JP2007207665A - Manufacturing method of conductive particle, conductive particle and anisotropic conductive material - Google Patents

Manufacturing method of conductive particle, conductive particle and anisotropic conductive material Download PDF

Info

Publication number
JP2007207665A
JP2007207665A JP2006027032A JP2006027032A JP2007207665A JP 2007207665 A JP2007207665 A JP 2007207665A JP 2006027032 A JP2006027032 A JP 2006027032A JP 2006027032 A JP2006027032 A JP 2006027032A JP 2007207665 A JP2007207665 A JP 2007207665A
Authority
JP
Japan
Prior art keywords
conductive
functional group
particles
nickel
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006027032A
Other languages
Japanese (ja)
Inventor
Takuya Wada
拓也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2006027032A priority Critical patent/JP2007207665A/en
Publication of JP2007207665A publication Critical patent/JP2007207665A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a conductive particle capable of preventing a conduction failure, and of reducing a resistance value; to provide a conductive particle; and to provide an anisotropic conductive material. <P>SOLUTION: This manufacturing method of this conductive particle 1 having projections 2 on the surface thereof comprises: a process 1 for forming a nickel-plated layer with positive or negative charge charged thereon on the surface of a core particle; a process 2 for attaching a chelate agent having a functional group A and a reactive functional group B in every molecule to the surface of the nickel-plated layer through the functional group A; a process 3 for binding a resin fine particle or inorganic fine particle with charge opposite to the charge charged on the nickel-plated layer charged thereon to the surface of the nickel-plated layer through the reactive functional group B of the chelate agent; and a process 4 for coating the resin fine particle or inorganic fine particle and the nickel-plated layer with metal plating by an electrodeless plating method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導通不良防止とともに抵抗値の低減化が可能な導電性粒子の製造方法、導電性粒子及び異方性導電材料に関する。 The present invention relates to a method for producing conductive particles capable of preventing conduction failure and reducing the resistance value, conductive particles, and an anisotropic conductive material.

導電性粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂粒子等の非導電性粒子の表面に、導電層として金属メッキ層を形成させた導電性粒子が用いられている。しかしながら、このような異方性導電材料を用いて回路基板同士を電気的に接続すると、導電性粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性粒子と回路基板等との間の接続抵抗が高くなることがあった。特に近年の電子機器の急激な進歩や発展に伴って、導電性粒子と回路基板等との間の接続抵抗の更なる低減が求められてきている。 As conductive particles used in such anisotropic conductive materials, conventionally, a metal plating layer is formed as a conductive layer on the surface of non-conductive particles such as resin particles having a uniform particle size and appropriate strength. Conductive particles are used. However, when the circuit boards are electrically connected using such an anisotropic conductive material, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive particles and the circuit board, and the conductive particles and the circuit board. In some cases, the connection resistance between them and the like increases. In particular, with rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance between conductive particles and circuit boards.

接続抵抗を低減する目的で、表面に突起を有する導電性粒子が開示されている(例えば、特許文献1参照)。この導電性粒子は、導電性粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等を突起が突き破ることで(樹脂排除性)、突起と回路基板等とを確実に接続させることで、導電性粒子と回路基板等との間の接続抵抗の低減を図っている。 For the purpose of reducing connection resistance, conductive particles having protrusions on the surface are disclosed (for example, see Patent Document 1). This conductive particle ensures that the protrusion and the circuit board are connected by the protrusion breaking through the binder resin or the like existing between the conductive layer on the surface of the conductive particle and the circuit board (resin eliminability). Thus, the connection resistance between the conductive particles and the circuit board is reduced.

しかしながら、この突起は、導電性粒子表面の導電層の異常析出により形成されたものであるため、突起の位置、高さ等を制御することが困難であり、相対向する回路基板等の間にこのような導電性粒子を挟み込んで圧着させた際に、突起の位置によっては回路基板等と突起とが接触しないことがあり、充分な接続抵抗の低減が図られているとは言えなかった。
特開2000−243132号公報
However, since these protrusions are formed by abnormal deposition of the conductive layer on the surface of the conductive particles, it is difficult to control the position, height, etc. of the protrusions. When such conductive particles are sandwiched and pressure-bonded, depending on the position of the protrusion, the circuit board and the protrusion may not come into contact with each other, and it cannot be said that the connection resistance is sufficiently reduced.
JP 2000-243132 A

本発明は、上記現状に鑑み、導通不良防止とともに抵抗値の低減化が可能な導電性粒子の製造方法、導電性粒子及び異方性導電材料を提供することを目的とする。 An object of this invention is to provide the manufacturing method of electroconductive particle, electroconductive particle, and anisotropic conductive material which can reduce a resistance value while preventing a conduction defect in view of the said present condition.

