropic conductive material according to the present invention is preferably an anisotropic conductive paste.
 本発明に係る接続構造体は、第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備えており、該接続部が、本発明に従って構成された絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている。 The connection structure according to the present invention includes a first connection target member, a second connection target member, and a connection portion connecting the first and second connection target members, and the connection The portion is formed of conductive particles with insulating particles configured according to the present invention, or is formed of an anisotropic conductive material including the conductive particles with insulating particles and a binder resin.
 本発明に係る絶縁性粒子付き導電性粒子では、導電層を少なくとも表面に有する導電性粒子の表面に付着している絶縁性粒子が、絶縁性粒子本体と、該絶縁性粒子本体の表面の少なくとも一部の領域を覆っておりかつ高分子化合物により形成された層とを有し、上記絶縁性粒子本体と上記層とが化学的に結合しているので、導電性粒子の表面から絶縁性粒子が意図せずに脱離するのを抑制できる。 In the conductive particles with insulating particles according to the present invention, the insulating particles attached to the surface of the conductive particles having at least the conductive layer on the surface are the insulating particle main body and at least the surface of the insulating particle main body. And a layer formed of a polymer compound that covers a part of the region, and since the insulating particle body and the layer are chemically bonded to each other, the insulating particle is exposed from the surface of the conductive particle. Can be prevented from unintentionally desorbing.
 従って、本発明に係る絶縁性粒子付き導電性粒子を用いて、電極間を接続した場合に、複数の絶縁性粒子付き導電性粒子が接触したとしても、隣接する導電性粒子間には絶縁性粒子が存在するので、接続されてはならない隣り合う電極間が電気的に接続され難い。このため、電極間の導通信頼性を高めることができる。 Accordingly, when the conductive particles with insulating particles according to the present invention are used to connect the electrodes, even if a plurality of conductive particles with insulating particles come into contact, the insulating particles are not insulated between adjacent conductive particles. Since particles exist, it is difficult to electrically connect adjacent electrodes that should not be connected. For this reason, the conduction | electrical_connection reliability between electrodes can be improved.
図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 2 is a cross-sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention. 図4は、図1に示す絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す正面断面図である。FIG. 4 is a front cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles shown in FIG. 図5は、被覆率の評価方法を説明するための模式図である。FIG. 5 is a schematic diagram for explaining a method for evaluating the coverage. 図6は、ハイブリダイゼーション法を用いた従来の絶縁性粒子付き導電性粒子を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional conductive particle with insulating particles using a hybridization method.
 以下、図面を参照しつつ、本発明の具体的な実施形態及び実施例を説明することにより本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments and examples of the present invention with reference to the drawings.
 (絶縁性粒子付き導電性粒子本体)
 図1に、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。
(Conductive particle body with insulating particles)
FIG. 1 is a sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
 図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面に付着している複数の絶縁性粒子3とを備える。 1 includes the conductive particles 2 and a plurality of insulating particles 3 attached to the surface of the conductive particles 2.
 絶縁性粒子3は、絶縁性粒子本体5と、絶縁性粒子本体5の表面を覆っており、かつ高分子化合物により形成された層6とを有する。絶縁性粒子3は、絶縁性を有する材料により形成されている。絶縁性粒子本体5と層6とは化学的に結合している。具体的には、絶縁性粒子本体5の表面と層6の内表面とで化学的に結合している。 The insulating particles 3 have an insulating particle body 5 and a layer 6 that covers the surface of the insulating particle body 5 and is formed of a polymer compound. The insulating particles 3 are made of an insulating material. The insulating particle body 5 and the layer 6 are chemically bonded. Specifically, the surface of the insulating particle body 5 and the inner surface of the layer 6 are chemically bonded.
 層6は、絶縁性粒子本体5の表面全体を被覆している。従って、導電性粒子2と絶縁性粒子本体5との間に層6が配置されている。層6は、絶縁性粒子本体の表面の少なくとも一部の領域を覆うように存在していればよく、絶縁性粒子本体の表面全体を覆っていなくてもよい。層6は、導電性粒子と絶縁性粒子本体との間に配置されていることが好ましい。 The layer 6 covers the entire surface of the insulating particle body 5. Therefore, the layer 6 is disposed between the conductive particles 2 and the insulating particle main body 5. The layer 6 may be present so as to cover at least a part of the surface of the insulating particle main body, and may not cover the entire surface of the insulating particle main body. The layer 6 is preferably disposed between the conductive particles and the insulating particle main body.
 導電性粒子2は、基材粒子11と、基材粒子11の表面上に設けられた導電層12とを有する。導電層12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電層12により被覆された被覆粒子である。導電性粒子2は表面に導電層12を有する。 The conductive particles 2 have base material particles 11 and a conductive layer 12 provided on the surface of the base material particles 11. The conductive layer 12 covers the surface of the base particle 11. The conductive particle 2 is a coated particle in which the surface of the base particle 11 is coated with the conductive layer 12. The conductive particles 2 have a conductive layer 12 on the surface.
 図2に、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。 FIG. 2 is a sectional view showing conductive particles with insulating particles according to the second embodiment of the present invention.
 図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、導電性粒子22の表面に付着している複数の絶縁性粒子3とを備える。 2 includes the conductive particles 22 and the plurality of insulating particles 3 attached to the surface of the conductive particles 22.
 導電性粒子22は、基材粒子11と、基材粒子11の表面上に設けられた導電層31とを有する。導電性粒子22は、基材粒子11の表面上に複数の芯物質32を有する。導電層31は、基材粒子11と芯物質32とを被覆している。芯物質32を導電層31が被覆していることにより、導電性粒子22は表面に、複数の突起33を有する。芯物質32により導電層31の表面が隆起されており、複数の突起33が形成されている。 The conductive particles 22 have base material particles 11 and a conductive layer 31 provided on the surface of the base material particles 11. The conductive particles 22 have a plurality of core substances 32 on the surface of the substrate particles 11. The conductive layer 31 covers the base particle 11 and the core substance 32. By covering the core substance 32 with the conductive layer 31, the conductive particles 22 have a plurality of protrusions 33 on the surface. The surface of the conductive layer 31 is raised by the core substance 32, and a plurality of protrusions 33 are formed.
 図3に、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を断面図で示す。 FIG. 3 is a sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
 図3に示す絶縁性粒子付き導電性粒子41は、導電性粒子42と、導電性粒子42の表面に付着している複数の絶縁性粒子3とを備える。 The conductive particle 41 with insulating particles shown in FIG. 3 includes conductive particles 42 and a plurality of insulating particles 3 attached to the surface of the conductive particles 42.
 導電性粒子42は、基材粒子11と、基材粒子11の表面上に設けられた導電層46とを有する。導電層46は、基材粒子11の表面上に設けられた第1の導電層46aと、第1の導電層46aの表面上に設けられた第2の導電層46bとを有する。導電性粒子42は、第1の導電層46aの表面上に複数の芯物質47を有する。第2の導電層46bは、第1の導電層46aと芯物質47とを被覆している。基材粒子11と芯物質47とは間隔を隔てて配置されている。基材粒子11と芯物質47との間には、第1の導電層46aが存在する。芯物質47を第2の導電層46bが被覆していることにより、導電性粒子42は表面に、複数の突起48を有する。芯物質47により導電層46及び第2の導電層46bの表面が隆起されており、複数の突起48が形成されている。 The conductive particles 42 have base material particles 11 and a conductive layer 46 provided on the surface of the base material particles 11. The conductive layer 46 includes a first conductive layer 46a provided on the surface of the base particle 11 and a second conductive layer 46b provided on the surface of the first conductive layer 46a. The conductive particles 42 have a plurality of core substances 47 on the surface of the first conductive layer 46a. The second conductive layer 46 b covers the first conductive layer 46 a and the core substance 47. The substrate particles 11 and the core substance 47 are arranged with a space therebetween. A first conductive layer 46 a exists between the base particle 11 and the core substance 47. By covering the core substance 47 with the second conductive layer 46b, the conductive particles 42 have a plurality of protrusions 48 on the surface. The surfaces of the conductive layer 46 and the second conductive layer 46b are raised by the core material 47, and a plurality of protrusions 48 are formed.
 絶縁性粒子付き導電性粒子1,21,41では、絶縁性粒子3は、絶縁性粒子本体5と、絶縁性粒子本体5の表面を覆っておりかつ高分子化合物により形成された層6とを有し、更に絶縁性粒子本体5と層6とは化学的に結合している。これによって、絶縁性粒子付き導電性粒子1,21,41をバインダー樹脂中に添加し、混練する際に、導電性粒子2,22,42の表面から絶縁性粒子3が脱離し難くなる。さらに、複数の絶縁性粒子付き導電性粒子が接触したときに、導電性粒子2,22,42の表面から絶縁性粒子が脱離し難くなる。この結果、絶縁性粒子付き導電性粒子1,21,41を用いて電極間を接続したときに、接続されてはならない隣り合う電極間でリークが生じ難くなる。また、絶縁性粒子付き導電性粒子1,21,41では、接続されるべき上下の電極の導通性を十分に確保できる。 In the conductive particles 1, 21, 41 with insulating particles, the insulating particles 3 include an insulating particle body 5 and a layer 6 that covers the surface of the insulating particle body 5 and is formed of a polymer compound. Furthermore, the insulating particle body 5 and the layer 6 are chemically bonded. As a result, when the conductive particles with insulating particles 1, 21, 41 are added to the binder resin and kneaded, the insulating particles 3 are less likely to be detached from the surfaces of the conductive particles 2, 22, 42. Furthermore, when a plurality of conductive particles with insulating particles come into contact with each other, the insulating particles are hardly detached from the surfaces of the conductive particles 2, 22, and 42. As a result, when the electrodes are connected using the conductive particles with insulating particles 1, 21 and 41, leakage hardly occurs between adjacent electrodes that should not be connected. Further, the conductive particles with insulating particles 1, 21, 41 can sufficiently ensure the continuity of the upper and lower electrodes to be connected.
 絶縁性粒子付き導電性粒子1,21,41では、絶縁性粒子3の残存率が60~95%であることが好ましい。絶縁性粒子3の残存率は、より好ましくは70%以上、より好ましくは90%以下である。絶縁性粒子3の残存率が上記下限以上であると、絶縁性粒子付き導電性粒子1,21,41をバインダー樹脂中に添加し、混練する際に、導電性粒子2,22,42の表面から絶縁性粒子3がより一層脱離し難く、絶縁性粒子付き導電性粒子1,21,41を用いて電極間を接続したときに、接続されてはならない隣り合う電極間でリークがより一層生じ難くなる。絶縁性粒子の残存率が上記上限以下であると、接続されるべき上下の電極の高い導通性を十分に確保できる。 In the conductive particles 1, 21, 41 with insulating particles, the residual rate of the insulating particles 3 is preferably 60 to 95%. The residual rate of the insulating particles 3 is more preferably 70% or more, and more preferably 90% or less. When the residual ratio of the insulating particles 3 is equal to or more than the lower limit, the surfaces of the conductive particles 2, 22, 42 are added when the conductive particles 1, 21, 41 with insulating particles are added to the binder resin and kneaded. Insulating particles 3 are more difficult to detach from the electrode, and when electrodes are connected using conductive particles with insulating particles 1, 21 and 41, more leakage occurs between adjacent electrodes that should not be connected. It becomes difficult. When the residual ratio of the insulating particles is less than or equal to the above upper limit, the high conductivity of the upper and lower electrodes to be connected can be sufficiently ensured.
 上記「絶縁性粒子の残存率」、並びに上記導電性粒子の表面積全体に占める上記絶縁性粒子により被覆されている部分の面積である被覆率は、以下のようにして求められる。 The “residual ratio of the insulating particles” and the coverage, which is the area of the portion covered with the insulating particles in the entire surface area of the conductive particles, are obtained as follows.
 下記の超音波処理前に、走査電子顕微鏡(SEM)での観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の被覆率X1(%)(付着率X1(%)ともいう)を求める。上記被覆率は、導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積(投影面積)である。 Before the following ultrasonic treatment, 100 conductive particles with insulating particles were observed by observation with a scanning electron microscope (SEM), and the coverage X1 (%) of the conductive particles in the conductive particles with insulating particles was observed. (Also referred to as adhesion rate X1 (%)) is obtained. The said coverage is an area (projection area) of the part coat | covered with the insulating particle which occupies for the whole surface area of electroconductive particle.
 具体的には、図5に示すように、上記被覆率は、絶縁性粒子付き導電性粒子Aを一方向から走査型電子顕微鏡(SEM)で観察した場合、絶縁性粒子付き導電性粒子Aの導電層の外表面(外周縁)の円内に存在する絶縁性粒子B1を1個、絶縁性粒子付き導電性粒子Aの導電層の外表面(外周縁)の円周上に存在する絶縁性粒子B2を0.5個とカウントし、絶縁性粒子付き導電性粒子Aの投影面積に対する絶縁性粒子の投影面積の割合で示す。 Specifically, as shown in FIG. 5, when the conductive particles A with insulating particles are observed from one direction with a scanning electron microscope (SEM), the coverage is as follows. One insulating particle B1 present in the circle on the outer surface (outer peripheral edge) of the conductive layer, insulating property present on the circumference of the outer surface (outer peripheral edge) of the conductive layer of the conductive particle A with insulating particles The number of particles B2 is counted as 0.5, and is represented by the ratio of the projected area of the insulating particles to the projected area of the conductive particles A with insulating particles.
 すなわち、上記被覆率は下記式(2)で表される。
 被覆率(%)=(((円内の絶縁性粒子の数)×1+(円周上の絶縁性粒子の数)×0.5)×絶縁性粒子の投影面積)/(絶縁性粒子付き導電性粒子の投影面積)×100 ・・・式(2)
That is, the said coverage is represented by following formula (2).
Coverage (%) = (((number of insulating particles in circle) × 1 + (number of insulating particles on the circumference) × 0.5) × projection area of insulating particles) / (with insulating particles) Projected area of conductive particles) × 100 (2)
 次に、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加し、絶縁性粒子付き導電性粒子含有液を得る。この絶縁性粒子付き導電性粒子含有液を400Wの超音波洗浄機で20℃及び38kHz又は40kHzの条件で5分間撹拌しながら、超音波処理する。超音波処理後に、SEMでの観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の投影面積である被覆率X2(%)(付着率X2(%)ともいう)を求める。絶縁性粒子の残存率は、被覆率X1と被覆率X2とから、下記式(1)により表される値である。 Next, 3 parts by weight of conductive particles with insulating particles are added to 100 parts by weight of ethanol to obtain a conductive particle-containing liquid with insulating particles. This conductive particle-containing liquid with insulating particles is subjected to ultrasonic treatment while being stirred for 5 minutes at 20 ° C. and 38 kHz or 40 kHz with a 400 W ultrasonic cleaner. After the ultrasonic treatment, 100 conductive particles with insulating particles are observed by observation with an SEM, and the portion of the conductive particles with insulating particles covered by the insulating particles occupying the entire surface area of the conductive particles. A coverage ratio X2 (%) (also referred to as an adhesion ratio X2 (%)) which is a projected area is obtained. The residual rate of the insulating particles is a value represented by the following formula (1) from the coverage X1 and the coverage X2.
 絶縁性粒子の残存率(%)=(超音波処理後の被覆率X2/超音波処理前の被覆率X1)×100 ・・・式(1) Residual ratio of insulating particles (%) = (coverage ratio X2 after ultrasonic treatment / coverage ratio X1 before ultrasonic treatment) × 100 (1)
 上記導電性粒子の表面を適度に露出させるために、絶縁性粒子の被覆率は、40%以上であることが好ましい。上記被覆率は、導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の面積を示す。上記被覆率が上記下限以上であると、隣接する導電性粒子がより一層接触し難くなる。上記被覆率は90%以下であることが好ましく、80%以下であることが更に好ましく、70%以下であることが最も好ましい。絶縁性粒子の被覆率が70%以下であると、電極の接続の際に熱及び圧力を必要以上に付与しなくても、絶縁性粒子を充分に排除できる。上記被覆率は、45%を超えていてもよく、50%を超えていてもよく、55%を超えていてもよく、60%を超えていてもよい。 In order to appropriately expose the surface of the conductive particles, the coverage of the insulating particles is preferably 40% or more. The said coverage shows the area of the part coat | covered with the insulating particle which occupies for the whole surface area of electroconductive particle. When the coverage is equal to or higher than the lower limit, adjacent conductive particles are more difficult to contact. The coverage is preferably 90% or less, more preferably 80% or less, and most preferably 70% or less. When the coverage of the insulating particles is 70% or less, the insulating particles can be sufficiently eliminated without applying heat and pressure more than necessary when the electrodes are connected. The coverage may exceed 45%, may exceed 50%, may exceed 55%, and may exceed 60%.
 上記絶縁性粒子の残存率が60~95%である場合には、絶縁性粒子付き導電性粒子1,21,41では、導電性粒子2,22,42の表面から、絶縁性粒子3が脱離し難くなる。例えば、絶縁性粒子付き導電性粒子1,21,41をバインダー樹脂中に添加し、混練する際に、導電性粒子2,22,42の表面から絶縁性粒子3が脱離し難い。このため、絶縁性粒子付き導電性粒子1,21,41を電極間の接続に用いた場合に、隣接する導電性粒子2,22,42間には絶縁性粒子3が存在するので、接続されてはならない隣り合う電極間が電気的に接続され難い。従って、絶縁性粒子付き導電性粒子1,21,41を用いて電極間を接続した場合に、導通信頼性を高めることができる。 In the case where the residual ratio of the insulating particles is 60 to 95%, in the conductive particles with insulating particles 1, 21, 41, the insulating particles 3 are detached from the surfaces of the conductive particles 2, 22, 42. It becomes difficult to separate. For example, when the conductive particles 1, 21, 41 with insulating particles are added to the binder resin and kneaded, the insulating particles 3 are not easily detached from the surfaces of the conductive particles 2, 22, 42. For this reason, when the conductive particles 1, 21, 41 with insulating particles are used for the connection between the electrodes, the insulating particles 3 exist between the adjacent conductive particles 2, 22, 42. It is difficult to electrically connect adjacent electrodes that should not be connected. Therefore, when the electrodes are connected using the conductive particles with insulating particles 1, 21, 41, the conduction reliability can be improved.
 上記絶縁性粒子付き導電性粒子は、絶縁性粒子本体の表面の少なくとも一部の領域を覆うように、高分子化合物又は高分子化合物となる化合物を用いて、高分子化合物により形成された層を形成し、絶縁性粒子を得る工程と、導電層を少なくとも表面に有する導電性粒子の表面に、上記絶縁性粒子を付着させ、絶縁性粒子付き導電性粒子を得る工程を経て得ることが好ましい。 The conductive particles with insulating particles have a layer formed of a polymer compound using a polymer compound or a compound that becomes a polymer compound so as to cover at least a part of the surface of the insulating particle body. It is preferably obtained through a step of forming and obtaining insulating particles and a step of attaching the insulating particles to the surface of the conductive particles having at least the surface of the conductive layer to obtain conductive particles with insulating particles.
 電極間の導通信頼性及び絶縁信頼性をより一層高める観点からは、上記絶縁性粒子付き導電性粒子の粒子径の変動係数は、好ましくは8%以下、より好ましくは5%以下である。 From the viewpoint of further improving the conduction reliability between the electrodes and the insulation reliability, the variation coefficient of the particle diameter of the conductive particles with insulating particles is preferably 8% or less, more preferably 5% or less.
 上記変動係数(CV値)は下記式で表される。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性粒子付き導電性粒子の粒子径の標準偏差
 Dn:絶縁性粒子付き導電性粒子の粒子径の平均値
The coefficient of variation (CV value) is expressed by the following equation.
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of conductive particles with insulating particles Dn: Average value of particle diameter of conductive particles with insulating particles
 上記絶縁性粒子付き導電性粒子の圧縮弾性率は、好ましくは1GPa以上、より好ましくは2GPa以上、好ましくは7GPa以下、より好ましくは5GPa以下である。 The compression elastic modulus of the conductive particles with insulating particles is preferably 1 GPa or more, more preferably 2 GPa or more, preferably 7 GPa or less, and more preferably 5 GPa or less.
