JP3914206B2 - Conductive fine particles and anisotropic conductive materials - Google Patents

Conductive fine particles and anisotropic conductive materials Download PDF

Info

Publication number
JP3914206B2
JP3914206B2 JP2004024067A JP2004024067A JP3914206B2 JP 3914206 B2 JP3914206 B2 JP 3914206B2 JP 2004024067 A JP2004024067 A JP 2004024067A JP 2004024067 A JP2004024067 A JP 2004024067A JP 3914206 B2 JP3914206 B2 JP 3914206B2
Authority
JP
Japan
Prior art keywords
layer
fine particles
conductive
metal
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004024067A
Other languages
Japanese (ja)
Other versions
JP2005216753A (en
JP2005216753A5 (en
Inventor
舘野  晶彦
学 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2004024067A priority Critical patent/JP3914206B2/en
Publication of JP2005216753A publication Critical patent/JP2005216753A/en
Publication of JP2005216753A5 publication Critical patent/JP2005216753A5/ja
Application granted granted Critical
Publication of JP3914206B2 publication Critical patent/JP3914206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、接続抵抗値が低く導電信頼性に優れた導電性微粒子、及び該導電性微粒子を用いた異方性導電材料に関する。   The present invention relates to conductive fine particles having a low connection resistance value and excellent conductive reliability, and an anisotropic conductive material using the conductive fine particles.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合(混練)することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。   Conductive fine particles are mixed (kneaded) with a binder resin, an adhesive, etc., for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film It is widely used as an anisotropic conductive material such as an anisotropic conductive sheet.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、半導体素子等の小型部品を基板に電気的に接着したりするために、相対向する基板や電極端子の間に挟み込んで使用されている。   These anisotropic conductive materials, for example, in electronic devices such as liquid crystal displays, personal computers, mobile phones, etc., electrically connect substrates or electrically bond small parts such as semiconductor elements to the substrate. In order to do so, it is used by being sandwiched between opposing substrates and electrode terminals.

上記異方性導電材料に用いられる導電性微粒子としては、従来から、金(以下Auとも表す)、銀(以下Agとも表す)、ニッケル(以下Niとも表す)等の金属粒子が一般的に用いられてきたが、金属粒子は、比重が大きく、形状も不定形であるため、バインダー樹脂中や粘接着剤中に不均一な状態で存在(分散)しやすくなり、得られる異方性導電材料の導電性にムラを生じさせる原因になるという問題点がある。   Conventionally, metal particles such as gold (hereinafter also referred to as Au), silver (hereinafter also referred to as Ag), nickel (hereinafter also referred to as Ni), etc. are generally used as the conductive fine particles used in the anisotropic conductive material. However, since the metal particles have a large specific gravity and an irregular shape, they tend to exist (disperse) in a non-uniform state in the binder resin and the adhesive, resulting in the anisotropic conductivity obtained. There is a problem of causing unevenness in the conductivity of the material.

このため、金属粒子の代わりに、粒子直径が均一で、適度な強度を有する樹脂微粒子等の非導電性微粒子の表面に例えば無電解Niメッキを施して、金属メッキ層(導電層)を形成させた導電性微粒子が用いられてきている。ところが、Niは接続抵抗が高く、高温高湿下に長時間さらされると変質し、接続導通性を更に悪化させるという問題点があった。このような問題点を解決するために、球状の芯材粒子表面上に無電解Niメッキを施し、さらにその上層にAuメッキ層を形成させた導電性微粒子が提案されている(例えば、特許文献1参照)。   For this reason, instead of metal particles, for example, electroless Ni plating is applied to the surface of non-conductive fine particles such as resin fine particles having a uniform particle diameter and appropriate strength to form a metal plating layer (conductive layer). Conductive fine particles have been used. However, Ni has a problem that the connection resistance is high, and when it is exposed to high temperature and high humidity for a long time, it deteriorates and the connection conductivity is further deteriorated. In order to solve such problems, conductive fine particles have been proposed in which electroless Ni plating is performed on the surface of spherical core particles and an Au plating layer is further formed thereon (for example, Patent Documents). 1).

しかしながら、近年の電子機器の急激な進歩や発展に伴って、異方性導電材料として用いられる導電性微粒子の接続抵抗において、更なる低減化が求められてきているのが現状である。   However, with the rapid progress and development of electronic devices in recent years, further reduction in connection resistance of conductive fine particles used as anisotropic conductive materials has been demanded.

特開平7−118866号公報(第2頁特許請求の範囲等)Japanese Patent Application Laid-Open No. 7-118866 (claims on page 2)

上記導電性微粒子の接続抵抗を低減化するため、導電層を全てAuにするとコストが非常に高くなる。また、Auよりも抵抗値の低いAg(銀)やCu(銅)を導電層の最外層にすると酸化による抵抗値の上昇が起こったり、Au層の内層にAu層/Ag層又はAu層/Cu層を連続させた構成ではマイグレーションを起こしたりする問題がある。   If the conductive layer is entirely made of Au in order to reduce the connection resistance of the conductive fine particles, the cost becomes very high. Further, when Ag (silver) or Cu (copper) having a lower resistance value than Au is used as the outermost layer of the conductive layer, the resistance value increases due to oxidation, or the Au layer / Ag layer or Au layer / The configuration in which the Cu layer is continuous has a problem of causing migration.

本発明の目的は、上述した現状に鑑み、球状の基材微粒子の表面にNi層が形成され、更に最外層にAu層が形成されてなる導電性微粒子であって、接続抵抗値が低く導電信頼性に優れた導電性微粒子を提供することにある。また、該導電性微粒子を用いた、接続抵抗値が低く導電信頼性に優れた異方性導電材料を提供することにある。   An object of the present invention is a conductive fine particle in which a Ni layer is formed on the surface of a spherical substrate fine particle and an Au layer is further formed on the outermost layer in view of the above-described situation, and has a low connection resistance and is conductive An object is to provide conductive fine particles having excellent reliability. Another object of the present invention is to provide an anisotropic conductive material having a low connection resistance value and excellent conductive reliability using the conductive fine particles.