本発明は、表面に突起を有する導電性粒子の製造方法であって、コア粒子の表面に、正又は負の電荷を帯電させたニッケルメッキ層を形成する工程1、前記ニッケルメッキ層の表面に、1分子中に官能基Aと反応性官能基Bとを有するキレート剤を前記官能基Aを介して付着させる工程2、前記ニッケルメッキ層の表面に、前記キレート剤の前記反応性官能基Bを介して、前記ニッケルメッキ層に帯電させた電荷と逆の電荷を帯電させた樹脂微粒子又は無機微粒子を結合させる工程3、及び、無電解メッキ法により前記樹脂微粒子又は無機微粒子と前記ニッケルメッキ層とを金属メッキで被覆する工程4を有する導電性粒子の製造方法である。
以下に本発明を詳述する。
The present invention is a method for producing conductive particles having protrusions on the surface, the step 1 of forming a nickel plating layer charged with positive or negative charges on the surface of the core particles, the surface of the nickel plating layer A step 2 of attaching a chelating agent having a functional group A and a reactive functional group B in one molecule via the functional group A; and the reactive functional group B of the chelating agent on the surface of the nickel plating layer. A step 3 for bonding resin fine particles or inorganic fine particles charged with a charge opposite to the charge charged on the nickel plating layer, and the resin fine particles or inorganic fine particles and the nickel plating layer by an electroless plating method. It is a manufacturing method of the electroconductive particle which has the process 4 which coat | covers with metal plating.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、コア粒子の表面付近に、突起となる微粒子を静電的に凝集させ、コア粒子の表面に、突起となる微粒子を化学的な結合により付着させることにより、高さ、位置等がほぼ均一な突起を有する導電性粒子を製造することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention electrostatically agglomerate fine particles that become protrusions near the surface of the core particle, and attach the fine particles that become protrusions to the surface of the core particle by chemical bonding. The inventors have found that conductive particles having protrusions that are substantially uniform in height, position, etc. can be produced, and the present invention has been completed.

本発明の導電性粒子の製造方法は、コア粒子の表面に、正又は負の電荷を帯電させたニッケルメッキ層を形成する工程1を有する。 The manufacturing method of the electroconductive particle of this invention has the process 1 which forms the nickel plating layer which charged the positive or negative electric charge on the surface of a core particle.

上記コア粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば無機材料を用いてなるものでも有機材料を用いてなるものでもよい。なかでも、弾性変形性及び復元性に優れていることから、樹脂を用いてなる樹脂粒子であることが好ましい。また、ニッケル金属粒子を用いることもでき、この場合には後述するニッケル層を形成する工程を省略することができる。 The core particle is not particularly limited, and may be an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and restoration property. Especially, since it is excellent in elastic deformability and a restoring property, it is preferable that it is the resin particle which uses resin. Moreover, nickel metal particles can also be used, and in this case, a step of forming a nickel layer described later can be omitted.

上記樹脂粒子を構成する樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン、ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂等のフェノール樹脂、メラミンホルムアルデヒド樹脂等のメラミン樹脂、ベンゾグアナミンホルムアルデヒド樹脂等のベンゾグアナミン樹脂、尿素ホルムアルデヒド樹脂、エポキシ樹脂、(不)飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン等からなるものが挙げられる。なかでも、エチレン性不飽和基を有する種々の重合性単量体を1種又は2種以上重合させてなる樹脂を用いてなるものは、好適な硬さを得やすいことから好ましい。 The resin constituting the resin particles is not particularly limited, for example, polyolefins such as polyethylene, polypropylene, polystyrene, polyisobutylene and polybutadiene, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyalkylene terephthalate, polysulfone, polycarbonate, Polyamide, phenol resin such as phenol formaldehyde resin, melamine resin such as melamine formaldehyde resin, benzoguanamine resin such as benzoguanamine formaldehyde resin, urea formaldehyde resin, epoxy resin, (un) saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamideimide, polyetheretherketone, poly Those composed of Terusuruhon the like. Especially, what uses the resin formed by superposing | polymerizing 1 type, or 2 or more types of various polymerizable monomers which have an ethylenically unsaturated group is preferable from being easy to obtain suitable hardness.

上記エチレン性不飽和基を有する重合性単量体は、非架橋性の単量体でも架橋性の単量体でもよい。
上記非架橋性の単量体としては特に限定されず、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、フッ化ビニル、塩化ビニル、プロピオン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、ブチレン、メチルペンテン、イソプレン、ブタジエン等の不飽和炭化水素等が挙げられる。
The polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer.
The non-crosslinkable monomer is not particularly limited, and examples thereof include styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene; (meth) acrylic acid Carboxyl group-containing monomers such as maleic acid and maleic anhydride; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl ( (Meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate Alkyl (meth) acrylates such as relate; oxygen atom-containing (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; Nitrile-containing monomers such as (meth) acrylonitrile; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, vinyl fluoride, vinyl chloride, vinyl propionate, etc. Acid vinyl esters; unsaturated hydrocarbons such as ethylene, propylene, butylene, methylpentene, isoprene and butadiene.