 上記絶縁性粒子付き導電性粒子の圧縮回復率は、好ましくは20%以上、より好ましくは30%以上、好ましくは60%以下、より好ましくは50%以下である。 The compression recovery rate of the conductive particles with insulating particles is preferably 20% or more, more preferably 30% or more, preferably 60% or less, more preferably 50% or less.
 上記絶縁性粒子付き導電性粒子の20℃での圧縮弾性率(10%K値)は、以下のようにして測定される。 The compressive elastic modulus (10% K value) of the conductive particles with insulating particles at 20 ° C. is measured as follows.
 微小圧縮試験機を用いて、直径50μmのダイアモンド製円柱の平滑圧子端面で、圧縮速度0.33mN/秒、及び最大試験荷重20mNの条件下で絶縁性粒子付き導電性粒子を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率を下記式により求めることができる。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 Using a micro-compression tester, the conductive particles with insulating particles are compressed under the conditions of a compression rate of 0.33 mN / sec and a maximum test load of 20 mN on the end face of a diamond cylinder having a diameter of 50 μm. The load value (N) and compression displacement (mm) at this time are measured. From the measured value obtained, the compression elastic modulus can be obtained by the following formula. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 10%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:絶縁性粒子付き導電性粒子が10%圧縮変形したときの荷重値(N)
 S:絶縁性粒子付き導電性粒子が10%圧縮変形したときの圧縮変位(mm)
 R:絶縁性粒子付き導電性粒子の半径(mm)
10% K value (N / mm 2 ) = (3/2 1/2 ) · F · S −3 / 2 · R −1/2
F: Load value (N) when conductive particles with insulating particles are compressively deformed by 10%
S: Compression displacement (mm) when conductive particles with insulating particles are 10% compressively deformed
R: radius of conductive particles with insulating particles (mm)
 上記圧縮弾性率は、絶縁性粒子付き導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、絶縁性粒子付き導電性粒子の硬さを定量的かつ一義的に表すことができる。 The above-described compression elastic modulus universally and quantitatively represents the hardness of the conductive particles with insulating particles. By using the compression modulus, the hardness of the conductive particles with insulating particles can be expressed quantitatively and uniquely.
 上記圧縮回復率は、以下のようにして測定できる。 The compression recovery rate can be measured as follows.
 試料台上に絶縁性粒子付き導電性粒子を散布する。散布された絶縁性粒子付き導電性粒子1個について、微小圧縮試験機を用いて、絶縁性粒子付き導電性粒子の中心方向に、反転荷重値(5.00mN)まで負荷を与える。その後、原点用荷重値(0.40mN)まで徐荷を行う。この間の荷重-圧縮変位を測定し、下記式から圧縮回復率を求めることができる。なお、負荷速度は0.33mN/秒とする。上記微小圧縮試験機として、例えば、フィッシャー社製「フィッシャースコープH-100」等が用いられる。 ¡Sprinkle conductive particles with insulating particles on the sample stage. With respect to one dispersed conductive particle with insulating particles, a load is applied to the reversal load value (5.00 mN) in the center direction of the conductive particles with insulating particles using a micro compression tester. Thereafter, the load is gradually reduced to the load value for origin (0.40 mN). The load-compression displacement during this period is measured, and the compression recovery rate can be obtained from the following equation. The load speed is 0.33 mN / sec. As the micro compression tester, for example, “Fischer Scope H-100” manufactured by Fischer is used.
 圧縮回復率(%)=[(L1-L2)/L1]×100
 L1:負荷を与えるときの原点用荷重値から反転荷重値に至るまでのまでの圧縮変位
 L2:負荷を解放するときの反転荷重値から原点用荷重値に至るまでの圧縮変位
Compression recovery rate (%) = [(L1-L2) / L1] × 100
L1: Compressive displacement from the load value for the origin to the reverse load value when applying the load L2: Compressive displacement from the reverse load value to the load value for the origin when releasing the load
 以下、導電性粒子2,22,42の詳細及び絶縁性粒子3の詳細を説明する。 Hereinafter, details of the conductive particles 2, 22, and 42 and details of the insulating particles 3 will be described.
 [導電性粒子]
 導電層を少なくとも表面に有する導電性粒子の表面に、上記絶縁性粒子を付着させることにより、絶縁性粒子付き導電性粒子を得ることができる。
[Conductive particles]
Conductive particles with insulating particles can be obtained by attaching the insulating particles to the surface of conductive particles having at least a conductive layer on the surface.
 上記導電性粒子は、少なくとも表面に導電層を有していればよい。導電性粒子は、基材粒子と、該基材粒子の表面上に設けられた導電層とを有する導電性粒子であってもよく、全体が導電層である金属粒子であってもよい。なかでも、コストを低減したり、導電性粒子の柔軟性を高くして、電極間の導通信頼性を高めたりする観点からは、基材粒子と、基材粒子の表面上に設けられた導電層を有する導電性粒子が好ましい。 The conductive particles only need to have a conductive layer on at least the surface. The conductive particles may be conductive particles having base material particles and a conductive layer provided on the surface of the base material particles, or may be metal particles whose entirety is a conductive layer. Among these, from the viewpoint of reducing costs and increasing the flexibility of the conductive particles to increase the conduction reliability between the electrodes, the base particles and the conductive material provided on the surface of the base particles are used. Conductive particles having a layer are preferred.
 上記基材粒子としては、樹脂粒子、無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。 Examples of the substrate particles include resin particles, inorganic particles, organic-inorganic hybrid particles, and metal particles.
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。絶縁性粒子付き導電性粒子を用いて電極間を接続する際には、絶縁性粒子付き導電性粒子を電極間に配置した後、圧着することにより絶縁性粒子付き導電性粒子を圧縮させる。基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積を大きくすることができる。このため、電極間の導通信頼性を高めることができる。 The base material particles are preferably resin particles formed of a resin. When connecting the electrodes using the conductive particles with insulating particles, the conductive particles with insulating particles are compressed by placing the conductive particles with insulating particles between the electrodes and then pressing them. When the substrate particles are resin particles, the conductive particles are easily deformed during the above-described pressure bonding, and the contact area between the conductive particles and the electrode can be increased. For this reason, the conduction | electrical_connection reliability between electrodes can be improved.
 上記樹脂粒子を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン及びポリエーテルスルホン等が挙げられる。基材粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Examples of the resin for forming the resin particles include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, and polyphenylene. Examples thereof include oxides, polyacetals, polyimides, polyamideimides, polyetheretherketones, and polyethersulfones. Since the hardness of the base particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
 上記無機粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。
Examples of the inorganic substance for forming the inorganic particles include silica and carbon black. Examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
When the substrate particles are metal particles, examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
 上記導電層を形成するための金属は特に限定されない。さらに、導電性粒子が、全体が導電層である金属粒子である場合、該金属粒子を形成するための金属は特に限定されない。該金属としては、例えば、金、銀、銅、パラジウム、白金、パラジウム、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素及びこれらの合金等が挙げられる。また、上記金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。なかでも、電極間の接続抵抗をより一層低くすることができるので、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。 The metal for forming the conductive layer is not particularly limited. Furthermore, when the conductive particles are metal particles that are conductive layers as a whole, the metal for forming the metal particles is not particularly limited. Examples of the metal include gold, silver, copper, palladium, platinum, palladium, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, thallium, germanium, cadmium, and silicon. And alloys thereof. Examples of the metal include tin-doped indium oxide (ITO) and solder. Especially, since the connection resistance between electrodes can be made still lower, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable.
 なお、導電層の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電層の表面には、酸化により水酸基が存在する。このような水酸基を有する導電層は絶縁性粒子と化学結合しやすく、例えば水酸基を有する絶縁性粒子と化学結合する。 Note that hydroxyl groups often exist on the surface of the conductive layer due to oxidation. In general, hydroxyl groups are present on the surface of a conductive layer formed of nickel by oxidation. Such a conductive layer having a hydroxyl group is easily chemically bonded to the insulating particles, for example, chemically bonded to the insulating particles having a hydroxyl group.
 上記導電層は、1つの層により形成されている。導電層は、複数の層により形成されていてもよい。すなわち、導電層は、2層以上の積層構造を有していてもよい。導電層が複数の層により形成されている場合には、最外層は、金層、ニッケル層、パラジウム層、銅層又は錫と銀とを含む合金層であることが好ましく、金層であることがより好ましい。最外層がこれらの好ましい導電層である場合には、電極間の接続抵抗をより一層低くすることができる。また、最外層が金層である場合には、耐腐食性をより一層高めることができる。 The conductive layer is formed of one layer. The conductive layer may be formed of a plurality of layers. That is, the conductive layer may have a stacked structure of two or more layers. When the conductive layer is formed of a plurality of layers, the outermost layer is preferably a gold layer, a nickel layer, a palladium layer, a copper layer, or an alloy layer containing tin and silver, and is a gold layer. Is more preferable. When the outermost layer is these preferred conductive layers, the connection resistance between the electrodes can be further reduced. Moreover, when the outermost layer is a gold layer, the corrosion resistance can be further enhanced.
 上記基材粒子の表面に導電層を形成する方法は特に限定されない。導電層を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的蒸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。なかでも、導電層の形成が簡便であるので、無電解めっきによる方法が好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。 The method for forming the conductive layer on the surface of the substrate particles is not particularly limited. As a method for forming the conductive layer, for example, a method by electroless plating, a method by electroplating, a method by physical vapor deposition, and a method of coating the surface of base particles with metal powder or a paste containing metal powder and a binder Etc. Especially, since formation of a conductive layer is simple, the method by electroless plating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering.
 上記導電性粒子の平均粒子径は、0.5~100μmの範囲内であることが好ましい。導電性粒子の平均粒子径は、より好ましくは1μm以上、より好ましくは20μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、絶縁性粒子付き導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積を充分に大きくすることができ、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。 The average particle diameter of the conductive particles is preferably in the range of 0.5 to 100 μm. The average particle diameter of the conductive particles is more preferably 1 μm or more, and more preferably 20 μm or less. When the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrodes is sufficiently large when the electrodes are connected using the conductive particles with insulating particles. In addition, it is difficult to form aggregated conductive particles when the conductive layer is formed. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base material particles.
 上記導電性粒子の「平均粒子径」は、数平均粒子径を示す。導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle size” of the conductive particles indicates a number average particle size. The average particle diameter of the conductive particles can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 上記導電層の厚みは、0.005~1μmの範囲内であることが好ましい。導電層の厚みは、より好ましくは0.01μm以上、より好ましくは0.3μm以下である。導電層の厚みが上記下限以上及び上記上限以下であると、充分な導電性を得ることができ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を充分に変形させることができる。 The thickness of the conductive layer is preferably in the range of 0.005 to 1 μm. The thickness of the conductive layer is more preferably 0.01 μm or more, and more preferably 0.3 μm or less. When the thickness of the conductive layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently bonded at the time of connection between the electrodes. Can be deformed.
 上記導電層が複数の層により形成されている場合に、最外層の導電層の厚みは、特に最外層が金層である場合の金層の厚みは、0.001~0.5μmの範囲内であることが好ましい。上記最外層の導電層の厚みのより好ましい下限は0.01μmであり、より好ましい上限は0.1μmである。上記最外層の導電層の厚みが上記下限以上及び上記上限以下であると、最外層の導電層による被覆を均一にでき、耐腐食性を充分に高めることができ、かつ電極間の接続抵抗を充分に低くすることができる。また、上記最外層が金層である場合の金層の厚みが薄いほど、コストが低くなる。 When the conductive layer is formed of a plurality of layers, the thickness of the outermost conductive layer is in the range of 0.001 to 0.5 μm, particularly when the outermost layer is a gold layer. It is preferable that A more preferable lower limit of the thickness of the outermost conductive layer is 0.01 μm, and a more preferable upper limit is 0.1 μm. When the thickness of the outermost conductive layer is not less than the above lower limit and not more than the above upper limit, the coating with the outermost conductive layer can be made uniform, corrosion resistance can be sufficiently enhanced, and the connection resistance between the electrodes can be increased. It can be made sufficiently low. Further, the thinner the gold layer when the outermost layer is a gold layer, the lower the cost.
 上記導電層の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子又は絶縁性粒子付き導電性粒子の断面を観察することにより測定できる。 The thickness of the conductive layer can be measured by observing the cross section of the conductive particles or the conductive particles with insulating particles using, for example, a transmission electron microscope (TEM).
 導電性粒子は、導電層の表面に突起を有することが好ましく、該突起は複数であることが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電層の表面に突起を有する絶縁性粒子付き導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電層とをより一層確実に接触させることができ、電極間の接続抵抗を低くすることができる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性を高めることができる。 The conductive particles preferably have protrusions on the surface of the conductive layer, and the protrusions are preferably plural. An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles. When the conductive particles with insulating particles having protrusions on the surface of the conductive layer are used, the oxide film can be effectively eliminated by the protrusions by disposing the conductive particles between the electrodes and pressing them. For this reason, an electrode and a conductive layer can be contacted still more reliably and the connection resistance between electrodes can be made low. Furthermore, when the electrodes are connected, the insulating particles between the conductive particles and the electrodes can be effectively eliminated by the protrusions of the conductive particles. For this reason, the conduction | electrical_connection reliability between electrodes can be improved.
 導電性粒子の表面に突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電層を形成する方法、並びに基材粒子の表面に無電解めっきにより導電層を形成した後、芯物質を付着させ、更に無電解めっきにより導電層を形成する方法等が挙げられる。 As a method of forming protrusions on the surface of the conductive particles, a method of forming a conductive layer by electroless plating after attaching a core substance to the surface of the base particles, and by electroless plating on the surface of the base particles Examples of the method include forming a conductive layer, then attaching a core substance, and further forming a conductive layer by electroless plating.
 基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質となる導電性物質を添加し、基材粒子の表面に芯物質を、例えば、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御しやすいため、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法が好ましい。 As a method of attaching the core substance to the surface of the base particle, for example, a conductive substance that becomes the core substance is added to the dispersion of the base particle, and the core substance is applied to the surface of the base particle, for example, a fan. A method of accumulating and adhering by Delwars force, and adding a conductive substance as a core substance to a container containing base particles, and a core substance on the surface of the base particles by mechanical action such as rotation of the container And the like. Especially, since the quantity of the core substance to adhere is easy to control, the method of making a core substance accumulate and adhere on the surface of the base particle in a dispersion liquid is preferable.
 上記導電性粒子は、基材粒子の表面上に第1の導電層を有し、かつ該第1の導電層上に第2の導電層を有していてもよい。この場合に、第1の導電層の表面に芯物質を付着させてもよい。芯物質は第2の導電層により被覆されていること好ましい。上記第1の導電層の厚みは、0.05~0.5μmの範囲内であることが好ましい。導電性粒子は、基材粒子の表面上に第1の導電層を形成し、次に該第1の導電層の表面上に芯物質を付着させた後、第1の導電層及び芯物質の表面上に第2の導電層を形成することにより得られていることが好ましい。 The conductive particles may have a first conductive layer on the surface of the base particle, and may have a second conductive layer on the first conductive layer. In this case, a core substance may be attached to the surface of the first conductive layer. The core material is preferably covered with a second conductive layer. The thickness of the first conductive layer is preferably in the range of 0.05 to 0.5 μm. The conductive particles form a first conductive layer on the surface of the base particle, and then a core material is deposited on the surface of the first conductive layer, and then the first conductive layer and the core material are formed. It is preferably obtained by forming a second conductive layer on the surface.
 上記芯物質を構成する導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。導電性ポリマーとしては、ポリアセチレン等が挙げられる。なかでも、導電性を高めることができるので、金属が好ましい。 Examples of the conductive substance constituting the core substance include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene. Among them, metal is preferable because conductivity can be increased.
 上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金及び錫-鉛-銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀又は金が好ましい。上記芯物質を構成する金属は、上記導電層を構成する金属と同じであってもよく、異なっていてもよい。 Examples of the metal include gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead. Examples thereof include alloys composed of two or more metals such as alloys, tin-copper alloys, tin-silver alloys, and tin-lead-silver alloys. Of these, nickel, copper, silver or gold is preferable. The metal constituting the core material may be the same as or different from the metal constituting the conductive layer.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core substance is preferably a lump. Examples of the core substance include a particulate lump, an agglomerate in which a plurality of fine particles are aggregated, and an irregular lump.
 [絶縁性粒子]
 上記絶縁性粒子は、絶縁性を有する粒子である。絶縁性粒子は導電性粒子よりも小さい。絶縁性粒子付き導電性粒子を用いて電極間を接続すると、絶縁性粒子により、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の絶縁性粒子付き導電性粒子における導電性粒子間には絶縁性粒子が存在するので、上下の電極間ではなく、横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電層と電極との間の絶縁性粒子を容易に排除できる。導電性粒子の表面に突起が設けられている場合には、導電層と電極との間の絶縁性粒子をより一層容易に排除できる。さらに突起部分が電極との接触を容易にするため接続信頼性が向上する。
[Insulating particles]
