JP2004296322A - Conductive particulate and liquid crystal display element - Google Patents

Conductive particulate and liquid crystal display element Download PDF

Info

Publication number
JP2004296322A
JP2004296322A JP2003088767A JP2003088767A JP2004296322A JP 2004296322 A JP2004296322 A JP 2004296322A JP 2003088767 A JP2003088767 A JP 2003088767A JP 2003088767 A JP2003088767 A JP 2003088767A JP 2004296322 A JP2004296322 A JP 2004296322A
Authority
JP
Japan
Prior art keywords
conductive
liquid crystal
crystal display
fine particles
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003088767A
Other languages
Japanese (ja)
Inventor
Masahiko Tateno
舘野  晶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003088767A priority Critical patent/JP2004296322A/en
Publication of JP2004296322A publication Critical patent/JP2004296322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide conductive particulates having high connection reliability, in which resin elimination is facilitated even in low compression rate used for conduction of vertical substrate electrodes of liquid crystal display element, and provide a liquid crystal display element. <P>SOLUTION: These are conductive particulates, in which a conductive metal layer (2) is formed on the surface of the spherical substrate particulates, and the conductive metal layer has minute protrusions (1) of 0.02-0.3 μm in height substantially continued to the outermost layer of the conductive metal layer, and the rate of the number of minute protrusions of 0.1 μm or less in the height occupies 80% or more. The conductive particulates in which the minute protrusions exist in the number of 15 or more in the concentric circle of which the diameter (r) is 1/2 of the diameter (R) of the conductive particulates, the liquid crystal display element in which the conductive particulates are used for conduction of the upper and lower substrate electrodes of the liquid crystal display element, and the liquid crystal display element using the conductive particulates at the compression rate of preferably 20% or less are provided. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示素子の上下基板電極の導通に好適に使用され、接続信頼性を向上することができる導電性微粒子及びそれを用いてなる液晶表示素子に関する。
【0002】
【従来の技術】
液晶表示素子の上下基板電極の導通には例えば、周辺シールのシール剤に導電性微粒子を混入させて上下基板の片方にスクリーン印刷やディスペンサー等で塗布を行い、上下基板を重ねて加圧し貼り合わせる方法等が用いられている。
従来、液晶表示素子の上下基板電極間の導通材料として、接続信頼性能を発揮させるために、適度の圧縮変形性と変形回復性を有する導電性微球体が提案されている(例えば、特許文献1参照。)。
しかしながら、上下基板電極間の導通は液晶表示素子内での接続のため、例えばパネル外部引き出し電極へのフレキシブル基板電極端子との接続等と異なり、導電性微粒子を大きく変形させられるほどの荷重はかけられない。荷重が弱いために、上記特許文献1記載のものでは電極と導電性微粒子間のシール剤が排除できず、抵抗上昇や導通不良となる場合があった。
【0003】
一方、導電性微粒子を絶縁性接着剤中に含有させて異方導電性接着剤とし、複数の導電性部材間を導電接着する際に、所定の圧縮荷重を加えるときに絶縁性接着剤を排除するため、表面に凹凸が形成されている導電性微粒子が提案されている(例えば、特許文献2参照。)。また、表面に酸化皮膜を有する導体パターン間又は電極間の接続に対して、良好な導電性を実現するために、皮膜最表層に微小突起を有した導電性無電解メッキ粉体が提案されている(例えば、特許文献3参照。)。
しかしながら、これらの表面の凹凸や微小突起は大きいと、弱い荷重で圧縮される液晶表示素子の上下基板電極間の導通用途では点接触になり接続安定性に欠ける場合があった。
【0004】
【特許文献1】
特開平9−185069号公報
【特許文献2】
特開平11−73818号公報
【特許文献3】
特開2000−243132号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、液晶表示素子の上下基板電極の導通で用いられる低い圧縮率でも樹脂排除を容易にし、高い接続信頼性を持つ導電性微粒子及び液晶表示素子を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、球状の基材微粒子表面に導電性金属層が形成された導電性微粒子であって、前記導電性金属層は、表面に前記導電性金属層の最外層と実質的に連続している高さ0.02〜0.3μmの微小突起を有し、高さ0.1μm以下の微小突起の個数割合が80%以上を占め、微小突起は、導電性微粒子の正投影面において、直径が導電性微粒子直径の1/2である同心円内に15個以上存在してなる導電性微粒子を提供する。