上記目的を達成するために請求項1記載の発明は、球状の基材微粒子の表面にNi層が形成され、更に最外層にAu層が形成されてなる導電性微粒子であって、上記Ni層中にAg、Cu及びCoから選ばれる少なくとも1種の金属(M)を含有し、上記Ni層中のAg、Cu及びCoから選ばれる少なくとも1種の金属(M)は、Ni層を海成分、金属(M)を島成分とする海島構造として存在する導電性微粒子を提供する。
In order to achieve the above object, the invention according to claim 1 is a conductive fine particle in which a Ni layer is formed on the surface of a spherical substrate fine particle, and an Au layer is further formed on the outermost layer, wherein the Ni layer It contains at least one metal (M) selected from Ag, Cu, and Co, and at least one metal (M) selected from Ag, Cu, and Co in the Ni layer contains the Ni layer as a sea component. The present invention provides conductive fine particles that exist as a sea-island structure containing metal (M) as an island component .

また、請求項2記載の発明は、上記Ni層は、基材微粒子の粒子直径に対し0.5〜25%の範囲内に収まる平均高さの、最外層のAu層を突出させる凸部を有し、上記凸部にAg、Cu及びCoから選ばれる少なくとも1種の金属(M)を含有してなるものである請求項1記載の導電性微粒子を提供する。
Further, in the invention described in claim 2 , the Ni layer has a convex portion for projecting the outermost Au layer having an average height falling within a range of 0.5 to 25% with respect to the particle diameter of the base particle. The conductive fine particles according to claim 1 , wherein the convex portions contain at least one metal (M) selected from Ag, Cu and Co.

また、請求項3記載の発明は、請求項1または2のいずれか1項に記載の導電性微粒子を用いてなる異方性導電材料を提供する。
The invention according to claim 3 provides an anisotropic conductive material using the conductive fine particles according to claim 1 or 2 .

以下、本発明の詳細を説明する。
本発明の導電性微粒子は、球状の基材微粒子の表面にNi層が形成され、更に最外層にAu層が形成されてなるものである。
Details of the present invention will be described below.
The conductive fine particles of the present invention are formed by forming a Ni layer on the surface of spherical base fine particles and further forming an Au layer as the outermost layer.

上記球状の基材微粒子としては、適度な弾性率、弾性変形性及び復元性を有するものであれば無機、有機を問わず特に限定されないが、樹脂からなる樹脂微粒子が好適である。   The spherical base particles are not particularly limited as long as they have an appropriate elastic modulus, elastic deformability, and restoration property, regardless of inorganic or organic, but resin fine particles made of resin are suitable.

上記樹脂微粒子としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;アクリレートとジビニルベンゼンとの共重合樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等からなるものが挙げられる。これらの樹脂微粒子は、単独で用いられてもよく、2種以上が併用されてもよい。   The resin fine particles are not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate A copolymer resin of acrylate and divinylbenzene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, and the like. These resin fine particles may be used independently and 2 or more types may be used together.

上記球状の基材微粒子の平均粒子直径は1〜20μmが好ましい。1μm未満であると、Ni層を形成する際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として基板電極間等で用いられる範囲を超えてしまうことがある。より好ましい平均粒子直径は1〜10μmである。   The average particle diameter of the spherical base particles is preferably 1 to 20 μm. If it is less than 1 μm, it tends to aggregate when forming the Ni layer, making it difficult to form single particles, and if it exceeds 20 μm, it may exceed the range used as an anisotropic conductive material between substrate electrodes. There is. A more preferable average particle diameter is 1 to 10 μm.

本発明の導電性微粒子は、上記基材微粒子の表面にNi層が形成されているものである。上記Ni層の形成には、無電解Niメッキを好適に用いることができる。更に、本発明の導電性微粒子は、最外層にAu層が形成されてなるものである。   The conductive fine particles of the present invention are those in which a Ni layer is formed on the surface of the substrate fine particles. For the formation of the Ni layer, electroless Ni plating can be suitably used. Furthermore, the conductive fine particles of the present invention are those in which an Au layer is formed on the outermost layer.

最外層にAu層を形成することにより、抵抗値の低減化や表面の安定化を図ることができる。   By forming the Au layer as the outermost layer, the resistance value can be reduced and the surface can be stabilized.

上記Au層は、無電解メッキ、置換メッキ、電気メッキ、スパッタリング等の公知の方法により形成することができる。   The Au layer can be formed by a known method such as electroless plating, displacement plating, electroplating, or sputtering.

上記Ni層の平均膜厚としては特に限定されないが、導電接続材料として必要な導電性を発揮するためには10nm〜1μmが好ましい。10nm未満であると、基材微粒子上にNi層が形成されていない部分が生じたり、また、抵抗が大きくなったりすることがある。1μmを超えると、Ni層が硬くなり基材微粒子の変形に追従できず破壊が進みやすくなったり、基材微粒子の変形を妨げるため接続電極を破壊したり、接触面積が大きくならなかったりして、接続抵抗値が高くなったり接続不良が発生しやすくなることがある。より好ましくは10〜500nmである。   Although it does not specifically limit as an average film thickness of the said Ni layer, In order to exhibit the electroconductivity required as a conductive connection material, 10 nm-1 micrometer are preferable. When the thickness is less than 10 nm, a portion where the Ni layer is not formed may be formed on the substrate fine particles, or the resistance may be increased. If the thickness exceeds 1 μm, the Ni layer becomes hard and cannot follow the deformation of the substrate fine particles, so that the breakage easily proceeds, the connection electrode is destroyed to prevent the deformation of the substrate fine particles, and the contact area does not increase. In some cases, the connection resistance value becomes high or connection failure is likely to occur. More preferably, it is 10-500 nm.