The insulating particles are particles having insulating properties. Insulating particles are smaller than conductive particles. When the electrodes are connected using conductive particles with insulating particles, the insulating particles can prevent a short circuit between adjacent electrodes. Specifically, when the conductive particles with a plurality of insulating particles are in contact with each other, there are insulating particles between the conductive particles in the conductive particles with a plurality of insulating particles. Short circuit between the electrodes adjacent in the lateral direction can be prevented. Note that the insulating particles between the conductive layer and the electrode can be easily excluded by pressurizing the conductive particles with insulating particles with the two electrodes when connecting the electrodes. In the case where protrusions are provided on the surface of the conductive particles, the insulating particles between the conductive layer and the electrode can be more easily eliminated. Furthermore, since the protruding portion facilitates contact with the electrode, connection reliability is improved.
 絶縁性粒子を構成する材料としては、絶縁性の樹脂、及び絶縁性の無機物等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子を形成するための樹脂として挙げた上記樹脂が挙げられる。上記絶縁性の無機物としては、基材粒子として用いることが可能な無機粒子を形成するための無機物として挙げた上記無機物が挙げられる。 Examples of the material constituting the insulating particles include an insulating resin and an insulating inorganic substance. As said insulating resin, the said resin quoted as resin for forming the resin particle which can be used as a base particle is mentioned. As said insulating inorganic substance, the said inorganic substance quoted as an inorganic substance for forming the inorganic particle which can be used as a base particle is mentioned.
 上記絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン類、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Specific examples of the insulating resin that is the material of the insulating particles include polyolefins, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, heat Examples thereof include curable resins and water-soluble resins.
 上記ポリオレフィン類としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。なかでも、水溶性樹脂が好ましく、ポリビニルアルコールがより好ましい。 Examples of the polyolefins include polyethylene, ethylene-vinyl acetate copolymer, and ethylene-acrylic ester copolymer. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. As said thermosetting resin, an epoxy resin, a phenol resin, a melamine resin, etc. are mentioned. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose. Of these, water-soluble resins are preferable, and polyvinyl alcohol is more preferable.
 熱圧着時の絶縁性粒子の脱離性をより一層高める観点からは、絶縁性粒子本体は、無機粒子であることが好ましい。該無機粒子としては、シラス粒子、ハイドロキシアパタイト粒子、マグネシア粒子、酸化ジルコニウム粒子及びシリカ粒子等が挙げられる。熱圧着時の絶縁性粒子の脱離性を更に一層高める観点からは、上記絶縁性粒子本体は、シリカ粒子であることが好ましい。シリカ粒子としては、粉砕シリカ、球状シリカが挙げられ、球状シリカを用いることが好ましい。また、シリカ粒子は表面に、例えばカルボキシル基、水酸基等の化学結合可能な官能基を有することが好ましく、水酸基を有することがより好ましい。無機粒子は比較的硬く、特にシリカ粒子は比較的硬い。このような硬い絶縁性粒子をそのまま絶縁性粒子として用いた絶縁性粒子付き導電性粒子をバインダー樹脂中に添加して混練すると、絶縁性粒子が硬いので、導電性粒子の表面から絶縁性粒子が脱離しやすい傾向がある。しかしながら、本発明に係る絶縁性粒子付き導電性粒子を用いた場合には、特に絶縁性粒子が上記高分子化合物により形成された層を有するので、硬い絶縁性粒子本体を用いたとしても、上記混練の際に、硬い絶縁性粒子本体を有する絶縁性粒子が脱離するのを抑制できる。 From the viewpoint of further increasing the detachability of the insulating particles during thermocompression bonding, the insulating particle body is preferably inorganic particles. Examples of the inorganic particles include shirasu particles, hydroxyapatite particles, magnesia particles, zirconium oxide particles, and silica particles. From the viewpoint of further increasing the detachability of the insulating particles during thermocompression bonding, the insulating particle body is preferably silica particles. Examples of the silica particles include pulverized silica and spherical silica, and spherical silica is preferably used. The silica particles preferably have a functional group capable of chemical bonding such as a carboxyl group and a hydroxyl group on the surface, and more preferably have a hydroxyl group. Inorganic particles are relatively hard, especially silica particles are relatively hard. When conductive particles with insulating particles using such hard insulating particles as insulating particles are added to a binder resin and kneaded, the insulating particles are hard, so that the insulating particles are removed from the surface of the conductive particles. There is a tendency to detach easily. However, when the conductive particles with insulating particles according to the present invention are used, since the insulating particles have a layer formed of the above polymer compound, even if a hard insulating particle body is used, During kneading, it is possible to prevent the insulating particles having a hard insulating particle body from being detached.
 上記高分子化合物により形成された層は、例えば柔軟層としての役割を果たす。 The layer formed of the above polymer compound serves as a flexible layer, for example.
 上記高分子化合物により形成された層における高分子化合物又は重合等により該高分子化合物となる化合物としては、重合可能な反応性官能基を有する化合物であることが好ましい。該重合可能な反応性官能基は、不飽和二重結合であることが好ましい。例えば、絶縁性粒子本体の表面上で不飽和二重結合を有する化合物(高分子化合物となる化合物)を重合反応させてもよく、また高分子化合物と絶縁性粒子本体の表面の反応性官能基とを反応させてもよい。上記高分子化合物又は該高分子化合物となる化合物としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。絶縁性粒子付き導電性粒子を分散する際などに、導電性粒子の表面から絶縁性粒子の脱離を抑制する観点からは、上記高分子化合物又は該高分子化合物となる化合物は、(メタ)アクリロイル基、グリシジル基及びビニル基からなる群から選択された少なくとも1種の反応性官能基を有することが好ましい。なかでも、絶縁性粒子の脱離をより一層抑制する観点からは、上記高分子化合物又は該高分子化合物となる化合物は、(メタ)アクリロイル基を有することが好ましい。 The polymer compound in the layer formed of the polymer compound or the compound that becomes the polymer compound by polymerization or the like is preferably a compound having a polymerizable reactive functional group. The polymerizable reactive functional group is preferably an unsaturated double bond. For example, a compound having an unsaturated double bond (a compound that becomes a polymer compound) may be subjected to a polymerization reaction on the surface of the insulating particle main body, and the reactive functional group on the surface of the polymer compound and the insulating particle main body. And may be reacted. Examples of the polymer compound or the compound to be the polymer compound include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group. From the viewpoint of suppressing detachment of the insulating particles from the surface of the conductive particles when dispersing the conductive particles with insulating particles, the polymer compound or the compound to be the polymer compound is (meth) It preferably has at least one reactive functional group selected from the group consisting of an acryloyl group, a glycidyl group and a vinyl group. Among these, from the viewpoint of further suppressing the detachment of the insulating particles, the polymer compound or the compound to be the polymer compound preferably has a (meth) acryloyl group.
 上記(メタ)アクリロイル基を有する化合物の具体例としては、メタクリル酸、ヒドロキシエチルアクリレート及びジメタクリル酸エチレングリコール等が挙げられる。 Specific examples of the compound having the (meth) acryloyl group include methacrylic acid, hydroxyethyl acrylate, and ethylene glycol dimethacrylate.
 上記エポキシ化合物の具体例としては、ビスフェノールA型エポキシ樹脂及びレゾルシノールグリシジルエーテル等が挙げられる。 Specific examples of the epoxy compound include bisphenol A type epoxy resin and resorcinol glycidyl ether.
 上記ビニル基を有する化合物の具体例としては、スチレン及び酢酸ビニル等が挙げられる。 Specific examples of the compound having a vinyl group include styrene and vinyl acetate.
 上記高分子化合物の重量平均分子量は、1000以上であることが好ましい。上記高分子化合物の重量平均分子量の上限は特に限定されないが、上記高分子化合物の重量平均分子量は20000以下であることが好ましい。該重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での値を示す。 The weight average molecular weight of the polymer compound is preferably 1000 or more. The upper limit of the weight average molecular weight of the polymer compound is not particularly limited, but the polymer compound preferably has a weight average molecular weight of 20000 or less. The weight average molecular weight indicates a value in terms of polystyrene measured by gel permeation chromatography (GPC).
 上記絶縁性粒子本体の表面に上記高分子化合物により形成された層を形成する方法は特に限定されない。絶縁性粒子本体の表面の少なくとも一部の領域を覆うように、高分子化合物又は高分子化合物となる化合物を用いて、高分子化合物により形成された層を形成し、絶縁性粒子を得ることが好ましい。上記高分子化合物により形成された層の形成方法の一例としては、ビニル基などの反応性官能基を表面に有する絶縁性粒子本体に反応性二重結合と水酸基とを有する化合物を絶縁性粒子本体の表面上で重合させる方法等が挙げられる。ただし、この形成方法以外の方法を用いてもよい。 The method for forming the layer formed of the polymer compound on the surface of the insulating particle body is not particularly limited. Using a polymer compound or a compound that becomes a polymer compound so as to cover at least a part of the surface of the insulating particle main body, a layer formed of the polymer compound is formed to obtain insulating particles. preferable. As an example of a method for forming a layer formed of the polymer compound, a compound having a reactive double bond and a hydroxyl group is formed on an insulating particle body having a reactive functional group such as a vinyl group on the surface. And a method of polymerizing on the surface. However, methods other than this forming method may be used.
 上記絶縁性粒子本体と上記層とは化学的に結合している。この化学的結合には、共有結合、水素結合、イオン結合及び配位結合等が含まれる。なかでも、共有結合が好ましく、反応性官能基を用いた化学的結合が好ましい。 The insulating particle body and the layer are chemically bonded. This chemical bond includes a covalent bond, a hydrogen bond, an ionic bond, a coordination bond, and the like. Of these, a covalent bond is preferable, and a chemical bond using a reactive functional group is preferable.
 上記化学的結合を形成する反応性官能基としては、例えば、ビニル基、(メタ)アクリロイル基、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、燐酸基及びニトリル基等が挙げられる。中でも、ビニル基、(メタ)アクリロイル基が好ましい。 Examples of the reactive functional group that forms the chemical bond include a vinyl group, (meth) acryloyl group, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group, hydroxyl group, carbonyl group, and thiol group. Sulfonic acid group, sulfonium group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group and nitrile group. Among these, a vinyl group and a (meth) acryloyl group are preferable.
 絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子本体として、反応性官能基を表面に有する絶縁性粒子本体を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、上記絶縁性粒子本体として、反応性官能基を有する化合物を用いて表面処理された絶縁性粒子本体を用いることが好ましい。絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性をより一層高める観点からは、反応性官能基を表面に有する上記絶縁性粒子本体と、高分子化合物又は該高分子化合物となる化合物とを用いて、上記絶縁性粒子本体の表面の反応性官能基に、上記高分子化合物により形成された層を化学的に結合させることにより、上記絶縁性粒子本体と上記層とが化学的に結合している上記絶縁性粒子が得られていることが好ましい。 From the viewpoint of further suppressing the detachment of the insulating particles and further improving the insulation reliability in the connection structure, it is possible to use an insulating particle body having a reactive functional group on the surface as the insulating particle body. preferable. From the viewpoint of further suppressing the detachment of the insulating particles and further improving the insulation reliability in the connection structure, the insulating particles subjected to surface treatment using a compound having a reactive functional group as the insulating particle main body. It is preferable to use a particle body. From the viewpoint of further suppressing the detachment of the insulating particles and further improving the insulation reliability in the connection structure, the insulating particle main body having a reactive functional group on the surface, the polymer compound, or the polymer compound And the layer formed of the polymer compound is chemically bonded to the reactive functional group on the surface of the insulating particle body using the compound to form the insulating particle body and the layer. It is preferable that the insulating particles that are chemically bonded are obtained.
 上記絶縁性粒子本体が表面に有する上記反応性官能基としては、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基等が挙げられる。上記絶縁性粒子本体が表面に有する上記反応性官能基は、(メタ)アクリロイル基、グリシジル基、水酸基、ビニル基及びアミノ基からなる群から選択された少なくとも1種の反応性官能基であることが好ましい。 Examples of the reactive functional group on the surface of the insulating particle body include a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. The reactive functional group on the surface of the insulating particle body is at least one reactive functional group selected from the group consisting of a (meth) acryloyl group, a glycidyl group, a hydroxyl group, a vinyl group, and an amino group. Is preferred.
 上記絶縁性粒子本体の表面に上記反応性官能基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有する化合物、エポキシ基を有する化合物及びビニル基を有する化合物等が挙げられる。 Examples of the compound (surface treatment substance) for introducing the reactive functional group onto the surface of the insulating particle body include a compound having a (meth) acryloyl group, a compound having an epoxy group, and a compound having a vinyl group. It is done.
 上記絶縁性粒子本体の表面に上記反応性官能基であるビニル基を導入するための化合物(表面処理物質)としては、ビニル基を有するシラン化合物、及びビニル基を有するチタン化合物、及びビニル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、ビニル基を有するシラン化合物であることが好ましい。上記ビニル基を有するシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン及びビニルトリイソプロポキシシラン等が挙げられる。 As a compound (surface treatment substance) for introducing a vinyl group as the reactive functional group onto the surface of the insulating particle body, a silane compound having a vinyl group, a titanium compound having a vinyl group, and a vinyl group are used. The phosphoric acid compound etc. which have are mentioned. The surface treatment substance is preferably a silane compound having a vinyl group. Examples of the silane compound having a vinyl group include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and vinyltriisopropoxysilane.
 上記絶縁性粒子本体の表面に上記反応性官能基である(メタ)アクリロイル基を導入するための化合物(表面処理物質)としては、(メタ)アクリロイル基を有するシラン化合物、及び(メタ)アクリロイル基を有するチタン化合物、及び(メタ)アクリロイル基を有するリン酸化合物等が挙げられる。上記表面処理物質は、(メタ)アクリロイル基を有するシラン化合物であることも好ましい。上記(メタ)アクリロイル基を有するシラン化合物としては、(メタ)アクリロキシプロピルトリエトキシシラン、(メタ)アクリロキシプロピルトリメトキシシラン及び(メタ)アクリロキシプロピルトリジメトキシシラン等が挙げられる。 As a compound (surface treatment substance) for introducing the (meth) acryloyl group which is the reactive functional group onto the surface of the insulating particle main body, a silane compound having a (meth) acryloyl group and a (meth) acryloyl group And a phosphoric acid compound having a (meth) acryloyl group. The surface treatment substance is also preferably a silane compound having a (meth) acryloyl group. Examples of the silane compound having a (meth) acryloyl group include (meth) acryloxypropyltriethoxysilane, (meth) acryloxypropyltrimethoxysilane, (meth) acryloxypropyltridimethoxysilane, and the like.
 上記絶縁性粒子は、上記絶縁性粒子本体と高分子化合物又は該高分子化合物となる化合物とを用いた混合による摩擦で形成されていないことが好ましい。また、上記絶縁性粒子本体の表面が上記層によりハイブリダイゼーション法を用いて被覆されていないことが好ましい。混合による摩擦やハイブリダイゼーション法を用いて絶縁性粒子が形成されている場合には、絶縁性粒子本体の表面上から層が脱離しやすくなる。また、絶縁性粒子の表面に、混練時に形成された層の破片が付着しやすくなる。このため、絶縁性粒子付き導電性粒子の導電層の表面上で脱離した層や層の破片が付着し、接続構造体における導通信頼性が低下しやすい傾向がある。従って、絶縁性粒子の脱離をより一層抑制し、接続構造体における絶縁信頼性及び導通信頼性をより一層高める観点からは、混合による摩擦で絶縁性粒子は形成されていないことが好ましく、ハイブリダイゼーション法を用いないことが好ましい。 It is preferable that the insulating particles are not formed by friction by mixing using the insulating particle body and the polymer compound or the compound to be the polymer compound. Moreover, it is preferable that the surface of the insulating particle body is not covered with the layer using a hybridization method. When insulating particles are formed using friction by mixing or a hybridization method, the layer is easily detached from the surface of the insulating particle body. In addition, the fragments of the layer formed during kneading easily adhere to the surface of the insulating particles. For this reason, a layer or a fragment of the layer detached on the surface of the conductive layer of the conductive particles with insulating particles tends to adhere, and the conduction reliability in the connection structure tends to decrease. Therefore, from the viewpoint of further suppressing the detachment of the insulating particles and further increasing the insulation reliability and conduction reliability in the connection structure, it is preferable that the insulating particles are not formed by friction due to mixing. It is preferable not to use a hybridization method.
 上記絶縁性粒子を得る際に、上記絶縁性粒子本体100重量部に対する上記高分子化合物又は該高分子となる化合物の使用量は、好ましくは30重量部以上、より好ましくは50重量部以上、好ましくは500重量部以下、より好ましくは300重量部以下である。上記高分子化合物の使用量が上記下限以上及び上記上限以下であると、良好な層を形成できる。 When the insulating particles are obtained, the amount of the polymer compound or the compound that becomes the polymer is preferably 30 parts by weight or more, more preferably 50 parts by weight or more, preferably 100 parts by weight of the insulating particle body. Is 500 parts by weight or less, more preferably 300 parts by weight or less. A favorable layer can be formed as the usage-amount of the said high molecular compound is more than the said minimum and below the said upper limit.
 上記高分子化合物により形成された層の具体的な製造条件の一例としては、以下の製造条件が挙げられる。 Examples of specific production conditions for the layer formed of the polymer compound include the following production conditions.
 先ず、水などの溶媒100~500重量部中に、反応性官能基を表面に有する絶縁性粒子本体1~3重量部、反応性二重結合と水酸基とを有する化合物0.1~20重量部、架橋剤0.01~5重量部、分散剤0.1~5重量部及び熱重合開始剤0.1~5重量部を加える。次に、スリーワンモーターで撹拌しながらオイルバスで熱重合開始剤の反応温度以上まで昇温し、重合を開始し、その状態を5時間以上保持して反応させる。その後、遠心分離機を用いて、未反応の化合物を除去して、絶縁性粒子本体の表面が上記層により被覆されている絶縁性粒子を得る。 First, in 100 to 500 parts by weight of a solvent such as water, 1 to 3 parts by weight of an insulating particle body having a reactive functional group on the surface, and 0.1 to 20 parts by weight of a compound having a reactive double bond and a hydroxyl group Then, 0.01 to 5 parts by weight of a crosslinking agent, 0.1 to 5 parts by weight of a dispersant, and 0.1 to 5 parts by weight of a thermal polymerization initiator are added. Next, while stirring with a three-one motor, the temperature is raised to a temperature higher than the reaction temperature of the thermal polymerization initiator in an oil bath, polymerization is started, and the state is maintained for 5 hours or longer to react. Thereafter, unreacted compounds are removed using a centrifuge to obtain insulating particles in which the surface of the insulating particle body is covered with the layer.
 上記絶縁性粒子の表面と導電性粒子の表面とに水酸基がある場合には、脱水反応により絶縁性粒子と導電性粒子との付着力が適度に高くなる。 When there are hydroxyl groups on the surface of the insulating particles and the surface of the conductive particles, the adhesion between the insulating particles and the conductive particles is moderately increased by the dehydration reaction.
 絶縁性粒子の表面に水酸基を導入するための水酸基を有する化合物としては、P-OH基含有化合物及びSi-OH基含有化合物等が挙げられる。 Examples of the compound having a hydroxyl group for introducing a hydroxyl group on the surface of the insulating particles include a P—OH group-containing compound and a Si—OH group-containing compound.
 上記P-OH基含有化合物の具体例としては、アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、アシッドホスホオキシポリオキシエチレングリコールモノメタクリレート及びアシッドホスホオキシポリオキシプロピレングリコールモノメタクリレート等が挙げられる。上記P-OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the P—OH group-containing compound include acid phosphooxyethyl methacrylate, acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, and acid phosphooxypolyoxypropylene glycol monomethacrylate. Only one type of P—OH group-containing compound may be used, or two or more types may be used in combination.
 上記Si-OH基含有化合物の具体例としては、ビニルトリヒドロキシシラン、及び3-メタクリロキシプロピルトリヒドロキシシラン等が挙げられる。上記Si-OH基含有化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the Si—OH group-containing compound include vinyltrihydroxysilane and 3-methacryloxypropyltrihydroxysilane. As for the said Si-OH group containing compound, only 1 type may be used and 2 or more types may be used together.