【0007】
また、請求項2記載の発明は、請求項1記載の導電性微粒子を液晶表示素子の上下基板電極の導通に用いてなる液晶表示素子を提供する。
【0008】
また、請求項3記載の発明は、請求項2記載の液晶表示素子であって、導電性微粒子を20%以下の圧縮率で用いてなる液晶表示素子を提供する。
【0009】
以下、本発明の詳細を説明する。
本発明の導電性微粒子は、球状の基材微粒子表面に形成された導電性金属層からなる。
上記球状の基材微粒子としては、適度な弾性率、弾性変形性及び復元性を有するものであれば無機、有機を問わず特に限定されないが、樹脂からなるものが好適である。
【0010】
上記球状の基材微粒子の平均粒子径は1〜15μmが好ましい。1μm未満であると、金属層を形成する際に凝集しやすく、単粒子としにくくなることがあり、15μmを超えると、本発明の目的である液晶表示素子の上下基板電極間で用いられる範囲を超えてしまう。より好ましい粒子径は1〜12μmである。
【0011】
上記導電性金属層としては特に限定されず、例えば、ニッケル、金等からなるものが挙げられる。上記導電性金属層は1層からなるものに限定されず、目的に応じて複数の層からなるものであってもよい。例えば、ニッケルを主体とする導電性金属層を形成した後、更に外層に金からなる導電性金属層を形成することにより、より抵抗値の低減を図ることも可能である。
【0012】
上記導電性金属層の平均膜厚としては特に限定されないが、導電接続材料として必要な電気導電性を発揮するためには0.02〜0.5μmが好ましい。0.02μm未満であると、基材微粒子上に導電性金属層が形成されていない部分が生じたり、また、抵抗が大きくなったりすることがある。0.5μmを超えると、導電性金属層が硬くなり基材微粒子の変形に追従できず破壊が進みやすくなったり、基材微粒子の変形を妨げるため接続電極を破壊したり、接触面積が大きくならなかったりして、接続抵抗値が高くなったり接続不良が発生しやすくなることがある。より好ましくは0.05〜0.35μm、更に好ましくは0.07〜0.2μmである。
【0013】
上記導電性金属層は、表面に上記導電性金属層の最外層と実質的に連続している微小突起を有する。
上記微小突起は、導電性金属層を構成するのと同じ金属からなるものであっても、異なる金属からなるものであってもよい。また、上記導電性金属層が複数の層からなる場合にあっては、上記微小突起は上記導電性金属層の最外層に形成されてもよいし、内部の層に形成されてもよい。
上記微小突起は、上記導電性金属層の最外層と実質的に連続している。ここで実質的に連続とは、上記微小突起が導電性金属層の一部として、導電性金属層全体で導通していることを意味する。
【0014】
上記微小突起の高さは、0.02〜0.3μmである。0.02μm未満であると、接続時に突起部分が絶縁層である樹脂等を突き破ることができずに微小突起を付与した効果が得られにくい。0.3μmを超えると、弱い荷重で圧縮される液晶表示素子の上下基板電極間の導通用途では点接触になり接続安定性に欠ける。
【0015】
上記微小突起は、高さ0.1μm以下のものの個数割合が80%以上を占めることが必要である。80%未満では、大きな突起の割合が多くなり、微小突起の高さが高すぎる場合と同様、弱い荷重で圧縮される液晶表示素子の上下基板電極間の導通用途では点接触になり接続安定性に欠ける。
【0016】
上記微小突起の数としては、後に図を参照しながら説明するように、導電性微粒子の正投影面において、直径が導電性微粒子直径の1/2である同心円内に15個以上存在していることが必要である。15個未満であると、安定した高い接続安定性を発揮できないことがある。
上記正投影面としては、例えば、走査電子顕微鏡(SEM)等により観察される。
【0017】
上記導電性金属層は、一般的に用いられる無電解メッキ法により形成することができる。
また、上記微小突起の作製方法としては特に限定されず、例えば、基材微粒子の水性スラリーを、ニッケル塩、還元剤、錯化剤等を含んだ無電解メッキ浴に添加して無電解メッキを行う方法が挙げられる。
特にそのなかでも、基材微粒子上へのニッケル皮膜の形成とメッキ浴の自己分解とを同時に起こして、この自己分解物を微小突起の核とし、次いで、構成成分が少なくとも2液に分離した無電解メッキ液により無電解メッキを行うことにより、微小突起の成長とニッケル皮膜の成長とを同時に行う方法;基材微粒子表面にPdを形成する工程において、Pdを不均一に付着させPdの多い部分でメッキ層を成長させて微小突起を設ける方法;基材微粒子表面にハイブリダイゼーション等の各種方法により突起部を設ける方法等が挙げられる。また、上記導電性金属層が複数の層からなる場合には、上記微小突起部はいずれかの層又は任意の複数層に形成されていてもよい。
【0018】
このようにして得られた導電性微粒子を上下基板電極の導通に用いて、本発明の液晶表示素子が構成されている。本発明の液晶表示素子は、導電性微粒子は20%以下の圧縮率で用いられていることが好ましい。
【0019】
なお、圧縮率は下記計算式(1)により算出したものである。
圧縮率(%)=C/B×100 式(1)
式中、Bは導電性微粒子の粒子径(μm)であり、Cは圧縮変位量(μm)である。
【0020】
上記液晶表示素子において使用される電極としては、例えば、ガラス板上にITO(Indium−Tin−Oxide)薄膜が形成された電極、ガラス板上にアルミニウム薄膜が形成された電極等がある。このように、導電性微粒子を用いることにより、液晶表示素子の上下基板電極間を電気的に接続することができる。本発明の導電性微粒子を用いてなる液晶表示素子もまた、本発明の1つである。
【0021】
(作用)
このように、本発明の導電性微粒子は、液晶表示素子の上下基板電極の導通用として例えば、シール剤に導電性微粒子を混入させて塗布後上下基板を重ねて加圧し貼り合わせたときに、特定の高さの微小突起を有しているため、低い圧縮率でもシール剤等の樹脂の排除を容易にし、接続の信頼安定性が向上する。
また、微小突起が存在しても、微小突起の高さが高いものの割合が多くなると、低い圧縮率で加圧し貼り合わせられたとき、微小突起のみが接触する点接触状態となるため接続の信頼安定性が欠けることになると考えられる。
【0022】
【発明の実施の形態】
本発明の導電性微粒子における微小突起について説明する。
図1に示すように、導電性微粒子の正投影面において、導電性微粒子は、球状の基材微粒子表面に導電性金属層2が形成されており、前記導電性金属層の最外層と実質的に連続している微小突起1を有している。微小突起1は、導電性微粒子の正投影面において、導電性微粒子直径Rに対して、直径が導電性微粒子直径の1/2である同心円の直径rを有する円内に存在している個数が重要である。具体的には、直径が導電性微粒子直径の1/2である同心円内に存在する微小突起3は15個以上が必要である。
また、図2は拡大図であり、導電性微粒子の導電性金属層5からの微小突起4の突起高さを微小突起の高さhとしている。
【0023】
また、本発明の導電性微粒子を用いて、液晶表示素子は、例えば、次のようにして作製することができる。