上記Au層の平均膜厚としては特に限定されないが、1〜100nmが好ましい。1nm未満であると、下地Ni層の酸化を防止することができなくなり、接続抵抗値が高くなったりすることがある。100nmを超えると、置換型メッキの場合下地Ni層を侵食し基材微粒子と下地Ni層との密着を悪くすることがある。より好ましくは1〜50nmである。   Although it does not specifically limit as an average film thickness of the said Au layer, 1-100 nm is preferable. If it is less than 1 nm, the underlying Ni layer cannot be oxidized and the connection resistance value may increase. If the thickness exceeds 100 nm, in the case of substitutional plating, the underlying Ni layer may be eroded and adhesion between the substrate fine particles and the underlying Ni layer may be deteriorated. More preferably, it is 1-50 nm.

本発明の導電性微粒子は、上記Ni層中にAg(銀)、Cu(銅)及びCo(コバルト)から選ばれる少なくとも1種の金属(M)を含有していることが必要である。   The conductive fine particles of the present invention need to contain at least one metal (M) selected from Ag (silver), Cu (copper), and Co (cobalt) in the Ni layer.

上記金属(M)は、抵抗値がNiに比べ低いため、Ni層中に金属(M)を存在させることにより、よりNi層の抵抗値を低減化させようとするものである。また、Niと金属(M)はマイグレーションを起こさないため、Ni層中に安定に存在させることができる。   Since the metal (M) has a resistance value lower than that of Ni, the metal (M) is present in the Ni layer to further reduce the resistance value of the Ni layer. Further, since Ni and metal (M) do not cause migration, they can be stably present in the Ni layer.

本発明の導電性微粒子は、上記Ni層中の金属(M)が、Ni層を海成分、金属(M)を島成分とする海島構造として存在するものである。 In the conductive fine particles of the present invention, the metal (M) in the Ni layer is present as a sea-island structure in which the Ni layer is a sea component and the metal (M) is an island component .

本発明において、海島構造とは、海成分と島成分が相分離した状態で存在し、海成分の中に島成分が分散状態にあるものをいう。   In the present invention, the sea-island structure means that the sea component and the island component exist in a phase-separated state, and the island component is dispersed in the sea component.

上記金属(M)の分散状態の分散粒径としては、0.1nm以上であることが好ましい。0.1nm未満であると、金属(M)の存在による抵抗値低減化の効果が得られ難くなることがある。また、基材微粒子の粒子直径に対して25%以内に収まる粒径を超えると、Ni層中に分散させることが困難となることがある。より好ましくは1nm以上である。   The dispersed particle diameter in the dispersed state of the metal (M) is preferably 0.1 nm or more. If it is less than 0.1 nm, it may be difficult to obtain the effect of reducing the resistance value due to the presence of the metal (M). Further, when the particle diameter is within 25% with respect to the particle diameter of the substrate fine particles, it may be difficult to disperse in the Ni layer. More preferably, it is 1 nm or more.

本発明の導電性微粒子は、上記Ni層が、基材微粒子の粒子直径に対し0.5〜25%の範囲内に収まる平均高さの、最外層のAu層を突出させる凸部を有し、上記凸部に金属(M)を含有してなるものであることが好ましい。   The conductive fine particles of the present invention have a convex portion for projecting the outermost Au layer having an average height within which the Ni layer falls within a range of 0.5 to 25% with respect to the particle diameter of the base fine particles. It is preferable that the convex portion contains a metal (M).

上記凸部は、導電性微粒子の最外層のAu層を突出させる。すなわち、Ni層の凸部は、導電性微粒子の最外層に凸部として現れる。   The convex portion causes the outermost Au layer of the conductive fine particles to protrude. That is, the convex portion of the Ni layer appears as a convex portion on the outermost layer of the conductive fine particles.

上記Ni層が凸部を有していると、本発明の導電性微粒子を異方性導電材料として用いた接続時に、凸部がバインダー樹脂や粘接着剤等を排除しやすく、良好な接続安定性を得られる効果がある。なお、上記凸部に金属(M)を含有すると、より低抵抗化が図れるので好ましい。   When the Ni layer has a convex portion, the convex portion can easily eliminate the binder resin, the adhesive, and the like at the time of connection using the conductive fine particles of the present invention as an anisotropic conductive material. There is an effect of obtaining stability. In addition, it is preferable to contain a metal (M) in the convex portion because the resistance can be further reduced.

上記凸部の平均高さは、基材微粒子の粒子直径に対し0.5〜25%の範囲内の高さに収まることが好ましい。上記凸部の平均高さが、基材微粒子の粒子直径に対し0.5%未満であると、凸部を付与した効果が得られにくく、25%を超えると、凸部が折れやすくなったり電極に深くめり込み破損したりするおそれがある。   It is preferable that the average height of the protrusions be within a range of 0.5 to 25% with respect to the particle diameter of the base particle. If the average height of the protrusions is less than 0.5% with respect to the particle diameter of the substrate fine particles, it is difficult to obtain the effect of providing the protrusions, and if it exceeds 25%, the protrusions may be easily broken. There is a risk of being deeply cut into the electrode and being damaged.