 例えば、水酸基を表面に有する絶縁性粒子は、シランカップリング剤を用いた処理により得ることができる。上記シランカップリング剤としては、例えば、ヒドロキシトリメトキシシラン等が挙げられる。 For example, insulating particles having a hydroxyl group on the surface can be obtained by a treatment using a silane coupling agent. Examples of the silane coupling agent include hydroxytrimethoxysilane.
 上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び絶縁性粒子付き導電性粒子の用途等によって適宜選択できる。絶縁性粒子の平均粒子径は0.005~1μmの範囲内であることが好ましい。絶縁性粒子の平均粒子径は、より好ましくは0.01μm以上、より好ましくは0.5μm以下である。絶縁性粒子の平均粒子径が上記下限以上であると、絶縁性粒子付き導電性粒子がバインダー樹脂中に分散されたときに、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなる。絶縁性粒子の平均粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 The particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles, the use of the conductive particles with insulating particles, and the like. The average particle diameter of the insulating particles is preferably in the range of 0.005 to 1 μm. The average particle diameter of the insulating particles is more preferably 0.01 μm or more, and more preferably 0.5 μm or less. When the average particle diameter of the insulating particles is equal to or more than the above lower limit, the conductive particles in the plurality of conductive particles with insulating particles are in contact with each other when the conductive particles with insulating particles are dispersed in the binder resin. It becomes difficult. When the average particle diameter of the insulating particles is not more than the above upper limit, it is not necessary to make the pressure too high in order to eliminate the insulating particles between the electrodes and the conductive particles when connecting the electrodes, There is no need to heat to high temperatures.
 上記絶縁性粒子の「平均粒子径」は、数平均粒子径を示す。絶縁性粒子の平均粒子径は、粒度分布測定装置等を用いて求められる。 The “average particle size” of the insulating particles indicates the number average particle size. The average particle size of the insulating particles is determined using a particle size distribution measuring device or the like.
 上記絶縁性粒子の平均粒子径は、導電性粒子の平均粒子径の1/3以下であることが好ましく、1/5以下であることが更に好ましい。絶縁性粒子の平均粒子径は、導電性粒子の平均粒子径の1/1000以上であることが好ましく、1/100以上であることが更に好ましく、1/10以上であることが最も好ましい。絶縁性粒子の平均粒子径が導電性粒子の平均粒子径の1/5以下であると、例えば、絶縁性粒子付き導電性粒子を製造する際に、絶縁性粒子を導電性粒子の表面により一層効率的に付着させることができる。 The average particle size of the insulating particles is preferably 1/3 or less of the average particle size of the conductive particles, and more preferably 1/5 or less. The average particle diameter of the insulating particles is preferably 1/1000 or more of the average particle diameter of the conductive particles, more preferably 1/100 or more, and most preferably 1/10 or more. When the average particle diameter of the insulating particles is 1/5 or less of the average particle diameter of the conductive particles, for example, when manufacturing the conductive particles with insulating particles, the insulating particles are further separated on the surface of the conductive particles. It can be attached efficiently.
 上記絶縁性粒子の平均粒子径は、上記導電性粒子における上記導電層の厚みの0.5倍以上であることが好ましく、1倍以上であることが更に好ましい。上記絶縁性粒子の平均粒子径は、上記導電性粒子における上記導電層の厚みの20倍以下であることが好ましく、10倍以下であることが更に好ましい。絶縁性粒子の平均粒子径と導電層の厚みとがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。 The average particle diameter of the insulating particles is preferably 0.5 times or more, more preferably 1 or more times the thickness of the conductive layer in the conductive particles. The average particle size of the insulating particles is preferably 20 times or less, more preferably 10 times or less the thickness of the conductive layer in the conductive particles. When the average particle diameter of the insulating particles and the thickness of the conductive layer satisfy such a preferable relationship, the conductive particles in the plurality of conductive particles with insulating particles are difficult to contact with each other, and the conductive layer and the electrode are not in contact with each other. Insulating particles can be easily eliminated.
 上記絶縁性粒子の平均粒子径は、芯物質の平均粒子径の0.5倍以上であることが好ましく、1倍以上であることが更に好ましい。上記絶縁性粒子の平均粒子径は、芯物質の平均粒子径の20倍以下であることが好ましく、10倍以下であることが更に好ましい。上記絶縁性粒子の平均粒子径と上記芯物質の平均粒子径とがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。 The average particle size of the insulating particles is preferably at least 0.5 times the average particle size of the core substance, more preferably at least 1 time. The average particle size of the insulating particles is preferably 20 times or less, more preferably 10 times or less, the average particle size of the core substance. When the average particle diameter of the insulating particles and the average particle diameter of the core substance satisfy such a preferable relationship, the conductive particles in the plurality of conductive particles with insulating particles are difficult to contact each other, and the conductive layer and Insulating particles between the electrodes can be easily eliminated.
 上記芯物質の「平均粒子径」は、数平均粒子径を示す。芯物質の平均粒子径は、粒度分布測定装置等を用いて求められる。 The “average particle size” of the core material indicates the number average particle size. The average particle size of the core substance is determined using a particle size distribution measuring device or the like.
 上記絶縁性粒子本体の弾性率は、上記導電性粒子における上記導電層の弾性率の1/1以下であることが好ましく、1/2以下であることが更に好ましい。上記絶縁性粒子本体の弾性率は、上記導電性粒子における上記導電層の弾性率の1/100以上であることが好ましく、1/50以上であることが更に好ましい。上記絶縁性粒子の弾性率と上記導電層の弾性率とがこのような好ましい関係を満足すると、複数の絶縁性粒子付き導電性粒子における導電性粒子同士が接触し難くなり、導電層と電極との間の絶縁性粒子を容易に排除できる。 The elastic modulus of the insulating particle main body is preferably 1/1 or less, more preferably 1/2 or less, of the elastic modulus of the conductive layer in the conductive particles. The elastic modulus of the insulating particle body is preferably 1/100 or more, and more preferably 1/50 or more, of the elastic modulus of the conductive layer in the conductive particles. When the elastic modulus of the insulating particles and the elastic modulus of the conductive layer satisfy such a preferable relationship, the conductive particles in the plurality of conductive particles with insulating particles are difficult to contact each other, and the conductive layer and the electrode Insulating particles can be easily eliminated.
 上記弾性率は、精密万能試験機を用いて、JIS K7208に準拠して測定される。 The above elastic modulus is measured according to JIS K7208 using a precision universal testing machine.
 絶縁性粒子の平均粒子径が200nmの場合、上記絶縁性粒子の真球度は好ましくは50nm以下である。 When the average particle diameter of the insulating particles is 200 nm, the sphericity of the insulating particles is preferably 50 nm or less.
 上記絶縁性粒子の変動係数(CV値)は、好ましくは1%以上、好ましくは10%以下、より好ましくは8%以下である。 The coefficient of variation (CV value) of the insulating particles is preferably 1% or more, preferably 10% or less, more preferably 8% or less.
 粒子径の異なる2種以上の絶縁性粒子を用いてもよい。この場合には、導電性粒子の表面の大きな絶縁性粒子の間に、小さな絶縁性粒子を存在させることができるので、導電性粒子の露出面積を小さくすることができる。従って、複数の絶縁性粒子付き導電性粒子が接触したとしても、隣接する導電性粒子は接触し難いため、隣接する電極間の短絡を抑制できる。小さな絶縁性粒子の平均粒子径は、大きな絶縁性粒子の平均粒子径の1/2以下であることが好ましい。小さな絶縁性粒子の数は、大きな絶縁性粒子の数の1/4以下であることが好ましい。 Two or more kinds of insulating particles having different particle diameters may be used. In this case, since small insulating particles can exist between the large insulating particles on the surface of the conductive particles, the exposed area of the conductive particles can be reduced. Therefore, even if a plurality of conductive particles with insulating particles are in contact with each other, adjacent conductive particles are difficult to contact, and thus a short circuit between adjacent electrodes can be suppressed. The average particle size of the small insulating particles is preferably 1/2 or less of the average particle size of the large insulating particles. The number of small insulating particles is preferably ¼ or less of the number of large insulating particles.
 上記高分子化合物により形成された層は上記絶縁性粒子本体よりも、柔軟性が高いことが好ましい。一般的に有機化合物により形成された高分子化合物により形成された層は、無機粒子よりも柔軟性が高い。上記層と上記絶縁性粒子本体との柔軟性は、例えば圧縮回復率を測定することにより評価可能である。また、絶縁性粒子本体の圧縮回復率及び層の圧縮回復率ではなく絶縁性粒子の圧縮回復率を測定し、絶縁性粒子の圧縮回復率の値から、差分を計算することにより、上記層と上記絶縁性粒子本体との柔軟性が判定できる。
 上記圧縮回復率は、例えば、上記絶縁性粒子に一定加重をかけた時の粒径の変化量に対する、加重を開放した時の粒径の変化量の割合を計算して算出できる。
The layer formed of the polymer compound preferably has higher flexibility than the insulating particle body. In general, a layer formed of a polymer compound formed of an organic compound has higher flexibility than inorganic particles. The flexibility between the layer and the insulating particle body can be evaluated, for example, by measuring the compression recovery rate. Further, by measuring the compression recovery rate of the insulating particles rather than the compression recovery rate of the insulating particle main body and the compression recovery rate of the layer, and calculating the difference from the value of the compression recovery rate of the insulating particles, the layer and The flexibility with the insulating particle body can be determined.
The compression recovery rate can be calculated, for example, by calculating the ratio of the amount of change in particle size when the weight is released to the amount of change in particle size when a constant load is applied to the insulating particles.
 例えばシリカ粒子の表面を高分子化合物により形成された層で被覆した絶縁性粒子を、微小圧縮試験機(島津製作所製)を使用して、20℃にて、1Nの力で圧縮した後、加重を開放した時の粒子の変形を計測することで圧縮回復率を測定できる。 For example, insulating particles whose surfaces are coated with a layer formed of a polymer compound are compressed with a force of 1 N at 20 ° C. using a micro compression tester (manufactured by Shimadzu Corporation), and then subjected to weighting. The compression recovery rate can be measured by measuring the deformation of the particles when the is opened.
 測定に際しては1cm(内径縦1cm×横1cm×高さ1cm)のステンレス製カップに絶縁性粒子を最密充填になるように入れた後、0.90cm(縦0.95cm×横0.95cm)のステンレス製の蓋を移動可能なように設置して、蓋の上部から圧縮試験を実施して、蓋の移動範囲から圧縮回復率を測定してもよい。 In the measurement, the insulating particles were put into a 1 cm 3 (inner diameter 1 cm × width 1 cm × height 1 cm) stainless steel cup so as to be closely packed, and then 0.90 cm 2 (length 0.95 cm × width 0.3 mm). A 95 cm) stainless steel lid may be installed so as to be movable, a compression test may be performed from the top of the lid, and the compression recovery rate may be measured from the movement range of the lid.
 (絶縁性粒子付き導電性粒子)
 上記導電性粒子及び上記導電層の表面に絶縁性粒子を付着させる方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。ただし、ハイブリダイゼーション法では、絶縁性粒子の脱離が生じやすい傾向があるので、上記導電性粒子及び上記導電層の表面に絶縁性粒子を付着させる方法は、ハイブリダイゼーション法以外の方法であることが好ましい。なかでも、絶縁性粒子が脱離し難いことから、導電層の表面に、化学結合を介して絶縁性粒子を付着させる方法が好ましい。
(Conductive particles with insulating particles)
Examples of the method for attaching the insulating particles to the surfaces of the conductive particles and the conductive layer include chemical methods and physical or mechanical methods. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition. However, since the hybridization method tends to cause the detachment of the insulating particles, the method of attaching the insulating particles to the surfaces of the conductive particles and the conductive layer is a method other than the hybridization method. Is preferred. Among these, a method of attaching the insulating particles to the surface of the conductive layer through a chemical bond is preferable because the insulating particles are not easily detached.
 本発明に係る絶縁性粒子付き導電性粒子において、絶縁性粒子はハイブリダイゼーション法により付着されていないことが好ましい。導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことが好ましい。このような絶縁性粒子付き導電性粒子は、ハイブリダイゼーション法を使用しないことで得ることができる。 In the conductive particles with insulating particles according to the present invention, the insulating particles are preferably not attached by a hybridization method. It is preferable that the polymer compound is not attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles. Such conductive particles with insulating particles can be obtained without using a hybridization method.
 なお、図6に示すように、ハイブリダイゼーション法を用いた従来の絶縁性粒子付き導電性粒子101では、導電性粒子102の表面の絶縁性粒子103が付着している部分102a以外の部分102bにも高分子化合物104が付着する。これは、ハイブリダイゼーション法では、圧縮剪断力がかかり、絶縁性粒子の付着と脱離とが繰り返し起こり、徐々に絶縁性粒子が付着するためである。圧縮剪断力により、絶縁性粒子の高分子化合物により形成された層が剥がれて、剥がれた高分子化合物が、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に付着する。導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に付着した高分子化合物は、導電性粒子の体積抵抗率を高くしたり、電極間の接続抵抗を低下させたりする。 As shown in FIG. 6, in the conventional conductive particles 101 with insulating particles using the hybridization method, the portions 102 b other than the portions 102 a on the surface of the conductive particles 102 are attached to the portions 102 b. Also, the polymer compound 104 adheres. This is because in the hybridization method, a compressive shear force is applied, the insulating particles are repeatedly attached and detached, and the insulating particles are gradually attached. The layer formed of the polymer compound of the insulating particles is peeled off by the compressive shearing force, and the peeled polymer compound is attached to a portion other than the portion where the insulating particles are attached on the surface of the conductive particles. The polymer compound adhering to the portion other than the portion to which the insulating particles adhere on the surface of the conductive particles increases the volume resistivity of the conductive particles or decreases the connection resistance between the electrodes.
 上記導電性粒子及び上記導電層の表面に絶縁性粒子を付着させる方法の一例としては、以下の方法が挙げられる。 As an example of a method for attaching insulating particles to the surfaces of the conductive particles and the conductive layer, the following methods may be mentioned.
 先ず、水などの溶媒中に、導電性粒子を入れ、撹拌しながら、絶縁性粒子を徐々に添加する。十分に撹拌した後、絶縁性粒子付き導電性粒子を分離し、真空乾燥機などにより乾燥して、絶縁性粒子付き導電性粒子を得る。 First, the conductive particles are put in a solvent such as water, and the insulating particles are gradually added while stirring. After sufficiently stirring, the conductive particles with insulating particles are separated and dried by a vacuum dryer or the like to obtain conductive particles with insulating particles.
 上記導電層は表面に、絶縁性粒子と反応可能な反応性官能基を有することが好ましい。絶縁性粒子は表面に、導電層と反応可能な反応性官能基を有することが好ましい。これらの反応性官能基により、導電性粒子の表面から絶縁性粒子が意図せずに脱離し難くなる。
 上記反応性官能基として、反応性を考慮して適宜の基が選択される。上記反応性官能基としては、水酸基、ビニル基及びアミノ基等が挙げられる。反応性に優れているので、上記反応性官能基は水酸基であることが好ましい。上記導電性粒子は表面に、水酸基を有することが好ましい。上記絶縁性粒子は表面に、水酸基を有することが好ましい。
The conductive layer preferably has a reactive functional group capable of reacting with insulating particles on the surface. The insulating particles preferably have a reactive functional group capable of reacting with the conductive layer on the surface. These reactive functional groups make it difficult for the insulating particles to be unintentionally detached from the surface of the conductive particles.
As the reactive functional group, an appropriate group is selected in consideration of reactivity. Examples of the reactive functional group include a hydroxyl group, a vinyl group, and an amino group. Since the reactivity is excellent, the reactive functional group is preferably a hydroxyl group. The conductive particles preferably have a hydroxyl group on the surface. The insulating particles preferably have a hydroxyl group on the surface.
 (異方性導電材料)
 本発明に係る異方性導電材料は、本発明の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。
(Anisotropic conductive material)
The anisotropic conductive material according to the present invention includes the conductive particles with insulating particles of the present invention and a binder resin.
 上記絶縁性粒子付き導電性粒子を用いた場合には、絶縁性粒子付き導電性粒子をバインダー樹脂中に分散させる際などに、導電性粒子の表面から絶縁性粒子が脱離し難い。 When the conductive particles with insulating particles are used, the insulating particles are not easily detached from the surface of the conductive particles when the conductive particles with insulating particles are dispersed in the binder resin.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂としては、一般的には絶縁性の樹脂が用いられる。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. In general, an insulating resin is used as the binder resin. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. As for the said binder resin, only 1 type may be used and 2 or more types may be used together.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記異方性導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin. Examples of the thermoplastic resin include polyolefin resin, ethylene-vinyl acetate copolymer, and polyamide resin. Examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated product of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogenated products of styrene block copolymers. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
In addition to the conductive particles with insulating particles and the binder resin, the anisotropic conductive material includes, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, and an antioxidant. In addition, various additives such as a heat stabilizer, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant may be contained.
 上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ特に限定されない。バインダー樹脂中に絶縁性粒子付き導電性粒子を分散させる方法としては、例えば、バインダー樹脂中に絶縁性粒子付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法、絶縁性粒子付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法、並びにバインダー樹脂を水又は有機溶剤等で希釈した後、絶縁性粒子付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法等が挙げられる。 The method for dispersing the conductive particles with insulating particles in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. Examples of a method for dispersing conductive particles with insulating particles in a binder resin include, for example, a method in which conductive particles with insulating particles are added to a binder resin and then kneaded and dispersed with a planetary mixer or the like. Conductive particles with particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, kneaded and dispersed with a planetary mixer, etc., and the binder resin is water or organic Examples include a method of adding conductive particles with insulating particles after diluting with a solvent or the like, and kneading and dispersing with a planetary mixer or the like.
 本発明に係る異方性導電材料は、異方性導電ペースト又は異方性導電フィルムとして使用され得る。本発明に係る異方性導電材料が、異方性導電フィルム等のフィルム状の接着剤として使用される場合には、絶縁性粒子付き導電性粒子を含むフィルム状の接着剤に、絶縁性粒子付き導電性粒子又は導電性粒子を含まないフィルム状の接着剤が積層されていてもよい。 The anisotropic conductive material according to the present invention can be used as an anisotropic conductive paste or an anisotropic conductive film. When the anisotropic conductive material according to the present invention is used as a film-like adhesive such as an anisotropic conductive film, the film-like adhesive including the conductive particles with insulating particles is used as the insulating particles. A film-like adhesive that does not contain attached conductive particles or conductive particles may be laminated.