図3に示すように、シール剤中に導電性微粒子を均一に分散したものをスクリーン印刷又はディスペンサーでカラーフィルタの付いていない透明基板10の透明電極8上に塗布する。透明電極8の内側には配向膜12が形成されている。
次に、上記透明基板10の配向膜12上にスペーサ17を散布し、もう一方のカラーフィルタ19の付いた透明基板9の透明電極7を前記透明基板10の透明電極8の上に重ね合わせる。透明電極7の内側には配向膜11が形成されている。この状態で上下透明基板(両透明電極7、8)を加圧する。荷重は導電性微粒子15を20%以下の圧縮率になるような荷重で行うことが好ましい。この荷重を維持してシール剤16を加熱硬化させ、液晶18を注入し、偏光板13,14を貼り付け、図3に示すような液晶表示素子Aが得られる。
【0024】
【実施例】
以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。
【0025】
(実施例1)
基材微粒子として、樹脂製スペーサ用微粒子(積水化学工業社製、ミクロパールSP−206:平均粒子径6μm)を用いた。
この基材微粒子に、アルカリ脱脂、酸中和、SnCl溶液におけるセンシタイジング、PdCl溶液におけるアクチベイチングからなる無電解メッキ前処理工程を行った。なお、上記センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、Sn2++Pd2+→Sn4++Pdなる反応を絶縁物質表面に起こしてPdを無電解メッキの触媒核とする工程である。
【0026】
無電解メッキ前処理工程を施した基材微粒子を、所定の方法にしたがって建浴、加温された無電解メッキ浴に浸漬して無電解メッキを行った。無電解メッキ浴としては、無電解ニッケル浴を用いてニッケルメッキを行った。
【0027】
ここで基材微粒子表面にPdを形成する工程において、攪拌のみでPdを付着させ、Pdを表面に不均一に付着させて、超音波45Hz照射下でニッケルメッキを行い、微小突起の有するニッケルメッキ層を形成した。
その後、更に、置換メッキ法により表面に金メッキを施し、導電性微粒子を得た。
【0028】
(比較例1)
基材微粒子表面にPdを形成する工程において、超音波照射及び攪拌にてPdを付着させ、Pdを表面に均一に付着させて、超音波28Hz照射下でニッケルメッキを行い、平滑な表面のニッケルメッキ層を形成したこと以外は実施例1と同様にして導電性微粒子を得た。
【0029】
(比較例2)
基材微粒子表面にPdを形成する工程において、攪拌のみでPdを付着させ、Pdを表面に不均一に付着させて、超音波100Hz照射下でニッケルメッキを行い、微小突起を有するが比較的大きな突起の多いニッケルメッキ層を形成したこと以外は実施例1と同様にして導電性微粒子を得た。
【0030】
(比較例3)
基材微粒子表面にPdを形成する工程において、攪拌のみでPdを付着させ、Pdを表面に不均一に付着させて、超音波28Hz照射下でニッケルメッキを行い、微小突起を有するが微小突起個数の少ないニッケルメッキ層を形成したこと以外は実施例1と同様にして導電性微粒子を得た。
【0031】
実施例1及び比較例1〜3で作製した導電性微粒子について、導電性微粒子の粒子径、ニッケル層及び金層の厚さを測定し、更に、下記に示す微小突起の測定法により微小突起の平均高さ、高さ0.1μm以下の微小突起の個数割合、直径が導電性微粒子直径の1/2である同心円内に存在する微小突起の個数、及び接続抵抗値を測定した。結果を表1に示した。
【0032】
(微小突起の測定法)
走査電子顕微鏡(SEM)による正投影面を用い、20個の導電性微粒子を観察した。微小突起の平均高さについては、SEMによって観測される導電性微粒子の外周部分を拡大し、突起の高さを20個計測し、その平均とした。また、高さ0.1μm以下の微小突起の個数を計測し、計測した全微小突起に対する個数割合を算出した。さらに、SEMによって観測される導電性微粒子に、直径が導電性微粒子直径の1/2である同心円を定め、この円内に観測される微小突起の個数を計測した。
【0033】
(接続抵抗値の測定)
20mm×40mmのガラス基板に300μm幅のITOが形成された基板を準備した。また、シール剤(三井化学社製、ストラクトボンド XN−5A)に導電性微粒子を2重量%分散させた。
次に、導電性微粒子が分散されたシール剤を上記基板のITO上中央に直径2mmになるよう塗布し、同様の上記基板をITOがクロスするように重ね合わせ、49N/cmの荷重で加圧し、180℃の温度でシール剤を硬化させた。
上記の様にして得られたクロスした状態の上下基板間において接続抵抗値を測定した。
なお、この時の導電性微粒子の圧縮率を測定したところ5%であった。
【0034】
【表1】

Figure 2004296322
【0035】
【発明の効果】
本発明の導電性微粒子は、上述の構成からなるので、液晶表示素子の上下基板電極の導通で用いられる低い圧縮率でも樹脂排除を容易にし、高い接続信頼性を持つ液晶表示素子を提供することができる。
また、本発明の液晶表示素子は、本発明の導電性微粒子を用いてなるので、上下基板電極の導通で用いられる低い圧縮率でも樹脂排除を容易にし、高い接続信頼性を持つ。
【図面の簡単な説明】
【図1】本発明の導電性微粒子の正投影面における模式図である。
【図2】本発明の導電性微粒子の断面における拡大図である。
【図3】本発明の導電性微粒子を用いて得られた液晶表示素子の要部の断面図である。
【符号の説明】
A 液晶表示素子
1 微小突起
2 導電性金属層
3 直径が導電性微粒子直径の1/2である同心円内に存在する微小突起
R 導電性微粒子直径
r 直径が導電性微粒子直径の1/2である同心円の直径
4 微小突起
5 導電性金属層
h 微小突起の高さ
7 透明電極
8 透明電極
9 透明基板
10 透明基板
11 配向膜
12 配向膜
13 偏光板
14 偏光板
15 導電性微粒子
16 シール剤
17 スペーサ
18 液晶
19 カラーフィルタ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to conductive fine particles suitably used for conduction between upper and lower substrate electrodes of a liquid crystal display element and capable of improving connection reliability, and a liquid crystal display element using the same.
[0002]
[Prior art]
For conduction between the upper and lower substrate electrodes of the liquid crystal display element, for example, conductive fine particles are mixed in a sealant for a peripheral seal, and one of the upper and lower substrates is applied by screen printing or a dispenser, and the upper and lower substrates are overlaid and pressed and bonded. The method is used.