本発明における導電性微粒子の各種特性、例えば、Ni層及びAu層の平均膜厚、海島構造、金属(M)の分散粒径、凸部の平均高さ等は、電子顕微鏡による導電性微粒子の断面観察により得ることができる。   Various characteristics of the conductive fine particles in the present invention, for example, the average film thickness of the Ni layer and the Au layer, the sea-island structure, the dispersed particle diameter of the metal (M), the average height of the protrusions, etc. It can be obtained by cross-sectional observation.

上記断面観察を行うための試料の作製法としては、導電性微粒子を熱硬化型の樹脂に埋め込み加熱硬化させ、所定の研磨紙や研磨剤を用いて観察可能な鏡面状態にまで試料を研磨する方法等が挙げられる。   As a method of preparing a sample for performing the cross-sectional observation, conductive fine particles are embedded in a thermosetting resin and cured by heating, and the sample is polished to a specular state that can be observed using a predetermined abrasive paper or abrasive. Methods and the like.

また、測定は、走査電子顕微鏡(SEM)又は透過電子顕微鏡(TEM)により行い、倍率としては、観察しやすい倍率を選べばよいが、例えば、5万倍により行う。   The measurement is performed with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and as the magnification, an easily observable magnification may be selected.

上記導電性微粒子のNi層及びAu層の平均膜厚は、無作為に選んだ10個の粒子について測定し、それを算術平均した膜厚である。なお、個々の導電性微粒子の膜厚にむらがある場合には、その最大膜厚と最小膜厚を測定し、算術平均した値を膜厚とする。   The average film thickness of the Ni layer and the Au layer of the conductive fine particles is a film thickness obtained by measuring 10 randomly selected particles and arithmetically averaging them. In addition, when the film thickness of each electroconductive fine particle has nonuniformity, the maximum film thickness and the minimum film thickness are measured, and let the film thickness be the arithmetic average value.

上記金属(M)の分散粒径は、無作為に選んだ50個の島成分である金属(M)の分散粒径を測定し、それを算術平均して分散粒径とする。このとき、金属(M)の分散粒子が球状と見なせない場合には、その長径と短径を測定し、算術平均した値を分散粒径とする。   The dispersed particle size of the metal (M) is determined by measuring the dispersed particle size of the randomly selected 50 island component metal (M) and arithmetically averaging it. At this time, when the dispersed particles of the metal (M) cannot be regarded as spherical, the major axis and minor axis are measured, and the arithmetic average value is taken as the dispersed particle size.

上記凸部の平均高さは、無作為に選んだ50個のNi層上にある凸部の高さを測定し、それを算術平均して凸部の平均高さとする。このとき、凸部を付与した効果が得られるものとして、基材微粒子の粒子直径に対し0.5%以上の高さのものを凸部として選ぶものとする。   The average height of the protrusions is obtained by measuring the heights of the protrusions on the 50 Ni layers selected at random, and calculating the average height thereof to obtain the average height of the protrusions. At this time, it is assumed that the effect of providing the convex portion is obtained, and the one having a height of 0.5% or more with respect to the particle diameter of the base particle is selected as the convex portion.

本発明におけるNi層の形成は、例えば、無電解Niメッキ法により形成することができる。上記無電解Niメッキを行う方法としては、例えば、次亜りん酸ナトリウムを還元剤として構成される無電解Niメッキ液を所定の方法にしたがって建浴、加温したところに、触媒付与された基材微粒子を浸漬し、Ni2++H2PO2 -+H2O→Ni+H2PO3 -+2H+ からなる還元反応でNi層を析出させる方法等が挙げられる。 The Ni layer in the present invention can be formed by, for example, an electroless Ni plating method. As a method for performing the above electroless Ni plating, for example, an electroless Ni plating solution composed of sodium hypophosphite as a reducing agent is bathed and heated according to a predetermined method. Examples include a method of immersing material fine particles and precipitating a Ni layer by a reduction reaction of Ni 2+ + H 2 PO 2 + H 2 O → Ni + H 2 PO 3 + 2H + .

上記触媒付与を行う方法としては、例えば、樹脂からなる基材微粒子に、アルカリ脱脂、酸中和、SnCl2 溶液におけるセンシタイジング、PdCl2 溶液におけるアクチベイチングからなる無電解メッキ前処理工程を行う方法等が挙げられる。なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、Sn2++Pd2+→Sn4++Pd0 なる反応を絶縁物質表面に起こしてPdを無電解メッキの触媒核とする工程である。 As a method of performing the catalyst application are, for example, the base particle made of a resin, alkali degreasing, acid neutralization, sensitizing the SnCl 2 solution, an electroless plating pretreatment step consisting of activator bay quenching in PdCl 2 solution The method of performing etc. are mentioned. Sensitizing is a process of adsorbing Sn 2+ ions on the surface of the insulating material, and activating causes a reaction of Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of the insulating material. In this process, Pd is used as a catalyst core for electroless plating.

また、上記Ni層に金属(M)を含有させる方法としては、例えば、無電解Niメッキ液中に金属(M)を分散添加し金属(M)が懸濁状態で含有している無電解Niメッキ浴に、触媒付与された基材微粒子を浸漬して無電解メッキを行う方法;無電解Niメッキ液中に金属(M)イオンを添加した無電解Niメッキ浴に、触媒付与された基材微粒子を浸漬して無電解メッキを行う方法等が挙げられる。   In addition, as a method for containing the metal (M) in the Ni layer, for example, an electroless Ni containing the metal (M) in a suspended state by dispersing and adding the metal (M) in an electroless Ni plating solution. A method of performing electroless plating by immersing catalyst-supplied substrate fine particles in a plating bath; a substrate provided with a catalyst in an electroless Ni plating bath in which metal (M) ions are added to an electroless Ni plating solution For example, a method of performing electroless plating by immersing fine particles may be used.