 本発明に係る異方性導電材料は、異方性導電ペーストであることが好ましい。異方性導電ペーストは取り扱い性及び回路充填性に優れている。異方性導電ペーストを得る際には絶縁性粒子付き導電性粒子に比較的大きな力が付与されるものの、本発明の絶縁性粒子付き導電性粒子の使用により、導電性粒子の表面から絶縁性粒子が脱離するのを抑制できる。 The anisotropic conductive material according to the present invention is preferably an anisotropic conductive paste. An anisotropic conductive paste is excellent in handleability and circuit fillability. When obtaining an anisotropic conductive paste, a relatively large force is imparted to the conductive particles with insulating particles, but by using the conductive particles with insulating particles of the present invention, insulation from the surface of the conductive particles is achieved. It is possible to suppress the separation of the particles.
 上記異方性導電材料100重量%中、上記バインダー樹脂の含有量は10~99.99重量%の範囲内であることが好ましい。バインダー樹脂の含有量は、より好ましくは30重量%以上、更に好ましくは50重量%以上、特に好ましくは70重量%以上、より好ましくは99.9重量%以上である。バインダー樹脂の含有量が上記下限以上及び上記上限以下であると、電極間に絶縁性粒子付き導電性粒子を効率的に配置でき、異方性導電材料により接続された接続対象部材の導通信頼性をより一層高めることができる。 In 100% by weight of the anisotropic conductive material, the content of the binder resin is preferably in the range of 10 to 99.99% by weight. The content of the binder resin is more preferably 30% by weight or more, still more preferably 50% by weight or more, particularly preferably 70% by weight or more, and more preferably 99.9% by weight or more. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles with insulating particles can be efficiently arranged between the electrodes, and the conduction reliability of the connection target member connected by the anisotropic conductive material Can be further increased.
 上記異方性導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は0.01~40重量%の範囲内であることが好ましい。上絶縁性粒子付き導電性粒子の含有量は、より好ましくは0.1重量%以上、より好ましくは20重量%以下、更に好ましくは15重量%以下である。絶縁性粒子付き導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間の導通信頼性をより一層高めることができる。 In 100% by weight of the anisotropic conductive material, the content of the conductive particles with insulating particles is preferably in the range of 0.01 to 40% by weight. The content of the conductive particles with the upper insulating particles is more preferably 0.1% by weight or more, more preferably 20% by weight or less, and still more preferably 15% by weight or less. When the content of the conductive particles with insulating particles is not less than the above lower limit and not more than the above upper limit, the conduction reliability between the electrodes can be further enhanced.
 (接続構造体)
 本発明の絶縁性粒子付き導電性粒子を用いて、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
(Connection structure)
By connecting the connection target members using the conductive particles with insulating particles of the present invention or using an anisotropic conductive material containing the conductive particles with insulating particles and a binder resin, a connection structure Can be obtained.
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、第1,第2の接続対象部材を電気的に接続している接続部とを備え、該接続部が上記絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている接続構造体であることが好ましい。絶縁性粒子付き導電性粒子が用いられた場合には、接続部自体が絶縁性粒子付き導電性粒子によって形成される。すなわち、第1,第2の接続対象部材が絶縁性粒子付き導電性粒子における導電性粒子により電気的に接続される。 The connection structure includes a first connection target member, a second connection target member, and a connection portion that electrically connects the first and second connection target members. The connection structure is preferably formed of conductive particles with insulating particles or formed of an anisotropic conductive material including the conductive particles with insulating particles and a binder resin. In the case where conductive particles with insulating particles are used, the connecting portion itself is formed of conductive particles with insulating particles. That is, the first and second connection target members are electrically connected by the conductive particles in the conductive particles with insulating particles.
 図4は、図1に示す絶縁性粒子付き導電性粒子1を用いた接続構造体を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles 1 with insulating particles shown in FIG.
 図4に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、絶縁性粒子付き導電性粒子1とバインダー樹脂とを含む異方性導電材料により形成されている。図4では、図示の便宜上、絶縁性粒子付き導電性粒子1は略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21,41を用いてもよい。 4 includes a first connection target member 52, a second connection target member 53, and a connection portion 54 that connects the first and second connection target members 52 and 53. Prepare. The connection part 54 is formed of an anisotropic conductive material including the conductive particles 1 with insulating particles and a binder resin. In FIG. 4, the conductive particles 1 with insulating particles are schematically shown for convenience of illustration. Instead of the conductive particles 1 with insulating particles, conductive particles 21 and 41 with insulating particles may be used.
 第1の接続対象部材52は上面52aに、複数の電極52bを有する。第2の接続対象部材53は下面53aに、複数の電極53bを有する。電極52bと電極53bとが、1つ又は複数の絶縁性粒子付き導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が絶縁性粒子付き導電性粒子1により電気的に接続されている。 The first connection object member 52 has a plurality of electrodes 52b on the upper surface 52a. The second connection target member 53 has a plurality of electrodes 53b on the lower surface 53a. The electrode 52b and the electrode 53b are electrically connected by one or more conductive particles 1 with insulating particles. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1 with insulating particles.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例として、第1の接続対象部材と第2の接続対象部材との間に上記異方性導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。
 上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。
The manufacturing method of the connection structure is not particularly limited. As an example of a method for manufacturing a connection structure, the anisotropic conductive material is disposed between a first connection target member and a second connection target member to obtain a laminate, and then the laminate is heated and The method of pressurizing is mentioned.
The pressurizing pressure is about 9.8 × 10 4 to 4.9 × 10 6 Pa. The heating temperature is about 120 to 220 ° C.
 上記積層体を加熱及び加圧する際に、導電性粒子2と電極52b,53bとの間に存在していた絶縁性粒子3を排除できる。例えば、上記加熱及び加圧の際には、導電性粒子2と電極52b,53bとの間に存在していた絶縁性粒子3が溶融したり、変形したりして、導電性粒子2の表面が部分的に露出する。なお、上記加熱及び加圧の際には、大きな力が付与されるので、導電性粒子2の表面から一部の絶縁性粒子3が剥離して、導電性粒子2の表面が部分的に露出することもある。導電性粒子2の表面が露出した部分が、電極52b,53bに接触することにより、導電性粒子2を介して電極52b,53bを電気的に接続できる。 When the laminate is heated and pressed, the insulating particles 3 existing between the conductive particles 2 and the electrodes 52b and 53b can be eliminated. For example, during the heating and pressurization, the insulating particles 3 existing between the conductive particles 2 and the electrodes 52b and 53b are melted or deformed, so that the surface of the conductive particles 2 Is partially exposed. Note that a large force is applied during the heating and pressurization, so that some of the insulating particles 3 are peeled off from the surface of the conductive particles 2 and the surface of the conductive particles 2 is partially exposed. Sometimes. The portion where the surface of the conductive particle 2 is exposed contacts the electrodes 52b and 53b, whereby the electrodes 52b and 53b can be electrically connected via the conductive particle 2.
 上記接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記異方性導電材料はペースト状であり、ペーストの状態で接続対象部材上に塗布されることが好ましい。上記絶縁性粒子付き導電性粒子及び異方性導電材料は、電子部品である接続対象部材の接続に用いられることが好ましい。 Specific examples of the connection target member include electronic components such as semiconductor chips, capacitors, and diodes, and electronic components such as circuit boards such as printed boards, flexible printed boards, and glass boards. The anisotropic conductive material is in a paste form, and is preferably applied on the connection target member in a paste state. The conductive particles with insulating particles and the anisotropic conductive material are preferably used for connection of a connection target member that is an electronic component.
 本発明に係る絶縁性粒子付き導電性粒子は、特にガラス基板と半導体チップとを接続対象部材とするCOG、又はガラス基板とフレキシブルプリント基板(FPC)とを接続対象部材とするFOGに好適に使用される。本発明に係る絶縁性粒子付き導電性粒子は、COGに用いられてもよく、FOGに用いられてもよい。本発明に係る接続構造体では、上記第1,第2の接続対象部材が、ガラス基板と半導体チップとであるか、又はガラス基板とフレキシブルプリント基板とであることが好ましい。上記第1,第2の接続対象部材は、ガラス基板と半導体チップとであってもよく、ガラス基板とフレキシブルプリント基板とであってもよい。 The conductive particles with insulating particles according to the present invention are particularly suitable for COG having a glass substrate and a semiconductor chip as connection target members, or FOG having a glass substrate and a flexible printed circuit board (FPC) as connection target members. Is done. The conductive particles with insulating particles according to the present invention may be used for COG or FOG. In the connection structure according to the present invention, the first and second connection target members are preferably a glass substrate and a semiconductor chip, or a glass substrate and a flexible printed board. The first and second connection target members may be a glass substrate and a semiconductor chip, or may be a glass substrate and a flexible printed board.
 ガラス基板と半導体チップとを接続対象部材とするCOGで使用される半導体チップには、バンプが設けられていることが好ましい。該バンプサイズは1000μm以上、10000μm以下の電極面積であることが好ましい。該バンプ(電極)が設けられた半導体チップにおける電極スペースは好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。このようなCOG用途に、本発明に係る絶縁性粒子付き導電性粒子は好適に用いられる。ガラス基板とフレキシブルプリント基板とを接続対象部材とするFOGで使用されるFPCでは、電極スペースは好ましくは30μm以下、より好ましくは20μm以下である。 It is preferable that bumps are provided on a semiconductor chip used in a COG having a glass substrate and a semiconductor chip as connection target members. The bump size is preferably an electrode area of 1000 μm 2 or more and 10,000 μm 2 or less. The electrode space in the semiconductor chip provided with the bump (electrode) is preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. For such COG applications, the conductive particles with insulating particles according to the present invention are preferably used. In the FPC used in the FOG using a glass substrate and a flexible printed circuit as a connection target member, the electrode space is preferably 30 μm or less, more preferably 20 μm or less.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the metal oxide include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 導電性粒子:
 ジビニルベンゼン樹脂粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.01μm、導電層の厚み0.2μm)を用意した。
Example 1
Conductive particles:
Conductive particles (average particle diameter: 3.01 μm, conductive layer thickness: 0.2 μm) having a nickel plating layer (conductive layer) formed on the surface of divinylbenzene resin particles were prepared.
 絶縁性粒子の作製:
 ゾルゲル法を使用して作製したシリカ粒子(平均粒子径200nm)の表面をビニルトリエトキシシランで被覆し、反応性官能基であるビニル基を表面に有する絶縁性粒子を絶縁性粒子本体として得た。具体的には、シリカ粒子10重量部を水とエタノールとが重量比1:9で混合された液400mlにスリーワンモーターを用いて分散させて、第1の分散液を得た。次いでビニルトリエトキシシラン0.1重量部を水とエタノールとが重量比1:9で混合された液100mlに分散させて、第2の分散液を得た。その後、上記第2の分散液を上記第1の分散液に10分かけて滴下し、混合液を得た。滴下後、得られた混合液を30分攪拌した。その後、混合液をろ過し、100℃で2時間乾燥した後、ふるいで篩うことにより、絶縁性粒子本体を得た。
Production of insulating particles:
The surface of silica particles (average particle size 200 nm) produced using the sol-gel method was coated with vinyltriethoxysilane, and insulating particles having vinyl groups as reactive functional groups on the surface were obtained as insulating particle bodies. . Specifically, 10 parts by weight of silica particles were dispersed in 400 ml of a liquid in which water and ethanol were mixed at a weight ratio of 1: 9 using a three-one motor to obtain a first dispersion. Next, 0.1 part by weight of vinyltriethoxysilane was dispersed in 100 ml of a mixture of water and ethanol in a weight ratio of 1: 9 to obtain a second dispersion. Thereafter, the second dispersion was dropped into the first dispersion over 10 minutes to obtain a mixed solution. After the dropwise addition, the resulting mixture was stirred for 30 minutes. Thereafter, the mixed solution was filtered, dried at 100 ° C. for 2 hours, and then sieved to obtain an insulating particle body.
 水200mL中に、上記絶縁性粒子本体1重量部と、高分子化合物となる化合物であるメタクリル酸2重量部と、高分子化合物となる化合物であるジメタクリル酸エチレングリコール1重量部と、開始剤(和光純薬工業社製「V-50」)0.5重量部と、乳化剤としてポリオキシエチレンラウリルエーテル(花王社製「エマルゲン106」)1重量部とを配合し、超音波照射機を使用して十分乳化させた。その後、スリーワンモーターで十分に攪拌しながら70℃まで昇温し、70℃で6時間保持して、上記モノマーを重合させた。 In 200 mL of water, 1 part by weight of the insulating particle main body, 2 parts by weight of methacrylic acid as a polymer compound, 1 part by weight of ethylene glycol dimethacrylate as a compound as a polymer compound, and an initiator (V-50 manufactured by Wako Pure Chemical Industries, Ltd.) 0.5 parts by weight and 1 part by weight of polyoxyethylene lauryl ether (“Emulgen 106” manufactured by Kao Co., Ltd.) as an emulsifier are blended and an ultrasonic irradiation machine is used And sufficiently emulsified. Then, it heated up to 70 degreeC, fully stirring with a three-one motor, and hold | maintained at 70 degreeC for 6 hours, and the said monomer was polymerized.
 その後、冷却し、遠心分離機で固液分離を2回行い、余分なモノマーを洗浄により除去し、高分子化合物により表面全体が被覆された絶縁性粒子を得た。次に、得られた絶縁性粒子を純水30mLに分散して、絶縁性粒子の分散液を得た。 Thereafter, the mixture was cooled, solid-liquid separation was performed twice with a centrifuge, excess monomers were removed by washing, and insulating particles whose entire surface was coated with the polymer compound were obtained. Next, the obtained insulating particles were dispersed in 30 mL of pure water to obtain a dispersion of insulating particles.
 この時、高分子化合物により被覆された絶縁性粒子の平均粒子径は324nmであった。 At this time, the average particle diameter of the insulating particles coated with the polymer compound was 324 nm.
 絶縁性粒子付き導電性粒子の作製:
 1Lのセパラブルフラスコに純水250mLと、エタノール50mLと、上記導電性粒子15重量部とを入れ、十分に攪拌し、導電性粒子を含む液を得た。この導電性粒子を含む液に、超音波を当てながら上記絶縁性粒子の分散液を10分間かけて滴下した後、40℃に昇温し1時間攪拌した。その後、ろ過し、真空乾燥機により100℃で8時間乾燥させ、絶縁性粒子付き導電性粒子を得た。
Production of conductive particles with insulating particles:
A 1 L separable flask was charged with 250 mL of pure water, 50 mL of ethanol, and 15 parts by weight of the conductive particles, and stirred sufficiently to obtain a liquid containing conductive particles. To the liquid containing the conductive particles, the dispersion liquid of the insulating particles was dropped over 10 minutes while applying ultrasonic waves, and then heated to 40 ° C. and stirred for 1 hour. Then, it filtered and it was made to dry at 100 degreeC with a vacuum dryer for 8 hours, and the electroconductive particle with an insulating particle was obtained.
 (実施例2)
 高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、メタクリル酸2.5重量部と、ジビニルベンゼン1.2重量部とに変更したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Example 2)
When obtaining insulating particles whose entire surface is coated with a polymer compound, the compound that becomes the polymer compound was changed to 2.5 parts by weight of methacrylic acid and 1.2 parts by weight of divinylbenzene. In the same manner as in Example 1, conductive particles with insulating particles were obtained.
 なお、上記絶縁性粒子の分散液の状態で、高分子化合物により被覆された絶縁性粒子の平均粒子径は335nmであった。 In addition, the average particle diameter of the insulating particles coated with the polymer compound in the state of dispersion of the insulating particles was 335 nm.
 (実施例3)
 シリカ粒子の表面をメタクリロキシプロピルトリエトキシシランで被覆し、メタクリロイル基を表面に有する絶縁性粒子を絶縁性粒子本体として得たこと、並びに該絶縁性粒子本体を用いて高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、酢酸ビニル2.2重量部と、N,N-メチレンビスアクリルアミド1.0重量部とに変更したこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Example 3)
The surface of the silica particles was coated with methacryloxypropyltriethoxysilane to obtain insulating particles having methacryloyl groups on the surface as the insulating particle main body, and the entire surface was made of a polymer compound using the insulating particle main body. Example 1 except that when the coated insulating particles were obtained, the compound to be a polymer compound was changed to 2.2 parts by weight of vinyl acetate and 1.0 part by weight of N, N-methylenebisacrylamide. In the same manner, conductive particles with insulating particles were obtained.
 なお、絶縁性粒子本体を得る際に、シリカ粒子10重量部とメタクリロキシプロピルトリエトキシシラン0.1重量部とを用いたこと以外は実施例1と同様の方法で、絶縁性粒子本体を得た。また、上記絶縁性粒子の分散液の状態で、高分子化合物により被覆された絶縁性粒子の平均粒子径は326nmであった。 The insulating particle body was obtained in the same manner as in Example 1 except that 10 parts by weight of silica particles and 0.1 part by weight of methacryloxypropyltriethoxysilane were used when obtaining the insulating particle body. It was. The average particle diameter of the insulating particles covered with the polymer compound in the state of the dispersion of the insulating particles was 326 nm.
 (実施例4)
 ジビニルベンゼン樹脂粒子の表面に芯物質としてニッケル粉体(100nm)が付着しており、かつニッケル粉体が付着したジビニルベンゼン粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.03μm、導電層の厚み0.21μm)を用いたこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
Example 4
Conductivity in which nickel powder (100 nm) is attached as a core material to the surface of divinylbenzene resin particles, and a nickel plating layer (conductive layer) is formed on the surface of divinylbenzene particles to which nickel powder is attached Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that particles (average particle size: 3.03 μm, conductive layer thickness: 0.21 μm) were used.
 (実施例5)
 高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、メタクリル酸0.4重量部と、ジメタクリル酸エチレングリコール0.05重量部とに変更したこと以外は実施例1と同様にして絶縁性粒子付き導電性粒子を得た。
(Example 5)
When obtaining insulating particles whose entire surface is coated with the polymer compound, the compound to be the polymer compound was changed to 0.4 parts by weight of methacrylic acid and 0.05 parts by weight of ethylene glycol dimethacrylate. Except that, conductive particles with insulating particles were obtained in the same manner as Example 1.
 なお、上記絶縁性粒子の分散液の状態で、高分子化合物により被覆された絶縁性粒子の平均粒子径は248nmであった。 In addition, the average particle diameter of the insulating particles coated with the polymer compound in the state of dispersion of the insulating particles was 248 nm.
 (比較例1)
 絶縁性粒子本体の表面を高分子化合物により被覆しなかったこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Comparative Example 1)
Conductive particles with insulating particles were obtained in the same manner as in Example 1 except that the surface of the insulating particle main body was not coated with the polymer compound.
 すなわち、導電性粒子の表面に絶縁性粒子を付着させる際に、上記絶縁性粒子の分散液として、上記ビニル基を表面に有する絶縁性粒子(高分子化合物により被覆されていない)を、純水30mLに分散した分散液を用いた。 That is, when the insulating particles are attached to the surface of the conductive particles, the insulating particles (not coated with the polymer compound) having the vinyl group on the surface are used as pure water as a dispersion of the insulating particles. A dispersion liquid dispersed in 30 mL was used.
 (実施例6)
 物理的/機械的ハイブリダイゼーション法を使用して、実施例1で作製した絶縁性粒子を、実施例1で用意した導電性粒子に付着させて、絶縁性粒子付き導電性粒子を得た。
(Example 6)
Using the physical / mechanical hybridization method, the insulating particles produced in Example 1 were attached to the conductive particles prepared in Example 1 to obtain conductive particles with insulating particles.
 (比較例2)
 絶縁性粒子として、ジビニルベンゼンの重合体で作製した高分子微粒子(平均粒子径240nm)(高分子化合物により被覆されていない)を用いたこと以外は実施例1と同様にして、絶縁性粒子付き導電性粒子を得た。
(Comparative Example 2)
Insulating particles are provided in the same manner as in Example 1 except that polymer fine particles (average particle size 240 nm) (not coated with a polymer compound) made of a polymer of divinylbenzene are used as the insulating particles. Conductive particles were obtained.