2. Description of the Related Art Conventionally, as a conductive material between upper and lower substrate electrodes of a liquid crystal display element, conductive microspheres having appropriate compressive deformation properties and deformation recovery properties have been proposed in order to exhibit connection reliability performance (for example, Patent Document 1). reference.).
However, since the conduction between the upper and lower substrate electrodes is connected within the liquid crystal display element, unlike the connection of the flexible substrate electrode terminal to the external lead-out electrode of the panel, for example, a load is applied that can significantly deform the conductive fine particles. I can't. Since the load is weak, in the case of Patent Document 1, the sealant between the electrode and the conductive fine particles could not be removed, resulting in an increase in resistance and poor conduction in some cases.
[0003]
On the other hand, the conductive fine particles are contained in the insulating adhesive to form an anisotropic conductive adhesive, and when a plurality of conductive members are conductively bonded, the insulating adhesive is removed when a predetermined compressive load is applied. For this purpose, conductive fine particles having irregularities formed on the surface have been proposed (for example, see Patent Document 2). In addition, for connection between conductor patterns or electrodes having an oxide film on the surface, in order to achieve good conductivity, a conductive electroless plating powder having fine protrusions on the outermost layer of the film has been proposed. (For example, see Patent Document 3).
However, when these irregularities and minute projections on the surface are large, point-to-point contact occurs in conduction applications between the upper and lower substrate electrodes of the liquid crystal display element compressed by a weak load, and connection stability may be lacking.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-185069 [Patent Document 2]
JP-A-11-73818 [Patent Document 3]
JP 2000-243132 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has as its object to provide a conductive fine particle and a liquid crystal display element which facilitate removal of a resin even at a low compression ratio used for conduction between upper and lower substrate electrodes of a liquid crystal display element and have high connection reliability. And
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a conductive fine particle having a conductive metal layer formed on the surface of a spherical base fine particle, wherein the conductive metal layer has the conductive metal layer on the surface. The microprojections having a height of 0.02 to 0.3 μm which are substantially continuous with the outermost layer of the layer, and the number ratio of the microprojections having a height of 0.1 μm or less occupies 80% or more; In addition, the present invention provides 15 or more conductive fine particles in a concentric circle whose diameter is 1 / of the conductive fine particle diameter on the orthographic projection surface of the conductive fine particles.