上記Ni層に凸部を形成する方法としては、例えば、上述の無電解Niメッキ液中に金属(M)を分散添加し金属(M)が懸濁状態で含有している無電解Niメッキ浴に、触媒付与された基材微粒子を浸漬して無電解メッキを行う方法が挙げられる。このとき金属(M)は同時にNi層に取り込まれ共析状態となり凸部を有したNi層を得ることができる。
また、その他の上記Ni層に凸部を形成する方法としては、例えば、基材微粒子上へのNi皮膜の形成とメッキ浴の自己分解とを同時に起こして、この自己分解物を凸部の核とし、次いで、構成成分が少なくとも2液に分離した無電解メッキ液により無電解メッキを行うことにより、凸部の成長とNi皮膜の成長とを同時に行う方法;基材微粒子表面にPdを形成する工程において、Pdを不均一に付着させPdの多い部分でメッキ層を成長させて凸部を設ける方法;基材微粒子表面にハイブリダイゼーション等の各種方法により凸部を設ける方法等が挙げられる。
As a method for forming the protrusions on the Ni layer, for example, an electroless Ni plating bath in which the metal (M) is dispersed and added to the above electroless Ni plating solution and the metal (M) is contained in a suspended state. In addition, a method in which electroless plating is performed by immersing the catalyst-supplied substrate fine particles may be mentioned. At this time, the metal (M) is simultaneously taken into the Ni layer to be in a eutectoid state, whereby a Ni layer having a convex portion can be obtained.
In addition, as another method for forming the convex portion on the Ni layer, for example, the formation of the Ni film on the substrate fine particles and the self-decomposition of the plating bath are caused at the same time. Then, by performing electroless plating with an electroless plating solution in which the constituent components are separated into at least two liquids, the growth of the convex portion and the growth of the Ni film are simultaneously performed; Pd is formed on the surface of the substrate fine particles Examples of the process include a method in which Pd is non-uniformly deposited and a plating layer is grown in a portion with a large amount of Pd to provide a convex part; a method in which a convex part is provided on the surface of a substrate fine particle by various methods such as hybridization.

次に、本発明の異方性導電材料は、上述した本発明の導電性微粒子を用いて作製されている。   Next, the anisotropic conductive material of the present invention is produced using the above-described conductive fine particles of the present invention.

上記異方性導電材料としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられるが、これらの異方性導電材料のみに限定されるものではなく、導電性微粒子を用いて作製されるものであれば如何なる異方性導電材料であってもよい。   Examples of the anisotropic conductive material include anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, anisotropic conductive film, and anisotropic conductive sheet. The anisotropic conductive material is not limited to this, and any anisotropic conductive material may be used as long as it is manufactured using conductive fine particles.

本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、例えば、絶縁性のバインダー樹脂中や絶縁性の粘接着剤中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性のバインダー樹脂中や絶縁性の粘接着剤中に本発明の導電性微粒子を添加し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて有機溶媒中に均一に溶解(分散)させるか、または、加熱溶融させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、作製しようとする異方性導電材料の種類に対応して、適宜の作製方法をとればよい。また、絶縁性のバインダー樹脂や絶縁性の粘接着剤と、本発明の導電性微粒子とを、混合することなく、別々に用いて異方性導電材料としてもよい。   The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added in an insulating binder resin or an insulating adhesive. , Uniformly mixed and dispersed, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., in an insulating binder resin or insulating adhesive After the conductive fine particles of the present invention are added to the agent and mixed uniformly to prepare a conductive composition, the conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, Alternatively, it is heated and melted and coated on the release treatment surface of a release material such as release paper or release film so as to have a predetermined film thickness, followed by drying or cooling as necessary. Examples of methods include anisotropic conductive films, anisotropic conductive sheets, etc. Corresponding to the type of anisotropic conductive material that may be taken an appropriate manufacturing method. Moreover, it is good also as an anisotropic conductive material by using separately, without mixing insulating binder resin and an insulating adhesive agent, and the electroconductive fine particles of this invention.

上記絶縁性のバインダー樹脂としては、特に限定されるものではないが、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、アクリル系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの絶縁性のバインダー樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型等のいずれの硬化形態であってもよい。   The insulating binder resin is not particularly limited, and examples thereof include vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; epoxy resins, urethane resins, acrylic resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene- Styrene block copolymers, styrene-isoprene-styrene block copolymers, thermoplastic block copolymers such as hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (Rubbers) and the like. These insulating binder resins may be used alone or in combination of two or more. The curable resin may be in any curing form such as a room temperature curing type, a thermosetting type, a photocuring type, and a moisture curing type.

上記絶縁性の粘接着剤としては、特に限定されるものではないが、例えば、上記絶縁性のバインダー樹脂を主成分としてなる粘接着剤や、公知の各種粘接着剤等が挙げられる。これらの絶縁性の粘接着剤は、単独で用いられてもよいし、2種以上が併用されてもよい。また、上記絶縁性のバインダー樹脂及び絶縁性の粘接着剤は、それぞれ単独で用いられてもよいし、両者が併用されてもよい。   The insulating adhesive is not particularly limited, and examples thereof include an adhesive mainly composed of the insulating binder resin and various known adhesives. . These insulating adhesives may be used alone or in combination of two or more. Moreover, the said insulating binder resin and an insulating adhesive agent may each be used independently, and both may be used together.

本発明の異方性導電材料には、絶縁性のバインダー樹脂及び/又は絶縁性の粘接着剤、並びに、本発明の導電性微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の1種又は2種以上が併用されてもよい。   In addition to the insulating binder resin and / or the insulating adhesive and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention is necessary as long as the achievement of the object of the present invention is not hindered. Depending on, for example, extenders, softeners (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, One or more of various additives such as organic solvents may be used in combination.