 (実施例1~6及び比較例1,2の評価)
 (1)絶縁性粒子付き導電性粒子における被覆率及び絶縁性粒子の残存率
 超音波処理前に、SEMでの観察により100個の実施例及び比較例の絶縁性粒子付き導電性粒子を観察した。絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の投影面積である被覆率X1を求めた。
(Evaluation of Examples 1 to 6 and Comparative Examples 1 and 2)
(1) Coverage rate of conductive particles with insulating particles and residual rate of insulating particles Before sonication, 100 conductive particles with insulating particles of Examples and Comparative Examples were observed by observation with an SEM. . The coverage X1 which is the projected area of the portion covered with the insulating particles in the entire surface area of the conductive particles in the conductive particles with the insulating particles was determined.
 次に、エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加し、絶縁性粒子付き導電性粒子含有液を得た。この絶縁性粒子付き導電性粒子含有液を400Wの超音波洗浄機で20℃及び38kHzの条件で5分間撹拌しながら、超音波処理した。超音波処理後に、SEMでの観察により100個の絶縁性粒子付き導電性粒子を観察し、絶縁性粒子付き導電性粒子における導電性粒子の表面積全体に占める絶縁性粒子により被覆されている部分の投影面積である被覆率X2を求めた。38kHzでの絶縁性粒子の残存率は、被覆率X1と被覆率X2とから、下記式(1)により求めた。 Next, 3 parts by weight of conductive particles with insulating particles was added to 100 parts by weight of ethanol to obtain a conductive particle-containing liquid with insulating particles. This conductive particle-containing liquid with insulating particles was subjected to ultrasonic treatment while being stirred for 5 minutes at 20 ° C. and 38 kHz with a 400 W ultrasonic cleaner. After the ultrasonic treatment, 100 conductive particles with insulating particles are observed by observation with an SEM, and the portion of the conductive particles with insulating particles covered by the insulating particles occupying the entire surface area of the conductive particles. The coverage X2, which is the projected area, was determined. The remaining rate of the insulating particles at 38 kHz was obtained from the following formula (1) from the coverage X1 and the coverage X2.
 絶縁性粒子の残存率(%)=(超音波処理後の被覆率X2/超音波処理前の被覆率X1)×100 ・・・式(1) Residual ratio of insulating particles (%) = (coverage ratio X2 after ultrasonic treatment / coverage ratio X1 before ultrasonic treatment) × 100 (1)
 また、超音波処理の条件を38kHzから40kHzに変更したこと以外は同様にして、40kHzでの絶縁性粒子の残存率を求めた。 Further, the residual rate of the insulating particles at 40 kHz was obtained in the same manner except that the sonication conditions were changed from 38 kHz to 40 kHz.
 (2)接続構造体の作製1(COG1)
 実施例及び比較例の絶縁性粒子付き導電性粒子を含有量が10重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させ、異方性導電ペーストを得た。
(2) Fabrication of connection structure 1 (COG1)
The conductive particles with insulating particles of Examples and Comparative Examples were added to “Struct Bond XN-5A” manufactured by Mitsui Chemicals so as to have a content of 10% by weight, and dispersed to obtain an anisotropic conductive paste. It was.
 L/Sが20μm/20μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが20μm/20μmである銅電極パターンを下面に有する半導体チップを用意した。この半導体チップのバンプの電極面積は2000μmであった。 A transparent glass substrate having an ITO electrode pattern having an L / S of 20 μm / 20 μm on the upper surface was prepared. Moreover, the semiconductor chip which has a copper electrode pattern which L / S is 20 micrometers / 20 micrometers on the lower surface was prepared. The electrode area of the bump of this semiconductor chip was 2000 μm 2 .
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体(COG1)を得た。 The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chip was stacked on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure (COG1).
 (3)導通評価(上下の電極間)
 得られた接続構造体(COG1)の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。2つの接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。接続抵抗の平均値が2.0Ω以下である場合を「○」、接続抵抗の平均値が2.0Ωを超える場合を「×」と判定した。
(3) Conductivity evaluation (between upper and lower electrodes)
The connection resistance between the upper and lower electrodes of the obtained connection structure (COG1) was measured by a four-terminal method. The average value of the two connection resistances was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The case where the average value of the connection resistance was 2.0Ω or less was judged as “◯”, and the case where the average value of the connection resistance exceeded 2.0Ω was judged as “X”.
 (4)絶縁評価(横方向に隣り合う電極間)
 得られた接続構造体(COG1)において、隣接する電極間のリークの有無を、テスターで抵抗を測定することにより評価した。抵抗が500MΩを超える場合にリーク無しとして結果を「○」とし、抵抗が500MΩ以下の場合にリーク有りとして結果を「×」と判定した。
(4) Insulation evaluation (between adjacent electrodes in the horizontal direction)
In the obtained connection structure (COG1), the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance with a tester. When the resistance exceeded 500 MΩ, the result was judged as “O” as no leakage, and when the resistance was 500 MΩ or less, the result was judged as “x” as a leakage.
 (5)接続構造体の作製2(COG2)
 L/Sが30μm/30μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンを下面に有する半導体チップを用意した。この半導体チップのバンプの電極面積は3000μmであった。これらの接続対象部材に変更したこと以外は、上記(2)接続構造体の作製と同様にして、接続構造体(COG2)を得た。
(5) Fabrication of connection structure 2 (COG2)
A transparent glass substrate having an ITO electrode pattern having an L / S of 30 μm / 30 μm on the upper surface was prepared. Moreover, the semiconductor chip which has a copper electrode pattern whose L / S is 30 micrometers / 30 micrometers on the lower surface was prepared. The electrode area of the bump of this semiconductor chip was 3000 μm 2 . A connection structure (COG2) was obtained in the same manner as in the production of the connection structure (2) except that the connection target members were changed.
 (6)導通評価(上下の電極間)
 得られた接続構造体(COG2)について、上記(3)と同様の評価を行った。
(6) Conductivity evaluation (between upper and lower electrodes)
About the obtained connection structure (COG2), evaluation similar to said (3) was performed.
 (7)絶縁評価(横方向に隣り合う電極間)
 得られた接続構造体(COG2)について、上記(4)と同様の評価を行った。
(7) Insulation evaluation (between adjacent electrodes in the horizontal direction)
About the obtained connection structure (COG2), evaluation similar to said (4) was performed.
 (8)接続構造体の作製3(FOG)
 実施例及び比較例の絶縁性粒子付き導電性粒子を含有量が5重量%となるように、三井化学社製「ストラクトボンドXN-5A」に添加し、分散させ、異方性導電ペーストを得た。
(8) Fabrication of connection structure 3 (FOG)
The conductive particles with insulating particles of Examples and Comparative Examples were added to “Struct Bond XN-5A” manufactured by Mitsui Chemicals so that the content was 5% by weight, and dispersed to obtain an anisotropic conductive paste. It was.
 L/Sが30μm/30μmであるITO電極パターンを上面に有する透明ガラス基板を用意した。また、L/Sが30μm/30μmである銅電極パターンを下面に有するフレキシブルプリント基板を用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm on the upper surface was prepared. Moreover, the flexible printed circuit board which has a copper electrode pattern which L / S is 30 micrometers / 30 micrometers on the lower surface was prepared.
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ50μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記フレキシブルプリント基板を、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、1MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 The obtained anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 50 μm to form an anisotropic conductive paste layer. Next, the flexible printed circuit board was laminated on the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 1 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
 (9)導通評価(上下の電極間)
 得られた接続構造体(FOG)について、上記(3)と同様の評価を行った。
(9) Conductivity evaluation (between upper and lower electrodes)
About the obtained connection structure (FOG), evaluation similar to said (3) was performed.
 (10)絶縁評価(横方向に隣り合う電極間)
 得られた接続構造体(FOG)について、上記(4)と同様の評価を行った。
 結果を下記の表1に示す。
(10) Insulation evaluation (between adjacent electrodes in the horizontal direction)
About the obtained connection structure (FOG), evaluation similar to said (4) was performed.
The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、実施例1~6で得られた絶縁性粒子において、上述した方法で絶縁性粒子の圧縮回復率を測定することにより、高分子化合物により形成された層は、シリカ粒子よりも柔軟性が高いことを確認した。 In addition, in the insulating particles obtained in Examples 1 to 6, the layer formed of the polymer compound is more flexible than the silica particles by measuring the compression recovery rate of the insulating particles by the method described above. Confirmed that it was high.
 また、実施例1~5の絶縁性粒子付き導電性粒子では、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことを確認した。なお、実施例6では、物理的/機械的ハイブリダイゼーション法を用いているので、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に、高分子化合物が付着している箇所があった。このように、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に高分子化合物が付着していると、場合によっては、導通信頼性が低くなる可能性がある。 Further, in the conductive particles with insulating particles of Examples 1 to 5, it was confirmed that the polymer compound was not attached to the portion other than the portion to which the insulating particles were attached on the surface of the conductive particles. . In Example 6, since the physical / mechanical hybridization method is used, the portion where the polymer compound is attached to the portion other than the portion where the insulating particles are attached on the surface of the conductive particles. was there. Thus, if the polymer compound is attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles, the conduction reliability may be lowered depending on the case.
 (実施例7)
 導電性粒子:
 ジビニルベンゼン樹脂粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.01μm、導電層の厚み0.2μm)を用意した。
(Example 7)
Conductive particles:
Conductive particles (average particle diameter: 3.01 μm, conductive layer thickness: 0.2 μm) having a nickel plating layer (conductive layer) formed on the surface of divinylbenzene resin particles were prepared.
 絶縁性粒子の作製:
 ゾルゲル法を使用して作製したシリカ粒子(平均粒子径200nm)の表面をビニルトリエトキシシランで被覆し、反応性官能基であるビニル基を表面に有する絶縁性粒子を絶縁性粒子本体として得た。
Production of insulating particles:
The surface of silica particles (average particle size 200 nm) produced using the sol-gel method was coated with vinyltriethoxysilane, and insulating particles having vinyl groups as reactive functional groups on the surface were obtained as insulating particle bodies. .
 水200mL中に、上記絶縁性粒子本体1重量部と、高分子化合物となる化合物であるメタクリル酸0.22重量部と、高分子化合物となる化合物であるジメタクリル酸エチレングリコール0.05重量部と、開始剤(和光純薬工業社製「V-50」)0.5重量部とをスリーワンモーターで十分に攪拌しながら70℃まで昇温し、70℃で6時間保持して、上記モノマーを重合させた。 In 200 mL of water, 1 part by weight of the insulating particle main body, 0.22 parts by weight of methacrylic acid as a polymer compound, and 0.05 part by weight of ethylene glycol dimethacrylate as a compound as a polymer compound And 0.5 parts by weight of an initiator (“V-50” manufactured by Wako Pure Chemical Industries, Ltd.) were heated to 70 ° C. with sufficient stirring with a three-one motor, held at 70 ° C. for 6 hours, Was polymerized.
 その後、冷却し、遠心分離機で固液分離を2回行い、余分なモノマーを洗浄により除去し、高分子化合物により表面全体が被覆された絶縁性粒子を得た。次に、得られた絶縁性粒子を純水30mLに分散して、絶縁性粒子の分散液を得た。 Thereafter, the mixture was cooled, solid-liquid separation was performed twice with a centrifuge, excess monomers were removed by washing, and insulating particles whose entire surface was coated with the polymer compound were obtained. Next, the obtained insulating particles were dispersed in 30 mL of pure water to obtain a dispersion of insulating particles.
 絶縁性粒子付き導電性粒子の作製:
 1Lのセパラブルフラスコに純水250mLと、エタノール50mLと、上記導電性粒子15重量部とを入れ、十分に攪拌し、導電性粒子を含む液を得た。この導電性粒子を含む液に、超音波を当てながら上記絶縁性粒子の分散液を10分間かけて滴下した後、40℃に昇温し1時間攪拌した。その後、ろ過し、真空乾燥機により100℃で8時間乾燥させ、絶縁性粒子付き導電性粒子を得た。
Production of conductive particles with insulating particles:
A 1 L separable flask was charged with 250 mL of pure water, 50 mL of ethanol, and 15 parts by weight of the conductive particles, and stirred sufficiently to obtain a liquid containing conductive particles. To the liquid containing the conductive particles, the dispersion liquid of the insulating particles was dropped over 10 minutes while applying ultrasonic waves, and then heated to 40 ° C. and stirred for 1 hour. Then, it filtered and it was made to dry at 100 degreeC with a vacuum dryer for 8 hours, and the electroconductive particle with an insulating particle was obtained.
 (実施例8)
 高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、メタクリル酸0.33重量部と、ジビニルベンゼン0.05重量部とに変更したこと以外は実施例7と同様にして、絶縁性粒子付き導電性粒子を得た。
(Example 8)
When obtaining insulating particles whose entire surface is coated with a polymer compound, the compound that becomes the polymer compound was changed to 0.33 parts by weight of methacrylic acid and 0.05 parts by weight of divinylbenzene. In the same manner as in Example 7, conductive particles with insulating particles were obtained.
 (実施例9)
 シリカ粒子の表面をメタクリロキシプロピルトリエトキシシランで被覆し、メタクリロイル基を表面に有する絶縁性粒子を絶縁性粒子本体として得たこと、並びに該絶縁性粒子本体を用いて高分子化合物により表面全体が被覆された絶縁性粒子を得る際に、高分子化合物となる化合物を、酢酸ビニル0.28重量部と、N,N-メチレンビスアクリルアミド0.05重量部とに変更したこと以外は実施例7と同様にして、絶縁性粒子付き導電性粒子を得た。
Example 9
The surface of the silica particles was coated with methacryloxypropyltriethoxysilane to obtain insulating particles having methacryloyl groups on the surface as the insulating particle main body, and the entire surface was made of a polymer compound using the insulating particle main body. Example 7 except that when the coated insulating particles were obtained, the polymer compound was changed to 0.28 parts by weight of vinyl acetate and 0.05 parts by weight of N, N-methylenebisacrylamide. In the same manner, conductive particles with insulating particles were obtained.
 (実施例10)
 ジビニルベンゼン樹脂粒子の表面に芯物質としてニッケル粉体(100nm)が付着しており、かつニッケル粉体が付着したジビニルベンゼン粒子の表面上にニッケルめっき層(導電層)が形成されている導電性粒子(平均粒子径3.03μm、導電層の厚み0.21μm)を用いたこと以外は実施例7と同様にして、絶縁性粒子付き導電性粒子を得た。
(Example 10)
Conductivity in which nickel powder (100 nm) is attached as a core material to the surface of divinylbenzene resin particles, and a nickel plating layer (conductive layer) is formed on the surface of divinylbenzene particles to which nickel powder is attached Conductive particles with insulating particles were obtained in the same manner as in Example 7, except that particles (average particle size: 3.03 μm, conductive layer thickness: 0.21 μm) were used.
 (実施例11)
 物理的/機械的ハイブリダイゼーション法を使用して、実施例7で作製した絶縁性粒子を、実施例7で用意した導電性粒子に付着させて、絶縁性粒子付き導電性粒子を得た。
(Example 11)
Using the physical / mechanical hybridization method, the insulating particles produced in Example 7 were attached to the conductive particles prepared in Example 7 to obtain conductive particles with insulating particles.
 (実施例7~11の評価)
 実施例7~11で得られた絶縁性粒子付き導電性粒子に関して、実施例1~6及び比較例1,2と同様の評価を行った。
(Evaluation of Examples 7 to 11)
The conductive particles with insulating particles obtained in Examples 7 to 11 were evaluated in the same manner as in Examples 1 to 6 and Comparative Examples 1 and 2.
 結果を下記の表2に示す。 The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、実施例7~10で得られた絶縁性粒子において、上述した方法で絶縁性粒子の圧縮回復率を測定することにより、高分子化合物により形成された層は、シリカ粒子よりも柔軟性が高いことを確認した。 In addition, in the insulating particles obtained in Examples 7 to 10, the layer formed of the polymer compound is more flexible than the silica particles by measuring the compression recovery rate of the insulating particles by the method described above. Confirmed that it was high.
 また、実施例7~10の絶縁性粒子付き導電性粒子では、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことを確認した。なお、実施例11では、物理的/機械的ハイブリダイゼーション法を用いているので、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に、高分子化合物が付着している箇所があった。このように、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分に高分子化合物が付着していると、場合によっては、導通信頼性が低くなる可能性がある。 Further, in the conductive particles with insulating particles of Examples 7 to 10, it was confirmed that the polymer compound was not attached to the portion other than the portion to which the insulating particles were attached on the surface of the conductive particles. . In Example 11, since the physical / mechanical hybridization method is used, the portion where the polymer compound is attached to the portion other than the portion where the insulating particles are attached on the surface of the conductive particles. was there. Thus, if the polymer compound is attached to a portion other than the portion to which the insulating particles are attached on the surface of the conductive particles, the conduction reliability may be lowered depending on the case.
 (実施例12)
 シリカ粒子のかわりに、メタクリル酸及びジメタクリル酸エチレングリコールを重合して作製された、表面にヒドロキシ基を有する高分子微粒子(平均粒子径200nm)を用いたこと以外は実施例1と同様にして絶縁性粒子付き導電性粒子を得た。
(Example 12)
In the same manner as in Example 1 except that polymer fine particles (average particle diameter 200 nm) having a hydroxy group on the surface, prepared by polymerizing methacrylic acid and ethylene glycol dimethacrylate instead of silica particles, were used. Conductive particles with insulating particles were obtained.
 (実施例12の評価)
 実施例12で得られた絶縁性粒子付き導電性粒子に関して、実施例1~6及び比較例1,2と同様の評価を行った。
(Evaluation of Example 12)
The conductive particles with insulating particles obtained in Example 12 were evaluated in the same manner as in Examples 1 to 6 and Comparative Examples 1 and 2.
 結果を下記の表3に示す。 The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、実施例12で得られた絶縁性粒子において、絶縁性粒子の圧縮回復率を測定することにより、高分子化合物により形成されたシェル層は、高分子で形成されたコア粒子よりも柔軟性が高いことを確認した。 In the insulating particles obtained in Example 12, the shell layer formed of the polymer compound is more flexible than the core particles formed of the polymer by measuring the compression recovery rate of the insulating particles. Was confirmed to be high.
 また、実施例12の絶縁性粒子付き導電性粒子では、導電性粒子の表面の絶縁性粒子が付着している部分以外の部分には、高分子化合物は付着していないことを確認した。 Further, in the conductive particles with insulating particles of Example 12, it was confirmed that the polymer compound was not attached to the portion other than the portion to which the insulating particles were attached on the surface of the conductive particles.
 実施例1~11、及び比較例1,2で得られた絶縁性粒子付き導電性粒子のCv値は4.6、20℃での10%K値は4650N/mm、20℃での圧縮回復率は51%であった。 The Cv values of the conductive particles with insulating particles obtained in Examples 1 to 11 and Comparative Examples 1 and 2 are 4.6, the 10% K value at 20 ° C. is 4650 N / mm 2 , and the compression at 20 ° C. The recovery rate was 51%.
 1…絶縁性粒子付き導電性粒子
 2…導電性粒子
 3…絶縁性粒子
 5…絶縁性粒子本体
 6…層
 11…基材粒子
 12…導電層
 21…絶縁性粒子付き導電性粒子
 22…導電性粒子
 31…導電層
 32…芯物質
 33…突起
 41…絶縁性粒子付き導電性粒子
 42…導電性粒子
 46…導電層
 46a…第1の導電層
 46b…第2の導電層
 47…芯物質
 48…突起
 51…接続構造体
 52…第1の接続対象部材
 52a…上面
 52b…電極
 53…第2の接続対象部材
 53a…下面
 53b…電極
 54…接続部
DESCRIPTION OF SYMBOLS 1 ... Conductive particle with insulating particle 2 ... Conductive particle 3 ... Insulating particle 5 ... Insulating particle main body 6 ... Layer 11 ... Base particle 12 ... Conductive layer 21 ... Conductive particle with insulating particle 22 ... Conductive Particle 31 ... Conductive layer 32 ... Core material 33 ... Protrusion 41 ... Conductive particle with insulating particles 42 ... Conductive particle 46 ... Conductive layer 46a ... First conductive layer 46b ... Second conductive layer 47 ... Core material 48 ... Projection 51 ... Connection structure 52 ... First connection object member 52a ... Upper surface 52b ... Electrode 53 ... Second connection object member 53a ... Lower surface 53b ... Electrode 54 ... Connection part

Claims (12)

  1.  導電層を少なくとも表面に有する導電性粒子と、
     前記導電性粒子の表面に付着している絶縁性粒子とを備え、
     前記絶縁性粒子が、絶縁性粒子本体と、該絶縁性粒子本体の表面の少なくとも一部の領域を覆っておりかつ高分子化合物により形成された層とを有し、
     前記絶縁性粒子本体と前記層とが化学的に結合している、絶縁性粒子付き導電性粒子。
    Conductive particles having at least a conductive layer on the surface;
    Insulating particles attached to the surface of the conductive particles,
    The insulating particles have an insulating particle body, and a layer that covers at least a part of the surface of the insulating particle body and is formed of a polymer compound,
    Conductive particles with insulating particles, wherein the insulating particle main body and the layer are chemically bonded.
  2.  前記絶縁性粒子本体が無機粒子である、請求項1に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 1, wherein the insulating particle body is inorganic particles.
  3.  前記層は前記絶縁性粒子本体よりも、柔軟性が高い、請求項1又は2に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 1, wherein the layer has higher flexibility than the insulating particle main body.
  4.  反応性官能基を表面に有する前記絶縁性粒子本体と、高分子化合物又は該高分子化合物となる化合物とを用いて、前記絶縁性粒子本体の表面の反応性官能基に、前記高分子化合物により形成された層を化学的に結合させることにより、前記絶縁性粒子本体と前記層とが化学的に結合している前記絶縁性粒子が得られている、請求項1~3のいずれか1項に記載の絶縁性粒子付き導電性粒子。 Using the insulating particle main body having a reactive functional group on the surface and a polymer compound or a compound to be the polymer compound, the reactive functional group on the surface of the insulating particle main body is The insulating particles in which the insulating particle main body and the layer are chemically bonded are obtained by chemically bonding the formed layers. Conductive particles with insulating particles according to 1.
  5.  前記絶縁性粒子が、前記絶縁性粒子本体と高分子化合物又は該高分子化合物となる化合物とを用いた混合による摩擦で形成されていない、請求項1~4のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The insulation according to any one of claims 1 to 4, wherein the insulating particles are not formed by friction by mixing using the insulating particle main body and a polymer compound or a compound to be the polymer compound. Conductive particles with conductive particles.
  6.  エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び40kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率が60~95%である、請求項1~5のいずれか1項に記載の絶縁性粒子付き導電性粒子。
     絶縁性粒子の残存率(%)=(超音波処理後の被覆率/超音波処理前の被覆率)×100 ・・・式(1)
    When the conductive particle-containing liquid with insulating particles obtained by adding 3 parts by weight of conductive particles with insulating particles to 100 parts by weight of ethanol was subjected to ultrasonic treatment for 5 minutes at 20 ° C. and 40 kHz, the following formula (1) The conductive particles with insulating particles according to any one of claims 1 to 5, wherein the residual ratio of the insulating particles obtained by the above is 60 to 95%.
    Residual ratio of insulating particles (%) = (coverage ratio after sonication / coverage ratio before sonication) × 100 (1)
  7.  エタノール100重量部に、絶縁性粒子付き導電性粒子3重量部を添加した絶縁性粒子付き導電性粒子含有液を20℃及び38kHzの条件で5分間超音波処理したときに、下記式(1)により求められる絶縁性粒子の残存率が60~95%である、請求項1~6のいずれか1項に記載の絶縁性粒子付き導電性粒子。
     絶縁性粒子の残存率(%)=(超音波処理後の被覆率/超音波処理前の被覆率)×100 ・・・式(1)
    When the conductive particle-containing liquid with insulating particles obtained by adding 3 parts by weight of conductive particles with insulating particles to 100 parts by weight of ethanol was subjected to ultrasonic treatment for 5 minutes at 20 ° C. and 38 kHz, the following formula (1) The conductive particles with insulating particles according to any one of claims 1 to 6, wherein the residual ratio of the insulating particles obtained by the method is 60 to 95%.
    Residual ratio of insulating particles (%) = (coverage ratio after sonication / coverage ratio before sonication) × 100 (1)
  8.  前記導電性粒子の表面積全体に占める前記絶縁性粒子により被覆されている部分の面積である被覆率が40%以上である、請求項1~7のいずれか1項に記載の絶縁性粒子付き導電性粒子。 The conductive material with insulating particles according to any one of claims 1 to 7, wherein a covering ratio that is an area of a portion covered with the insulating particles occupying the entire surface area of the conductive particles is 40% or more. Sex particles.
  9.  前記被覆率が50%を超える、請求項8に記載の絶縁性粒子付き導電性粒子。 The conductive particles with insulating particles according to claim 8, wherein the coverage ratio exceeds 50%.
  10.  請求項1~9のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、異方性導電材料。 An anisotropic conductive material comprising the conductive particles with insulating particles according to any one of claims 1 to 9, and a binder resin.
  11.  異方性導電ペーストである、請求項10に記載の異方性導電材料。 The anisotropic conductive material according to claim 10, which is an anisotropic conductive paste.
  12.  第1の接続対象部材と、第2の接続対象部材と、該第1,第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項1~9のいずれか1項に記載の絶縁性粒子付き導電性粒子により形成されているか、又は該絶縁性粒子付き導電性粒子とバインダー樹脂とを含む異方性導電材料により形成されている、接続構造体。
    A first connection target member, a second connection target member, and a connection part connecting the first and second connection target members;
    The connecting portion is formed of the conductive particles with insulating particles according to any one of claims 1 to 9, or an anisotropic conductive material including the conductive particles with insulating particles and a binder resin. A connection structure made of a material.
PCT/JP2011/065095 2010-07-02 2011-06-30 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure WO2012002508A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011540626A JP5060655B2 (en) 2010-07-02 2011-06-30 Conductive particles with insulating particles, anisotropic conductive material, and connection structure
CN2011800310591A CN102959641B (en) 2010-07-02 2011-06-30 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure
KR1020127033761A KR101321636B1 (en) 2010-07-02 2011-06-30 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010152239 2010-07-02
JP2010-152239 2010-07-02

Publications (1)

Publication Number Publication Date
WO2012002508A1 true WO2012002508A1 (en) 2012-01-05

Family

ID=45402211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065095 WO2012002508A1 (en) 2010-07-02 2011-06-30 Conductive particle with insulative particles attached thereto, anisotropic conductive material, and connecting structure

Country Status (5)

Country Link
JP (1) JP5060655B2 (en)
KR (1) KR101321636B1 (en)
CN (1) CN102959641B (en)
TW (1) TWI498405B (en)
WO (1) WO2012002508A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016414A (en) * 2011-07-06 2013-01-24 Sekisui Chem Co Ltd Conductive particle with insulating particle, anisotropic conductive material and connection structure
JP2013105535A (en) * 2011-11-10 2013-05-30 Hitachi Chemical Co Ltd Conductive particles, anisotropic conductive material and conductive connection structure
JP2013105537A (en) * 2011-11-10 2013-05-30 Hitachi Chemical Co Ltd Water repellent conductive particles, anisotropic conductive material and conductive connection structure
JP2013258138A (en) * 2012-05-16 2013-12-26 Hitachi Chemical Co Ltd Conductive particle, anisotropic conductive adhesive film, and connection structure
WO2014007237A1 (en) * 2012-07-03 2014-01-09 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP2014029857A (en) * 2012-07-03 2014-02-13 Sekisui Chem Co Ltd Conductive particles with insulating particles, conductive material, and connection structure
JP2014067702A (en) * 2012-09-06 2014-04-17 Sekisui Chem Co Ltd Insulating particles attached electric conductive particle, electric conductive material, and connection structure
JP2014241281A (en) * 2013-05-14 2014-12-25 積水化学工業株式会社 Conductive film and connection structure
JPWO2014088095A1 (en) * 2012-12-06 2017-01-05 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
KR20200140807A (en) 2018-04-04 2020-12-16 세키스이가가쿠 고교가부시키가이샤 Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure
JP7430610B2 (en) 2020-08-31 2024-02-13 日本化学工業株式会社 Coated particles and their manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115467A1 (en) * 2013-01-24 2014-07-31 積水化学工業株式会社 Base material particle, conductive particle, conductive material, and connection structure
WO2016068165A1 (en) * 2014-10-29 2016-05-06 デクセリアルズ株式会社 Conductive material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
WO2018163921A1 (en) * 2017-03-06 2018-09-13 デクセリアルズ株式会社 Resin composition, method for producing resin composition, and structure
EP3751586A4 (en) 2018-02-06 2021-11-10 Mitsubishi Materials Corporation Silver-coated resin particle
WO2019194135A1 (en) * 2018-04-04 2019-10-10 積水化学工業株式会社 Conductive particles having insulating particles, conductive material, and connection structure
WO2020009238A1 (en) * 2018-07-06 2020-01-09 積水化学工業株式会社 Conductive particle with insulative particles, conductive material, and connecting structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112011A (en) * 1989-09-26 1991-05-13 Catalysts & Chem Ind Co Ltd Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JPH04259766A (en) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd Connecting member for circuit
JP2003297143A (en) * 2002-04-01 2003-10-17 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2005209491A (en) * 2003-09-29 2005-08-04 Sony Chem Corp Conductive particle and anisotropic conductive adhesive using this
JP2006509884A (en) * 2002-12-13 2006-03-23 エルジー ケーブル リミテッド Anisotropic conductive adhesive, circuit connection method and circuit connection structure using the adhesive

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW557237B (en) * 2001-09-14 2003-10-11 Sekisui Chemical Co Ltd Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2005250180A (en) * 2004-03-04 2005-09-15 Sekisui Chem Co Ltd Method for manufacturing liquid crystal display device, liquid crystal display device and transfer body
US20100065311A1 (en) * 2006-07-03 2010-03-18 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP5151920B2 (en) * 2008-02-05 2013-02-27 日立化成工業株式会社 Conductive particles and method for producing conductive particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112011A (en) * 1989-09-26 1991-05-13 Catalysts & Chem Ind Co Ltd Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JPH04259766A (en) * 1991-02-14 1992-09-16 Hitachi Chem Co Ltd Connecting member for circuit
JP2003297143A (en) * 2002-04-01 2003-10-17 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2006509884A (en) * 2002-12-13 2006-03-23 エルジー ケーブル リミテッド Anisotropic conductive adhesive, circuit connection method and circuit connection structure using the adhesive
JP2005209491A (en) * 2003-09-29 2005-08-04 Sony Chem Corp Conductive particle and anisotropic conductive adhesive using this

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016414A (en) * 2011-07-06 2013-01-24 Sekisui Chem Co Ltd Conductive particle with insulating particle, anisotropic conductive material and connection structure
JP2013105535A (en) * 2011-11-10 2013-05-30 Hitachi Chemical Co Ltd Conductive particles, anisotropic conductive material and conductive connection structure
JP2013105537A (en) * 2011-11-10 2013-05-30 Hitachi Chemical Co Ltd Water repellent conductive particles, anisotropic conductive material and conductive connection structure
TWI603345B (en) * 2012-05-16 2017-10-21 日立化成股份有限公司 Conductive particles, anisotropic conductive adhesive film and connection structure
JP2013258138A (en) * 2012-05-16 2013-12-26 Hitachi Chemical Co Ltd Conductive particle, anisotropic conductive adhesive film, and connection structure
WO2014007237A1 (en) * 2012-07-03 2014-01-09 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP2014029857A (en) * 2012-07-03 2014-02-13 Sekisui Chem Co Ltd Conductive particles with insulating particles, conductive material, and connection structure
JP2018029071A (en) * 2012-07-03 2018-02-22 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JPWO2014007237A1 (en) * 2012-07-03 2016-06-02 積水化学工業株式会社 Conductive particles with insulating particles, conductive material, and connection structure
JP2014067702A (en) * 2012-09-06 2014-04-17 Sekisui Chem Co Ltd Insulating particles attached electric conductive particle, electric conductive material, and connection structure
JPWO2014088095A1 (en) * 2012-12-06 2017-01-05 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
JP2014241281A (en) * 2013-05-14 2014-12-25 積水化学工業株式会社 Conductive film and connection structure
KR20200140807A (en) 2018-04-04 2020-12-16 세키스이가가쿠 고교가부시키가이샤 Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure
JP7430610B2 (en) 2020-08-31 2024-02-13 日本化学工業株式会社 Coated particles and their manufacturing method

Also Published As

Publication number Publication date
JP5060655B2 (en) 2012-10-31
KR20130016387A (en) 2013-02-14
TW201207071A (en) 2012-02-16
JPWO2012002508A1 (en) 2013-08-29
KR101321636B1 (en) 2013-10-23
CN102959641A (en) 2013-03-06
CN102959641B (en) 2013-12-11
TWI498405B (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5060655B2 (en) Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6205004B2 (en) Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP4977276B2 (en) Method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5548053B2 (en) Conductive particles with insulating particles, method for producing conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP5216165B1 (en) Conductive particles, conductive materials, and connection structures
JP2018029071A (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6084850B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6577698B2 (en) Conductive film and connection structure
JP5530571B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6431411B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6151990B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5703149B2 (en) Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6438186B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP5620342B2 (en) Conductive particles with insulating particles, anisotropic conductive material, and connection structure
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7132112B2 (en) Conductive film and connection structure
WO2019194133A1 (en) Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031059.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011540626

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127033761

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800970

Country of ref document: EP

Kind code of ref document: A1