[0007]
According to a second aspect of the present invention, there is provided a liquid crystal display device using the conductive fine particles according to the first aspect for conduction between upper and lower substrate electrodes of the liquid crystal display device.
[0008]
According to a third aspect of the present invention, there is provided the liquid crystal display element according to the second aspect, wherein the conductive fine particles are used at a compression ratio of 20% or less.
[0009]
Hereinafter, details of the present invention will be described.
The conductive fine particles of the present invention comprise a conductive metal layer formed on the surface of spherical base fine particles.
The spherical base fine particles are not particularly limited, whether inorganic or organic, as long as they have an appropriate elastic modulus, elastic deformation property and restoring property, but those made of resin are suitable.
[0010]
The average particle diameter of the spherical base fine particles is preferably 1 to 15 μm. When the thickness is less than 1 μm, the metal layer is likely to be agglomerated when forming the metal layer, and it may be difficult to form a single particle. Will exceed. A more preferred particle size is 1 to 12 μm.
[0011]
The conductive metal layer is not particularly limited, and examples thereof include a layer made of nickel, gold, or the like. The conductive metal layer is not limited to a single layer, and may be a plurality of layers depending on the purpose. For example, by forming a conductive metal layer mainly composed of nickel and then further forming a conductive metal layer composed of gold on the outer layer, the resistance value can be further reduced.
[0012]
The average thickness of the conductive metal layer is not particularly limited, but is preferably 0.02 to 0.5 μm in order to exhibit electric conductivity required as a conductive connection material. If the thickness is less than 0.02 μm, a portion where the conductive metal layer is not formed on the base fine particles may occur, or the resistance may increase. If the thickness exceeds 0.5 μm, the conductive metal layer becomes hard and cannot easily follow the deformation of the base particles, so that the destruction easily proceeds, or the connection electrode is broken to prevent the deformation of the base particles, or if the contact area is large. In some cases, the connection resistance value may increase, or connection failure may easily occur. More preferably, it is 0.05 to 0.35 μm, and still more preferably 0.07 to 0.2 μm.
[0013]
The conductive metal layer has microprojections on its surface that are substantially continuous with the outermost layer of the conductive metal layer.
The microprojections may be made of the same metal as that forming the conductive metal layer, or may be made of a different metal. Further, when the conductive metal layer is composed of a plurality of layers, the fine protrusions may be formed on the outermost layer of the conductive metal layer or may be formed on an inner layer.
The microprojections are substantially continuous with the outermost layer of the conductive metal layer. Here, “substantially continuous” means that the fine projections are electrically connected as a part of the conductive metal layer throughout the conductive metal layer.
[0014]
The height of the micro projections is 0.02 to 0.3 μm. When the thickness is less than 0.02 μm, the projection cannot penetrate the resin or the like which is the insulating layer at the time of connection, and the effect of providing the minute projection is hardly obtained. When the thickness exceeds 0.3 μm, point contact occurs in conduction between the upper and lower substrate electrodes of the liquid crystal display element which is compressed by a weak load, resulting in poor connection stability.
[0015]
It is necessary that the number ratio of the fine projections having a height of 0.1 μm or less accounts for 80% or more. If it is less than 80%, the proportion of large projections increases, and as in the case where the height of the minute projections is too high, point contact occurs in conduction applications between the upper and lower substrate electrodes of the liquid crystal display element that is compressed by a weak load, and connection stability. Lack.
[0016]
As will be described later with reference to the drawings, the number of the fine projections is 15 or more in a concentric circle whose diameter is の of the diameter of the conductive fine particles on the orthoprojection plane of the conductive fine particles. It is necessary. If the number is less than 15, stable high connection stability may not be exhibited.
The orthographic plane is observed by, for example, a scanning electron microscope (SEM).
[0017]
The conductive metal layer can be formed by a generally used electroless plating method.
The method for producing the microprojections is not particularly limited. For example, an aqueous slurry of base particles is added to an electroless plating bath containing a nickel salt, a reducing agent, a complexing agent, and the like to perform electroless plating. There is a method of performing.
Particularly, among them, the formation of a nickel film on the base material fine particles and the self-decomposition of the plating bath occur simultaneously, and the self-decomposed product is used as a nucleus of the fine projections. A method in which the growth of minute projections and the growth of a nickel film are simultaneously performed by performing electroless plating with an electrolytic plating solution; in the step of forming Pd on the surface of the base fine particles, a portion where Pd is non-uniformly adhered and Pd is abundant A method of forming a fine projection by growing a plating layer by using the method described above; and a method of forming a projection on the surface of the base material fine particles by various methods such as hybridization. When the conductive metal layer is composed of a plurality of layers, the microprojections may be formed in any one of the layers or in any of a plurality of layers.
[0018]
The liquid crystal display element of the present invention is constituted by using the conductive fine particles thus obtained for conduction between the upper and lower substrate electrodes. In the liquid crystal display device of the present invention, the conductive fine particles are preferably used at a compression ratio of 20% or less.
[0019]
The compression ratio is calculated by the following equation (1).