上記架橋性の単量体としては特に限定されず、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート;グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル等;γ―(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体;フタル酸等のジカルボン酸類;ジアミン類;ジアリルフタレート、ベンゾグアナミン、トリアリルイソシアネート等が挙げられる。 The crosslinkable monomer is not particularly limited. For example, tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate; glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, etc. Polyfunctional (meth) acrylates; triallyl (iso) cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, dia Silane-containing monomers such as γ- (meth) acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane; dicarboxylic acids such as phthalic acid; diamines; diallyl phthalate, benzoguanamine, triallyl isocyanate Etc.

上記コア粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は100μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、100μmを超えると、異方性導電材料として回路基板等に用いられる範囲を超えることがある。
なお、上記コア粒子の平均粒子径は、無作為に選んだ50個のコア粒子について粒子径を測定し、これらを算術平均したものとする。
Although it does not specifically limit as an average particle diameter of the said core particle, A preferable minimum is 1 micrometer and a preferable upper limit is 100 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles, and if it exceeds 100 μm, it may exceed the range used for circuit boards and the like as anisotropic conductive materials. is there.
In addition, the average particle diameter of the said core particle shall measure the particle diameter about 50 core particles chosen at random, and shall mean these arithmetically.

上記コア粒子の表面に、正又は負の電荷を帯電させたニッケルメッキ層を形成する方法としては特に限定されず、例えば、高濃度のニッケルメッキ液を添加してコア粒子の表面を無電解メッキする方法等が挙げられる。 A method for forming a nickel plating layer charged with positive or negative charges on the surface of the core particles is not particularly limited. For example, a high concentration nickel plating solution is added to electrolessly plate the surface of the core particles. And the like.

本発明の導電性粒子の製造方法は、上記ニッケルメッキ層の表面に、1分子中に官能基Aと反応性官能基Bとを有するキレート剤を上記官能基Aを介して付着させる工程2を有する。 The method for producing conductive particles of the present invention comprises the step 2 of attaching a chelating agent having a functional group A and a reactive functional group B in one molecule to the surface of the nickel plating layer via the functional group A. Have.

上記官能基Aとしては、上記ニッケルメッキ層とイオン結合、共有結合、配位結合が可能な官能基であれば特に限定されず、例えば、シラン基、シラノール基、カルボキシル基、アミノ基、アンモニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム基、ホウ酸基、オキサゾリン基、ピロリドン基、リン酸基、ニトリル基等が挙げられる。なかでも、配位結合し得る官能基が好ましく、S、N、P原子を有する官能基が好適に用いられる。 The functional group A is not particularly limited as long as it is a functional group capable of ionic bond, covalent bond, and coordinate bond with the nickel plating layer. For example, silane group, silanol group, carboxyl group, amino group, ammonium group Nitro group, hydroxyl group, carbonyl group, thiol group, sulfonic acid group, sulfonium group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group, nitrile group and the like. Of these, a functional group capable of coordination bonding is preferable, and a functional group having S, N, and P atoms is preferably used.

上記反応性官能基Bとしては、後述する樹脂微粒子又は無機微粒子と反応しうる官能基であれば特に限定されず、例えば、ヒドロキシル基、カルボキシル基、アミノ基、エポキシ基、シリル基、シラノール基、イソシアネート基等が挙げられる。 The reactive functional group B is not particularly limited as long as it is a functional group capable of reacting with resin fine particles or inorganic fine particles described later. For example, a hydroxyl group, a carboxyl group, an amino group, an epoxy group, a silyl group, a silanol group, An isocyanate group etc. are mentioned.

1分子中に上記官能基Aと反応性官能基Bとを有するキレート剤としては特に限定されず、例えば、2−アミノエタンチオール、p−アミノチオフェノール、4,4−ジアミノジフェニルジスルフィド等が挙げられる。また、樹脂微粒子又は無機微粒子と反応しうる官能基を有するポリスルフィド等も挙げられ、具体的には、例えば、アミノ基を有するトリスルフィド等が挙げられる。 The chelating agent having the functional group A and the reactive functional group B in one molecule is not particularly limited, and examples thereof include 2-aminoethanethiol, p-aminothiophenol, 4,4-diaminodiphenyl disulfide and the like. It is done. Moreover, the polysulfide etc. which have a functional group which can react with a resin fine particle or an inorganic fine particle are mentioned, Specifically, the trisulfide etc. which have an amino group are mentioned, for example.

上記キレート剤は、チオール基又はスルフィド基がニッケルに配位するので、キレート剤は上記官能基Aを介してニッケルメッキ層の表面に付着する。
これにより、後述する樹脂微粒子又は無機微粒子をニッケルメッキされた樹脂微粒子の表面に静電凝集させることができ、樹脂微粒子又は無機微粒子と後述する反応性官能基Bとが効率よく反応し、均一な突起を形成することが可能となる。
Since the thiol group or sulfide group coordinates to nickel in the chelating agent, the chelating agent adheres to the surface of the nickel plating layer via the functional group A.
Thereby, the resin fine particles or inorganic fine particles described later can be electrostatically aggregated on the surface of the nickel-plated resin fine particles, and the resin fine particles or inorganic fine particles and the reactive functional groups B described later react efficiently, and are uniform. Protrusions can be formed.