本発明は、上述の構成よりなるので、接続抵抗値が低く導電信頼性に優れた導電性微粒子を得ることができる。また、該導電性微粒子を用いた、接続抵抗値が低く導電信頼性に優れた異方性導電材料を得ることが可能となった。   Since this invention consists of the above-mentioned structure, it can obtain the electroconductive fine particles with a low connection resistance value and excellent electrical conductivity reliability. Further, it has become possible to obtain an anisotropic conductive material having a low connection resistance value and excellent conductive reliability using the conductive fine particles.

以下、本発明の導電性微粒子について図面を参照して説明する。
図1に示した導電性微粒子は、基材微粒子1の表面に、Ni層2が形成され、更に最外層にAu層3が形成されている。また、Ni層2中には、Ag、Cu及びCoから選ばれる少なくとも1種の金属(M)4が含有されている。
また、Ni層2中の、Ag、Cu及びCoから選ばれる少なくとも1種の金属(M)4は、Ni層2を海成分、金属(M)4を島成分とする海島構造となっている。
Hereinafter, the conductive fine particles of the present invention will be described with reference to the drawings.
In the conductive fine particles shown in FIG. 1, a Ni layer 2 is formed on the surface of the substrate fine particles 1, and an Au layer 3 is further formed on the outermost layer. The Ni layer 2 contains at least one metal (M) 4 selected from Ag, Cu, and Co.
In addition, at least one metal (M) 4 selected from Ag, Cu, and Co in the Ni layer 2 has a sea-island structure in which the Ni layer 2 is a sea component and the metal (M) 4 is an island component. .

また、図2はNi層が凸部を有した導電性微粒子の断面の一部を拡大した模式図である。図2に示した導電性微粒子は、基材微粒子5の表面に、Ni層6が形成され、更に最外層にAu層7が形成されている。また、Ni層6中には、金属(M)8が含有され、Ni層6を海成分、金属(M)8を島成分とする海島構造となっている。更に、Ni層6には最外層のAu層7を突出させる凸部があり、凸部に金属(M)8を含有している状態が示されている。   FIG. 2 is an enlarged schematic view of a part of the cross section of the conductive fine particles in which the Ni layer has convex portions. In the conductive fine particles shown in FIG. 2, the Ni layer 6 is formed on the surface of the substrate fine particles 5, and the Au layer 7 is further formed on the outermost layer. Further, the Ni layer 6 contains a metal (M) 8 and has a sea-island structure in which the Ni layer 6 is a sea component and the metal (M) 8 is an island component. Further, the Ni layer 6 has a convex portion for projecting the outermost Au layer 7, and a state in which the convex portion contains a metal (M) 8 is shown.

以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited to a following example.

(実施例1)
(Ni層が凸部を有し凸部にCuを含有する導電性微粒子の作製)
平均粒子直径5μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂からなる基材微粒子に、アルカリ脱脂、酸中和、SnCl2 溶液におけるセンシタイジング、PdCl2 溶液におけるアクチベイチングからなる無電解メッキ前処理工程を行った。
無電解メッキ前処理工程を施した基材微粒子を、所定の方法にしたがって建浴、加温されたCu微粉末を分散した無電解Niメッキ浴に浸漬して無電解Niメッキを行った。無電解Niメッキ浴としては奥野製薬工業社製「トップニコロンMX」を使用し、Cu微粉末としては粒径40nmの微粒子を使用した。
その後、更に、置換メッキ法により表面にAuメッキを施し、導電性微粒子を得た。
得られた導電性微粒子のNiメッキ膜厚は80nmであり、Auメッキの膜厚は40nmであった。
日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、Ni層が凸部を有し、Ni層中にCu(金属(M))を含有していた。また、Cuは、Ni層を海成分、Cuを島成分とする海島構造となっており、Cuの分散粒径は40nmであることが確認された。また、Ni層の凸部の平均高さは200nmであり、基材微粒子の粒子直径に対し4%であった。
Example 1
(Production of conductive fine particles in which the Ni layer has a convex portion and Cu is contained in the convex portion)
A base particle composed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene having an average particle diameter of 5 μm is coated with alkali degreasing, acid neutralization, sensitizing in SnCl 2 solution, and activation in PdCl 2 solution. An electrolytic plating pretreatment process was performed.
Electroless Ni plating was performed by immersing the base material fine particles subjected to the electroless plating pretreatment step in an electroless Ni plating bath in which Cu fine powder dispersed in a building bath and heated according to a predetermined method. “Top Nicolon MX” manufactured by Okuno Pharmaceutical Co., Ltd. was used as the electroless Ni plating bath, and fine particles having a particle diameter of 40 nm were used as the Cu fine powder.
Thereafter, the surface was further plated with Au by a displacement plating method to obtain conductive fine particles.
The obtained electroconductive fine particles had a Ni plating film thickness of 80 nm and an Au plating film thickness of 40 nm.
When the cross section was observed with a transmission electron microscope (TEM) manufactured by JEOL Datum, the Ni layer had a convex portion, and the Ni layer contained Cu (metal (M)). Further, Cu has a sea-island structure in which the Ni layer is a sea component and Cu is an island component, and it was confirmed that the dispersed particle diameter of Cu is 40 nm. Moreover, the average height of the convex part of Ni layer was 200 nm, and was 4% with respect to the particle diameter of base-material microparticles | fine-particles.