Compression rate (%) = C / B × 100 Formula (1)
In the formula, B is the particle diameter (μm) of the conductive fine particles, and C is the amount of compressive displacement (μm).
[0020]
Examples of the electrodes used in the liquid crystal display element include an electrode in which an ITO (Indium-Tin-Oxide) thin film is formed on a glass plate, an electrode in which an aluminum thin film is formed on a glass plate, and the like. As described above, by using the conductive fine particles, the upper and lower substrate electrodes of the liquid crystal display element can be electrically connected. A liquid crystal display device using the conductive fine particles of the present invention is also one of the present invention.
[0021]
(Action)
As described above, the conductive fine particles of the present invention are used for conduction between the upper and lower substrate electrodes of the liquid crystal display element. Because of having the minute projections of a specific height, it is easy to remove the resin such as the sealant even at a low compression ratio, and the reliability of connection is improved.
In addition, even if there are minute projections, if the ratio of the minute projections having a high height is increased, when they are pressed and bonded at a low compression ratio, only the minute projections come into a point contact state, so that the connection reliability is low. It is thought that stability will be lacking.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
The minute projections on the conductive fine particles of the present invention will be described.
As shown in FIG. 1, on the orthographic projection surface of the conductive fine particles, the conductive fine particles have a conductive metal layer 2 formed on the surface of a spherical base fine particle, which is substantially the same as the outermost layer of the conductive metal layer. The micro projections 1 are continuous with each other. The number of the microprojections 1 existing in a circle having a diameter r of a concentric circle whose diameter is 1/2 of the diameter of the conductive fine particles with respect to the diameter R of the conductive fine particles on the orthoprojection plane of the conductive fine particles. is important. Specifically, 15 or more microprojections 3 present in a concentric circle whose diameter is 1/2 of the diameter of the conductive fine particles are required.
FIG. 2 is an enlarged view in which the height of the minute projections 4 from the conductive metal layer 5 of the conductive fine particles is set to the height h of the minute projections.
[0023]
In addition, a liquid crystal display element can be produced using the conductive fine particles of the present invention, for example, as follows.
As shown in FIG. 3, a material obtained by uniformly dispersing conductive fine particles in a sealant is applied on the transparent electrode 8 of the transparent substrate 10 without a color filter by screen printing or a dispenser. An alignment film 12 is formed inside the transparent electrode 8.
Next, spacers 17 are scattered on the alignment film 12 of the transparent substrate 10, and the transparent electrode 7 of the transparent substrate 9 with the other color filter 19 is overlapped on the transparent electrode 8 of the transparent substrate 10. An alignment film 11 is formed inside the transparent electrode 7. In this state, the upper and lower transparent substrates (both transparent electrodes 7, 8) are pressurized. It is preferable that the load is applied so that the conductive fine particles 15 have a compression ratio of 20% or less. While maintaining this load, the sealant 16 is heated and cured, the liquid crystal 18 is injected, and the polarizers 13 and 14 are attached to obtain a liquid crystal display element A as shown in FIG.
[0024]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to the following examples.
[0025]
(Example 1)
As the base fine particles, fine particles for resin spacers (Micropearl SP-206, manufactured by Sekisui Chemical Co., Ltd .; average particle diameter: 6 μm) were used.
The base particles were subjected to an electroless plating pretreatment step including alkali degreasing, acid neutralization, sensitizing in a SnCl 2 solution, and activating in a PdCl 2 solution. Note that the sensitizing is a step of adsorbing Sn 2+ ions on the surface of the insulating material, and the activating is a reaction of Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of the insulating material to generate Pd. This is a step of forming a catalyst core for electroless plating.
[0026]
The base particles subjected to the electroless plating pretreatment step were immersed in a building bath and a heated electroless plating bath according to a predetermined method to perform electroless plating. Nickel plating was performed using an electroless nickel bath as the electroless plating bath.
[0027]
Here, in the step of forming Pd on the surface of the base material fine particles, Pd is adhered only by stirring, Pd is unevenly adhered to the surface, nickel plating is performed under irradiation of ultrasonic waves at 45 Hz, and nickel plating having fine projections is performed. A layer was formed.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles.
[0028]
(Comparative Example 1)
In the step of forming Pd on the surface of the base material fine particles, Pd is adhered by ultrasonic irradiation and stirring, Pd is uniformly adhered to the surface, nickel plating is performed under 28 Hz ultrasonic irradiation, and nickel on the smooth surface is formed. Except that a plating layer was formed, conductive fine particles were obtained in the same manner as in Example 1.
[0029]
(Comparative Example 2)
In the step of forming Pd on the surface of the base material fine particles, Pd is adhered only by stirring, Pd is unevenly adhered to the surface, nickel plating is performed under irradiation of ultrasonic waves at 100 Hz, and fine projections are formed. Except that a nickel plating layer having many protrusions was formed, conductive fine particles were obtained in the same manner as in Example 1.
[0030]
(Comparative Example 3)
In the step of forming Pd on the surface of the base material fine particles, Pd is adhered only by stirring, Pd is unevenly adhered to the surface, nickel plating is performed under irradiation of ultrasonic waves at 28 Hz, and the number of minute projections is small. Conductive fine particles were obtained in the same manner as in Example 1 except that a nickel-plated layer having a small content was formed.