本発明の導電性粒子の製造方法は、上記ニッケルメッキ層の表面に、上記キレート剤の上記反応性官能基Bを介して、上記ニッケルメッキ層に帯電させた電荷と逆の電荷を帯電させた樹脂微粒子又は無機微粒子を結合させる工程3を有する。 In the method for producing conductive particles of the present invention, the surface of the nickel plating layer is charged with a charge opposite to the charge charged on the nickel plating layer via the reactive functional group B of the chelating agent. A step 3 of bonding resin fine particles or inorganic fine particles;

本発明の導電性粒子の製造方法においては、上記ニッケルメッキ層に帯電させた電荷と逆の電荷を帯電させた樹脂微粒子又は無機微粒子を用いることにより、上記樹脂微粒子又は無機微粒子が上記ニッケルメッキ層の表面付近に静電凝集し、また、上記樹脂微粒子又は無機微粒子同士は同じ電荷をもつため、該樹脂微粒子又は無機微粒子同士は反発し合うため、上記反応性官能基Bを介して、上記樹脂微粒子又は無機微粒子が上記ニッケルメッキ層にほぼ均一に付着するため、得られる導電性粒子は、ほぼ均一な突起を有する導電性粒子となる。 In the method for producing conductive particles of the present invention, the resin fine particles or the inorganic fine particles are charged to the nickel plated layer by using resin fine particles or inorganic fine particles charged with a charge opposite to the charge charged on the nickel plated layer. Since the resin fine particles or inorganic fine particles have the same electric charge, the resin fine particles or inorganic fine particles repel each other, so that the resin through the reactive functional group B Since fine particles or inorganic fine particles adhere to the nickel plating layer almost uniformly, the obtained conductive particles become conductive particles having substantially uniform protrusions.

上記樹脂微粒子としては特に限定されず、例えば、負に帯電するアクリル樹脂微粒子、スチレン樹脂微粒子、ジビニルベンゼン樹脂微粒子等や、正に帯電するアミド樹脂微粒子、ポリアクリルアミド微粒子等が挙げられる。 The resin fine particles are not particularly limited, and examples thereof include negatively charged acrylic resin fine particles, styrene resin fine particles, divinylbenzene resin fine particles, positively charged amide resin fine particles, and polyacrylamide fine particles.

上記樹脂微粒子又は上記無機微粒子の大きさとしては特に限定されないが、好ましい下限は30nm、好ましい上限は600nmである。30nm未満であると、突起部分の強度が著しく劣り、本発明の導電性粒子をバインダー樹脂等と混練するとき等に突起が破損することがあり、600nmを超えると、突起が高くなりすぎ、回路基板等を圧着したときに突起がつぶれないことがある。 The size of the resin fine particles or the inorganic fine particles is not particularly limited, but a preferred lower limit is 30 nm and a preferred upper limit is 600 nm. If the thickness is less than 30 nm, the strength of the projection portion is remarkably inferior, and the projection may be damaged when the conductive particles of the present invention are kneaded with a binder resin or the like. The protrusion may not collapse when a substrate or the like is crimped.

上記キレート剤の反応性官能基Bは、樹脂微粒子又は無機微粒子の表面に存在する官能基と反応して結合を形成するので、ニッケルメッキ層の表面に付着する。
なお、反応を促進したい場合は、反応液を加熱することが好ましい。
The reactive functional group B of the chelating agent reacts with the functional group present on the surface of the resin fine particles or inorganic fine particles to form a bond, and therefore adheres to the surface of the nickel plating layer.
In addition, when it is desired to promote the reaction, it is preferable to heat the reaction solution.

本発明の導電性粒子の製造方法は、無電解メッキ法により上記樹脂微粒子又は無機微粒子と上記ニッケルメッキ層とを金属メッキで被覆する工程4を有する。 The manufacturing method of the electroconductive particle of this invention has the process 4 which coat | covers the said resin fine particle or inorganic fine particle, and the said nickel plating layer with a metal plating by the electroless-plating method.

被覆する金属としては特に限定されず、例えば、ニッケル、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等が挙げられる。 It does not specifically limit as a metal to coat | cover, For example, nickel, zinc, iron, lead, tin, aluminum, cobalt, indium, chromium, titanium, antimony, bismuth, germanium, cadmium etc. are mentioned.

上記金属メッキで被覆する方法としては特に限定されず、例えば、無電解メッキ法等が挙げられる。 The method for coating with the metal plating is not particularly limited, and examples thereof include an electroless plating method.

上記金属メッキの厚さとしては特に限定されないが、好ましい下限は0.02μm、好ましい上限は5μmである。0.02μm未満であると、導電性粒子が導電性を得られなくなることがあり、5μmを超えると、導電性粒子が硬くなりすぎて電極端子間の間隔に追随して導電性粒子が変形しにくくなることがある。 Although it does not specifically limit as thickness of the said metal plating, A preferable minimum is 0.02 micrometer and a preferable upper limit is 5 micrometers. If the thickness is less than 0.02 μm, the conductive particles may not be able to obtain conductivity. If the thickness exceeds 5 μm, the conductive particles become too hard and the conductive particles are deformed following the distance between the electrode terminals. It may be difficult.

上記導電性金属層の厚さは、例えば、本発明の導電性粒子の断面を透過型電子顕微鏡(TEM)で観察することにより測定することができる。倍率としては特に限定されず、観察しやすい倍率を選べばよいが、例えば、5万倍が用いられる。 The thickness of the conductive metal layer can be measured, for example, by observing the cross section of the conductive particles of the present invention with a transmission electron microscope (TEM). The magnification is not particularly limited, and a magnification that is easy to observe may be selected. For example, 50,000 times is used.

本発明の導電性粒子の製造方法は、上述した工程に加え、上記金属メッキ層の表面に、更に金メッキ層を形成する工程5を有することが好ましい。 It is preferable that the manufacturing method of the electroconductive particle of this invention has the process 5 which forms a gold plating layer further on the surface of the said metal plating layer in addition to the process mentioned above.

本発明の導電性粒子の最表面に金層を形成することにより、金属メッキ層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 By forming a gold layer on the outermost surface of the conductive particles of the present invention, it is possible to prevent oxidation of the metal plating layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、金属メッキ層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が金属メッキ層を侵食し、コア粒子と金属メッキ層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If the thickness is less than 1 nm, it may be difficult to prevent oxidation of the metal plating layer, and the connection resistance value may increase. If the thickness exceeds 100 nm, the gold layer erodes the metal plating layer, and the core particles And the metal plating layer may deteriorate the adhesion.

上述した本発明の導電性粒子の製造方法により製造された導電性粒子は、表面に均一な突起を有する導電性粒子となる。
本発明の導電性粒子の製造方法により製造される導電性粒子であって、下記式(1)で表される突起の高さの変動係数をτとすると、τが10%以下であり、かつ、任意の正投影面をとったときに、上記正投影面の直径の1/2である同心円内に上記突起が2個以上存在している導電性粒子もまた、本発明の1つである。

Figure 2007207665
The conductive particles manufactured by the above-described method for manufacturing conductive particles of the present invention are conductive particles having uniform protrusions on the surface.
Conductive particles produced by the method for producing conductive particles of the present invention, where τ is 10% or less, where τ is the coefficient of variation of the height of the protrusion represented by the following formula (1), and In addition, a conductive particle in which two or more of the protrusions exist in a concentric circle that is ½ of the diameter of the orthographic projection plane when an arbitrary orthographic projection plane is taken is also one aspect of the present invention. .
Figure 2007207665

本発明の導電性粒子の平均粒子径としては特に限定されないが、好ましい下限は2.5μm、好ましい上限は15μmである。2.5μm未満であると、導電性金属層を形成する際に凝集しやすく、単粒子としにくくなることがあり、15μmを超えると、異方性導電材料として微細な配線を有する基板等の電極端子間で用いられる範囲を超えてしまうことがある。 Although it does not specifically limit as an average particle diameter of the electroconductive particle of this invention, A preferable minimum is 2.5 micrometers and a preferable upper limit is 15 micrometers. If it is less than 2.5 μm, it tends to aggregate when forming the conductive metal layer, making it difficult to form single particles. If it exceeds 15 μm, an electrode such as a substrate having fine wiring as an anisotropic conductive material It may exceed the range used between terminals.

上記突起の高さとしては特に限定されないが、好ましい下限は上記コア粒子の平均粒子径の0.5%、好ましい上限は上記コア粒子の平均粒子径の25%である。上記コア粒子の平均粒子径の0.5%未満であると、充分な樹脂排除性が得られないことがあり、上記コア粒子の平均粒子径の25%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。 The height of the protrusion is not particularly limited, but a preferable lower limit is 0.5% of the average particle diameter of the core particles, and a preferable upper limit is 25% of the average particle diameter of the core particles. If the average particle diameter of the core particles is less than 0.5%, sufficient resin exclusion may not be obtained. If the average particle diameter of the core particles exceeds 25%, protrusions may be formed on the circuit board or the like. There is a risk of digging deep and damaging the circuit board.

本発明の導電性粒子は、上記式(1)で表される突起の高さの変動係数をτとすると、τが10%以下である。10%を超えると、導電性粒子を用いて相対向する電極間隔を制御することが困難になる。 In the conductive particles of the present invention, τ is 10% or less, where τ is a variation coefficient of the height of the protrusion represented by the above formula (1). If it exceeds 10%, it becomes difficult to control the distance between the opposing electrodes using conductive particles.

本発明の導電性粒子は、任意の正投影面をとったときに、上記正投影面の直径の1/2である同心円内に上記突起が2個以上存在している。2個未満であると、導電性粒子と回路基板等との高い接続安定性を発揮できない。
上記正投影面は、例えば、走査電子顕微鏡(SEM)等により観察することができる。
The conductive particles of the present invention have two or more projections in a concentric circle that is ½ of the diameter of the orthographic projection surface when an arbitrary orthographic projection surface is taken. When the number is less than 2, high connection stability between the conductive particles and the circuit board cannot be exhibited.
The orthographic projection surface can be observed with, for example, a scanning electron microscope (SEM).

また、本発明の導電性粒子の突起の存在比としては特に限定されないが、表面全体に対して好ましい下限が20%、好ましい上限が80%である。20%未満であると、導電性粒子の向きによっては突起と回路基板等とが接触しないことがあり、80%を超えると、突起同士が重なり合い、導電接続時に導電性粒子と回路基板等とを圧着した際に突起がつぶれにくいことがある。
なお、上記導電性粒子の突起の存在比は、走査電子顕微鏡(SEM)による画像解析により、導電性粒子の中心より2.5μmの面積に対する突起の被覆面積(すなわち、突起の粒子径の投影面積)を算出することにより求めることができる。
Further, the abundance ratio of the protrusions of the conductive particles of the present invention is not particularly limited, but a preferable lower limit is 20% and a preferable upper limit is 80% with respect to the entire surface. If it is less than 20%, the projection and the circuit board may not come into contact depending on the direction of the conductive particles. If it exceeds 80%, the projections overlap each other, and the conductive particles and the circuit board etc. When crimped, the protrusions may be difficult to collapse.
The abundance ratio of the protrusions of the conductive particles is determined by image analysis using a scanning electron microscope (SEM), and the covering area of the protrusions with respect to an area of 2.5 μm from the center of the conductive particles (that is, the projected area of the particle diameter of the protrusions). ) Can be obtained.

本発明の導電性粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive particles of the present invention are added to an insulating resin binder, and are uniformly mixed and dispersed. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive particles of the present invention to an insulating resin binder, and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive particle of this invention.

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性粒子の製造方法、導電性粒子及び異方性導電材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of electroconductive particle, electroconductive particle, and anisotropic conductive material which can reduce a resistance value while preventing conduction failure can be provided.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
水100gにコア粒子として4μmのジビニルベンゼン樹脂微粒子5gを分散させた分散液を調製した。
得られた分散液にニッケルメッキ液を加え無電解メッキを行い、ニッケルメッキされた粒子を得た。ニッケルメッキの膜厚は70nmであった。
更に、キレート剤として、2−アミノエタンチオール0.05gを加え、80℃、30分間加熱し、表面のニッケルメッキ層にキレート剤を結合させ、樹脂微粒子としてポリアクリルアミド0.05gを加え、50℃、30分間加熱し、キレート剤を介してニッケルメッキ層の表面に樹脂微粒子を結合させた粒子を得た。得られた粒子に対し無電解金メッキを行うことにより、表面に50nmの金メッキ層が形成された導電性粒子を作製した。
Example 1
A dispersion was prepared by dispersing 5 g of 4 μm divinylbenzene resin fine particles as core particles in 100 g of water.
A nickel plating solution was added to the obtained dispersion and electroless plating was performed to obtain nickel-plated particles. The thickness of the nickel plating was 70 nm.
Furthermore, 0.05 g of 2-aminoethanethiol was added as a chelating agent, heated at 80 ° C. for 30 minutes, the chelating agent was bound to the surface nickel plating layer, 0.05 g of polyacrylamide was added as resin fine particles, and 50 ° C. For 30 minutes to obtain particles in which resin fine particles are bonded to the surface of the nickel plating layer via a chelating agent. Electroless gold plating was performed on the obtained particles to produce conductive particles having a 50 nm gold plating layer formed on the surface.

(実施例2)
キレート剤として、4、4−ジアミノジフェニルスルフィド0.05gを用いたこと以外は、実施例1と同様にして導電性粒子を作製した。
(Example 2)
Conductive particles were produced in the same manner as in Example 1 except that 0.05 g of 4,4-diaminodiphenyl sulfide was used as the chelating agent.

(比較例1)
キレート剤を加えなかったこと以外は、実施例1と同様にして導電性粒子を作製した。
(Comparative Example 1)
Conductive particles were produced in the same manner as in Example 1 except that no chelating agent was added.

<評価>
実施例及び比較例で得られた導電性粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the electroconductive particle obtained by the Example and the comparative example. The results are shown in Table 1.

(1)表面観察
実施例及び比較例で得られた導電性粒子の表面を走査型電子顕微鏡によりSEM写真を観察し、以下の基準に従い、目視により突起の均一性を評価した。
○ 突起が高さ、位置ともにほぼ均一に存在していた。
△ 突起の高さ、位置のいずれかが均一であった。
× 突起が高さ、位置ともに不均一であった。
(1) Surface observation SEM photographs of the surfaces of the conductive particles obtained in Examples and Comparative Examples were observed with a scanning electron microscope, and the uniformity of protrusions was evaluated visually according to the following criteria.
○ The protrusions were almost uniformly in both height and position.
Δ Either the height or position of the protrusion was uniform.
X The protrusions were uneven in height and position.

(2)変動係数及び突起の個数測定
実施例及び比較例で得られた導電性粒子に対して、SEM写真の観察像をもとに突起の高さを測定し、上記式(1)に従い変動係数τを測定した。
また、(1)の測定において、導電性粒子の正投影面の直径の1/2である同心円内に存在する突起の個数を測定した。
(2) Measurement of coefficient of variation and number of protrusions For the conductive particles obtained in the examples and comparative examples, the height of the protrusions was measured based on the observation image of the SEM photograph, and the fluctuation was determined according to the above equation (1). The coefficient τ was measured.
Further, in the measurement of (1), the number of protrusions existing in concentric circles that are 1/2 the diameter of the orthographic projection surface of the conductive particles was measured.

(3)接続抵抗値の測定
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及びトルエン100重量部に、得られた導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのITO電極のほぼ中央に貼り付けた後、同じITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、40MPa、200℃の圧着条件で熱圧着した後、電極間の抵抗値を測定した。
(3) Measurement of connection resistance value 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin After sufficiently mixing using a formula stirrer, the mixture was applied onto a release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Next, the obtained conductive fine particles were added to 100 parts by weight of an epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin. Then, after sufficiently mixing using a planetary stirrer, it was applied on the release film so that the thickness after drying was 7 μm, and toluene was evaporated to obtain an adhesive film containing conductive fine particles. . In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. Affixed to the center of an ITO electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement on one side, and then a glass substrate having the same ITO electrode. After the alignment, the electrodes were pasted together.
The bonded portion of this glass substrate was thermocompression bonded under pressure bonding conditions of 40 MPa and 200 ° C., and then the resistance value between the electrodes was measured.

Figure 2007207665
Figure 2007207665

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性粒子の製造方法、導電性粒子及び異方性導電材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of electroconductive particle, electroconductive particle, and anisotropic conductive material which can reduce a resistance value while preventing conduction failure can be provided.

本発明の導電性粒子の正投影面の模式図である。It is a schematic diagram of the orthographic projection surface of the electroconductive particle of this invention.

符号の説明Explanation of symbols

1 導電性粒子
2 突起
3 金層
R 導電性粒子の直径
r 直径が導電性粒子の直径の1/2である同心円の直径
DESCRIPTION OF SYMBOLS 1 Conductive particle 2 Protrusion 3 Gold layer R Diameter of conductive particle r Diameter of concentric circle whose diameter is 1/2 of the diameter of conductive particle

Claims (5)

表面に突起を有する導電性粒子の製造方法であって、
コア粒子の表面に、正又は負の電荷を帯電させたニッケルメッキ層を形成する工程1、
前記ニッケルメッキ層の表面に、1分子中に官能基Aと反応性官能基Bとを有するキレート剤を前記官能基Aを介して付着させる工程2、
前記ニッケルメッキ層の表面に、前記キレート剤の前記反応性官能基Bを介して、前記ニッケルメッキ層に帯電させた電荷と逆の電荷を帯電させた樹脂微粒子又は無機微粒子を結合させる工程3、及び、
無電解メッキ法により前記樹脂微粒子又は無機微粒子と前記ニッケルメッキ層とを金属メッキで被覆する工程4を有する
ことを特徴とする導電性粒子の製造方法。
A method for producing conductive particles having protrusions on the surface,
Step 1 of forming a nickel plating layer charged with positive or negative charges on the surface of the core particles,
A step 2 of attaching a chelating agent having a functional group A and a reactive functional group B in one molecule to the surface of the nickel plating layer via the functional group A;
A step of bonding resin fine particles or inorganic fine particles charged with a charge opposite to the charge charged on the nickel plated layer to the surface of the nickel plated layer via the reactive functional group B of the chelating agent; as well as,
A method for producing conductive particles, comprising a step 4 of coating the resin fine particles or inorganic fine particles and the nickel plating layer with metal plating by an electroless plating method.
金属メッキ層の表面に、更に金メッキ層を形成する工程5を有することを特徴とする請求項1記載の導電性粒子の製造方法。 The method for producing conductive particles according to claim 1, further comprising a step 5 of forming a gold plating layer on the surface of the metal plating layer. 請求項1又は2記載の導電性粒子の製造方法により製造される導電性粒子であって、
下記式(1)で表される突起の高さの変動係数をτとすると、τが10%以下であり、かつ、
任意の正投影面をとったときに、前記正投影面の直径の1/2である同心円内に前記突起が2個以上存在している
ことを特徴とする導電性粒子。
Figure 2007207665
It is the electroconductive particle manufactured by the manufacturing method of the electroconductive particle of Claim 1 or 2, Comprising:
When the variation coefficient of the height of the protrusion represented by the following formula (1) is τ, τ is 10% or less, and
A conductive particle comprising two or more protrusions in a concentric circle that is ½ the diameter of the orthographic projection plane when an arbitrary orthographic projection plane is taken.
Figure 2007207665
突起の存在比が、表面全体に対して20〜80%であることを特徴とする請求項2記載の導電性粒子。 The conductive particles according to claim 2, wherein the abundance ratio of the protrusions is 20 to 80% with respect to the entire surface. 請求項3又は4記載の導電性粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive particles according to claim 3 or 4 are dispersed in a resin binder.
JP2006027032A 2006-02-03 2006-02-03 Manufacturing method of conductive particle, conductive particle and anisotropic conductive material Pending JP2007207665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027032A JP2007207665A (en) 2006-02-03 2006-02-03 Manufacturing method of conductive particle, conductive particle and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027032A JP2007207665A (en) 2006-02-03 2006-02-03 Manufacturing method of conductive particle, conductive particle and anisotropic conductive material

Publications (1)

Publication Number Publication Date
JP2007207665A true JP2007207665A (en) 2007-08-16

Family

ID=38486925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027032A Pending JP2007207665A (en) 2006-02-03 2006-02-03 Manufacturing method of conductive particle, conductive particle and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP2007207665A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132567A (en) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd Conductive particle with insulating particles, method for producing conductive particle with insulating particles, conductive material and connection structure
JPWO2013094636A1 (en) * 2011-12-21 2015-04-27 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR20160034196A (en) * 2014-09-19 2016-03-29 히타치가세이가부시끼가이샤 An apparatus for evaluating form of a conductive particle and a method for evaluating form of a conductive particle
JP2017201172A (en) * 2016-04-27 2017-11-09 花王株式会社 fan
CN110088847A (en) * 2016-12-21 2019-08-02 3M创新有限公司 Conductive particle, product and method
CN111954909A (en) * 2018-04-04 2020-11-17 积水化学工业株式会社 Conductive particle with insulating particles, conductive material, and connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013094636A1 (en) * 2011-12-21 2015-04-27 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP2017084794A (en) * 2011-12-21 2017-05-18 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2014132567A (en) * 2012-12-05 2014-07-17 Sekisui Chem Co Ltd Conductive particle with insulating particles, method for producing conductive particle with insulating particles, conductive material and connection structure
KR20160034196A (en) * 2014-09-19 2016-03-29 히타치가세이가부시끼가이샤 An apparatus for evaluating form of a conductive particle and a method for evaluating form of a conductive particle
JP2016061722A (en) * 2014-09-19 2016-04-25 日立化成株式会社 Conductive particle shape evaluation device and conductive particle shape evaluation method
KR102313258B1 (en) 2014-09-19 2021-10-14 쇼와덴코머티리얼즈가부시끼가이샤 An apparatus for evaluating form of a conductive particle and a method for evaluating form of a conductive particle
JP2017201172A (en) * 2016-04-27 2017-11-09 花王株式会社 fan
CN110088847A (en) * 2016-12-21 2019-08-02 3M创新有限公司 Conductive particle, product and method
CN110088847B (en) * 2016-12-21 2021-07-06 3M创新有限公司 Conductive particles, articles, and methods
CN111954909A (en) * 2018-04-04 2020-11-17 积水化学工业株式会社 Conductive particle with insulating particles, conductive material, and connection structure
CN111954909B (en) * 2018-04-04 2023-03-24 积水化学工业株式会社 Conductive particle with insulating particles, conductive material, and connection structure

Similar Documents

Publication Publication Date Title
US7470416B2 (en) Conductive fine particles and anisotropic conductive material
KR102095826B1 (en) Conductive particles with insulating particles, conductive material, and connection structure
TWI556260B (en) Conductive particles, anisotropic conductive materials and connecting structures
TWI820157B (en) Conductive particles, conductive materials and connection structures
JP6577698B2 (en) Conductive film and connection structure
JP2007207665A (en) Manufacturing method of conductive particle, conductive particle and anisotropic conductive material
TWI598889B (en) Conductive particles with insulating particles, conductive material, and connection structure
KR20180059392A (en) Conductive particles, conductive material, and connection structure
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP2014026971A (en) Conductive particle, conductive material, and connection structure
JP6478308B2 (en) Conductive particles, conductive materials, and connection structures
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP7288487B2 (en) Conductive particles, method for producing conductive particles, conductive material and connection structure
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
JP6441555B2 (en) Conductive particles, conductive materials, and connection structures
JP7132112B2 (en) Conductive film and connection structure
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
JP7235611B2 (en) Conductive materials and connecting structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
JP7312108B2 (en) Conductive Particles with Insulating Particles, Method for Producing Conductive Particles with Insulating Particles, Conductive Material, and Connection Structure
WO2023145664A1 (en) Conductive particles, conductive material, and connection structure
JP2014026970A (en) Conductive particle, conductive material, and connection structure
KR20200140808A (en) Conductive particles having insulating particles, manufacturing method of conductive particles having insulating particles, conductive material and connection structure
KR20240006491A (en) Conductive particles, conductive materials and connection structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417