(実施例2)
(Ni層が平滑でCuを含有する導電性微粒子の作製)
実施例1と同様にして無電解メッキ前処理工程を行った。
無電解メッキ前処理工程を施した基材微粒子を、所定の方法にしたがって建浴、加温されたCuイオンを添加した無電解Niメッキ浴に浸漬して無電解Niメッキを行った。無電解Niメッキ浴としては奥野製薬工業社製「トップニコロンMX」を使用し、CuイオンとしてはCu227・3H2Oを使用した。
その後、更に、置換メッキ法により表面にAuメッキを施し、導電性微粒子を得た。
得られた導電性微粒子のNiメッキ膜厚は80nmであり、Auメッキの膜厚は40nmであった。
日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、Ni層が平滑で、Ni層中にCu(金属(M))を含有していた。また、Cuは、Ni層を海成分、Cuを島成分とする海島構造となっており、Cuの状態は不定形であり、大きさも不均一に存在していた。
(Example 2)
(Preparation of conductive fine particles with smooth Ni layer and Cu)
The electroless plating pretreatment step was performed in the same manner as in Example 1.
Electroless Ni plating was performed by immersing the substrate fine particles subjected to the electroless plating pretreatment step in a building bath and an electroless Ni plating bath to which heated Cu ions were added according to a predetermined method. “Top Nicolon MX” manufactured by Okuno Pharmaceutical Co., Ltd. was used as the electroless Ni plating bath, and Cu 2 P 2 O 7 .3H 2 O was used as the Cu ion.
Thereafter, the surface was further plated with Au by a displacement plating method to obtain conductive fine particles.
The obtained electroconductive fine particles had a Ni plating film thickness of 80 nm and an Au plating film thickness of 40 nm.
When the cross section was observed with a transmission electron microscope (TEM) manufactured by JEOL Datum, the Ni layer was smooth and contained Cu (metal (M)) in the Ni layer. Further, Cu has a sea-island structure in which the Ni layer is a sea component and Cu is an island component, and the state of Cu is indefinite and the size thereof is uneven.

(比較例1)
実施例1と同様にして無電解メッキ前処理工程を行った。
無電解メッキ前処理工程を施した基材微粒子を、所定の方法にしたがって建浴、加温された無電解Niメッキ浴に浸漬して無電解Niメッキを行った。無電解Niメッキ浴としては奥野製薬工業社製「トップニコロンMX」を使用した。
その後、更に、置換メッキ法により表面にAuメッキを施し、導電性微粒子を得た。
得られた導電性微粒子のNiメッキ膜厚は80nmであり、Auメッキの膜厚は40nmであった。
日本電子データム社製透過電子顕微鏡(TEM)による断面観察をしたところ、Ni層が平滑にメッキされていた。
(Comparative Example 1)
The electroless plating pretreatment step was performed in the same manner as in Example 1.
Electroless Ni plating was performed by immersing the base material fine particles subjected to the electroless plating pretreatment step in an electroless Ni plating bath heated and heated according to a predetermined method. As the electroless Ni plating bath, “Top Nicolon MX” manufactured by Okuno Pharmaceutical Co., Ltd. was used.
Thereafter, the surface was further plated with Au by a displacement plating method to obtain conductive fine particles.
The obtained electroconductive fine particles had a Ni plating film thickness of 80 nm and an Au plating film thickness of 40 nm.
When the cross section was observed with a transmission electron microscope (TEM) manufactured by JEOL Datum, the Ni layer was smoothly plated.

(異方性導電材料(異方性導電フィルム)の作製)
バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製:「エピコート828」)100重量部及びトリスジメチルアミノエチルフェノール3重量部、トルエン100重量部を、遊星式攪拌機を用い、充分に分散混合させ、離型フィルム上に乾燥後の厚さが10μmとなるように一定の厚さで塗布し、トルエンを蒸発させ、導電性微粒子を含有しない接着性フィルムを得た。
また、バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製:「エピコート828」)100重量部及びトリスジメチルアミノエチルフェノール3重量部、トルエン100重量部に実施例1、実施例2又は比較例1で得られた導電性微粒子を添加し、遊星式攪拌機を用い、充分に分散混合させ、バインダー樹脂分散体を得た後、離型フィルム上に乾燥後の厚さが7μmとなるように一定の厚さで塗布し、トルエンを蒸発させ、導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の添加量は、異方性導電フィルム中の含有量が20万個/cm2 となるように設定した。
得られた導電性微粒子を含有する接着性フィルムに導電性微粒子を含有しない接着性フィルムを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
(Production of anisotropic conductive material (anisotropic conductive film))
As a binder resin, 100 parts by weight of an epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd .: “Epicoat 828”), 3 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene are sufficiently dispersed and mixed using a planetary stirrer. On the mold film, it was applied at a constant thickness so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film containing no conductive fine particles.
Further, 100 parts by weight of an epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd .: “Epicoat 828”), 3 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as binder resin in Example 1, Example 2 or Comparative Example 1 The obtained conductive fine particles are added and sufficiently dispersed and mixed using a planetary stirrer to obtain a binder resin dispersion, and then a certain thickness is obtained so that the thickness after drying is 7 μm on the release film. Then, it was applied and the toluene was evaporated to obtain an adhesive film containing conductive fine particles. In addition, the addition amount of electroconductive fine particles was set so that content in an anisotropic conductive film might be 200,000 pieces / cm < 2 >.
An adhesive film containing no conductive fine particles was laminated to the obtained adhesive film containing conductive fine particles at room temperature to obtain a 17 μm thick anisotropic conductive film having a two-layer structure.

(接続抵抗値の測定)
得られた異方性導電フィルムを用い、200×200μmの接合配線パターンを有するフレキシブルプリント回路板間に挟み、熱圧着した状態で接続抵抗値を測定した。
これらの結果を表1に示した。
(Measurement of connection resistance)
Using the obtained anisotropic conductive film, it was sandwiched between flexible printed circuit boards having a 200 × 200 μm bonded wiring pattern, and the connection resistance value was measured in a thermocompression-bonded state.
These results are shown in Table 1.