[0031]
For the conductive fine particles prepared in Example 1 and Comparative Examples 1 to 3, the particle diameter of the conductive fine particles, the thickness of the nickel layer and the thickness of the gold layer were measured, and the fine protrusions were measured by the fine protrusion measurement method described below. The average height, the number ratio of the fine protrusions having a height of 0.1 μm or less, the number of the fine protrusions present in a concentric circle whose diameter is の of the diameter of the conductive fine particles, and the connection resistance value were measured. The results are shown in Table 1.
[0032]
(Measurement method of microprojections)
Twenty conductive fine particles were observed using an orthographic plane by a scanning electron microscope (SEM). The average height of the fine protrusions was obtained by enlarging the outer peripheral portion of the conductive fine particles observed by SEM, measuring 20 protrusion heights, and taking the average. In addition, the number of microprojections having a height of 0.1 μm or less was measured, and the ratio of the number to all the measured microprojections was calculated. Further, a concentric circle whose diameter was 1 / of the diameter of the conductive fine particles was determined for the conductive fine particles observed by the SEM, and the number of fine protrusions observed in this circle was measured.
[0033]
(Measurement of connection resistance value)
A substrate in which ITO having a width of 300 μm was formed on a 20 mm × 40 mm glass substrate was prepared. Further, 2% by weight of conductive fine particles were dispersed in a sealant (Structobond XN-5A, manufactured by Mitsui Chemicals, Inc.).
Next, a sealant in which conductive fine particles are dispersed is applied to the center of the ITO on the ITO so as to have a diameter of 2 mm, and the same substrate is overlapped so that the ITO crosses, and a load of 49 N / cm 2 is applied. The sealant was cured at a temperature of 180 ° C.
The connection resistance value was measured between the upper and lower substrates in the crossed state obtained as described above.
The compression ratio of the conductive fine particles measured at this time was 5%.
[0034]
[Table 1]
Figure 2004296322
[0035]
【The invention's effect】
Since the conductive fine particles of the present invention have the above-described configuration, it is possible to provide a liquid crystal display element having a high connection reliability by facilitating resin removal even at a low compression ratio used for conducting the upper and lower substrate electrodes of the liquid crystal display element. Can be.
Further, since the liquid crystal display element of the present invention uses the conductive fine particles of the present invention, it can easily remove the resin even at a low compression ratio used for conducting the upper and lower substrate electrodes, and has high connection reliability.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electroconductive fine particle of the present invention in an orthographic projection plane.
FIG. 2 is an enlarged view of a cross section of the conductive fine particles of the present invention.
FIG. 3 is a cross-sectional view of a main part of a liquid crystal display device obtained by using the conductive fine particles of the present invention.
[Explanation of symbols]
A Liquid crystal display element 1 Microprojection 2 Conductive metal layer 3 Microprojection R present in concentric circle whose diameter is 1/2 of conductive fine particle diameter Conductive fine particle diameter r Diameter is 1/2 of conductive fine particle diameter Concentric circle diameter 4 Microprojection 5 Conductive metal layer h Microprojection height 7 Transparent electrode 8 Transparent electrode 9 Transparent substrate 10 Transparent substrate 11 Alignment film 12 Alignment film 13 Polarizing plate 14 Polarizing plate 15 Conductive fine particles 16 Sealant 17 Spacer 18 Liquid crystal 19 Color filter

Claims (3)

球状の基材微粒子表面に導電性金属層が形成された導電性微粒子であって、前記導電性金属層は、表面に前記導電性金属層の最外層と実質的に連続している高さ0.02〜0.3μmの微小突起を有し、高さ0.1μm以下の微小突起の個数割合が80%以上を占め、微小突起は、導電性微粒子の正投影面において、直径が導電性微粒子直径の1/2である同心円内に15個以上存在してなることを特徴とする導電性微粒子。A conductive fine particle having a conductive metal layer formed on the surface of a spherical base fine particle, wherein the conductive metal layer has a height of 0 that is substantially continuous with the outermost layer of the conductive metal layer on the surface. It has fine projections of 0.02 to 0.3 μm, and the number ratio of the fine projections having a height of 0.1 μm or less occupies 80% or more. 15. Conductive fine particles, wherein 15 or more particles are present in a concentric circle having a diameter of 1/2. 請求項1記載の導電性微粒子を液晶表示素子の上下基板電極の導通に用いてなることを特徴とする液晶表示素子。A liquid crystal display device comprising the conductive fine particles according to claim 1 for conduction between upper and lower substrate electrodes of the liquid crystal display device. 請求項2記載の液晶表示素子であって、導電性微粒子を20%以下の圧縮率で用いてなることを特徴とする液晶表示素子。3. The liquid crystal display device according to claim 2, wherein the conductive fine particles are used at a compression ratio of 20% or less.
JP2003088767A 2003-03-27 2003-03-27 Conductive particulate and liquid crystal display element Pending JP2004296322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003088767A JP2004296322A (en) 2003-03-27 2003-03-27 Conductive particulate and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088767A JP2004296322A (en) 2003-03-27 2003-03-27 Conductive particulate and liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2004296322A true JP2004296322A (en) 2004-10-21

Family

ID=33402808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088767A Pending JP2004296322A (en) 2003-03-27 2003-03-27 Conductive particulate and liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2004296322A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006344416A (en) * 2005-06-07 2006-12-21 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007035573A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007207665A (en) * 2006-02-03 2007-08-16 Sekisui Chem Co Ltd Manufacturing method of conductive particle, conductive particle and anisotropic conductive material
WO2010044388A1 (en) * 2008-10-14 2010-04-22 日本化学工業株式会社 Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
JP2012109252A (en) * 2011-12-22 2012-06-07 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material and connection structure
KR101284027B1 (en) 2012-12-31 2013-07-10 덕산하이메탈(주) Conductive particles for touch screen panel, and conductive materials including the same
KR101298101B1 (en) 2012-12-26 2013-08-20 덕산하이메탈(주) Conductive particles, manufacturing method of the same, and conductive materials including the same
JP2014130824A (en) * 2014-02-04 2014-07-10 Nippon Chem Ind Co Ltd Conductive powder, conductive material containing the same, and manufacturing method of conductive particle
KR101443347B1 (en) * 2013-05-14 2014-10-02 덕산하이메탈(주) Conductive particle and the manufacturing method of the same
JP2015046144A (en) * 2012-12-31 2015-03-12 株式会社ドクサンハイメタル Conductive particle for touch screen panel, and conductive material including the same
JP2015176823A (en) * 2014-03-17 2015-10-05 株式会社日本触媒 Conductive fine particle
JP2015176824A (en) * 2014-03-17 2015-10-05 株式会社日本触媒 Conductive fine particle

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4674096B2 (en) * 2005-02-15 2011-04-20 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material
JP2006344416A (en) * 2005-06-07 2006-12-21 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) * 2005-06-07 2010-12-01 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2007035572A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2007035573A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP4718926B2 (en) * 2005-07-29 2011-07-06 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4598621B2 (en) * 2005-07-29 2010-12-15 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP2007207665A (en) * 2006-02-03 2007-08-16 Sekisui Chem Co Ltd Manufacturing method of conductive particle, conductive particle and anisotropic conductive material
WO2010044388A1 (en) * 2008-10-14 2010-04-22 日本化学工業株式会社 Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
JP2010118334A (en) * 2008-10-14 2010-05-27 Nippon Chem Ind Co Ltd Conductive powder, conductive material containing the same, and method for manufacturing conductive particle
TWI479508B (en) * 2008-10-14 2015-04-01 Nippon Chemical Ind Conductive powder, conductive material containing the conductive powder, and method for producing conductive particles
JP2012109252A (en) * 2011-12-22 2012-06-07 Sekisui Chem Co Ltd Conductive fine particle, anisotropic conductive material and connection structure
KR101298101B1 (en) 2012-12-26 2013-08-20 덕산하이메탈(주) Conductive particles, manufacturing method of the same, and conductive materials including the same
KR101284027B1 (en) 2012-12-31 2013-07-10 덕산하이메탈(주) Conductive particles for touch screen panel, and conductive materials including the same
JP2015046144A (en) * 2012-12-31 2015-03-12 株式会社ドクサンハイメタル Conductive particle for touch screen panel, and conductive material including the same
KR101443347B1 (en) * 2013-05-14 2014-10-02 덕산하이메탈(주) Conductive particle and the manufacturing method of the same
JP2014130824A (en) * 2014-02-04 2014-07-10 Nippon Chem Ind Co Ltd Conductive powder, conductive material containing the same, and manufacturing method of conductive particle
JP2015176823A (en) * 2014-03-17 2015-10-05 株式会社日本触媒 Conductive fine particle
JP2015176824A (en) * 2014-03-17 2015-10-05 株式会社日本触媒 Conductive fine particle

Similar Documents

Publication Publication Date Title
JP2004296322A (en) Conductive particulate and liquid crystal display element
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
TWI444235B (en) Conductive microparticles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4052832B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
TWI394174B (en) Conductive particles, method for producing conductive particles, anisotropic conductive material, and connecting structure
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP2007035575A (en) Conductive particulate, anisotropic conductive material, and joint structural body
JP5785238B2 (en) Conductive fine particles
JP5630596B2 (en) Conductive particle powder
JP2003234020A (en) Conductive minute particle
JP2009032397A (en) Conductive fine particle
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP2006351508A (en) Conductive particle, manufacturing method for conductive particle and anisotropic conductive material
JP6188392B2 (en) Conductive particles, conductive materials, and connection structures
JP5585797B2 (en) Conductive particle powder
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP4714719B2 (en) Method for producing conductive fine particles
JP3766123B2 (en) Conductive connection method between electrodes and conductive fine particles
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP2018101629A (en) Base material particle, conductive particle, conductive material, and connection structure
JP2001189170A (en) Conductive particles, anisotropic conductive adhesive, and conductively connected structure