Figure 0003914206
Figure 0003914206

表1より、Ni層中に金属(M)を含有してなるものは、接続抵抗値が低いことがわかる。   From Table 1, it can be seen that those containing metal (M) in the Ni layer have a low connection resistance value.

本発明によれば、接続抵抗値が低く導電信頼性に優れた導電性微粒子、及び異方性導電材料を提供できる。   According to the present invention, it is possible to provide conductive fine particles having a low connection resistance value and excellent conductive reliability, and an anisotropic conductive material.

本発明の導電性微粒子における一つの実施例で、導電性微粒子の断面の模式図である。In one Example in the electroconductive fine particles of this invention, it is a schematic diagram of the cross section of electroconductive fine particles. 本発明の導電性微粒子における他の実施例で、Ni層が凸部を有した導電性微粒子の断面の一部を拡大した模式図である。It is the schematic diagram which expanded a part of cross section of the electroconductive fine particle in which Ni layer had the convex part in the other Example in the electroconductive fine particle of this invention.

符号の説明Explanation of symbols

1 基材微粒子
2 Ni層
3 Au層
4 Ag、Cu及びCoから選ばれる少なくとも1種の金属(M)
5 基材微粒子
6 Ni層
7 Au層
8 Ag、Cu及びCoから選ばれる少なくとも1種の金属(M)
DESCRIPTION OF SYMBOLS 1 Base particle 2 Ni layer 3 Au layer 4 At least 1 type of metal (M) chosen from Ag, Cu, and Co
5 Substrate fine particles 6 Ni layer 7 Au layer 8 At least one metal (M) selected from Ag, Cu and Co

Claims (3)

球状の基材微粒子の表面にNi層が形成され、更に最外層にAu層が形成されてなる導電性微粒子であって、上記Ni層中にAg、Cu及びCoから選ばれる少なくとも1種の金属(M)を含有し、上記Ni層中のAg、Cu及びCoから選ばれる少なくとも1種の金属(M)は、Ni層を海成分、金属(M)を島成分とする海島構造として存在することを特徴とする導電性微粒子。 Conductive fine particles in which a Ni layer is formed on the surface of spherical substrate fine particles and an Au layer is further formed on the outermost layer, and at least one metal selected from Ag, Cu and Co in the Ni layer (M) and at least one metal (M) selected from Ag, Cu and Co in the Ni layer exists as a sea-island structure in which the Ni layer is a sea component and the metal (M) is an island component. Conductive fine particles characterized by the above. 上記Ni層は、基材微粒子の粒子直径に対し0.5〜25%の範囲内に収まる平均高さの、最外層のAu層を突出させる凸部を有し、上記凸部にAg、Cu及びCoから選ばれる少なくとも1種の金属(M)を含有してなるものであることを特徴とする請求項1記載の導電性微粒子。 The Ni layer has a convex portion for projecting the outermost Au layer having an average height falling within a range of 0.5 to 25% with respect to the particle diameter of the base particle, and Ag, Cu are formed on the convex portion. The conductive fine particles according to claim 1 , comprising at least one metal (M) selected from Co and Co. 請求項1または2のいずれか1項に記載の導電性微粒子を用いてなることを特徴とする異方性導電材料。
An anisotropic conductive material comprising the conductive fine particles according to claim 1 .
JP2004024067A 2004-01-30 2004-01-30 Conductive fine particles and anisotropic conductive materials Expired - Fee Related JP3914206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024067A JP3914206B2 (en) 2004-01-30 2004-01-30 Conductive fine particles and anisotropic conductive materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024067A JP3914206B2 (en) 2004-01-30 2004-01-30 Conductive fine particles and anisotropic conductive materials

Publications (3)

Publication Number Publication Date
JP2005216753A JP2005216753A (en) 2005-08-11
JP2005216753A5 JP2005216753A5 (en) 2005-09-29
JP3914206B2 true JP3914206B2 (en) 2007-05-16

Family

ID=34906866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024067A Expired - Fee Related JP3914206B2 (en) 2004-01-30 2004-01-30 Conductive fine particles and anisotropic conductive materials

Country Status (1)

Country Link
JP (1) JP3914206B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729236A (en) * 2005-12-22 2007-08-01 Sekisui Chemical Co Ltd Conductive fine particle and anisotropic conductive material
WO2010001900A1 (en) * 2008-07-01 2010-01-07 日立化成工業株式会社 Circuit connection material and circuit connection structure
JP6441555B2 (en) * 2012-05-08 2018-12-19 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6450154B2 (en) * 2013-11-12 2019-01-09 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP2023049283A (en) * 2021-09-29 2023-04-10 デクセリアルズ株式会社 Conductive particle, method for producing conductive particle, and conductive composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052832B2 (en) * 2001-12-26 2008-02-27 積水化学工業株式会社 Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP3940638B2 (en) * 2002-06-10 2007-07-04 積水化学工業株式会社 Conductive fine particles and method for producing conductive fine particles

Also Published As

Publication number Publication date
JP2005216753A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
TW201125661A (en) Conductive fine particles and anisotropic conductive material
KR100720895B1 (en) Conductive particle having a density-gradient in the complex plating layer and Preparation of the same and Conductive adhesives using the same
JP2007242307A (en) Conductive particulate and anisotropic conductive material
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
KR101713015B1 (en) Graphene Coated Conductive particles, and conductive materials including the same
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP2003234020A (en) Conductive minute particle
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
KR20080098841A (en) Anisotropic electricconnection material and method of circuit connection
JP2009032397A (en) Conductive fine particle
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP5323147B2 (en) Conductive fine particles and anisotropic conductive materials
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R151 Written notification of patent or utility model registration

Ref document number: 3914206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees