WO2010001900A1 - Circuit connection material and circuit connection structure - Google Patents

Circuit connection material and circuit connection structure Download PDF

Info

Publication number
WO2010001900A1
WO2010001900A1 PCT/JP2009/061974 JP2009061974W WO2010001900A1 WO 2010001900 A1 WO2010001900 A1 WO 2010001900A1 JP 2009061974 W JP2009061974 W JP 2009061974W WO 2010001900 A1 WO2010001900 A1 WO 2010001900A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
conductive particles
particles
electrode
conductive
Prior art date
Application number
PCT/JP2009/061974
Other languages
French (fr)
Japanese (ja)
Inventor
立澤 貴
小林 宏治
耕太郎 関
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to CN2009801200765A priority Critical patent/CN102047347B/en
Publication of WO2010001900A1 publication Critical patent/WO2010001900A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0221Insulating particles having an electrically conductive coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0224Conductive particles having an insulating coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention relates to a circuit connection material and a circuit connection structure.
  • Circuit connection materials that heat and press opposite circuits and electrically connect electrodes in the direction of pressure, for example, anisotropic conductive adhesive films in which conductive particles are dispersed in epoxy adhesives and acrylic adhesives Widely used for electrical connection between TCP (Tape Carrier Package) or COF (Chip On Flex) and LCD panel or TCP or COF and printed wiring board, which is mainly equipped with a semiconductor that drives a liquid crystal display (LCD) Has been.
  • TCP Transmission Carrier Package
  • COF Chip On Flex
  • silicone is used as an adhesive component.
  • a technique for containing particles for example, see Patent Document 10
  • rubber particles are dispersed in an adhesive in order to reduce internal stress based on a difference in coefficient of thermal expansion after bonding (see, for example, Patent Document 11).
  • IZO Zinc doped Indium Oxide
  • ITO Tin doped Indium Oxide
  • the present invention has been made in view of the above-described problems of the prior art, and prevents occurrence of a short circuit due to aggregation of conductive particles at an edge portion of a glass substrate, and also provides good connection resistance even when an IZO electrode is used.
  • An object of the present invention is to provide a circuit connection material that can be obtained, and a circuit connection structure in which the first circuit electrode and the second circuit electrode that are arranged to face each other are electrically connected to each other. is there.
  • the present invention provides a circuit connecting material that is interposed between circuit electrodes facing each other, pressurizes opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction.
  • a first conductive particle having at least part of its surface coated with an insulating coating, and at least part of its surface being coated with Ni or an alloy or oxide thereof, and having a protrusion. Particles, and the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles) is 0.4 to 3.
  • a circuit connection material is provided.
  • the present invention is a circuit connecting material that is interposed between circuit electrodes facing each other, pressurizes circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction.
  • First conductive particles that are at least partly coated with an insulating coating
  • second conductive particles that are at least partly coated with a metal, alloy, or metal oxide having a Vickers hardness of 300 Hv or more and that have protrusions.
  • the number ratio of the first conductive particles to the second conductive particles (the number of the first conductive particles / the number of the second conductive particles) is 0.4 to 3.
  • Provide connection material is 0.4 to 3.
  • circuit connection materials it is possible to prevent the occurrence of a short circuit due to the aggregation of conductive particles at the edge portion of the glass substrate and to obtain a good connection resistance even when an IZO electrode is used.
  • the present inventors infer the reason why such an effect is obtained as follows. That is, only the first conductive particles have poor resin exclusion between the substrate and the conductive particles, and a sufficient contact area cannot be obtained. Since it becomes easy to exclude the resin between the particles, it is considered that a sufficient contact area can be secured and a good connection resistance can be obtained.
  • the volume ratio of the first conductive particles to the second conductive particles is 0.4-3. It is preferably 0.45 to 2.5, more preferably 0.5 to 2.0.
  • substrate and an electroconductive particle can be contained, and a more favorable connection resistance can be obtained.
  • the height of the protrusion is 50 to 500 nm and the distance between adjacent protrusions is 1000 nm or less.
  • the first conductive particles of the circuit connecting material of the present invention are provided with the insulating coating so that the coverage is 20 to 70%.
  • the connection resistance between the circuit electrodes which oppose can be reduced more fully, ensuring sufficient insulation between adjacent circuit electrodes.
  • the increase in connection resistance with time can be more sufficiently suppressed.
  • the first conductive particles include: conductive core particles; and the insulating covering including a plurality of insulating particles provided on the surfaces of the core particles.
  • the ratio (D 2 / D 1 ) of the average particle diameter (D 2 ) of the insulating particles and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less.
  • the first conductive particles include the insulating particles including conductive core particles and an insulating layer containing an organic polymer compound provided on the surface of the core particles. And a ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less. .
  • the average particle diameters of the first conductive particles and the second conductive particles are both in the range of 2 to 6 ⁇ m. Therefore, the connection resistance between the circuit electrodes which oppose can be reduced more fully, ensuring sufficient insulation between adjacent circuit electrodes.
  • the present invention also provides a first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode, wherein the first circuit electrode and the second circuit electrode are opposed to each other.
  • the circuit connection material of the present invention is interposed between the first circuit electrode and the second circuit electrode that are arranged so as to face each other, and the first circuit electrode is arranged so as to face each other by heating and pressing.
  • a circuit connection structure is provided in which the circuit electrode is electrically connected to the second circuit electrode.
  • the present invention provides the circuit connection structure, wherein at least one of the first circuit electrode and the second circuit electrode is an ITO electrode.
  • the present invention provides the circuit connection structure, wherein at least one of the first circuit electrode and the second circuit electrode is an IZO electrode.
  • circuit connection materials compared to conventional circuit connection materials, short-circuits between circuits are less likely to occur, a good connection resistance can be obtained even when a high resistance electrode such as an IZO electrode is used, and connection reliability is excellent. Circuit connection materials and circuit connection structures can be provided.
  • the circuit connection material of the present invention contains an adhesive component, first conductive particles, and second conductive particles.
  • the adhesive component includes all materials other than the conductive particles among the constituent materials of the circuit connection material.
  • the circuit connection material of the present invention can contain an adhesive composed of (a) an epoxy resin and (b) a latent curing agent as an adhesive component.
  • Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F and / or bisphenol AD, epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and naphthalene rings. Examples thereof include various epoxy compounds having two or more glycidyl groups in one molecule such as naphthalene-based epoxy resin having a skeleton included, glycidylamine, glycidyl ether, biphenyl, and alicyclic. These may be used alone or in combination of two or more.
  • epoxy resins, impurity ions (Na +, Cl -, etc.) or hydrolyzable chlorine and the like using a high-purity product was reduced to 300ppm or less preferred in order to prevent electron migration.
  • latent curing agent examples include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. These can be used individually by 1 type or in mixture of 2 or more types.
  • these latent curing agents may be used by mixing a decomposition accelerator, an inhibitor and the like.
  • those in which these latent curing agents are coated with a polyurethane-based or polyester-based polymer substance to form a microcapsule are preferable because the pot life is extended.
  • the circuit connecting material used in the present invention can contain, as an adhesive component, an adhesive composed of (c) a curing agent that generates free radicals by heating or light, and (d) a radical polymerizable substance.
  • (C) Curing agents that generate free radicals by heating or light (hereinafter sometimes referred to as “free radical generators”) generate free radicals by decomposition or heating of peroxide compounds, azo compounds, etc. To do.
  • the free radical generator is appropriately selected according to the intended connection temperature, connection time, pot life, etc. From the viewpoint of high reactivity and pot life, the temperature of a half-life of 10 hours is 40 ° C. or more and half. An organic peroxide having a period of 1 minute at a temperature of 180 ° C. or less is preferred.
  • the amount of the curing agent that generates free radicals by heating or light is preferably about 0.05 to 10% by mass, based on the total solid content of the adhesive component, preferably 0.1 to 5% by mass. It is more preferable that
  • curing agents that generate free radicals by heating or light include diacyl peroxides, peroxydicarbonates, peroxyesters, peroxyketals, dialkyl peroxides, hydroperoxides And the like.
  • peroxyesters, dialkyl peroxides, and hydroperoxides are preferable from the viewpoint of suppressing corrosion of circuit electrodes of the circuit member, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity. .
  • diacyl peroxides examples include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide.
  • diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide.
  • examples thereof include oxide, benzoyl peroxytoluene, and benzoyl peroxide.
  • peroxydicarbonates examples include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate.
  • peroxyesters examples include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethyl hexanoate, t-butyl peroxyisobutyrate, 1,1-bis (t-butyl peroxy) Rhohexan
  • peroxyketals examples include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.
  • dialkyl peroxides examples include ⁇ , ⁇ '-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
  • hydroperoxides examples include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
  • curing agents that generate free radicals by heating or light can be used singly or in combination of two or more. Further, (c) a curing agent that generates free radicals by heating or light may be used by mixing a decomposition accelerator, an inhibitor, and the like.
  • the radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylate, methacrylate, and maleimide compounds.
  • acrylate or methacrylate examples include urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2- Bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acryle Tricyclodecanyl (meth) acrylate, bis ((meth
  • one of these radically polymerizable substances can be used alone or in combination of two or more.
  • maleimide compound those containing at least two maleimide groups in the molecule are preferable.
  • the present invention from the viewpoint of facilitating temporary fixing of the circuit member before curing the circuit connecting material, it is preferable to contain at least a radical polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa ⁇ s. More preferably, it contains a radically polymerizable substance having a viscosity (25 ° C.) of 100,000 to 500,000 mPa ⁇ s.
  • the viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.
  • radically polymerizable substances urethane acrylate or urethane methacrylate is preferable from the viewpoint of adhesiveness. Moreover, in order to improve heat resistance, it is preferable to use together the radically polymerizable substance in which Tg of the polymer after bridge
  • a radically polymerizable substance a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used.
  • a radical polymerizable substance having a tricyclodecanyl group or a triazine ring is preferably used.
  • a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be appropriately used for the adhesive component as necessary.
  • a radically polymerizable substance having a phosphate ester structure when used in an amount of 0.1 to 10% by mass based on the total solid content of the adhesive component (100% by mass), the adhesive strength on the surface of an inorganic substance such as a metal is reduced. It is preferable because it improves, and more preferably 0.5 to 5% by mass is used.
  • a radical polymerizable substance having a phosphate ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate.
  • Specific examples include 2-methacryloyloxyethyl acid phosphate and 2-acryloyloxyethyl acid phosphate. These can be used individually by 1 type or in combination of 2 or more types.
  • the circuit connection material of the present invention includes a first conductive particle having at least a part of the surface coated with an insulating coating, and at least a part of the surface of Ni or an alloy or oxide thereof, or a metal having a Vickers hardness of 300 Hv or more. , Containing at least two kinds of conductive particles coated with an alloy or metal oxide and having second protrusions. Further, the number ratio of the first conductive particles and the second conductive particles contained in the circuit connecting material (the number of the first conductive particles / the number of the second conductive particles) is 0.4 to 3.
  • each of the first conductive particles and the second conductive particles will be described with reference to the drawings.
  • the first conductive particles in which at least a part of the surface is coated with an insulating coating will be described. It is preferable that the first conductive particles include a conductive core particle and an insulating coating provided on the surface of the core particle.
  • the first conductive particles are preferably provided with an insulating coating so that the coverage is in the range of 20 to 70%.
  • the said coverage is defined by following formula (1).
  • the coverage of the first conductive particles is preferably 20 to 70%, more preferably 20 to 60%.
  • the coverage of the first conductive particles is 20 to 70%, it is possible to contain a sufficient amount of conductive particles in the circuit connecting material to obtain a sufficiently low initial resistance value. This is because even if the conductive particles are aggregated as the content of the conductive particles increases, the insulating coating provided on each conductive particle can sufficiently prevent electrical connection between adjacent circuit electrodes. It is.
  • the insulating coating exists between the core particles and the circuit electrode surface, and the insulating coating is interposed in the electrical path.
  • the first conductive particles having a coverage of 20 to 70% have a partial insulating coating, the insulating coating interposed in the electrical path can be sufficiently reduced. For this reason, the influence of the insulation coating body which exists in a path
  • the insulating covering provided in the first conductive particles can be composed of a plurality of insulating particles provided on the surface of the core particles.
  • the average particle diameter of the insulating particles (D 2), the ratio of the average particle diameter of the nuclear particles (D 1) (D 2 / D 1) is preferably 1/10 or less. When this ratio is 1/10 or less, both the low resistance value of the connection portion and the suppression of the increase in the resistance value over time can be achieved more reliably.
  • the insulation coating body with which the 1st electroconductive particle is provided can be comprised with the insulating layer containing the organic high molecular compound provided on the surface of the nuclear electroparticle.
  • the ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less. When this ratio is 1/10 or less, both the low resistance value of the connection portion and the suppression of the increase in the resistance value over time can be achieved more reliably.
  • FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the first conductive particles.
  • a first conductive particle 10 ⁇ / b> A shown in FIG. 1 includes a conductive core particle 1 and a plurality of insulating particles 2 ⁇ / b> A provided on the surface of the core particle 1.
  • the core particle 1 is composed of a base particle 1a constituting a central portion and a conductive layer 1b provided on the surface of the base particle 1a.
  • Examples of the material of the base particle 1a include glass, ceramics, and organic polymer compounds. Among these materials, those that are deformed by heating and / or pressurization (for example, organic polymer compounds) are preferable.
  • the base particle 1a is deformed, when the conductive particle 10A is pressed by the circuit electrode, the contact area with the circuit electrode increases. Further, irregularities on the surface of the circuit electrode can be absorbed. Therefore, connection reliability between circuit electrodes is improved.
  • materials suitable as the material constituting the base particle 1a are, for example, acrylic resins, styrene resins, benzoguanamine resins, silicone resins, polybutadiene resins, or copolymers thereof and those obtained by crosslinking them. is there.
  • the base particle 1a may be made of the same or different kind of material between the particles, and one kind of material may be used alone or a mixture of two or more kinds of materials may be used for the same particle.
  • the average particle diameter of the substrate particles 1a can be appropriately designed according to the application, but is preferably 0.5 to 20 ⁇ m, more preferably 1 to 10 ⁇ m, and more preferably 2 to 5 ⁇ m. Further preferred.
  • conductive particles are prepared using base particles having an average particle size of less than 0.5 ⁇ m, secondary aggregation of the particles occurs, and the insulation between adjacent circuit electrodes tends to be insufficient.
  • conductive particles are produced using material particles, the insulation between adjacent circuit electrodes tends to be insufficient due to the size.
  • the conductive layer 1b is a layer made of a conductive material provided so as to cover the surface of the base particle 1a. From the viewpoint of ensuring sufficient conductivity, the conductive layer 1b preferably covers the entire surface of the base particle 1a.
  • Examples of the material of the conductive layer 1b include gold, silver, platinum, nickel, copper and alloys thereof, alloys such as solder containing tin, and nonmetals having conductivity such as carbon. Since the base particle 1a can be coated by electroless plating, the material of the conductive layer 1b is preferably a metal. In order to obtain a sufficient pot life, gold, silver, platinum or an alloy thereof is more preferable, and gold is more preferable. In addition, these can be used individually by 1 type or in combination of 2 or more types.
  • the thickness of the conductive layer 1b can be appropriately designed according to the material and application used for the conductive layer 1b, but is preferably 50 to 200 nm, and more preferably 80 to 150 nm. When the thickness is less than 50 nm, there is a tendency that a sufficiently low resistance value of the connection portion cannot be obtained. On the other hand, the manufacturing efficiency of the conductive layer 1b having a thickness exceeding 200 nm tends to decrease.
  • the conductive layer 1b can be composed of one layer or two or more layers.
  • the surface layer of the core particle 1 is composed of gold, silver, platinum, palladium, or an alloy thereof from the viewpoint of storage stability of a circuit connection material produced using the same. More preferably, when the conductive layer 1b is composed of a single layer made of gold, silver, platinum, palladium, or an alloy thereof (hereinafter referred to as "metal such as gold"), in order to obtain a sufficiently low resistance value of the connection portion,
  • the thickness is preferably 10 to 200 nm.
  • the outermost layer of the conductive layer 1b is preferably composed of a metal such as gold, but the layer between the outermost layer and the base particle 1a is, for example, nickel. You may comprise by the metal layer containing copper, tin, or these alloys.
  • the thickness of the metal layer made of a metal such as gold constituting the outermost layer of the conductive layer 1b is preferably 30 to 200 nm from the viewpoint of storage stability of the adhesive component.
  • Nickel, copper, tin, or alloys thereof may generate free radicals due to redox action. For this reason, when the thickness of the outermost layer made of a metal such as gold is less than 30 nm, when used in combination with an adhesive component having radical polymerizability, it tends to be difficult to sufficiently prevent the effects of free radicals. is there.
  • Examples of the method for forming the conductive layer 1b on the surface of the substrate particle 1a include electroless plating treatment and physical coating treatment. From the viewpoint of easy formation of the conductive layer 1b, it is preferable to form the conductive layer 1b made of metal on the surface of the substrate particle 1a by electroless plating treatment.
  • the insulating particles 2A are made of an insulating material such as silica, glass, ceramics, or an organic polymer compound.
  • an organic polymer compound those having heat softening properties are preferable.
  • Suitable materials for the insulating particles include, for example, polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic ester copolymer, polyester, polyamide, polyurethane, Polystyrene, styrene-divinylbenzene copolymer, styrene-isobutylene copolymer, styrene-butadiene copolymer, styrene- (meth) acrylic copolymer, ethylene-propylene copolymer, (meth) acrylic acid ester rubber, Styrene-ethylene-butylene copolymer, phenoxy resin, solid epoxy resin and the like.
  • a styrene- (meth) acrylic copolymer is particularly preferred from the viewpoints of dispersion degree of particle size distribution, solvent resistance and heat resistance.
  • Examples of the method for producing the insulating particles 2A include a seed polymerization method.
  • the softening point of the organic polymer compound that constitutes the insulating particles 2A is equal to or higher than the heating temperature when the circuit members are connected to each other.
  • the softening point is lower than the heating temperature at the time of connection, the insulating particles 2A are excessively deformed at the time of connection, so that there is a tendency that good electrical connection cannot be obtained.
  • the degree of crosslinking of the organic polymer compound constituting the insulating particles 2A is preferably 5 to 20%, more preferably 5 to 15%, and still more preferably 8 to 13%.
  • An organic polymer compound having a crosslinking degree within the above range has a characteristic that both connection reliability and insulation are excellent as compared with an organic polymer compound outside the range. Therefore, if the degree of crosslinking is less than 5%, the insulation between adjacent electrode circuits tends to be insufficient. On the other hand, if the degree of cross-linking exceeds 20%, it tends to be difficult to achieve both a sufficiently low initial resistance value at the connecting portion and suppression of the increase in resistance value over time.
  • the degree of crosslinking of the organic polymer compound can be adjusted by the composition ratio of the crosslinkable monomer and the non-crosslinkable monomer.
  • the degree of crosslinking as used in the present invention means a theoretical calculated value based on the composition ratio (charged mass ratio) of the crosslinkable monomer and the non-crosslinkable monomer. That is, it is a value calculated by dividing the charged mass of the crosslinkable monomer blended in synthesizing the organic polymer compound by the total charged mass ratio of the crosslinkable and non-crosslinkable monomers.
  • the gel fraction of the organic polymer compound constituting the insulating particles 2A is preferably 90% or more, and more preferably 95% or more. When the gel fraction is less than 90%, when the circuit connection material is produced by dispersing the conductive particles 10A in the adhesive component, the insulation resistance of the adhesive component tends to decrease with time.
  • the gel fraction is an index indicating the resistance of the organic polymer compound to the solvent, and the measurement method will be described below.
  • the mass (mass A) of the organic polymer compound (sample to be measured) whose gel fraction is to be measured is measured.
  • a sample to be measured is placed in a container, and a solvent is put in it.
  • the sample to be measured is immersed in a solvent for 24 hours with stirring. Thereafter, the solvent is removed by volatilization or the like, and the mass (mass B) of the sample to be measured after stirring and immersion is measured.
  • the gel fraction (%) is a value calculated by the following formula.
  • Gel fraction (%) (mass B / mass A) ⁇ 100
  • the solvent used for measuring the gel fraction is toluene.
  • toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and tetrahydrofuran are used for preparing the circuit connection material solution.
  • one of these may be used alone, or two or more of them may be mixed and used.
  • the average particle diameter of the insulating particles 2A can be designed as appropriate according to the use and the like, but is preferably 50 to 500 nm, more preferably 50 to 400 nm, and further preferably 100 to 300 nm. . If the average particle size is less than 50 nm, the insulation between adjacent circuits tends to be insufficient. On the other hand, if the average particle size exceeds 500 nm, a sufficiently low initial resistance value and a resistance value increase with time in the connection portion. It tends to be difficult to achieve both suppression.
  • the insulating particles 2A are preferably formed on the surface of the core particle 1 so that the coverage defined by the above formula (1) is 20 to 70%. From the viewpoint of more reliably obtaining insulation and conductivity effects, the coverage is preferably 20 to 60%, more preferably 25 to 60%, and even more preferably 28 to 55%. If the coverage is less than 20%, the insulation between adjacent circuit electrodes tends to be insufficient. On the other hand, if it exceeds 70%, the initial resistance value and the resistance value of the connection portion are sufficiently low over time. It tends to be difficult to achieve both the suppression of the rise.
  • the plurality of insulating particles 2 ⁇ / b> A covering the core particle 1 are preferably sufficiently dispersed on the surface of the core particle 1.
  • the coverage referred to in the present invention is based on the following measured values obtained by observation with a scanning electron microscope (magnification 8000 times). That is, the coverage is a value calculated based on the average particle size of each of the core particles and the insulating particles and the number of insulating particles attached to one core particle. Measurement is performed as described above for 50 arbitrarily selected particles, and the average value is calculated.
  • the average particle diameter of the core particle 1 is measured as follows. That is, one core particle is arbitrarily selected, and this is observed with a scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle.
  • the particle diameter of 50 arbitrarily selected core particles is measured as described above, and the average value is defined as the average particle diameter (D 1 ) of the core particles 1.
  • the average particle diameter of the insulating particles 2A is measured for 50 arbitrary insulating particles, and the average value is defined as the average particle diameter (D 2 ) of the insulating particles 2A.
  • the number of insulating particles included in one conductive particle is measured as follows. That is, one conductive particle whose surface is partially covered with a plurality of insulating particles 2A is arbitrarily selected. And this is imaged with a scanning electron microscope, and the number of the insulating particles adhering on the core particle surface which can be observed is counted. The number of insulating particles adhering to one core particle is calculated by doubling the obtained count number. The number of insulating particles is measured as described above for 50 arbitrarily selected conductive particles, and the average value is defined as the number of insulating particles included in one conductive particle.
  • the total surface area of the core particle means the surface area of a sphere having the above (D 1 ) as a diameter.
  • the area of the portion covered with the insulating coating on the surface of the core particle is obtained by multiplying the value of the area of the circle having the diameter of (D 2 ) by the number of insulating particles included in one conductive particle. Means the value obtained.
  • the ratio of the average particle diameter of the insulating particles 2A (D 2) and the average particle diameter (D 1) of the nucleus particles 1 (D 2 / D 1) is preferably 1/10 or less, in 1/15 or less More preferably.
  • the lower limit of the ratio (D 2 / D 1) is preferably 1 / 20.
  • the insulating covering formed on the surface of the core particle 1 is not limited to a spherical shape like the insulating particle 2A.
  • the insulating covering may be an insulating layer made of the same material as the insulating particles 2A.
  • the first conductive particle 10 ⁇ / b> B shown in FIG. 2 includes an insulating layer 2 ⁇ / b> B partially provided on the surface of the core particle 1.
  • the insulating layer 2B is preferably formed on the surface of the core particle 1 so that the coverage is 20 to 70%.
  • the coverage is preferably 20 to 60%, more preferably 25 to 60%, and even more preferably 28 to 55%. If the coverage is less than 20%, the insulation between adjacent circuit electrodes tends to be insufficient. On the other hand, if it exceeds 70%, the initial resistance value and the resistance value of the connection portion are sufficiently low over time. It tends to be difficult to achieve both the suppression of the rise.
  • each covering region of the insulating layer 2 ⁇ / b> B covering the core particle 1 is sufficiently dispersed on the surface of the core particle 1. Each covering region may be isolated or may be continuous.
  • the ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer 2B and the average particle diameter (D 1 ) of the core particles 1 is preferably 1/10 or less, and is 1/15 or less. More preferably.
  • the lower limit of this ratio (T 2 / D 1) is preferably 1/20.
  • T 2 / D 1 exceeds 1/10, it tends to be difficult to achieve both a sufficiently low initial resistance value of the connection portion and suppression of a rise in resistance value over time. On the other hand, if it is less than 1/20, the insulation between adjacent circuits tends to be insufficient.
  • the coverage in the case where the insulating covering is constituted by the insulating layer 2B can be calculated by the following procedure. That is, 50 arbitrarily selected conductive particles can be imaged with a scanning electron microscope, respectively, and obtained by arithmetically averaging the measured values of the area of the insulating layer adhering on the surface of the core particles that can be observed. it can.
  • T 2 thickness of the insulating layer 2B
  • 50 arbitrarily selected conductive particles were imaged with a scanning electron microscope, and the thickness of the insulating layer 2B on the surface of each conductive particle was measured. It can be obtained by arithmetically averaging the values.
  • an insulating coating (insulating particle 2A or insulating layer 2B) on the surface of the core particle 1
  • a known method can be used, and a wet method using a chemical change by an organic solvent or a dispersant.
  • a dry method using a physicochemical change caused by mechanical energy For example, a spraying method, a high-speed stirring method, a spray dryer method and the like can be mentioned.
  • insulating particles 2A having a sufficiently uniform particle diameter on the surface of the core particle 1, thereby forming an insulating coating.
  • Mechanomyl trade name, manufactured by Tokuju Kogakusho Co., Ltd.
  • Hybridizer manufactured by Nara Machinery Co., Ltd .
  • NHS series a dry method
  • precise coating at the particle level can be performed, and the insulating particles 2A having a sufficiently uniform particle size can be formed on the surface of the core particle 1.
  • the control of the shape of the insulating coating can be performed, for example, by adjusting the conditions of the coating process.
  • the conditions for the coating treatment are, for example, temperature and rotation speed.
  • the average particle diameter of the insulating particles 2A or the thickness of the insulating layer 2B adjusts the condition of the coating treatment and the blending ratio of the core particles 1 to be used for the treatment and the organic polymer compound (material of the insulating coating). This can be done.
  • the temperature of the coating treatment is preferably 30 to 90 ° C., more preferably 50 to 70 ° C.
  • the rotational speed of the coating treatment is preferably 6000 to 20000 / min, and more preferably 10,000 to 17000 / min.
  • the 1st electroconductive particle in this invention is not restrict
  • the first conductive particles in the present invention can be variously modified without departing from the gist thereof.
  • the core particle 1 composed of the base particle 1a and the conductive layer 1b is illustrated, but the core particle is composed of a conductive material (for example, the same material as the conductive layer 1b). It may be a thing.
  • grains which consist of a hot-melt metal can also be used as a core particle. In this case, the core particles can be sufficiently deformed by heating and pressurization.
  • the first conductive particles may be those in which both the insulating particles 2A and the insulating layer 2B are provided on the surface of the core particle 1 as an insulating covering.
  • the second conductive particles having at least a part of the surface coated with Ni, an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more and having protrusions will be described.
  • FIGS. 3A and 3B are schematic cross-sectional views showing a preferred embodiment of the second conductive particles.
  • the second conductive particle 20 ⁇ / b> A includes a nucleus 21 made of an organic polymer compound and a metal layer 22 formed on the surface of the nucleus 21.
  • the core body 21 is composed of a core portion 21a and protrusions 21b formed on the surface of the core portion 21a, and the metal layer 22 has a plurality of protrusions 14 on the surface side.
  • Examples of the organic polymer compound constituting the core portion 21a of the core body 21 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or a copolymer thereof. You may do it.
  • the organic polymer compound constituting the protruding portion 21b may be the same as or different from the organic polymer compound constituting the core portion 21a.
  • the average particle diameter of the protrusions 21b is preferably 50 to 500 nm.
  • the core 21 can be formed by adsorbing a plurality of protrusions 21b having a smaller diameter than the core 21a on the surface of the core 21a.
  • the material of the metal layer 22 is Ni or an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more.
  • the metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more include Ni, Pd, Rh, and alloys and oxides thereof.
  • Ni or its alloy or oxide is preferable from the viewpoint of versatility, and Ni is more preferable.
  • the Vickers hardness of the metal, alloy, or metal oxide used as the material of the metal layer 22 is 300 Hv or more, but is preferably 300 to 800 Hv, and preferably 300 to 600 Hv from the viewpoint of resin rejection and deformability. Is more preferable.
  • the metal layer 22 can be formed on the surface of the core 21 using, for example, an electroless plating method.
  • nickel alloys there are various types of nickel alloys depending on the additives blended in the plating bath.
  • Well-known nickel alloys include nickel-phosphorus, nickel-boron and the like.
  • the thickness of the metal layer 22 is preferably 50 to 170 nm, and more preferably 50 to 150 nm. By setting the thickness of the metal layer 22 in such a range, the connection resistance between the circuit electrodes can be further improved. If the thickness of the metal layer 22 is less than 50 nm, plating defects tend to occur and the connection resistance tends to increase. If the thickness exceeds 170 nm, condensation occurs between the conductive particles and a short circuit occurs between adjacent circuit electrodes. There is.
  • the height (H) of the protrusion 14 of the conductive particle 20A is preferably 50 to 500 nm, and more preferably 75 to 300 nm.
  • the connection resistance tends to increase after the high-temperature and high-humidity treatment, and when it exceeds 500 nm, the contact area of the conductive particles with the circuit electrode decreases, and thus the connection resistance increases.
  • the distance (S) between the adjacent protrusions 14 is preferably 1000 nm or less, and more preferably 500 nm or less. When the distance between the protrusions 14 exceeds 1000 nm, the protrusions become sparse, so that the contact area between the conductive particles and the circuit electrodes is reduced, and the connection resistance tends to increase. Further, the distance (S) between the adjacent protrusions 14 is 50 nm or more from the viewpoint that the adhesive component does not enter between the conductive particles and the circuit electrode and the conductive particles and the circuit electrode are sufficiently brought into contact with each other. preferable. Note that the height (H) of the protrusions 14 of the conductive particles 20A and the distance (S) between the adjacent protrusions 14 can be measured with an electron microscope.
  • the core body 21 may be constituted only by the core portion 21a.
  • the second conductive particles 20 ⁇ / b> B can be obtained by metal-plating the surface of the core body 21 and forming the metal layer 22 on the surface of the core body 21.
  • the protrusion 14 can be formed on the metal layer 22 by changing the thickness of the metal layer 22 by changing the plating conditions during metal plating.
  • the plating conditions can be changed, for example, by making the plating solution concentration non-uniform by adding a plating solution having a higher concentration to the plating solution used first.
  • the second conductive particle is a non-conductive glass, ceramic, plastic, or other insulating particle coated with Ni or an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more. It may be.
  • the second conductive particles are made of insulating particles coated with a conductive material and the outermost layer is Ni and the core insulating particles are plastic, or the second conductive particles are hot-melt metal particles It is preferable because it has deformability by heating and pressurization, and the contact area with the circuit electrode is increased at the time of connection to improve reliability.
  • the total blending amount of the first and second conductive particles is properly used depending on the application within a range of 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive component.
  • the blending amount is more preferably 0.1 to 10 parts by volume.
  • the average particle diameter of the first and second conductive particles is preferably 1 to 10 ⁇ m, and preferably 2 to 8 ⁇ m, from the viewpoint of reducing short circuit between adjacent electrodes when the electrode is smaller than the electrode height of the circuit to be connected. More preferred is 2 to 6 ⁇ m.
  • the average particle diameter of 1st electroconductive particle is smaller than the average particle diameter of 2nd electroconductive particle increases the effect of fully reducing the connection resistance between the circuit electrodes which oppose, it is preferable.
  • the one where the average particle diameter of 1st electroconductive particle is larger than the average particle diameter of 2nd electroconductive particle can fully ensure the insulation between adjacent circuit electrodes, it is preferable.
  • the effect appears to be significant with conductive particles whose entire surface is covered with an insulating coating or with conductive particles having a coverage of more than 70%.
  • conductive particles having a coverage of 20% to 70% or insulating fine particles are provided on the surface of each conductive particle, the tendency changes depending on the size of the insulating fine particles and the coverage. Therefore, it is preferable to adjust appropriately.
  • These can be selected, for example, according to characteristics required for the circuit connection material of the present invention, which varies depending on the application.
  • the first and second conductive particles are preferably selected from those having a 10% compression modulus (K value) of 100 to 1000 kgf / mm 2 .
  • the average particle diameter of the second conductive particles is also measured as follows. That is, one conductive particle is arbitrarily selected and observed with a scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. The particle diameter is measured as described above for 50 arbitrarily selected conductive particles, and the average value is taken as the average particle diameter of the conductive particles.
  • the 2nd electroconductive particle in this invention is not restrict
  • the number of the first and second conductive particles in the circuit connection material is obtained by dissolving the resin component in the adhesive component forming the circuit connection material in a solvent that can be dissolved, and removing the excess from the obtained insoluble component. This can be confirmed by observing with a scanning electron microscope after removing the solvent.
  • Examples of the solvent capable of dissolving the resin component include MEK (methyl ethyl ketone) and toluene, but are not limited to these solvents.
  • the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles). Measure.
  • the number ratio (number of first conductive particles / number of second conductive particles) needs to be 0.4 to 3, and 0.45 to 2.5. More preferably, it is more preferably 0.5 to 2.0.
  • the volume of the conductive particles in the circuit connection material can be converted into a volume ratio from the average particle size of the conductive particles contained in the circuit connection material and the number of conductive particles per unit area.
  • the volume ratio of the conductive particles to the second conductive particles (the volume of the first conductive particles / the volume of the second conductive particles) can be determined.
  • the volume ratio (volume of the first conductive particles / volume of the second conductive particles) is preferably 0.4 to 3, and preferably 0.45 to 2.5. More preferably, it is more preferably 0.5 to 2.0.
  • the ratio of the volume to the entire conductive particles occupied by the protrusions or the insulating layer is very small. Therefore, in the measurement of the volume of the conductive particles in the present invention, the insulating particles 2A, the insulating layer 2B and the protrusion 14 are not calculated.
  • the circuit connection material of the present invention may contain other conductive particles other than the first conductive particles and the second conductive particles.
  • the content ratio of the other conductive particles is preferably 50% or less, more preferably 30% or less, and more preferably 20% or less with respect to the total number of the first conductive particles and the second conductive particles. It is particularly preferred.
  • conductive particles are not particularly limited, and examples thereof include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. Further, the other conductive particles may be one in which core particles are covered with one layer or two or more layers, and the outermost layer has conductivity. In this case, the outermost layer can be used in combination of one or more transition metals such as Ni and Cu and noble metals such as Au, Ag and platinum group metals. In addition, it is preferable that an outermost layer is a layer which has a noble metal as a main component.
  • the other conductive particles are formed by coating the surface of a layer mainly composed of a transition metal as a nucleus or a layer mainly composed of a transition metal coated with a nucleus with a layer mainly composed of a noble metal. May be.
  • other conductive particles have insulating particles whose main component is non-conductive glass, ceramic, plastic, etc. as the core, and the surface of this core is covered with the above-mentioned metal or carbon as the main layer. There may be.
  • the other conductive particles are formed by covering the core, which is an insulating particle, with a conductive layer
  • the insulating particle mainly composed of plastic is used as the core, and the surface of the core is mainly composed of a transition metal such as Ni.
  • the layer is coated with a layer as a component, and the surface of this layer is further coated with an outermost layer mainly composed of a noble metal such as Au.
  • the circuit connection material of the present invention is preferably used in the form of a film because of its excellent handleability.
  • the adhesive component may contain a film-forming polymer.
  • Film-forming polymers include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, polyisocyanate resin, Phenoxy resin, polyimide resin, polyester urethane resin or the like is used.
  • a resin having a functional group such as a hydroxyl group is more preferable because it can improve adhesiveness.
  • those obtained by modifying these polymers with radically polymerizable functional groups can be used.
  • These film-forming polymers preferably have a weight average molecular weight of 10,000 or more. Moreover, since mixing property will fall when a weight average molecular weight exceeds 1000000, it is preferable that it is less than 1 million.
  • the circuit connection material of the present invention comprises rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins in the adhesive component. , Melamine resin, isocyanates and the like can also be contained.
  • the average particle diameter of the particles is not more than twice the average particle diameter of the first and second conductive particles to be blended, and the storage elastic modulus at room temperature (25 ° C.) is the first and second. What is necessary is just to be 1/2 or less of the storage elastic modulus of the second conductive particles and the adhesive component at room temperature.
  • a filler in the circuit connection material because connection reliability and the like are improved.
  • the filler can be used if its maximum diameter is less than the average particle diameter of the first and second conductive particles.
  • the blending amount of the filler is preferably in the range of 5 to 60% by volume based on the total solid content of the circuit connecting material. If the blending amount exceeds 60% by volume, the effect of improving the reliability tends to be saturated, and if it is less than 5% by volume, the effect of adding the filler tends to be insufficient.
  • a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable from the viewpoint of improving adhesiveness.
  • FIG. 4 is a schematic cross-sectional view showing a film-like circuit connection material which is an embodiment of the circuit connection material of the present invention.
  • the film-like circuit connecting material 50 contains at least an adhesive component 51, first conductive particles 10, and second conductive particles 20. Thus, handling can be facilitated by making the circuit connecting material into a film.
  • the circuit connection material of the present invention is separated into a layer containing a reactive resin and a layer containing a latent curing agent, or a layer containing a curing agent that generates free radicals and a layer containing conductive particles. It is also possible to separate them. With such a configuration, effects of high definition and pot life improvement can be obtained.
  • the circuit connecting material of the present invention is also useful as a film-like adhesive for bonding an IC chip and a substrate or bonding electric circuits. That is, the first circuit member having the first circuit electrode (connection terminal) and the second circuit member having the second circuit electrode (connection terminal) are the first circuit electrode and the second circuit electrode. Are arranged opposite to each other, and the first circuit electrode arranged opposite to each other is heated and pressed by interposing the circuit connection material of the present invention between the first circuit electrode and the second circuit electrode arranged opposite to each other.
  • the circuit connection structure can be configured by electrically connecting the circuit electrode and the second circuit electrode.
  • circuit members constituting such a circuit connection structure include chip parts such as semiconductor chips, resistor chips, capacitor chips, and substrates such as printed boards. These circuit members are usually provided with a large number of circuit electrodes (or a single electrode in some cases), and at least one set of the circuit members is arranged so that at least a part of the circuit electrodes provided on the circuit members are opposed to each other.
  • the circuit connection material of the present invention is interposed between the circuit electrodes arranged opposite to each other, and the circuit electrodes arranged opposite to each other by heating and pressing are electrically connected to constitute a circuit connection structure.
  • circuit electrodes arranged opposite to each other can be electrically connected by direct contact or through conductive particles of an anisotropic conductive adhesive (circuit connection material).
  • the circuit connection material of the present invention is one in which the circuit connection material melts and flows at the time of connection and obtains connection of the opposite circuit electrodes, and then cures to maintain the connection.
  • the fluidity of the circuit connection material is an important factor It is.
  • the initial area (A) And the fluidity (B / A) value expressed using the area after heating and pressing (B) is preferably 1.3 to 3.0, and more preferably 1.5 to 2.5. It is more preferable. If this value is less than 1.3, the fluidity tends to be poor and good connection tends not to be obtained, and if it exceeds 3.0, bubbles tend to be generated and the reliability tends to be poor.
  • the elastic modulus at 40 ° C. after curing of the circuit connecting material of the present invention is preferably 100 to 3000 MPa, and more preferably 500 to 2000 MPa.
  • the circuit connection material having heat or light curability is formed on one circuit electrode whose surface is a metal selected from the group consisting of gold, silver, tin and platinum.
  • the other circuit electrode can be aligned, heated and pressurized to be connected.
  • FIG. 5 is a process cross-sectional view schematically showing the method for manufacturing the circuit connection structure of the present invention.
  • FIG. 5A is a cross-sectional view of the circuit member before connecting the circuit members
  • FIG. 5B is a cross-sectional view of the circuit connection structure when connecting the circuit members.
  • a film-like circuit connection material anisotropic conductive adhesion formed by forming a circuit connection material into a film shape on a circuit electrode 72 provided on the LCD panel 73. Film 50 is placed.
  • the circuit board 75 provided with the circuit electrode 76 while being aligned is placed on the circuit-connecting material 50 in the form of a film so that the circuit electrode 72 and the circuit electrode 76 face each other.
  • the film-like circuit connecting material 50 is interposed between the circuit electrode 72 and the circuit electrode 76.
  • the circuit electrodes 72 and 76 have a structure in which a plurality of electrodes are arranged in the depth direction (not shown).
  • the circuit board 75 provided with the circuit electrode 76 includes COF.
  • the film-like circuit connection material 50 is easy to handle because it is in the form of a film. For this reason, this film-like circuit connection material 50 can be easily interposed between the circuit electrode 72 and the circuit electrode 76, and the connection work of the LCD panel 73 and the circuit board 75 can be facilitated.
  • the film-like circuit connecting material 50 is pressed in the direction of arrow A in FIG. 5B through the LCD panel 73 and the circuit board 75 while heating to perform a curing process.
  • a circuit connection structure 70 in which the circuit members are connected by the circuit connection portion 60 made of a cured product of the circuit connection material 50 is obtained.
  • the method for the curing treatment one or both of heating and light irradiation can be employed depending on the adhesive component used.
  • Example 1 [Synthesis of urethane acrylate] 400 parts by mass of polycaprolactone diol having a weight average molecular weight of 800, 131 parts by mass of 2-hydroxypropyl acrylate, 0.5 parts by mass of dibutyltin dilaurate as a catalyst, and 1.0 part by mass of hydroquinone monomethyl ether as a polymerization inhibitor, The mixture was heated to 50 ° C. with stirring.
  • polyester urethane resin Preparation of polyester urethane resin
  • the molar ratio of terephthalic acid / propylene glycol / 4,4′-diphenylmethane diisocyanate is 1.0 / 1.3 / terephthalic acid as dicarboxylic acid, propylene glycol as diol, and 4,4′-diphenylmethane diisocyanate as isocyanate.
  • a polyester urethane resin was prepared by the following procedure, using an amount of 0.25.
  • a solution obtained by dissolving polyester polyol obtained by the reaction of dicarboxylic acid and diol in methyl ethyl ketone was put into a stainless steel autoclave equipped with a heater equipped with a stirrer, thermometer, condenser, vacuum generator and nitrogen gas introduction tube. Next, a predetermined amount of isocyanate was added, and dibutyltin laurate as a catalyst was added in an amount of 0.02 parts by mass with respect to 100 parts by mass of the polyester polyol, reacted at 75 ° C. for 10 hours, and then cooled to 40 ° C. Further, piperazine was added and reacted for 30 minutes to extend the chain, and then neutralized with triethylamine.
  • the polyester urethane resin was dissolved in methyl ethyl ketone so as to be 20% by mass.
  • the polyester urethane resin methylethylketone solution is applied to a PET film with a surface of 80 ⁇ m on one side using a coating device, and dried with hot air at 70 ° C. for 10 minutes to produce a resin film with a thickness of 35 ⁇ m. did.
  • the temperature dependence of the elastic modulus was measured on condition of tensile load 5gf and frequency 10Hz using the wide dynamic viscoelasticity measuring apparatus.
  • the straight line equidistant in the vertical axis direction from the straight line extending the base line before and after the glass transition region intersects with the curve of the step change portion of the glass transition region. It was 105 degreeC when temperature (midpoint glass transition temperature) was calculated
  • Conductive particles having an average particle diameter of 4 ⁇ m were prepared by providing a nickel layer having a thickness of 0.2 ⁇ m on the surface of particles made of polystyrene serving as a nucleus, and providing a gold layer having a thickness of 0.04 ⁇ m outside the nickel layer.
  • insulating particles made of a styrene- (meth) acrylic copolymer were prepared. Using a hybridizer, the surface of the conductive particles was covered with the insulating particles to prepare first conductive particles a. D 2 / D 1 of the first conductive particles a was 1/12, and the coverage was 50%.
  • Second Conductive Particles a having an average particle diameter of 4 ⁇ m were prepared in which a nickel layer having a thickness of 0.2 ⁇ m was provided on the surface of particles made of polystyrene serving as a nucleus and Ni protrusions were provided on the outside of the nickel layer.
  • the second conductive particles a had a Ni Vickers hardness of 350 Hv, a protrusion height of 120 nm, and an interprotrusion distance of 420 nm.
  • the first conductive particles a and the second conductive particles a were blended and dispersed in the adhesive component to obtain a coating dispersion.
  • the blending amounts of the first conductive particles a and the second conductive particles a are both 1.5% by volume based on the total solid content of the coating dispersion.
  • the obtained dispersion liquid was applied to a PET film having a surface treated on one side of 50 ⁇ m thickness using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, whereby an adhesive layer (anisotropic) with a thickness of 16 ⁇ m was obtained.
  • a conductive adhesive layer (width 15 cm, length 70 m) was formed.
  • the resulting laminate of the adhesive layer and the PET film was cut to a width of 1.5 mm, and wound on the side of the plastic reel having an inner diameter of 40 mm and an outer diameter of 48 mm (1.7 mm width) with the adhesive film side facing inward by 50 m.
  • a tape-like circuit connecting material was obtained.
  • Example 2 to 3 The tape-like circuit connecting materials of Examples 2 to 3 were obtained in the same manner as in Example 1 except that the blending amounts of the first conductive particles a and the second conductive particles a were changed as shown in Table 1. Obtained.
  • Conductive particles having an average particle diameter of 3 ⁇ m were prepared by providing a nickel layer having a thickness of 0.09 ⁇ m on the surface of particles made of polystyrene serving as a nucleus, and providing a gold layer having a thickness of 0.03 ⁇ m on the outside of the nickel layer.
  • insulating particles made of a styrene- (meth) acrylic copolymer were prepared. Using a hybridizer, the surface of the conductive particles was coated with the insulating particles to prepare first conductive particles b. D 2 / D 1 of the first conductive particles b was 1/15, and the coverage was 55%.
  • Second Conductive Particles b having an average particle diameter of 3 ⁇ m were prepared in which a nickel layer having a thickness of 0.1 ⁇ m was provided on the surface of particles made of polystyrene serving as a nucleus and Ni protrusions were provided on the outside of the nickel layer.
  • the second conductive particles b had a Ni Vickers hardness of 350 Hv, a protrusion height of 100 nm, and an interprotrusion distance of 200 nm.
  • Example 1 except that the first conductive particles b and the second conductive particles b were used in place of the first conductive particles a and the second conductive particles a, and the blending amounts thereof were as shown in Table 1. In the same manner, tape-like circuit connecting materials of Examples 4 to 6 were obtained.
  • the number ratio means the number ratio between the first conductive particles and the second conductive particles (number of first conductive particles / number of second conductive particles).
  • the number ratio is the number ratio of the first conductive particles to the Au-coated conductive particles (number of first conductive particles / Au-coated conductive particles). Number of units).
  • circuit connection structure As a circuit member, a 0.7 mm thick ITO coated glass substrate (15 to 20 ⁇ / ⁇ , full surface electrode) and a 0.7 mm thick Cr / IZO [Al (2000 mm) + Cr (500 mm) + IZO (1000 mm), full surface electrode Two types of circuit members of a coated glass substrate were prepared.
  • the circuit connecting material width 1.5 mm and length 3 cm
  • the circuit connecting material width 1.5 mm and length 3 cm
  • the film was laminated by heating and pressing at 70 ° C. and 1 MPa for 2 seconds, the PET film was peeled off, and the adhesive layer was transferred to the substrate.
  • a flexible circuit board in which 600 lines of tin-plated copper circuits having a line width of 25 ⁇ m, a pitch of 50 ⁇ m, and a thickness of 8 ⁇ m are formed on a polyimide film is placed on the transferred adhesive layer with the circuit side facing the adhesive layer. And temporarily fixed at 24 ° C. and 0.5 MPa for 1 second.
  • a glass substrate on which this FPC is temporarily fixed by an adhesive layer is placed in a main pressure bonding apparatus, and a 200 ⁇ m-thick silicone rubber is used as a cushioning material from the FPC side by heating and pressing at 170 ° C. and 3 MPa for 6 seconds using a heat tool.
  • the connection was made over a width of 1.5 mm. Thereby, a circuit connection structure was obtained.
  • connection resistance For the obtained circuit connection structure, the connection resistance between the circuit electrode of the FPC and the circuit electrode of the ITO-coated glass substrate or Cr / IZO-coated glass substrate facing the circuit electrode was measured using a multimeter (device name: TR6845). , Manufactured by Advantest Corporation). The connection resistance was obtained as an average value of 40 resistance values measured between circuit electrodes facing each other. The results obtained are shown in Tables 3-4.
  • FIG. 6 is a photograph of a connected body showing the appearance when conductive particles agglomerate at the edge of the glass substrate on which the ITO electrode is formed.
  • connection body taken from the glass substrate side, and it can be confirmed that agglomeration 16 of conductive particles is generated at the edge portion 17 of the glass substrate on which the ITO electrode 15 is formed.
  • 18 in the figure is a resin flow part to the outside of the substrate.
  • FIG. 6 when the aggregation 16 of a conductive particle arises in the edge part 17 of a glass substrate, in a circuit connection material with low insulation, a short circuit will arise between adjacent ITO electrodes 15, and connection resistance will be obtained. It will be.
  • the resistance value between adjacent ITO electrodes was measured with a multimeter (device name: TR6845, manufactured by Advantest). For the resistance value, 20 resistance values between adjacent ITO electrodes were measured, and the number of points where the connection resistance of 1 ⁇ 10 10 ⁇ or less was obtained (electrode where the short circuit occurred) was recorded. evaluated. The results obtained are shown in Tables 3-4.
  • circuit connection material As described above, according to the present invention, compared to conventional circuit connection materials, short-circuits between circuits are less likely to occur, and even when a high resistance electrode such as an IZO electrode is used, a good connection resistance can be obtained and connection can be achieved. A circuit connection material and a circuit connection structure excellent in reliability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Disclosed is a circuit connection material which is interposed between opposing circuit electrodes so as to electrically connect opposing electrodes in the direction of pressure when pressure is applied to the circuit electrodes.  The circuit connection material comprises an adhesive component, first electroconductive particles having a surface at least partially covered with an insulating covering material, and second electroconductive particles having a surface at least partially covered with Ni, an alloy or oxide of Ni, or a metal having a Vickers hardness of not less than 300 Hv, the second electroconductive particles having protrusions.  The ratio of the number of first electroconductive particles to the number of second electroconductive particles (number of first electroconductive particles/number of second electroconductive particles) is 0.4 to 3.

Description

回路接続材料及び回路接続構造体Circuit connection material and circuit connection structure
 本発明は、回路接続材料及び回路接続構造体に関する。 The present invention relates to a circuit connection material and a circuit connection structure.
 相対向する回路を加熱、加圧し加圧方向の電極間を電気的に接続する回路接続材料、例えば、エポキシ系接着剤やアクリル系接着剤に導電粒子を分散させた異方導電性接着フィルムは、主に液晶ディスプレイ(LCD)を駆動させる半導体が搭載されたTCP(Tape Carrier Package)又はCOF(Chip On Flex)とLCDパネル、あるいは、TCP又はCOFとプリント配線板との電気的接続に広く使用されている。 Circuit connection materials that heat and press opposite circuits and electrically connect electrodes in the direction of pressure, for example, anisotropic conductive adhesive films in which conductive particles are dispersed in epoxy adhesives and acrylic adhesives Widely used for electrical connection between TCP (Tape Carrier Package) or COF (Chip On Flex) and LCD panel or TCP or COF and printed wiring board, which is mainly equipped with a semiconductor that drives a liquid crystal display (LCD) Has been.
 また、最近では、半導体をフェイスダウンで直接LCDパネルやプリント配線板に実装する場合でも、従来のワイヤーボンディング法ではなく、薄型化や狭ピッチ接続に有利なフリップチップ実装が採用されており、ここでも異方導電性接着フィルムが回路接続材料として用いられている(例えば、特許文献1~4参照)。 Recently, even when semiconductors are directly mounted face-down on LCD panels and printed wiring boards, flip chip mounting, which is advantageous for thinning and narrow pitch connection, has been adopted instead of the conventional wire bonding method. However, anisotropic conductive adhesive films are used as circuit connection materials (see, for example, Patent Documents 1 to 4).
 また、近年、LCDモジュールのCOF化やファインピッチ化に伴い、回路接続材料を用いた接続の際に、隣り合う電極間に短絡が発生するという問題を有している。これらの対応策として、接着剤成分中に絶縁粒子を分散させて短絡を防止する技術がある(例えば、特許文献5~9参照)。 Also, in recent years, with the increase in COF and fine pitch of LCD modules, there is a problem that a short circuit occurs between adjacent electrodes when connecting using a circuit connecting material. As countermeasures for these, there is a technique for preventing a short circuit by dispersing insulating particles in an adhesive component (see, for example, Patent Documents 5 to 9).
 また、基板が絶縁性有機物又はガラスからなる配線部材や、表面の少なくとも一部に窒化シリコン、シリコーン樹脂及びポリイミド樹脂から選ばれる少なくとも一種を備える配線部材などに接着するために、接着剤成分にシリコーン粒子を含有させる技術がある(例えば、特許文献10参照)。また、接着後の熱膨張率差に基づく内部応力を低減させるために、接着剤にゴム粒子を分散させる技術がある(例えば、特許文献11参照)。 In addition, in order to adhere to a wiring member made of an insulating organic material or glass, or a wiring member having at least a part selected from silicon nitride, silicone resin and polyimide resin on at least a part of the surface, silicone is used as an adhesive component. There is a technique for containing particles (for example, see Patent Document 10). In addition, there is a technique in which rubber particles are dispersed in an adhesive in order to reduce internal stress based on a difference in coefficient of thermal expansion after bonding (see, for example, Patent Document 11).
 さらに、回路間の短絡を防止する手段として、絶縁性を有する皮膜で表面を被覆した導電粒子を用いる技術がある(例えば、特許文献12及び13参照)。 Furthermore, as a means for preventing a short circuit between circuits, there is a technique using conductive particles whose surface is covered with an insulating film (see, for example, Patent Documents 12 and 13).
特開昭59-120436号公報JP 59-120436 A 特開昭60-191228号公報JP-A-60-191228 特開平01-251787号公報Japanese Patent Laid-Open No. 01-251787 特開平07-090237号公報Japanese Unexamined Patent Publication No. 07-090237 特開昭51-020941号公報Japanese Patent Laid-Open No. 51-020941 特開平03-029207号公報Japanese Unexamined Patent Publication No. 03-029207 特開平04-174980号公報Japanese Patent Laid-Open No. 04-174980 特許第3048197号公報Japanese Patent No. 3048197 特許第3477367号公報Japanese Patent No. 3477367 国際公開第01/014484号パンフレットInternational Publication No. 01/014484 Pamphlet 特開2001-323249号公報JP 2001-323249 A 特許第2794009号公報Japanese Patent No. 2779409 特開2001-195921号公報Japanese Patent Laid-Open No. 2001-195921
 しかしながら、これら従来の回路接続材料では、基板となるガラスのガラスエッジ部に形成された有機膜の突起により、流動した導電粒子がせき止められて凝集したり、又は、有機膜が形成されていない基板であっても、ガラスエッジ部においてCOFのレジストが接着剤の流動をせき止めることで導電粒子が凝集することで、ショートが発生するという問題を有している。 However, in these conventional circuit connection materials, the conductive particles that have flowed are clogged and aggregated by the protrusions of the organic film formed on the glass edge portion of the glass serving as the substrate, or the substrate on which the organic film is not formed Even so, there is a problem that a short circuit occurs because the conductive particles agglomerate due to the COF resist blocking the flow of the adhesive at the glass edge portion.
 さらに、最近では、ガラス基板の電極として、コストダウンのために従来のITO(Tin doped Indium Oxide)電極に代えてIZO(Zinc doped Indium Oxide)電極を使用するメーカが増えてきている。IZO電極はITO電極と比較して抵抗値が高いため、従来の絶縁性を有する皮膜で表面を被覆した導電粒子を含有する回路接続材料を用いた場合、対向する回路電極間の接続抵抗が高くなるという問題が生じる。 Furthermore, recently, an increasing number of manufacturers are using IZO (Zinc doped Indium Oxide) electrodes as glass substrate electrodes in place of conventional ITO (Tin doped Indium Oxide) electrodes for cost reduction. Since the IZO electrode has a higher resistance value than the ITO electrode, when a circuit connection material containing conductive particles whose surface is coated with a conventional insulating film is used, the connection resistance between the facing circuit electrodes is high. Problem arises.
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、ガラス基板のエッジ部における導電粒子の凝集によるショートの発生を防止すると共に、IZO電極を用いた場合でも良好な接続抵抗を得ることができる回路接続材料、及び、それを用いて対向配置された第一の回路電極及び第二の回路電極が電気的に接続された回路接続構造体を提供することを目的とするものである。 The present invention has been made in view of the above-described problems of the prior art, and prevents occurrence of a short circuit due to aggregation of conductive particles at an edge portion of a glass substrate, and also provides good connection resistance even when an IZO electrode is used. An object of the present invention is to provide a circuit connection material that can be obtained, and a circuit connection structure in which the first circuit electrode and the second circuit electrode that are arranged to face each other are electrically connected to each other. is there.
 上記目的を達成するために、本発明は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、接着剤成分と、表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子と、表面の少なくとも一部がNi又はその合金若しくは酸化物で被覆され、且つ、突起を有する第二の導電粒子と、を含有し、上記第一の導電粒子と上記第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)が0.4~3である、回路接続材料を提供する。 In order to achieve the above object, the present invention provides a circuit connecting material that is interposed between circuit electrodes facing each other, pressurizes opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction. A first conductive particle having at least part of its surface coated with an insulating coating, and at least part of its surface being coated with Ni or an alloy or oxide thereof, and having a protrusion. Particles, and the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles) is 0.4 to 3. A circuit connection material is provided.
 また、本発明は、相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、接着剤成分と、表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子と、表面の少なくとも一部がビッカース硬度300Hv以上の金属、合金又は金属酸化物で被覆され、且つ、突起を有する第二の導電粒子と、を含有し、上記第一の導電粒子と上記第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)が0.4~3である、回路接続材料を提供する。 Further, the present invention is a circuit connecting material that is interposed between circuit electrodes facing each other, pressurizes circuit electrodes facing each other, and electrically connects the electrodes in the pressurizing direction. First conductive particles that are at least partly coated with an insulating coating, and second conductive particles that are at least partly coated with a metal, alloy, or metal oxide having a Vickers hardness of 300 Hv or more and that have protrusions. And the number ratio of the first conductive particles to the second conductive particles (the number of the first conductive particles / the number of the second conductive particles) is 0.4 to 3. Provide connection material.
 これらの回路接続材料によれば、ガラス基板のエッジ部における導電粒子の凝集によるショートの発生を防止すると共に、IZO電極を用いた場合でも良好な接続抵抗を得ることができる。かかる効果が得られる理由について、本発明者らは以下のように推察する。すなわち、上記第一の導電粒子のみでは基板と導電粒子との間の樹脂の排除性に乏しく十分な接触面積が得られなかったのに対し、上記第二の導電粒子の存在により、基板と導電粒子との間の樹脂を排除しやすくなるため十分な接触面積を確保でき、良好な接続抵抗を得ることができるものと考えられる。 According to these circuit connection materials, it is possible to prevent the occurrence of a short circuit due to the aggregation of conductive particles at the edge portion of the glass substrate and to obtain a good connection resistance even when an IZO electrode is used. The present inventors infer the reason why such an effect is obtained as follows. That is, only the first conductive particles have poor resin exclusion between the substrate and the conductive particles, and a sufficient contact area cannot be obtained. Since it becomes easy to exclude the resin between the particles, it is considered that a sufficient contact area can be secured and a good connection resistance can be obtained.
 本発明の回路接続材料において、上記第一の導電粒子と、上記第二の導電粒子との体積比(第一の導電粒子の体積/第二の導電粒子の体積)は、0.4~3であることが好ましく、0.45~2.5がより好ましく、0.5~2.0がさらに好ましい。これにより、基板と導電粒子との十分な接触面積を確保するために必要な第二の導電粒子を含有することができ、より良好な接続抵抗を得ることができる。 In the circuit connecting material of the present invention, the volume ratio of the first conductive particles to the second conductive particles (volume of the first conductive particles / volume of the second conductive particles) is 0.4-3. It is preferably 0.45 to 2.5, more preferably 0.5 to 2.0. Thereby, the 2nd electroconductive particle required in order to ensure sufficient contact area of a board | substrate and an electroconductive particle can be contained, and a more favorable connection resistance can be obtained.
 また、本発明の回路接続材料の上記第二の導電粒子において、上記突起の高さが50~500nmであり、隣接する上記突起間の距離が1000nm以下であることが好ましい。これにより、対向する回路電極間の接続抵抗をより十分に低減することができ、且つ、この接続抵抗の経時的な上昇をより十分に抑制することができる。 In the second conductive particle of the circuit connecting material of the present invention, it is preferable that the height of the protrusion is 50 to 500 nm and the distance between adjacent protrusions is 1000 nm or less. Thereby, the connection resistance between the circuit electrodes which oppose can be reduced more fully, and the raise with time of this connection resistance can be suppressed more fully.
 また、本発明の回路接続材料の上記第一の導電粒子において、被覆率が20~70%となるように上記絶縁被覆体が設けられていることが好ましい。これにより、隣接する回路電極間の絶縁性を十分に確保しつつ、対向する回路電極間の接続抵抗をより十分に低減することができる。また、接続抵抗の経時的な上昇をより十分に抑制することができる。 Further, it is preferable that the first conductive particles of the circuit connecting material of the present invention are provided with the insulating coating so that the coverage is 20 to 70%. Thereby, the connection resistance between the circuit electrodes which oppose can be reduced more fully, ensuring sufficient insulation between adjacent circuit electrodes. In addition, the increase in connection resistance with time can be more sufficiently suppressed.
 また、本発明の回路接続材料において、上記第一の導電粒子は、導電性を有する核粒子と、該核粒子の表面上に設けられた複数の絶縁性粒子を含む上記絶縁被覆体と、を備え、上記絶縁性粒子の平均粒径(D)と上記核粒子の平均粒径(D)との比(D/D)が1/10以下であることが好ましい。これにより、対向する回路電極間の接続抵抗をより十分に低減することができ、且つ、この接続抵抗の経時的な上昇をより十分に抑制することができる。 In the circuit connection material of the present invention, the first conductive particles include: conductive core particles; and the insulating covering including a plurality of insulating particles provided on the surfaces of the core particles. And the ratio (D 2 / D 1 ) of the average particle diameter (D 2 ) of the insulating particles and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less. Thereby, the connection resistance between the circuit electrodes which oppose can be reduced more fully, and the raise with time of this connection resistance can be suppressed more fully.
 また、本発明の回路接続材料において、上記第一の導電粒子は、導電性を有する核粒子と、該核粒子の表面上に設けられた有機高分子化合物を含有する絶縁性層を含む上記絶縁被覆体と、を備え、上記絶縁性層の厚さ(T)と上記核粒子の平均粒径(D)との比(T/D)が1/10以下であることが好ましい。これにより、対向する回路電極間の接続抵抗をより十分に低減することができ、且つ、この接続抵抗の経時的な上昇をより十分に抑制することができる。 In the circuit connection material of the present invention, the first conductive particles include the insulating particles including conductive core particles and an insulating layer containing an organic polymer compound provided on the surface of the core particles. And a ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less. . Thereby, the connection resistance between the circuit electrodes which oppose can be reduced more fully, and the raise with time of this connection resistance can be suppressed more fully.
 さらに、本発明の回路接続材料において、上記第一の導電粒子及び上記第二の導電粒子の平均粒径が、いずれも2~6μmの範囲内であることが好ましい。これにより、隣接する回路電極間の絶縁性を十分に確保しつつ、対向する回路電極間の接続抵抗をより十分に低減することができる。 Furthermore, in the circuit connecting material of the present invention, it is preferable that the average particle diameters of the first conductive particles and the second conductive particles are both in the range of 2 to 6 μm. Thereby, the connection resistance between the circuit electrodes which oppose can be reduced more fully, ensuring sufficient insulation between adjacent circuit electrodes.
 本発明はまた、第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材とを、上記第一の回路電極と上記第二の回路電極とが対向するように配置し、対向配置した上記第一の回路電極と上記第二の回路電極との間に、上記本発明の回路接続材料を介在させ、加熱加圧することにより、対向配置した上記第一の回路電極と上記第二の回路電極とを電気的に接続させてなる、回路接続構造体を提供する。 The present invention also provides a first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode, wherein the first circuit electrode and the second circuit electrode are opposed to each other. The circuit connection material of the present invention is interposed between the first circuit electrode and the second circuit electrode that are arranged so as to face each other, and the first circuit electrode is arranged so as to face each other by heating and pressing. A circuit connection structure is provided in which the circuit electrode is electrically connected to the second circuit electrode.
 かかる回路接続構造体は、上記本発明の回路接続材料を用いて第一の回路部材と第二の回路部材とが接続されているため、隣接する回路電極間のショートの発生が十分に抑制され、且つ、対向する回路電極間の接続抵抗が十分に低減されたものとなる。 In such a circuit connection structure, since the first circuit member and the second circuit member are connected using the circuit connection material of the present invention, occurrence of a short circuit between adjacent circuit electrodes is sufficiently suppressed. In addition, the connection resistance between the circuit electrodes facing each other is sufficiently reduced.
 また、本発明は、上記第一の回路電極及び上記第二の回路電極の少なくとも一方がITO電極である、上記回路接続構造体を提供する。 Also, the present invention provides the circuit connection structure, wherein at least one of the first circuit electrode and the second circuit electrode is an ITO electrode.
 さらに、本発明は、上記第一の回路電極及び上記第二の回路電極の少なくとも一方がIZO電極である、上記回路接続構造体を提供する。 Furthermore, the present invention provides the circuit connection structure, wherein at least one of the first circuit electrode and the second circuit electrode is an IZO electrode.
 本発明によれば、従来の回路接続材料に比べ、回路間におけるショートが発生し難く、IZO電極などの高抵抗電極を用いた場合でも良好な接続抵抗が得られ、かつ接続信頼性にも優れる回路接続材料及び回路接続構造体を提供することができる。 According to the present invention, compared to conventional circuit connection materials, short-circuits between circuits are less likely to occur, a good connection resistance can be obtained even when a high resistance electrode such as an IZO electrode is used, and connection reliability is excellent. Circuit connection materials and circuit connection structures can be provided.
第一の導電粒子の好適な一形態を示す模式断面図である。It is a schematic cross section which shows one suitable form of 1st electroconductive particle. 第一の導電粒子の他の好適な一形態を示す模式断面図である。It is a schematic cross section which shows other suitable one form of 1st electroconductive particle. 第二の導電粒子の好適な一形態を示す模式断面図である。It is a schematic cross section which shows one suitable form of 2nd electroconductive particle. 本発明の回路接続材料の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the circuit connection material of this invention. 本発明の回路接続構造体の製造方法を模式的に示す工程断面図である。It is process sectional drawing which shows typically the manufacturing method of the circuit connection structure of this invention. ITO電極が形成されたガラス基板のエッジ部に導電粒子の凝集が発生した場合の外観を示す接続体写真である。It is a connection body photograph which shows the external appearance when aggregation of the electroconductive particle generate | occur | produced in the edge part of the glass substrate in which the ITO electrode was formed.
 以下、必要に応じて図面を参照しながら、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary.
 本発明の回路接続材料は、接着剤成分と、第一の導電粒子と、第二の導電粒子と、を含有するものである。なお、本発明において、接着剤成分は、回路接続材料の構成材料のうち、導電粒子以外の全ての材料を含むものである。 The circuit connection material of the present invention contains an adhesive component, first conductive particles, and second conductive particles. In the present invention, the adhesive component includes all materials other than the conductive particles among the constituent materials of the circuit connection material.
 本発明の回路接続材料は、(a)エポキシ樹脂と、(b)潜在性硬化剤とからなる接着剤を接着剤成分として含有することができる。 The circuit connection material of the present invention can contain an adhesive composed of (a) an epoxy resin and (b) a latent curing agent as an adhesive component.
 (a)エポキシ樹脂としては、エピクロルヒドリンとビスフェノールA、ビスフェノールF及び/又はビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂、エピクロルヒドリンとフェノールノボラックやクレゾールノボラックとから誘導されるエポキシノボラック樹脂、ナフタレン環を含んだ骨格を有するナフタレン系エポキシ樹脂、グリシジルアミン、グリシジルエーテル、ビフェニル、脂環式等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物等が挙げられる。これらは1種を単独で又は2種以上を混合して用いることが可能である。 (A) Epoxy resins include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F and / or bisphenol AD, epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac, and naphthalene rings. Examples thereof include various epoxy compounds having two or more glycidyl groups in one molecule such as naphthalene-based epoxy resin having a skeleton included, glycidylamine, glycidyl ether, biphenyl, and alicyclic. These may be used alone or in combination of two or more.
 これらのエポキシ樹脂は、不純物イオン(Na、Cl等)や、加水分解性塩素等を300ppm以下に低減した高純度品を用いることがエレクトロンマイグレーション防止のために好ましい。 These epoxy resins, impurity ions (Na +, Cl -, etc.) or hydrolyzable chlorine and the like using a high-purity product was reduced to 300ppm or less preferred in order to prevent electron migration.
 (b)潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。これらは、1種を単独で又は2種以上を混合して使用することができる。また、これらの潜在性硬化剤は、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの潜在性硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。 (B) Examples of the latent curing agent include imidazole series, hydrazide series, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, and the like. These can be used individually by 1 type or in mixture of 2 or more types. In addition, these latent curing agents may be used by mixing a decomposition accelerator, an inhibitor and the like. In addition, those in which these latent curing agents are coated with a polyurethane-based or polyester-based polymer substance to form a microcapsule are preferable because the pot life is extended.
 また、本発明に用いる回路接続材料は、(c)加熱又は光によって遊離ラジカルを発生する硬化剤と、(d)ラジカル重合性物質とからなる接着剤を接着剤成分として含有することができる。 Further, the circuit connecting material used in the present invention can contain, as an adhesive component, an adhesive composed of (c) a curing agent that generates free radicals by heating or light, and (d) a radical polymerizable substance.
 (c)加熱又は光により遊離ラジカルを発生する硬化剤(以下、場合により「遊離ラジカル発生剤」という)としては、過酸化化合物、アゾ系化合物などの加熱又は光により分解して遊離ラジカルを発生するものが挙げられる。遊離ラジカル発生剤は、目的とする接続温度、接続時間、ポットライフ等に応じて適宜選定されるが、高反応性とポットライフの観点から、半減期10時間の温度が40℃以上、かつ半減期1分の温度が180℃以下の有機過酸化物が好ましい。 (C) Curing agents that generate free radicals by heating or light (hereinafter sometimes referred to as “free radical generators”) generate free radicals by decomposition or heating of peroxide compounds, azo compounds, etc. To do. The free radical generator is appropriately selected according to the intended connection temperature, connection time, pot life, etc. From the viewpoint of high reactivity and pot life, the temperature of a half-life of 10 hours is 40 ° C. or more and half. An organic peroxide having a period of 1 minute at a temperature of 180 ° C. or less is preferred.
 (c)加熱又は光により遊離ラジカルを発生する硬化剤の配合量は、接着剤成分の固形分全量を基準として0.05~10質量%程度であることが好ましく、0.1~5質量%であることがより好ましい。 (C) The amount of the curing agent that generates free radicals by heating or light is preferably about 0.05 to 10% by mass, based on the total solid content of the adhesive component, preferably 0.1 to 5% by mass. It is more preferable that
 (c)加熱又は光により遊離ラジカルを発生する硬化剤として、具体的には、ジアシルパーオキサイド類、パーオキシジカーボネート類、パーオキシエステル類、パーオキシケタール類、ジアルキルパーオキサイド類、ハイドロパーオキサイド類等が挙げられる。これらの中でも、回路部材の回路電極の腐食を抑える観点から、パーオキシエステル類、ジアルキルパーオキサイド類、ハイドロパーオキサイド類が好ましく、さらに高反応性が得られる観点から、パーオキシエステル類がより好ましい。 (C) Specific examples of curing agents that generate free radicals by heating or light include diacyl peroxides, peroxydicarbonates, peroxyesters, peroxyketals, dialkyl peroxides, hydroperoxides And the like. Among these, peroxyesters, dialkyl peroxides, and hydroperoxides are preferable from the viewpoint of suppressing corrosion of circuit electrodes of the circuit member, and peroxyesters are more preferable from the viewpoint of obtaining high reactivity. .
 ジアシルパーオキサイド類としては、例えば、イソブチルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。 Examples of diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide. Examples thereof include oxide, benzoyl peroxytoluene, and benzoyl peroxide.
 パーオキシジカーボネート類としては、例えば、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシメトキシパーオキシジカーボネート、ジ(2-エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチルパーオキシ)ジカーボネート等が挙げられる。 Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-tert-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, and the like.
 パーオキシエステル類としては、例えば、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシアセテート等が挙げられる。 Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethyl hexanoate, t-butyl peroxyisobutyrate, 1,1-bis (t-butyl peroxy) Rhohexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoyl peroxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like.
 パーオキシケタール類としては、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-(t-ブチルパーオキシ)シクロドデカン、2,2-ビス(t-ブチルパーオキシ)デカン等が挙げられる。 Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.
 ジアルキルパーオキサイド類としては、例えば、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド等が挙げられる。 Examples of dialkyl peroxides include α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples thereof include t-butyl cumyl peroxide.
 ハイドロパーオキサイド類としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。 Examples of hydroperoxides include diisopropylbenzene hydroperoxide and cumene hydroperoxide.
 これらの(c)加熱又は光により遊離ラジカルを発生する硬化剤は、1種を単独で又は2種以上を混合して使用することができる。また、(c)加熱又は光により遊離ラジカルを発生する硬化剤は、分解促進剤、抑制剤等を混合して用いてもよい。 These (c) curing agents that generate free radicals by heating or light can be used singly or in combination of two or more. Further, (c) a curing agent that generates free radicals by heating or light may be used by mixing a decomposition accelerator, an inhibitor, and the like.
 (d)ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、例えば、アクリレート、メタクリレート、マレイミド化合物等が挙げられる。 (D) The radical polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include acrylate, methacrylate, and maleimide compounds.
 アクリレート又はメタクリレートとしては、例えば、ウレタン(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2-ヒドロキシ-1,3-ジ(メタ)アクリロキシプロパン、2,2-ビス〔4-((メタ)アクリロキシメトキシ)フェニル〕プロパン、2,2-ビス〔4-((メタ)アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ビス((メタ)アクリロキシエチル)イソシアヌレート、ε-カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレート、トリス((メタ)アクリロキシエチル)イソシアヌレート等が挙げられる。 Examples of the acrylate or methacrylate include urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2- Bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acryle Tricyclodecanyl (meth) acrylate, bis ((meth) acryloxyethyl) isocyanurate, ε-caprolactone modified tris ((meth) acryloxyethyl) isocyanurate, tris ((meth) acryloxyethyl) isocyanurate Etc.
 本発明では、このようなラジカル重合性物質の1種を単独で又は2種以上を組み合わせて用いることができる。 In the present invention, one of these radically polymerizable substances can be used alone or in combination of two or more.
 マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するものが好ましく、例えば、1-メチル-2,4-ビスマレイミドベンゼン、N,N’-m-フェニレンビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-トルイレンビスマレイミド、N,N’-4,4-ビフェニレンビスマレイミド、N,N’-4,4-(3,3’-ジメチル-ビフェニレン)ビスマレイミド、N,N’-4,4-(3,3’-ジメチルジフェニルメタン)ビスマレイミド、N,N’-4,4-(3,3-ジエチルジフェニルメタン)ビスマレイミド、N,N’-4,4-ジフェニルメタンビスマレイミド、N,N’-4,4-ジフェニルプロパンビスマレイミド、N,N’-4,4-ジフェニルエーテルビスマレイミド、N,N’-3,3’-ジフェニルスルホンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、2,2-ビス[3-s-ブチル-4,8-(4-マレイミドフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-マレイミドフェノキシ)フェニル]デカン、4,4’-シクロヘキシリデン-ビス[1-(4-マレイミドフェノキシ)-2-シクロヘキシル]ベンゼン、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]ヘキサフルオロプロパン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いたり、アリルフェノール、アリルフェニルエーテル、安息香酸アリル等のアリル化合物と組み合わせて用いてもよい。 As the maleimide compound, those containing at least two maleimide groups in the molecule are preferable. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′ -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethyl-biphenylene ) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3-diethyldiphenylmethane) bismaleimide, N, N′— 4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bisma Imido, N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-s-butyl-4,8 -(4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 4,4'-cyclohexylidene-bis [1- (4-maleimidophenoxy) -2 -Cyclohexyl] benzene, 2,2-bis [4- (4-maleimidophenoxy) phenyl] hexafluoropropane, and the like. These may be used singly or in combination of two or more, or may be used in combination with allyl compounds such as allylphenol, allylphenyl ether, and allyl benzoate.
 また、本発明では、回路接続材料を硬化する前の回路部材の仮固定を容易にする観点から、25℃での粘度が100000~1000000mPa・sであるラジカル重合性物質を少なくとも含有することが好ましく、100000~500000mPa・sの粘度(25℃)を有するラジカル重合性物質を含有することがより好ましい。ラジカル重合性物質の粘度は、市販のE型粘度計を用いて測定できる。 Further, in the present invention, from the viewpoint of facilitating temporary fixing of the circuit member before curing the circuit connecting material, it is preferable to contain at least a radical polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa · s. More preferably, it contains a radically polymerizable substance having a viscosity (25 ° C.) of 100,000 to 500,000 mPa · s. The viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.
 (c)ラジカル重合性物質の中でも、ウレタンアクリレート又はウレタンメタアクリレートが接着性の観点から好ましい。また、耐熱性を向上させるために、上述した有機過酸化物との橋かけ後の重合物のTgが、単独で100℃以上となるようなラジカル重合性物質を併用することが好ましい。このようなラジカル重合性物質としては、ジシクロペンテニル基、トリシクロデカニル基及び/又はトリアジン環を有するものを用いることができる。特に、トリシクロデカニル基やトリアジン環を有するラジカル重合性物質が好適に用いられる。 (C) Among radically polymerizable substances, urethane acrylate or urethane methacrylate is preferable from the viewpoint of adhesiveness. Moreover, in order to improve heat resistance, it is preferable to use together the radically polymerizable substance in which Tg of the polymer after bridge | crosslinking with the organic peroxide mentioned above becomes 100 degreeC or more independently. As such a radically polymerizable substance, a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring can be used. In particular, a radical polymerizable substance having a tricyclodecanyl group or a triazine ring is preferably used.
 また、接着剤成分には、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。 In addition, a polymerization inhibitor such as hydroquinone or methyl ether hydroquinone may be appropriately used for the adhesive component as necessary.
 さらに、リン酸エステル構造を有するラジカル重合性物質を、接着剤成分の固形分全量を基準(100質量%)として0.1~10質量%用いた場合、金属などの無機物表面での接着強度が向上するので好ましく、0.5~5質量%用いるとより好ましい。 Further, when a radically polymerizable substance having a phosphate ester structure is used in an amount of 0.1 to 10% by mass based on the total solid content of the adhesive component (100% by mass), the adhesive strength on the surface of an inorganic substance such as a metal is reduced. It is preferable because it improves, and more preferably 0.5 to 5% by mass is used.
 リン酸エステル構造を有するラジカル重合性物質は、無水リン酸と2-ヒドロキシル(メタ)アクリレートとの反応物として得られる。具体的には、2-メタクリロイロキシエチルアッシドフォスフェート、2-アクリロイロキシエチルアッシドフォスフェート等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用できる。 A radical polymerizable substance having a phosphate ester structure is obtained as a reaction product of phosphoric anhydride and 2-hydroxyl (meth) acrylate. Specific examples include 2-methacryloyloxyethyl acid phosphate and 2-acryloyloxyethyl acid phosphate. These can be used individually by 1 type or in combination of 2 or more types.
 本発明の回路接続材料は、表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子と、表面の少なくとも一部がNi又はその合金若しくは酸化物、或いは、ビッカース硬度300Hv以上の金属、合金又は金属酸化物で被覆され、且つ、突起を有する第二の導電粒子の少なくとも2種類の導電粒子を含有する。また、回路接続材料が含有する第一の導電粒子と第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)は、0.4~3である。以下、第一の導電粒子及び第二の導電粒子のそれぞれについて、図面を参照しながら説明する。 The circuit connection material of the present invention includes a first conductive particle having at least a part of the surface coated with an insulating coating, and at least a part of the surface of Ni or an alloy or oxide thereof, or a metal having a Vickers hardness of 300 Hv or more. , Containing at least two kinds of conductive particles coated with an alloy or metal oxide and having second protrusions. Further, the number ratio of the first conductive particles and the second conductive particles contained in the circuit connecting material (the number of the first conductive particles / the number of the second conductive particles) is 0.4 to 3. Hereinafter, each of the first conductive particles and the second conductive particles will be described with reference to the drawings.
 まず、表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子について説明する。第一の導電粒子は、導電性を有する核粒子と、該核粒子の表面上に設けられた絶縁被覆体とを備えるものであることが好ましい。第一の導電粒子は、被覆率が20~70%の範囲となるように絶縁被覆体が設けられたものであることが好ましい。ここで、上記被覆率は、下記式(1)で定義される。 First, the first conductive particles in which at least a part of the surface is coated with an insulating coating will be described. It is preferable that the first conductive particles include a conductive core particle and an insulating coating provided on the surface of the core particle. The first conductive particles are preferably provided with an insulating coating so that the coverage is in the range of 20 to 70%. Here, the said coverage is defined by following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第一の導電粒子の上記被覆率は20~70%であることが好ましいが、20~60%であることがより好ましい。第一の導電粒子の被覆率が20~70%であると、十分に低い初期抵抗値を得るのに十分な量の導電粒子を回路接続材料中に含有させることが可能である。これは、導電粒子の含有量の増大に伴い導電粒子の凝集が生じたとしても、それぞれの導電粒子に設けられた絶縁被覆体により、隣接する回路電極同士の電気的接続が十分に防止できるためである。 The coverage of the first conductive particles is preferably 20 to 70%, more preferably 20 to 60%. When the coverage of the first conductive particles is 20 to 70%, it is possible to contain a sufficient amount of conductive particles in the circuit connecting material to obtain a sufficiently low initial resistance value. This is because even if the conductive particles are aggregated as the content of the conductive particles increases, the insulating coating provided on each conductive particle can sufficiently prevent electrical connection between adjacent circuit electrodes. It is.
 また、全表面が絶縁被覆体で覆われた導電粒子を用いた場合、核粒子と回路電極表面との間に絶縁被覆体が存在し、電気的な経路に絶縁被覆体が介在することになる。これに対し、上記被覆率が20~70%である第一の導電粒子は、絶縁被覆が部分的であるため、電気的な経路に介在する絶縁被覆体を十分に低減することができる。このため、経路に存在する絶縁被覆体の影響を十分に抑制することができる。したがって、全表面が絶縁被覆体で覆われている導電粒子と比較し、接続部分の初期抵抗値を低くすることができ、且つ、この抵抗値の経時的な上昇をより確実に抑制することができる。 In addition, when conductive particles whose entire surface is covered with an insulating coating are used, the insulating coating exists between the core particles and the circuit electrode surface, and the insulating coating is interposed in the electrical path. . On the other hand, since the first conductive particles having a coverage of 20 to 70% have a partial insulating coating, the insulating coating interposed in the electrical path can be sufficiently reduced. For this reason, the influence of the insulation coating body which exists in a path | route can fully be suppressed. Therefore, compared with the conductive particles whose entire surface is covered with the insulating coating, the initial resistance value of the connection portion can be lowered, and the increase in the resistance value over time can be more reliably suppressed. it can.
 第一の導電粒子が備える絶縁被覆体は、核粒子の表面上に設けられた、複数の絶縁性粒子で構成することができる。この場合、絶縁性粒子の平均粒径(D)と、核粒子の平均粒径(D)との比率(D/D)は、1/10以下であることが好ましい。この比率が1/10以下であると、接続部分の低い抵抗値及びこの抵抗値の経時的な上昇の抑制の両方をより確実に達成することができる。 The insulating covering provided in the first conductive particles can be composed of a plurality of insulating particles provided on the surface of the core particles. In this case, the average particle diameter of the insulating particles (D 2), the ratio of the average particle diameter of the nuclear particles (D 1) (D 2 / D 1) is preferably 1/10 or less. When this ratio is 1/10 or less, both the low resistance value of the connection portion and the suppression of the increase in the resistance value over time can be achieved more reliably.
 また、第一の導電粒子が備える絶縁被覆体は、核電粒子の表面上に設けられた、有機高分子化合物を含有する絶縁性層で構成することができる。この場合、絶縁性層の厚さ(T)と核粒子の平均粒径(D)との比率(T/D)は、1/10以下であることが好ましい。この比率が1/10以下であると、接続部分の低い抵抗値及びこの抵抗値の経時的な上昇の抑制の両方をより確実に達成することができる。 Moreover, the insulation coating body with which the 1st electroconductive particle is provided can be comprised with the insulating layer containing the organic high molecular compound provided on the surface of the nuclear electroparticle. In this case, the ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer and the average particle diameter (D 1 ) of the core particles is preferably 1/10 or less. When this ratio is 1/10 or less, both the low resistance value of the connection portion and the suppression of the increase in the resistance value over time can be achieved more reliably.
 図1は、第一の導電粒子の好適な一形態を示す模式断面図である。図1に示す第一の導電粒子10Aは、導電性を有する核粒子1及びこの核粒子1の表面上に設けられた複数の絶縁性粒子2Aによって構成されている。 FIG. 1 is a schematic cross-sectional view showing a preferred embodiment of the first conductive particles. A first conductive particle 10 </ b> A shown in FIG. 1 includes a conductive core particle 1 and a plurality of insulating particles 2 </ b> A provided on the surface of the core particle 1.
 核粒子1は、中心部分を構成する基材粒子1a及びこの基材粒子1aの表面上に設けられた導電層1bによって構成されている。 The core particle 1 is composed of a base particle 1a constituting a central portion and a conductive layer 1b provided on the surface of the base particle 1a.
 基材粒子1aの材質としては、ガラス、セラミックス、有機高分子化合物などが挙げられる。これらの材質のうち、加熱及び/又は加圧によって変形するもの(例えば、有機高分子化合物)が好ましい。基材粒子1aが変形するものであると、導電粒子10Aが回路電極によって押圧された場合、回路電極との接触面積が増加する。また、回路電極の表面の凹凸を吸収することができる。したがって、回路電極間の接続信頼性が向上する。 Examples of the material of the base particle 1a include glass, ceramics, and organic polymer compounds. Among these materials, those that are deformed by heating and / or pressurization (for example, organic polymer compounds) are preferable. When the base particle 1a is deformed, when the conductive particle 10A is pressed by the circuit electrode, the contact area with the circuit electrode increases. Further, irregularities on the surface of the circuit electrode can be absorbed. Therefore, connection reliability between circuit electrodes is improved.
 上記のような観点から、基材粒子1aを構成する材質として好適なものは、例えば、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体及びこれらを架橋したものである。基材粒子1aは粒子間で同一又は異なる種類の材質であってもよく、同一粒子に1種の材質を単独で又は2種以上の材質を混合して用いてもよい。 From the above viewpoint, materials suitable as the material constituting the base particle 1a are, for example, acrylic resins, styrene resins, benzoguanamine resins, silicone resins, polybutadiene resins, or copolymers thereof and those obtained by crosslinking them. is there. The base particle 1a may be made of the same or different kind of material between the particles, and one kind of material may be used alone or a mixture of two or more kinds of materials may be used for the same particle.
 基材粒子1aの平均粒径は、用途などに応じて適宜設計可能であるが、0.5~20μmであることが好ましく、1~10μmであることがより好ましく、2~5μmであることがさらに好ましい。平均粒径が0.5μm未満の基材粒子を用いて導電粒子を作製すると、粒子の二次凝集が生じ、隣接する回路電極間の絶縁性が不十分となる傾向があり、20μmを超える基材粒子を用いて導電粒子を作製すると、その大きさに起因して隣接する回路電極間の絶縁性が不十分となる傾向がある。 The average particle diameter of the substrate particles 1a can be appropriately designed according to the application, but is preferably 0.5 to 20 μm, more preferably 1 to 10 μm, and more preferably 2 to 5 μm. Further preferred. When conductive particles are prepared using base particles having an average particle size of less than 0.5 μm, secondary aggregation of the particles occurs, and the insulation between adjacent circuit electrodes tends to be insufficient. When conductive particles are produced using material particles, the insulation between adjacent circuit electrodes tends to be insufficient due to the size.
 導電層1bは、基材粒子1aの表面を覆うように設けられた導電性を有する材質からなる層である。導電性を十分確保する観点から、導電層1bは、基材粒子1aの全表面を被覆していることが好ましい。 The conductive layer 1b is a layer made of a conductive material provided so as to cover the surface of the base particle 1a. From the viewpoint of ensuring sufficient conductivity, the conductive layer 1b preferably covers the entire surface of the base particle 1a.
 導電層1bの材質としては、例えば、金、銀、白金、ニッケル、銅及びこれらの合金、錫を含有するはんだなどの合金、並びにカーボンなどの導電性を有する非金属が挙げられる。基材粒子1aに対し、無電解めっきによる被覆が可能であることから、導電層1bの材質は金属であることが好ましい。また、十分なポットライフを得るためには、金、銀、白金又はこれらの合金がより好ましく、金がさらに好ましい。なお、これらは1種を単独で、又は2種以上を組み合わせて用いることができる。 Examples of the material of the conductive layer 1b include gold, silver, platinum, nickel, copper and alloys thereof, alloys such as solder containing tin, and nonmetals having conductivity such as carbon. Since the base particle 1a can be coated by electroless plating, the material of the conductive layer 1b is preferably a metal. In order to obtain a sufficient pot life, gold, silver, platinum or an alloy thereof is more preferable, and gold is more preferable. In addition, these can be used individually by 1 type or in combination of 2 or more types.
 導電層1bの厚さは、これに使用する材質や用途などに応じて適宜設計可能であるが、50~200nmであることが好ましく、80~150nmであることがより好ましい。厚さが50nm未満であると、接続部分の十分に低い抵抗値が得られなくなる傾向がある。他方、200nmを超える厚さの導電層1bは、製造効率が低下する傾向がある。 The thickness of the conductive layer 1b can be appropriately designed according to the material and application used for the conductive layer 1b, but is preferably 50 to 200 nm, and more preferably 80 to 150 nm. When the thickness is less than 50 nm, there is a tendency that a sufficiently low resistance value of the connection portion cannot be obtained. On the other hand, the manufacturing efficiency of the conductive layer 1b having a thickness exceeding 200 nm tends to decrease.
 導電層1bは、一層又は二層以上で構成することができる。いずれの場合においても、これを用いて作製される回路接続材料の保存性の観点から、核粒子1の表面層は、金、銀、白金、パラジウム又はこれらの合金で構成することが好ましく、金で構成することがより好ましい。導電層1bが、金、銀、白金、パラジウム又はこれらの合金(以下、「金などの金属」という)からなる一層で構成される場合、接続部分の十分に低い抵抗値を得るためには、その厚さは10~200nmであることが好ましい。 The conductive layer 1b can be composed of one layer or two or more layers. In any case, it is preferable that the surface layer of the core particle 1 is composed of gold, silver, platinum, palladium, or an alloy thereof from the viewpoint of storage stability of a circuit connection material produced using the same. More preferably, When the conductive layer 1b is composed of a single layer made of gold, silver, platinum, palladium, or an alloy thereof (hereinafter referred to as "metal such as gold"), in order to obtain a sufficiently low resistance value of the connection portion, The thickness is preferably 10 to 200 nm.
 他方、導電層1bが二層以上で構成される場合、導電層1bの最外層は金などの金属で構成することが好ましいが、最外層と基材粒子1aと間の層は、例えば、ニッケル、銅、錫又はこれらの合金を含有する金属層で構成してもよい。この場合、導電層1bの最外層を構成する金などの金属からなる金属層の厚さは、接着剤成分の保存性の観点から、30~200nmであることが好ましい。 On the other hand, when the conductive layer 1b is composed of two or more layers, the outermost layer of the conductive layer 1b is preferably composed of a metal such as gold, but the layer between the outermost layer and the base particle 1a is, for example, nickel. You may comprise by the metal layer containing copper, tin, or these alloys. In this case, the thickness of the metal layer made of a metal such as gold constituting the outermost layer of the conductive layer 1b is preferably 30 to 200 nm from the viewpoint of storage stability of the adhesive component.
 ニッケル、銅、錫又はこれらの合金は、酸化還元作用で遊離ラジカルを発生することがある。このため、金などの金属からなる最外層の厚さが30nm未満であると、ラジカル重合性を有する接着剤成分と併用した場合、遊離ラジカルの影響を十分に防止することが困難となる傾向がある。 Nickel, copper, tin, or alloys thereof may generate free radicals due to redox action. For this reason, when the thickness of the outermost layer made of a metal such as gold is less than 30 nm, when used in combination with an adhesive component having radical polymerizability, it tends to be difficult to sufficiently prevent the effects of free radicals. is there.
 導電層1bを基材粒子1a表面上に形成する方法としては、無電解めっき処理や物理的なコーティング処理が挙げられる。導電層1bの形成の容易性の観点から、金属からなる導電層1bを無電解めっき処理によって基材粒子1aの表面上に形成することが好ましい。 Examples of the method for forming the conductive layer 1b on the surface of the substrate particle 1a include electroless plating treatment and physical coating treatment. From the viewpoint of easy formation of the conductive layer 1b, it is preferable to form the conductive layer 1b made of metal on the surface of the substrate particle 1a by electroless plating treatment.
 絶縁性粒子2Aは、シリカ、ガラス、セラミックス、等の絶縁性の素材又は有機高分子化合物によって構成されている。有機高分子化合物としては、熱軟化性を有するものが好ましい。 The insulating particles 2A are made of an insulating material such as silica, glass, ceramics, or an organic polymer compound. As the organic polymer compound, those having heat softening properties are preferable.
 絶縁性粒子の好適な素材は、例えば、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、ポリエステル、ポリアミド、ポリウレタン、ポリスチレン、スチレン-ジビニルベンゼン共重合体、スチレン-イソブチレン共重合体、スチレン-ブタジエン共重合体、スチレン-(メタ)アクリル共重合体、エチレン-プロピレン共重合体、(メタ)アクリル酸エステル系ゴム、スチレン-エチレン-ブチレン共重合体、フェノキシ樹脂、固形エポキシ樹脂等である。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。なお、粒度分布の分散度、耐溶剤性及び耐熱性の観点から、スチレン-(メタ)アクリル共重合体が特に好適である。絶縁性粒子2Aの製造方法としては、シード重合法などが挙げられる。 Suitable materials for the insulating particles include, for example, polyethylene, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic ester copolymer, polyester, polyamide, polyurethane, Polystyrene, styrene-divinylbenzene copolymer, styrene-isobutylene copolymer, styrene-butadiene copolymer, styrene- (meth) acrylic copolymer, ethylene-propylene copolymer, (meth) acrylic acid ester rubber, Styrene-ethylene-butylene copolymer, phenoxy resin, solid epoxy resin and the like. These may be used individually by 1 type and may be used in combination of 2 or more type. A styrene- (meth) acrylic copolymer is particularly preferred from the viewpoints of dispersion degree of particle size distribution, solvent resistance and heat resistance. Examples of the method for producing the insulating particles 2A include a seed polymerization method.
 絶縁性粒子2Aを構成する有機高分子化合物の軟化点は、回路部材同士の接続時の加熱温度以上であることが好ましい。軟化点が接続時の加熱温度未満であると、接続時に絶縁性粒子2Aが過度に変形することに起因して、良好な電気的接続が得られなくなる傾向がある。 It is preferable that the softening point of the organic polymer compound that constitutes the insulating particles 2A is equal to or higher than the heating temperature when the circuit members are connected to each other. When the softening point is lower than the heating temperature at the time of connection, the insulating particles 2A are excessively deformed at the time of connection, so that there is a tendency that good electrical connection cannot be obtained.
 絶縁性粒子2Aを構成する有機高分子化合物の架橋度は、5~20%であることが好ましく、5~15%であることがより好ましく、8~13%であることがさらに好ましい。架橋度が上記範囲内である有機高分子化合物は、範囲外の有機高分子化合物と比較し、接続信頼性と絶縁性の両方が優れるという特性を有している。したがって、架橋度が5%未満であると、隣接する電極回路間の絶縁性が不十分となる傾向がある。他方、架橋度が20%を超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。 The degree of crosslinking of the organic polymer compound constituting the insulating particles 2A is preferably 5 to 20%, more preferably 5 to 15%, and still more preferably 8 to 13%. An organic polymer compound having a crosslinking degree within the above range has a characteristic that both connection reliability and insulation are excellent as compared with an organic polymer compound outside the range. Therefore, if the degree of crosslinking is less than 5%, the insulation between adjacent electrode circuits tends to be insufficient. On the other hand, if the degree of cross-linking exceeds 20%, it tends to be difficult to achieve both a sufficiently low initial resistance value at the connecting portion and suppression of the increase in resistance value over time.
 有機高分子化合物の架橋度は、架橋性モノマーと非架橋性モノマーとの組成比によって調整することができる。本発明でいう架橋度は、架橋性モノマーと非架橋性モノマーの組成比(仕込み質量比)による理論計算値を意味する。すなわち、有機高分子化合物を合成するに際して配合する架橋性モノマーの仕込み質量を架橋性及び非架橋性のモノマーの合計仕込み質量比で除して算出される値である。 The degree of crosslinking of the organic polymer compound can be adjusted by the composition ratio of the crosslinkable monomer and the non-crosslinkable monomer. The degree of crosslinking as used in the present invention means a theoretical calculated value based on the composition ratio (charged mass ratio) of the crosslinkable monomer and the non-crosslinkable monomer. That is, it is a value calculated by dividing the charged mass of the crosslinkable monomer blended in synthesizing the organic polymer compound by the total charged mass ratio of the crosslinkable and non-crosslinkable monomers.
 絶縁性粒子2Aを構成する有機高分子化合物のゲル分率は、90%以上であることが好ましく、95%以上がより好ましい。ゲル分率が90%未満であると、導電粒子10Aを接着剤成分中に分散させて回路接続材料を作製した場合、接着剤成分の絶縁抵抗が経時的に低下する傾向がある。 The gel fraction of the organic polymer compound constituting the insulating particles 2A is preferably 90% or more, and more preferably 95% or more. When the gel fraction is less than 90%, when the circuit connection material is produced by dispersing the conductive particles 10A in the adhesive component, the insulation resistance of the adhesive component tends to decrease with time.
 ここでいうゲル分率とは、有機高分子化合物の溶剤に対する耐性を示す指標であり、その測定方法を以下に説明する。ゲル分率を測定すべき有機高分子化合物(被測定試料)の質量(質量A)を測定する。被測定試料を容器内に収容し、これに溶剤を入れる。温度23℃において、被測定試料を溶剤に24時間撹拌浸漬する。その後、溶剤を揮発させるなどして除去し、攪拌浸漬後の被測定試料の質量(質量B)を測定する。ゲル分率(%)は、次式により算出される値である。
 ゲル分率(%)=(質量B/質量A)×100
Here, the gel fraction is an index indicating the resistance of the organic polymer compound to the solvent, and the measurement method will be described below. The mass (mass A) of the organic polymer compound (sample to be measured) whose gel fraction is to be measured is measured. A sample to be measured is placed in a container, and a solvent is put in it. At a temperature of 23 ° C., the sample to be measured is immersed in a solvent for 24 hours with stirring. Thereafter, the solvent is removed by volatilization or the like, and the mass (mass B) of the sample to be measured after stirring and immersion is measured. The gel fraction (%) is a value calculated by the following formula.
Gel fraction (%) = (mass B / mass A) × 100
 ゲル分率の測定に使用する溶剤は、トルエンである。なお、回路接続材料の溶液の調製には、一般に、トルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフランが使用される。回路接続材料の溶液の調製には、これらの中から1種を単独で、又は2種以上混合して使用することができる。 The solvent used for measuring the gel fraction is toluene. In general, toluene, xylene, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, and tetrahydrofuran are used for preparing the circuit connection material solution. In preparing the circuit connection material solution, one of these may be used alone, or two or more of them may be mixed and used.
 絶縁性粒子2Aの平均粒径は、用途などに応じて適宜設計可能であるが、50~500nmであることが好ましく、50~400nmであることがより好ましく、100~300nmであることがさらに好ましい。平均粒径が50nm未満であると、隣接する回路間の絶縁性が不十分となる傾向があり、他方、500nmを超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。 The average particle diameter of the insulating particles 2A can be designed as appropriate according to the use and the like, but is preferably 50 to 500 nm, more preferably 50 to 400 nm, and further preferably 100 to 300 nm. . If the average particle size is less than 50 nm, the insulation between adjacent circuits tends to be insufficient. On the other hand, if the average particle size exceeds 500 nm, a sufficiently low initial resistance value and a resistance value increase with time in the connection portion. It tends to be difficult to achieve both suppression.
 絶縁性粒子2Aは、上記式(1)で定義される被覆率が20~70%となるように核粒子1の表面上に形成されることが好ましい。絶縁と導電の効果を一層確実に得る観点から、被覆率は、20~60%であることが好ましく、25~60%であることがより好ましく、28~55%であることがさらに好ましい。被覆率が20%未満であると、隣接する回路電極間の絶縁性が不十分となる傾向があり、他方、70%を超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。なお、核粒子1を被覆している複数の絶縁性粒子2Aは、核粒子1の表面上において、十分分散していることが好ましい。 The insulating particles 2A are preferably formed on the surface of the core particle 1 so that the coverage defined by the above formula (1) is 20 to 70%. From the viewpoint of more reliably obtaining insulation and conductivity effects, the coverage is preferably 20 to 60%, more preferably 25 to 60%, and even more preferably 28 to 55%. If the coverage is less than 20%, the insulation between adjacent circuit electrodes tends to be insufficient. On the other hand, if it exceeds 70%, the initial resistance value and the resistance value of the connection portion are sufficiently low over time. It tends to be difficult to achieve both the suppression of the rise. The plurality of insulating particles 2 </ b> A covering the core particle 1 are preferably sufficiently dispersed on the surface of the core particle 1.
 本発明でいう被覆率は、走査型電子顕微鏡(倍率8000倍)による観察によって得られる、下記の測定値に基づくものである。すなわち、被覆率は、核粒子及び絶縁性粒子のそれぞれの平均粒径、並びに1個の核粒子に付着している絶縁性粒子の個数に基づき、算出される値である。任意に選択した粒子50個について上記のようにして測定し、その平均値を算出する。 The coverage referred to in the present invention is based on the following measured values obtained by observation with a scanning electron microscope (magnification 8000 times). That is, the coverage is a value calculated based on the average particle size of each of the core particles and the insulating particles and the number of insulating particles attached to one core particle. Measurement is performed as described above for 50 arbitrarily selected particles, and the average value is calculated.
 核粒子1の平均粒径は、以下のようにして測定される。すなわち、1個の核粒子を任意に選択し、これを走査型電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。任意に選択した核粒子50個について上記のようにして粒径を測定し、その平均値を核粒子1の平均粒径(D)とする。絶縁性粒子2Aの平均粒径についても、これと同様にして任意の絶縁性粒子50個についてその粒径を測定し、その平均値を絶縁性粒子2Aの平均粒径(D)とする。 The average particle diameter of the core particle 1 is measured as follows. That is, one core particle is arbitrarily selected, and this is observed with a scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. The particle diameter of 50 arbitrarily selected core particles is measured as described above, and the average value is defined as the average particle diameter (D 1 ) of the core particles 1. Similarly, the average particle diameter of the insulating particles 2A is measured for 50 arbitrary insulating particles, and the average value is defined as the average particle diameter (D 2 ) of the insulating particles 2A.
 1個の導電粒子が備える絶縁性粒子の個数は、以下のようにして測定される。すなわち、複数の絶縁性粒子2Aで表面の一部が被覆された導電粒子1個を任意に選択する。そして、これを走査型電子顕微鏡で撮像し、観察し得る核粒子表面上に付着している絶縁性粒子の数をカウントする。これにより得られたカウント数を2倍にすることで1個の核粒子に付着している絶縁性粒子の数を算出する。任意に選択した導電粒子50個について上記のようにして絶縁性粒子の数を測定し、その平均値を1個の導電粒子が備える絶縁性粒子の個数とする。 The number of insulating particles included in one conductive particle is measured as follows. That is, one conductive particle whose surface is partially covered with a plurality of insulating particles 2A is arbitrarily selected. And this is imaged with a scanning electron microscope, and the number of the insulating particles adhering on the core particle surface which can be observed is counted. The number of insulating particles adhering to one core particle is calculated by doubling the obtained count number. The number of insulating particles is measured as described above for 50 arbitrarily selected conductive particles, and the average value is defined as the number of insulating particles included in one conductive particle.
 核粒子の全表面積は、上記(D)を直径とする球の表面積を意味する。一方、核粒子表面の絶縁被覆体で覆われている部分の面積は、上記(D)を直径とする円の面積の値に1個の導電粒子が備える絶縁性粒子の個数を乗ずることによって得られる値を意味する。 The total surface area of the core particle means the surface area of a sphere having the above (D 1 ) as a diameter. On the other hand, the area of the portion covered with the insulating coating on the surface of the core particle is obtained by multiplying the value of the area of the circle having the diameter of (D 2 ) by the number of insulating particles included in one conductive particle. Means the value obtained.
 絶縁性粒子2Aの平均粒径(D)と核粒子1の平均粒径(D)の比率(D/D)は、1/10以下であることが好ましく、1/15以下であることがより好ましい。なお、この比率(D/D)の下限は、1/20であることが好ましい。D/Dが1/10を超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。他方、1/20未満であると、隣接する回路間の絶縁性が不十分となる傾向がある。 The ratio of the average particle diameter of the insulating particles 2A (D 2) and the average particle diameter (D 1) of the nucleus particles 1 (D 2 / D 1) is preferably 1/10 or less, in 1/15 or less More preferably. The lower limit of the ratio (D 2 / D 1) is preferably 1 / 20. FIG. When D 2 / D 1 exceeds 1/10, it tends to be difficult to achieve both a sufficiently low initial resistance value of the connection portion and suppression of a rise in resistance value over time. On the other hand, if it is less than 1/20, the insulation between adjacent circuits tends to be insufficient.
 なお、核粒子1の表面上に形成する絶縁被覆体は、絶縁性粒子2Aのように球状のものに制限されない。絶縁被覆体は、絶縁性粒子2Aと同様の材質からなる絶縁性層であってもよい。例えば、図2に示す第一の導電粒子10Bは、核粒子1の表面上に部分的に設けられた絶縁性層2Bを備えている。 Note that the insulating covering formed on the surface of the core particle 1 is not limited to a spherical shape like the insulating particle 2A. The insulating covering may be an insulating layer made of the same material as the insulating particles 2A. For example, the first conductive particle 10 </ b> B shown in FIG. 2 includes an insulating layer 2 </ b> B partially provided on the surface of the core particle 1.
 絶縁性層2Bは、被覆率が20~70%となるように核粒子1の表面上に形成されることが好ましい。本発明の効果を一層確実に得る観点から、被覆率は、20~60%であることが好ましく、25~60%であることがより好ましく、28~55%であることがさらに好ましい。被覆率が20%未満であると、隣接する回路電極間の絶縁性が不十分となる傾向があり、他方、70%を超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。なお、核粒子1を被覆している絶縁性層2Bの各被覆領域は、核粒子1の表面上において、十分分散していることが好ましい。各被覆領域は、それぞれ孤立していてもよく、連続していてもよい。 The insulating layer 2B is preferably formed on the surface of the core particle 1 so that the coverage is 20 to 70%. From the viewpoint of more reliably obtaining the effects of the present invention, the coverage is preferably 20 to 60%, more preferably 25 to 60%, and even more preferably 28 to 55%. If the coverage is less than 20%, the insulation between adjacent circuit electrodes tends to be insufficient. On the other hand, if it exceeds 70%, the initial resistance value and the resistance value of the connection portion are sufficiently low over time. It tends to be difficult to achieve both the suppression of the rise. In addition, it is preferable that each covering region of the insulating layer 2 </ b> B covering the core particle 1 is sufficiently dispersed on the surface of the core particle 1. Each covering region may be isolated or may be continuous.
 絶縁性層2Bの厚さ(T)と核粒子1の平均粒径(D)との比率(T/D)は、1/10以下であることが好ましく、1/15以下であることがより好ましい。なお、この比率(T/D)の下限は、1/20であることが好ましい。T/Dが1/10を超えると、接続部分の十分に低い初期抵抗値及び抵抗値の経時的な上昇の抑制の両方を達成することが困難となる傾向がある。他方、1/20未満であると、隣接する回路間の絶縁性が不十分となる傾向がある。 The ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer 2B and the average particle diameter (D 1 ) of the core particles 1 is preferably 1/10 or less, and is 1/15 or less. More preferably. The lower limit of this ratio (T 2 / D 1) is preferably 1/20. When T 2 / D 1 exceeds 1/10, it tends to be difficult to achieve both a sufficiently low initial resistance value of the connection portion and suppression of a rise in resistance value over time. On the other hand, if it is less than 1/20, the insulation between adjacent circuits tends to be insufficient.
 絶縁被覆体が絶縁性層2Bにより構成される場合の被覆率は、以下の手順により算出することができる。すなわち、任意に選択した導電粒子50個を走査型電子顕微鏡でそれぞれ撮像し、観察し得る核粒子表面上に付着している絶縁性層の面積の測定値を相加平均することにより得ることができる。 The coverage in the case where the insulating covering is constituted by the insulating layer 2B can be calculated by the following procedure. That is, 50 arbitrarily selected conductive particles can be imaged with a scanning electron microscope, respectively, and obtained by arithmetically averaging the measured values of the area of the insulating layer adhering on the surface of the core particles that can be observed. it can.
 また、絶縁性層2Bの厚さ(T)についても、任意に選択した導電粒子50個を走査型電子顕微鏡でそれぞれ撮像し、各導電粒子の表面上の絶縁性層2Bの厚さの測定値を相加平均することにより得ることができる。 In addition, regarding the thickness (T 2 ) of the insulating layer 2B, 50 arbitrarily selected conductive particles were imaged with a scanning electron microscope, and the thickness of the insulating layer 2B on the surface of each conductive particle was measured. It can be obtained by arithmetically averaging the values.
 核粒子1の表面に絶縁被覆体(絶縁性粒子2A又は絶縁性層2B)を形成する方法としては、公知の手法を使用することができ、有機溶媒や分散剤による化学変化を利用した湿式方式及び機械エネルギーによる物理化学的変化を利用した乾式方式が挙げられる。例えば、噴霧法、高速撹拌法、スプレードライヤー法などが挙げられる。 As a method for forming an insulating coating (insulating particle 2A or insulating layer 2B) on the surface of the core particle 1, a known method can be used, and a wet method using a chemical change by an organic solvent or a dispersant. And a dry method using a physicochemical change caused by mechanical energy. For example, a spraying method, a high-speed stirring method, a spray dryer method and the like can be mentioned.
 本発明の効果を一層確実に得るためには、粒径が十分に均一化されている複数の絶縁性粒子2Aを核粒子1の表面上に設け、これにより絶縁被覆体を構成することが好ましい。また、溶媒や分散剤の完全除去が困難な湿式方式よりも溶媒を使用しない乾式方式を採用することが好ましい。 In order to obtain the effect of the present invention more reliably, it is preferable to provide a plurality of insulating particles 2A having a sufficiently uniform particle diameter on the surface of the core particle 1, thereby forming an insulating coating. . Moreover, it is preferable to employ a dry method that does not use a solvent, rather than a wet method in which it is difficult to completely remove the solvent and the dispersant.
 乾式方式で核粒子1の表面上に絶縁被覆体を形成できる装置としては、例えば、メカノミル(商品名、(株)徳寿工作所製)、ハイブリダイザー((株)奈良機械製作所製、商品名:NHSシリーズ)等が挙げられる。このうち、絶縁被覆体を核粒子1の表面上に形成する際に核粒子1の表面を好適な状態に改質することができることから、ハイブリダイザーを用いることが好ましい。この装置によれば粒子レベルでの精密な被覆を行うことができ、粒径が十分に均一化された絶縁性粒子2Aを核粒子1の表面上に形成することができる。 As an apparatus that can form an insulating coating on the surface of the core particle 1 by a dry method, for example, Mechanomyl (trade name, manufactured by Tokuju Kogakusho Co., Ltd.), Hybridizer (manufactured by Nara Machinery Co., Ltd .; NHS series). Among these, it is preferable to use a hybridizer because the surface of the core particle 1 can be modified into a suitable state when the insulating coating is formed on the surface of the core particle 1. According to this apparatus, precise coating at the particle level can be performed, and the insulating particles 2A having a sufficiently uniform particle size can be formed on the surface of the core particle 1.
 絶縁被覆体の形状の制御は、例えば、被覆処理の条件を調整することにより行うことができる。被覆処理の条件は、例えば、温度、回転速度である。また、絶縁性粒子2Aの平均粒径又は絶縁性層2Bの厚さは、被覆処理の条件や当該処理に供する核粒子1と有機高分子化合物(絶縁被覆体の材質)との配合比率を調整することにより行うことができる。 The control of the shape of the insulating coating can be performed, for example, by adjusting the conditions of the coating process. The conditions for the coating treatment are, for example, temperature and rotation speed. Moreover, the average particle diameter of the insulating particles 2A or the thickness of the insulating layer 2B adjusts the condition of the coating treatment and the blending ratio of the core particles 1 to be used for the treatment and the organic polymer compound (material of the insulating coating). This can be done.
 被覆処理(乾式方式)の温度は、30~90℃であることが好ましく、50~70℃であることがより好ましい。 The temperature of the coating treatment (dry method) is preferably 30 to 90 ° C., more preferably 50 to 70 ° C.
 また、被覆処理(乾式方式)の回転速度は、6000~20000/分であることが好ましく、10000~17000/分であることがより好ましい。 Further, the rotational speed of the coating treatment (dry method) is preferably 6000 to 20000 / min, and more preferably 10,000 to 17000 / min.
 以上、絶縁被覆処理を施した第一の導電粒子の好適な形態について説明したが、本発明における第一の導電粒子は上記の形態に制限するものではない。本発明における第一の導電粒子は、その要旨を逸脱しない範囲で様々な変形が可能である。例えば、上記実施形態では、基材粒子1a及び導電層1bにより構成される核粒子1を例示したが、核粒子は導電性を有する材質(例えば、導電層1bと同様の材質)により構成されるものであってもよい。また、熱溶融金属からなる粒子を核粒子として使用することもできる。この場合、加熱及び加圧によって核粒子を十分に変形させることができる。 As mentioned above, although the suitable form of the 1st electroconductive particle which performed the insulation coating process was demonstrated, the 1st electroconductive particle in this invention is not restrict | limited to said form. The first conductive particles in the present invention can be variously modified without departing from the gist thereof. For example, in the above-described embodiment, the core particle 1 composed of the base particle 1a and the conductive layer 1b is illustrated, but the core particle is composed of a conductive material (for example, the same material as the conductive layer 1b). It may be a thing. Moreover, the particle | grains which consist of a hot-melt metal can also be used as a core particle. In this case, the core particles can be sufficiently deformed by heating and pressurization.
 また、第一の導電粒子は、絶縁被覆体として絶縁性粒子2A及び絶縁性層2Bの両方が核粒子1の表面上に設けられたものであってもよい。 Also, the first conductive particles may be those in which both the insulating particles 2A and the insulating layer 2B are provided on the surface of the core particle 1 as an insulating covering.
 次に、表面の少なくとも一部がNi又はその合金若しくは酸化物、或いは、ビッカース硬度300Hv以上の金属、合金又は金属酸化物で被覆され、且つ、突起を有する第二の導電粒子について説明する。 Next, the second conductive particles having at least a part of the surface coated with Ni, an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more and having protrusions will be described.
 図3(a)及び(b)は、第二の導電粒子の好適な一形態を示す模式断面図である。図3(a)に示すように、第二の導電粒子20Aは、有機高分子化合物からなる核体21と、核体21の表面上に形成される金属層22とで構成される。核体21は中核部21aと中核部21aの表面上に形成される突起部21bとで構成され、金属層22はその表面側に、複数の突起部14を有している。 FIGS. 3A and 3B are schematic cross-sectional views showing a preferred embodiment of the second conductive particles. As shown in FIG. 3A, the second conductive particle 20 </ b> A includes a nucleus 21 made of an organic polymer compound and a metal layer 22 formed on the surface of the nucleus 21. The core body 21 is composed of a core portion 21a and protrusions 21b formed on the surface of the core portion 21a, and the metal layer 22 has a plurality of protrusions 14 on the surface side.
 核体21の中核部21aを構成する有機高分子化合物としては、例えば、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものを使用しても良い。 Examples of the organic polymer compound constituting the core portion 21a of the core body 21 include acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or a copolymer thereof. You may do it.
 突起部21bを構成する有機高分子化合物は、中核部21aを構成する有機高分子化合物と同一であっても異なっていてもよい。なお、突起部21bの平均粒径は50~500nmであることが好ましい。 The organic polymer compound constituting the protruding portion 21b may be the same as or different from the organic polymer compound constituting the core portion 21a. The average particle diameter of the protrusions 21b is preferably 50 to 500 nm.
 核体21は中核部21aの表面に中核部21aよりも小さな径を有する突起部21bを複数個吸着させることにより形成することができる。 The core 21 can be formed by adsorbing a plurality of protrusions 21b having a smaller diameter than the core 21a on the surface of the core 21a.
 金属層22の素材は、Ni又はその合金若しくは酸化物、或いは、ビッカース硬度300Hv以上の金属、合金又は金属酸化物である。ビッカース硬度が300Hv以上の金属、合金又は金属酸化物としては、例えば、Ni、Pd、Rh、並びに、それらの合金及び酸化物が挙げられる。これらの中でも、金属層22の素材としては、汎用性の観点から、Ni又はその合金若しくは酸化物が好ましく、Niがより好ましい。 The material of the metal layer 22 is Ni or an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more. Examples of the metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more include Ni, Pd, Rh, and alloys and oxides thereof. Among these, as a material of the metal layer 22, Ni or its alloy or oxide is preferable from the viewpoint of versatility, and Ni is more preferable.
 金属層22の素材となる金属、合金又は金属酸化物のビッカース硬度は、300Hv以上であるが、樹脂排除性と変形性の観点から、300~800Hvであることが好ましく、300~600Hvであることがより好ましい。 The Vickers hardness of the metal, alloy, or metal oxide used as the material of the metal layer 22 is 300 Hv or more, but is preferably 300 to 800 Hv, and preferably 300 to 600 Hv from the viewpoint of resin rejection and deformability. Is more preferable.
 金属層22は、例えば、無電解めっき法を用いて核体21の表面に形成することができる。 The metal layer 22 can be formed on the surface of the core 21 using, for example, an electroless plating method.
 なお、ニッケル合金としては、めっき浴中に配合される添加剤により種々のものがある。よく知られているニッケル合金としては、ニッケル-リン、ニッケル-ホウ素等が挙げられる。 There are various types of nickel alloys depending on the additives blended in the plating bath. Well-known nickel alloys include nickel-phosphorus, nickel-boron and the like.
 金属層22の厚さ(めっきの厚さ)は50~170nmであることが好ましく、50~150nmであることがより好ましい。金属層22の厚さをこのような範囲とすることで回路電極間の接続抵抗をより一層良好なものとすることができる。金属層22の厚さが50nm未満ではめっきの欠損等が発生して接続抵抗が大きくなる傾向があり、170nmを超えると導電粒子間で凝結が発生して隣接する回路電極間で短絡が生じる傾向がある。 The thickness of the metal layer 22 (plating thickness) is preferably 50 to 170 nm, and more preferably 50 to 150 nm. By setting the thickness of the metal layer 22 in such a range, the connection resistance between the circuit electrodes can be further improved. If the thickness of the metal layer 22 is less than 50 nm, plating defects tend to occur and the connection resistance tends to increase. If the thickness exceeds 170 nm, condensation occurs between the conductive particles and a short circuit occurs between adjacent circuit electrodes. There is.
 導電粒子20Aの突起部14の高さ(H)は、50~500nmであることが好ましく、75~300nmであることがより好ましい。突起部の高さが50nm未満の場合、高温高湿処理後に接続抵抗が高くなる傾向があり、500nmを超える場合には、導電粒子の回路電極との接触面積が小さくなるため接続抵抗が高くなる傾向がある。 The height (H) of the protrusion 14 of the conductive particle 20A is preferably 50 to 500 nm, and more preferably 75 to 300 nm. When the height of the protrusion is less than 50 nm, the connection resistance tends to increase after the high-temperature and high-humidity treatment, and when it exceeds 500 nm, the contact area of the conductive particles with the circuit electrode decreases, and thus the connection resistance increases. Tend.
 隣接する突起部14間の距離(S)は、1000nm以下であることが好ましく、500nm以下であることがより好ましい。突起部14間の距離が1000nmを越えると、突起が疎になるため導電粒子と回路電極との接触面積が小さくなり、接続抵抗が高くなる傾向がある。また、隣接する突起部14間の距離(S)は、導電粒子と回路電極との間に接着剤成分が入り込まず、十分に導電粒子と回路電極とを接触させる観点から、50nm以上であること好ましい。なお、導電粒子20Aの突起部14の高さ(H)及び隣接する突起部14の距離(S)は電子顕微鏡により測定することができる。 The distance (S) between the adjacent protrusions 14 is preferably 1000 nm or less, and more preferably 500 nm or less. When the distance between the protrusions 14 exceeds 1000 nm, the protrusions become sparse, so that the contact area between the conductive particles and the circuit electrodes is reduced, and the connection resistance tends to increase. Further, the distance (S) between the adjacent protrusions 14 is 50 nm or more from the viewpoint that the adhesive component does not enter between the conductive particles and the circuit electrode and the conductive particles and the circuit electrode are sufficiently brought into contact with each other. preferable. Note that the height (H) of the protrusions 14 of the conductive particles 20A and the distance (S) between the adjacent protrusions 14 can be measured with an electron microscope.
 また、第二の導電粒子は、図3(b)に示すように、核体21が中核部21aのみで構成されてもよい。この第二の導電粒子20Bは、核体21の表面を金属めっきし、核体21の表面上に金属層22が形成されることにより得ることができる。但し、突起部14は、金属めっきの際、めっき条件を変更して金属層22の厚さを変化させることで金属層22に形成することができる。なお、めっき条件の変更は、例えば、最初に使用しためっき液に、これよりも濃度の高いめっき液を追加することでめっき液濃度を不均一にすることにより行うことができる。 Further, in the second conductive particle, as shown in FIG. 3B, the core body 21 may be constituted only by the core portion 21a. The second conductive particles 20 </ b> B can be obtained by metal-plating the surface of the core body 21 and forming the metal layer 22 on the surface of the core body 21. However, the protrusion 14 can be formed on the metal layer 22 by changing the thickness of the metal layer 22 by changing the plating conditions during metal plating. The plating conditions can be changed, for example, by making the plating solution concentration non-uniform by adding a plating solution having a higher concentration to the plating solution used first.
 また、第二の導電粒子は、非導電性のガラス、セラミック、プラスチック等の絶縁粒子に、Ni又はその合金若しくは酸化物、或いは、ビッカース硬度300Hv以上の金属、合金又は金属酸化物を被覆したものであってもよい。第二の導電粒子が絶縁粒子に導電性物質を被覆したものであって、最外層をNi、核となる絶縁粒子をプラスチックとした場合、又は、第二の導電粒子が熱溶融金属粒子の場合、加熱加圧による変形性を有し、接続時に回路電極との接触面積が増加して信頼性が向上するので好ましい。 In addition, the second conductive particle is a non-conductive glass, ceramic, plastic, or other insulating particle coated with Ni or an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more. It may be. When the second conductive particles are made of insulating particles coated with a conductive material and the outermost layer is Ni and the core insulating particles are plastic, or the second conductive particles are hot-melt metal particles It is preferable because it has deformability by heating and pressurization, and the contact area with the circuit electrode is increased at the time of connection to improve reliability.
 回路接続材料において、第一及び第二の導電粒子の合計の配合量は、接着剤成分100体積部に対して0.1~30体積部の範囲で用途により使い分けることが好ましい。第一及び第二の導電粒子による隣接回路の短絡等を一層十分に防止するためには、配合量は0.1~10体積部とすることがより好ましい。 In the circuit connection material, it is preferable that the total blending amount of the first and second conductive particles is properly used depending on the application within a range of 0.1 to 30 parts by volume with respect to 100 parts by volume of the adhesive component. In order to more sufficiently prevent short circuit between adjacent circuits due to the first and second conductive particles, the blending amount is more preferably 0.1 to 10 parts by volume.
 また、第一及び第二の導電粒子の平均粒径はいずれも、接続する回路の電極高さより小さくすると隣接電極間の短絡が減少する等の観点から、1~10μmが好ましく、2~8μmがより好ましく、2~6μmがさらに好ましい。また、第一の導電粒子の平均粒径が第二の導電粒子の平均粒径よりも小さい方が、対向する回路電極間の接続抵抗をより十分に低減する効果が高まるため、好ましい。また、第一の導電粒子の平均粒径が第二の導電粒子の平均粒径よりも大きい方が、隣接する回路電極間の絶縁性を十分に確保することができるため、好ましい。特に、全表面が絶縁被覆体で覆われたような導電粒子や被覆率が70%超の導電粒子で効果が大きく現れると思われる。また、被覆率が20%~70%の導電粒子や、絶縁性微粒子が導電性を有する各粒子の表面上に設けられている場合は、絶縁性微粒子の大きさや、被覆率によって傾向が変わると思われるので適宜調整することが好ましい。これらは、例えば、用途により異なる本発明の回路接続材料に求められる特性により選択することができる。 Also, the average particle diameter of the first and second conductive particles is preferably 1 to 10 μm, and preferably 2 to 8 μm, from the viewpoint of reducing short circuit between adjacent electrodes when the electrode is smaller than the electrode height of the circuit to be connected. More preferred is 2 to 6 μm. Moreover, since the one where the average particle diameter of 1st electroconductive particle is smaller than the average particle diameter of 2nd electroconductive particle increases the effect of fully reducing the connection resistance between the circuit electrodes which oppose, it is preferable. Moreover, since the one where the average particle diameter of 1st electroconductive particle is larger than the average particle diameter of 2nd electroconductive particle can fully ensure the insulation between adjacent circuit electrodes, it is preferable. In particular, the effect appears to be significant with conductive particles whose entire surface is covered with an insulating coating or with conductive particles having a coverage of more than 70%. In addition, when conductive particles having a coverage of 20% to 70% or insulating fine particles are provided on the surface of each conductive particle, the tendency changes depending on the size of the insulating fine particles and the coverage. Therefore, it is preferable to adjust appropriately. These can be selected, for example, according to characteristics required for the circuit connection material of the present invention, which varies depending on the application.
 また、第一及び第二の導電粒子としては、10%圧縮弾性率(K値)が100~1000kgf/mmのものより適宜選択して使用することが好ましい。 The first and second conductive particles are preferably selected from those having a 10% compression modulus (K value) of 100 to 1000 kgf / mm 2 .
 ここで、第二の導電粒子の平均粒径も、以下のようにして測定される。すなわち、1個の導電粒子を任意に選択し、これを走査型電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。任意に選択した導電粒子50個について上記のようにして粒径を測定し、その平均値を導電粒子の平均粒径とする。 Here, the average particle diameter of the second conductive particles is also measured as follows. That is, one conductive particle is arbitrarily selected and observed with a scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. The particle diameter is measured as described above for 50 arbitrarily selected conductive particles, and the average value is taken as the average particle diameter of the conductive particles.
 以上、表面の少なくとも一部がNi又はその合金若しくは酸化物、或いは、ビッカース硬度300Hv以上の金属、合金又は金属酸化物で被覆され、且つ、突起を有する第二の導電粒子の好適な形態について説明したが、本発明における第二の導電粒子は上記の形態に制限するものではない。 The preferred embodiment of the second conductive particles having at least a part of the surface coated with Ni or an alloy or oxide thereof, or a metal, alloy or metal oxide having a Vickers hardness of 300 Hv or more and having protrusions has been described. However, the 2nd electroconductive particle in this invention is not restrict | limited to said form.
 本発明における、回路接続材料中の第一及び第二の導電粒子の個数は、回路接続材料を形成する接着剤成分中の樹脂成分を溶解可能な溶剤に溶解し、得られた不溶成分から余分な溶剤分等を除去した後、走査型電子顕微鏡で観察することで確認することができる。 In the present invention, the number of the first and second conductive particles in the circuit connection material is obtained by dissolving the resin component in the adhesive component forming the circuit connection material in a solvent that can be dissolved, and removing the excess from the obtained insoluble component. This can be confirmed by observing with a scanning electron microscope after removing the solvent.
 樹脂成分を溶解可能な溶剤としては、例えば、MEK(メチルエチルケトン)、トルエン等があるが、これらの溶剤に制限するものではない。 Examples of the solvent capable of dissolving the resin component include MEK (methyl ethyl ketone) and toluene, but are not limited to these solvents.
 得られた不溶成分中に存在する導電粒子を100個以上観察し、第一の導電粒子と第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)を測定する。本発明の回路接続材料においては、上記個数比(第一の導電粒子の個数/第二の導電粒子の個数)が0.4~3であることが必要であり、0.45~2.5であることがより好ましく、0.5~2.0であることがさらに好ましい。 100 or more conductive particles present in the obtained insoluble component are observed, and the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles). Measure. In the circuit connecting material of the present invention, the number ratio (number of first conductive particles / number of second conductive particles) needs to be 0.4 to 3, and 0.45 to 2.5. More preferably, it is more preferably 0.5 to 2.0.
 本発明における、回路接続材料中の導電粒子の体積については、回路接続材料中に含まれる導電粒子の平均粒径と単位面積あたりの導電粒子個数から体積比に換算することができ、第一の導電粒子と第二の導電粒子との体積比(第一の導電粒子の体積/第二の導電粒子の体積)を求めることができる。本発明の回路接続材料においては、上記体積比(第一の導電粒子の体積/第二の導電粒子の体積)が0.4~3であることが好ましく、0.45~2.5であることがより好ましく、0.5~2.0であることがさらに好ましい。 In the present invention, the volume of the conductive particles in the circuit connection material can be converted into a volume ratio from the average particle size of the conductive particles contained in the circuit connection material and the number of conductive particles per unit area. The volume ratio of the conductive particles to the second conductive particles (the volume of the first conductive particles / the volume of the second conductive particles) can be determined. In the circuit connection material of the present invention, the volume ratio (volume of the first conductive particles / volume of the second conductive particles) is preferably 0.4 to 3, and preferably 0.45 to 2.5. More preferably, it is more preferably 0.5 to 2.0.
 なお、導電粒子の体積の定義については、突起部又は絶縁性層が占める導電粒子全体に対する体積の割合は微小なため、本願発明における導電粒子の体積の測定では、絶縁性粒子2A、絶縁性層2B及び突起部14は算出しないこととする。 As for the definition of the volume of the conductive particles, the ratio of the volume to the entire conductive particles occupied by the protrusions or the insulating layer is very small. Therefore, in the measurement of the volume of the conductive particles in the present invention, the insulating particles 2A, the insulating layer 2B and the protrusion 14 are not calculated.
 また、本発明の回路接続材料は、第一の導電粒子及び第二の導電粒子以外の他の導電粒子を含有していてもよい。他の導電粒子の含有割合は、第一の導電粒子及び第二の導電粒子の総個数に対し、50%以下であることが好ましく、30%以下であることがより好ましく、20%以下であることが特に好ましい。 Moreover, the circuit connection material of the present invention may contain other conductive particles other than the first conductive particles and the second conductive particles. The content ratio of the other conductive particles is preferably 50% or less, more preferably 30% or less, and more preferably 20% or less with respect to the total number of the first conductive particles and the second conductive particles. It is particularly preferred.
 他の導電粒子としては特に限定されないが、例えば、Au、Ag、Ni、Cu及びはんだ等の金属粒子やカーボン等が挙げられる。また、他の導電粒子は、核となる粒子を1層又は2層以上の層で被覆し、その最外層が導電性を有するものであってもよい。この場合、最外層には、Ni、Cuなどの遷移金属や、Au、Ag、白金族金属などの貴金属の1種又は2種以上を組み合わせて用いることができる。なお、最外層は、貴金属を主成分とする層であることが好ましい。 Other conductive particles are not particularly limited, and examples thereof include metal particles such as Au, Ag, Ni, Cu, and solder, and carbon. Further, the other conductive particles may be one in which core particles are covered with one layer or two or more layers, and the outermost layer has conductivity. In this case, the outermost layer can be used in combination of one or more transition metals such as Ni and Cu and noble metals such as Au, Ag and platinum group metals. In addition, it is preferable that an outermost layer is a layer which has a noble metal as a main component.
 他の導電粒子は、核としての遷移金属を主成分とする粒子又は核を被覆した遷移金属を主成分とする層の表面を、更に貴金属を主成分とする層で被覆してなるものであってもよい。また、他の導電粒子は、非導電性のガラス、セラミック、プラスチック等を主成分とする絶縁性粒子を核とし、この核の表面を上記金属又はカーボンを主成分とする層で被覆したものであってもよい。 The other conductive particles are formed by coating the surface of a layer mainly composed of a transition metal as a nucleus or a layer mainly composed of a transition metal coated with a nucleus with a layer mainly composed of a noble metal. May be. In addition, other conductive particles have insulating particles whose main component is non-conductive glass, ceramic, plastic, etc. as the core, and the surface of this core is covered with the above-mentioned metal or carbon as the main layer. There may be.
他の導電粒子が、絶縁性粒子である核を導電層で被覆してなるものである場合、プラスチックを主成分とする絶縁性粒子を核とし、この核の表面をNiなどの遷移金属を主成分とする層で被覆し、更にこの層の表面をAuなどの貴金属を主成分とする最外層で被覆したものであると好ましい。 In the case where the other conductive particles are formed by covering the core, which is an insulating particle, with a conductive layer, the insulating particle mainly composed of plastic is used as the core, and the surface of the core is mainly composed of a transition metal such as Ni. It is preferable that the layer is coated with a layer as a component, and the surface of this layer is further coated with an outermost layer mainly composed of a noble metal such as Au.
 また、本発明の回路接続材料は、フィルム状で使用することが取り扱い性に優れることから好ましく、その場合、接着剤成分中にフィルム形成性高分子を含有してもよい。フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリフェニレンオキサイド、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、エポキシ樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステルウレタン樹脂などが用いられる。これらの中でも、水酸基等の官能基を有する樹脂が、接着性を向上させることができるのでより好ましい。また、これらの高分子をラジカル重合性の官能基で変性したものも用いることができる。 The circuit connection material of the present invention is preferably used in the form of a film because of its excellent handleability. In that case, the adhesive component may contain a film-forming polymer. Film-forming polymers include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, epoxy resin, polyisocyanate resin, Phenoxy resin, polyimide resin, polyester urethane resin or the like is used. Among these, a resin having a functional group such as a hydroxyl group is more preferable because it can improve adhesiveness. Also, those obtained by modifying these polymers with radically polymerizable functional groups can be used.
 これらフィルム形成性高分子の重量平均分子量は、10000以上が好ましい。また、重量平均分子量が1000000超えると混合性が低下するため、1000000未満であることが好ましい。 These film-forming polymers preferably have a weight average molecular weight of 10,000 or more. Moreover, since mixing property will fall when a weight average molecular weight exceeds 1000000, it is preferable that it is less than 1 million.
 さらに、本発明の回路接続材料は、接着剤成分中に、ゴム微粒子、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。 Furthermore, the circuit connection material of the present invention comprises rubber fine particles, fillers, softeners, accelerators, anti-aging agents, colorants, flame retardants, thixotropic agents, coupling agents, phenol resins in the adhesive component. , Melamine resin, isocyanates and the like can also be contained.
 ゴム微粒子としては、粒子の平均粒径が、配合する第一及び第二の導電粒子の各平均粒径の2倍以下であり、かつ室温(25℃)での貯蔵弾性率が第一及び第二の導電粒子並びに接着剤成分の室温での貯蔵弾性率の1/2以下であるものであればよい。特に、ゴム微粒子の材質がシリコーン、アクリルエマルジョン、SBR、NBR、ポリブタジエンゴムである微粒子は、1種を単独で又は2種以上を混合して用いることが好適である。3次元架橋したこれらゴム微粒子は、耐溶剤性が優れており、接着剤成分中に容易に分散される。 As the rubber fine particles, the average particle diameter of the particles is not more than twice the average particle diameter of the first and second conductive particles to be blended, and the storage elastic modulus at room temperature (25 ° C.) is the first and second. What is necessary is just to be 1/2 or less of the storage elastic modulus of the second conductive particles and the adhesive component at room temperature. In particular, it is preferable to use a single fine particle or a mixture of two or more fine particles whose rubber fine particles are made of silicone, acrylic emulsion, SBR, NBR, or polybutadiene rubber. These three-dimensionally crosslinked rubber fine particles have excellent solvent resistance and are easily dispersed in the adhesive component.
 回路接続材料に充填材を含有させる場合、接続信頼性等が向上するため好ましい。充填材は、その最大径が第一及び第二の導電粒子の各平均粒径未満であれば使用できる。充填剤の配合量は、回路接続材料の固形分全量を基準として5~60体積%の範囲が好ましい。配合量が60体積%を超えると、信頼性向上の効果が飽和する傾向があり、5体積%未満では充填剤添加の効果が十分に得られない傾向がある。 It is preferable to include a filler in the circuit connection material because connection reliability and the like are improved. The filler can be used if its maximum diameter is less than the average particle diameter of the first and second conductive particles. The blending amount of the filler is preferably in the range of 5 to 60% by volume based on the total solid content of the circuit connecting material. If the blending amount exceeds 60% by volume, the effect of improving the reliability tends to be saturated, and if it is less than 5% by volume, the effect of adding the filler tends to be insufficient.
 カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基からなる群より選ばれる1種以上の基を含有する化合物が、接着性の向上の観点から好ましい。 As the coupling agent, a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable from the viewpoint of improving adhesiveness.
 図4は、本発明の回路接続材料の一実施形態であるフィルム状の回路接続材料を示す模式断面図である。フィルム状の回路接続材料50は、少なくとも接着剤成分51、第一の導電粒子10、及び、第二の導電粒子20を含有している。このように、回路接続材料をフィルム状とすることによって、取り扱いを容易にすることができる。 FIG. 4 is a schematic cross-sectional view showing a film-like circuit connection material which is an embodiment of the circuit connection material of the present invention. The film-like circuit connecting material 50 contains at least an adhesive component 51, first conductive particles 10, and second conductive particles 20. Thus, handling can be facilitated by making the circuit connecting material into a film.
 また、本発明の回路接続材料は、反応性樹脂を含有する層と潜在性硬化剤を含有する層とに分離したり、遊離ラジカルを発生する硬化剤を含有する層と導電粒子を含有する層に分離したりすることも可能である。このような構成とした場合、高精細化とポットライフ向上との効果が得られる。 The circuit connection material of the present invention is separated into a layer containing a reactive resin and a layer containing a latent curing agent, or a layer containing a curing agent that generates free radicals and a layer containing conductive particles. It is also possible to separate them. With such a configuration, effects of high definition and pot life improvement can be obtained.
 本発明の回路接続材料は、ICチップと基板との接着や電気回路相互の接着用のフィルム状接着剤としても有用である。すなわち、第一の回路電極(接続端子)を有する第一の回路部材と、第二の回路電極(接続端子)を有する第二の回路部材とが、第一の回路電極及び第二の回路電極を対向させて配置されており、対向配置された第一の回路電極と第二の回路電極との間に本発明の回路接続材料を介在して加熱加圧することにより、対向配置された第一の回路電極及び第二の回路電極を電気的に接続させて、回路接続構造体を構成することができる。 The circuit connecting material of the present invention is also useful as a film-like adhesive for bonding an IC chip and a substrate or bonding electric circuits. That is, the first circuit member having the first circuit electrode (connection terminal) and the second circuit member having the second circuit electrode (connection terminal) are the first circuit electrode and the second circuit electrode. Are arranged opposite to each other, and the first circuit electrode arranged opposite to each other is heated and pressed by interposing the circuit connection material of the present invention between the first circuit electrode and the second circuit electrode arranged opposite to each other. The circuit connection structure can be configured by electrically connecting the circuit electrode and the second circuit electrode.
 このような回路接続構造体を構成する回路部材としては、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、プリント基板等の基板等が挙げられる。これらの回路部材には回路電極が通常は多数(場合によっては単数でもよい)設けられており、回路部材の少なくとも1組をそれらの回路部材に設けられた回路電極の少なくとも一部を対向配置し、対向配置した回路電極間に本発明の回路接続材料を介在させ、加熱加圧して対向配置した回路電極同士を電気的に接続して回路接続構造体を構成する。 Examples of circuit members constituting such a circuit connection structure include chip parts such as semiconductor chips, resistor chips, capacitor chips, and substrates such as printed boards. These circuit members are usually provided with a large number of circuit electrodes (or a single electrode in some cases), and at least one set of the circuit members is arranged so that at least a part of the circuit electrodes provided on the circuit members are opposed to each other. The circuit connection material of the present invention is interposed between the circuit electrodes arranged opposite to each other, and the circuit electrodes arranged opposite to each other by heating and pressing are electrically connected to constitute a circuit connection structure.
 回路部材の少なくとも1組を加熱加圧することにより、対向配置した回路電極同士は、直接接触により又は異方導電性接着剤(回路接続材料)の導電粒子を介して電気的に接続することができる。 By heating and pressing at least one set of circuit members, the circuit electrodes arranged opposite to each other can be electrically connected by direct contact or through conductive particles of an anisotropic conductive adhesive (circuit connection material). .
 本発明の回路接続材料は、接続時に回路接続材料が溶融流動し相対向する回路電極の接続を得た後、硬化して接続を保持するものであり、回路接続材料の流動性は重要な因子である。 The circuit connection material of the present invention is one in which the circuit connection material melts and flows at the time of connection and obtains connection of the opposite circuit electrodes, and then cures to maintain the connection. The fluidity of the circuit connection material is an important factor It is.
 厚み0.7mm、15mm×15mmのガラス板に、厚み35μm、5mm×5mmの回路接続材料を挟み、170℃、2MPa、10秒の条件で加熱加圧を行った場合、初期の面積(A)と加熱加圧後の面積(B)とを用いて表される流動性(B/A)の値は、1.3~3.0であることが好ましく、1.5~2.5であることがより好ましい。この値が1.3未満では流動性が悪く、良好な接続が得られない傾向があり、3.0を超える場合は、気泡が発生しやすく信頼性に劣る傾向がある。 When a circuit connecting material having a thickness of 35 μm and 5 mm × 5 mm is sandwiched between a glass plate having a thickness of 0.7 mm and 15 mm × 15 mm, and heating and pressing are performed at 170 ° C., 2 MPa, and 10 seconds, the initial area (A) And the fluidity (B / A) value expressed using the area after heating and pressing (B) is preferably 1.3 to 3.0, and more preferably 1.5 to 2.5. It is more preferable. If this value is less than 1.3, the fluidity tends to be poor and good connection tends not to be obtained, and if it exceeds 3.0, bubbles tend to be generated and the reliability tends to be poor.
 本発明の回路接続材料の硬化後の40℃での弾性率は、100~3000MPaであることが好ましく、500~2000MPaであることがより好ましい。 The elastic modulus at 40 ° C. after curing of the circuit connecting material of the present invention is preferably 100 to 3000 MPa, and more preferably 500 to 2000 MPa.
 また、本発明の回路電極の接続方法は、熱又は光による硬化性を有する回路接続材料を、表面が金、銀、錫及び白金族から選ばれる金属である一方の回路電極上に形成した後、もう一方の回路電極を位置合わせし加熱、加圧して接続することができる。 In the circuit electrode connection method of the present invention, the circuit connection material having heat or light curability is formed on one circuit electrode whose surface is a metal selected from the group consisting of gold, silver, tin and platinum. The other circuit electrode can be aligned, heated and pressurized to be connected.
 次に、図面を用いて本発明の回路接続構造体の製造方法の好適な一形態を説明する。図5は、本発明の回路接続構造体の製造方法を模式的に示す工程断面図である。図5(a)は回路部材同士を接続する前の回路部材の断面図であり、図5(b)は回路部材同士を接続する際の回路接続構造体の断面図であり、図5(c)は回路部材同士を接続した回路接続構造体の断面図である。 Next, a preferred embodiment of the method for manufacturing a circuit connection structure according to the present invention will be described with reference to the drawings. FIG. 5 is a process cross-sectional view schematically showing the method for manufacturing the circuit connection structure of the present invention. FIG. 5A is a cross-sectional view of the circuit member before connecting the circuit members, and FIG. 5B is a cross-sectional view of the circuit connection structure when connecting the circuit members. ) Is a cross-sectional view of a circuit connection structure in which circuit members are connected to each other.
 まず、図5(a)に示すように、LCDパネル73上に設けられた回路電極72の上に、回路接続材料をフィルム状に成形してなるフィルム状の回路接続材料(異方導電性接着フィルム)50を載置する。 First, as shown in FIG. 5A, a film-like circuit connection material (anisotropic conductive adhesion) formed by forming a circuit connection material into a film shape on a circuit electrode 72 provided on the LCD panel 73. Film) 50 is placed.
 次に、図5(b)に示すように、位置あわせをしながら回路電極76が設けられた回路基板75を回路電極72と回路電極76とが互いに対向するようにフィルム状の回路接続材料50の上に載置して、フィルム状の回路接続材料50を回路電極72と回路電極76との間に介在させる。なお、回路電極72及び76は奥行き方向に複数の電極が並んだ構造を有する(図示しない)。また、回路電極76が設けられた回路基板75としては、COF等が挙げられる。 Next, as shown in FIG. 5 (b), the circuit board 75 provided with the circuit electrode 76 while being aligned is placed on the circuit-connecting material 50 in the form of a film so that the circuit electrode 72 and the circuit electrode 76 face each other. The film-like circuit connecting material 50 is interposed between the circuit electrode 72 and the circuit electrode 76. The circuit electrodes 72 and 76 have a structure in which a plurality of electrodes are arranged in the depth direction (not shown). The circuit board 75 provided with the circuit electrode 76 includes COF.
 フィルム状の回路接続材料50はフィルム状であるため取扱いが容易である。このため、このフィルム状の回路接続材料50を回路電極72と回路電極76との間に容易に介在させることができ、LCDパネル73と回路基板75との接続作業を容易にすることができる。 The film-like circuit connection material 50 is easy to handle because it is in the form of a film. For this reason, this film-like circuit connection material 50 can be easily interposed between the circuit electrode 72 and the circuit electrode 76, and the connection work of the LCD panel 73 and the circuit board 75 can be facilitated.
 次に、加熱しながらLCDパネル73と回路基板75とを介して、フィルム状の回路接続材料50を図5(b)の矢印Aの方向に加圧して硬化処理を行う。これによって図5(c)に示すように、回路接続材料50の硬化物からなる回路接続部60により回路部材同士が接続された回路接続構造体70が得られる。硬化処理の方法は、使用する接着剤成分に応じて、加熱及び光照射の一方又は双方を採用することができる。フィルム状の回路接続材料50を加圧して硬化処理を行うことにより、回路接続材料50が流動、硬化し、回路電極72と回路電極76とを電気的に接続し、且つ、機械的に固定する。 Next, the film-like circuit connecting material 50 is pressed in the direction of arrow A in FIG. 5B through the LCD panel 73 and the circuit board 75 while heating to perform a curing process. As a result, as shown in FIG. 5C, a circuit connection structure 70 in which the circuit members are connected by the circuit connection portion 60 made of a cured product of the circuit connection material 50 is obtained. As the method for the curing treatment, one or both of heating and light irradiation can be employed depending on the adhesive component used. By applying a curing process by pressurizing the film-like circuit connection material 50, the circuit connection material 50 flows and cures, and the circuit electrode 72 and the circuit electrode 76 are electrically connected and mechanically fixed. .
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例1)
[ウレタンアクリレートの合成]
 重量平均分子量800のポリカプロラクトンジオール400質量部、2-ヒドロキシプロピルアクリレート131質量部、触媒としてのジブチル錫ジラウレート0.5質量部、及び、重合禁止剤としてのハイドロキノンモノメチルエーテル1.0質量部を、攪拌しながら50℃に加熱して混合した。
Example 1
[Synthesis of urethane acrylate]
400 parts by mass of polycaprolactone diol having a weight average molecular weight of 800, 131 parts by mass of 2-hydroxypropyl acrylate, 0.5 parts by mass of dibutyltin dilaurate as a catalyst, and 1.0 part by mass of hydroquinone monomethyl ether as a polymerization inhibitor, The mixture was heated to 50 ° C. with stirring.
 次いで、イソホロンジイソシアネート222質量部を滴下し、さらに攪拌しながら80℃に昇温してウレタン化反応を進行させた。イソシアネート基の反応率が99%以上になったことを確認後、温度を下げて、ラジカル重合性物質としてのウレタンアクリレートを得た。 Next, 222 parts by mass of isophorone diisocyanate was added dropwise, and the temperature was raised to 80 ° C. while stirring to advance the urethanization reaction. After confirming that the reaction rate of the isocyanate group reached 99% or more, the temperature was lowered to obtain urethane acrylate as a radical polymerizable substance.
[ポリエステルウレタン樹脂の調製]
 ジカルボン酸としてのテレフタル酸、ジオールとしてのプロピレングリコール、イソシアネートとしての4,4’-ジフェニルメタンジイソシアネートを、テレフタル酸/プロピレングリコール/4,4’-ジフェニルメタンジイソシアネートのモル比が1.0/1.3/0.25となるような量で用い、ポリエステルウレタン樹脂を以下の手順で調製した。
[Preparation of polyester urethane resin]
The molar ratio of terephthalic acid / propylene glycol / 4,4′-diphenylmethane diisocyanate is 1.0 / 1.3 / terephthalic acid as dicarboxylic acid, propylene glycol as diol, and 4,4′-diphenylmethane diisocyanate as isocyanate. A polyester urethane resin was prepared by the following procedure, using an amount of 0.25.
 ジカルボン酸とジオールとの反応により得られたポリエステルポリオールをメチルエチルケトンに溶解した溶液を、撹拌機、温度計、コンデンサーおよび真空発生装置と窒素ガス導入管を具備したヒーター付きステンレススチール製オートクレーブに投入した。次いで、イソシアネートを所定量投入し、触媒としてジブチル錫ラウレートをポリエステルポリオール100質量部に対して0.02質量部となる量投入し、75℃で10時間反応させた後、40℃まで冷却した。さらに、ピペラジンを加えて30分反応させることにより鎖延長した後、トリエチルアミンで中和させた。 A solution obtained by dissolving polyester polyol obtained by the reaction of dicarboxylic acid and diol in methyl ethyl ketone was put into a stainless steel autoclave equipped with a heater equipped with a stirrer, thermometer, condenser, vacuum generator and nitrogen gas introduction tube. Next, a predetermined amount of isocyanate was added, and dibutyltin laurate as a catalyst was added in an amount of 0.02 parts by mass with respect to 100 parts by mass of the polyester polyol, reacted at 75 ° C. for 10 hours, and then cooled to 40 ° C. Further, piperazine was added and reacted for 30 minutes to extend the chain, and then neutralized with triethylamine.
 上記反応後の溶液を純水に滴下すると、溶剤及び触媒が水に溶解するとともに、エステルウレタン化合物としてのポリエステルウレタン樹脂が析出した。析出したポリエステルウレタン樹脂を真空乾燥機で乾燥し、ポリエステルウレタン樹脂を得た。 When the solution after the above reaction was dropped into pure water, the solvent and the catalyst were dissolved in water, and a polyester urethane resin as an ester urethane compound was precipitated. The precipitated polyester urethane resin was dried with a vacuum dryer to obtain a polyester urethane resin.
 得られたポリエステルウレタン樹脂の重量分子量をゲル浸透クロマトグラフィーによって測定したところ、30000であった。 It was 30000 when the weight molecular weight of the obtained polyester urethane resin was measured by the gel permeation chromatography.
 上記ポリエステルウレタン樹脂をメチルエチルケトンに20質量%となるように溶解した。上記ポリエステルウレタン樹脂のメチルエチルケトン溶液を、厚み80μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃、10分間の熱風乾燥を行うことにより、厚みが35μmの樹脂フィルムを作製した。この樹脂フィルムについて、広域動的粘弾性測定装置を用い、引っ張り荷重5gf、周波数10Hzの条件で弾性率の温度依存性を測定した。得られた弾性率-温度曲線において、ガラス転移領域の前後それぞれにおけるベースラインを延長した直線から縦軸方向に等距離にある直線と、ガラス転移領域の階段状変化部分の曲線とが交わる点の温度(中間点ガラス転移温度)をポリエステルウレタン樹脂のガラス転移温度として求めたところ、105℃であった。 The polyester urethane resin was dissolved in methyl ethyl ketone so as to be 20% by mass. The polyester urethane resin methylethylketone solution is applied to a PET film with a surface of 80 μm on one side using a coating device, and dried with hot air at 70 ° C. for 10 minutes to produce a resin film with a thickness of 35 μm. did. About this resin film, the temperature dependence of the elastic modulus was measured on condition of tensile load 5gf and frequency 10Hz using the wide dynamic viscoelasticity measuring apparatus. In the obtained elastic modulus-temperature curve, the straight line equidistant in the vertical axis direction from the straight line extending the base line before and after the glass transition region intersects with the curve of the step change portion of the glass transition region. It was 105 degreeC when temperature (midpoint glass transition temperature) was calculated | required as a glass transition temperature of a polyester urethane resin.
[第一の導電粒子aの作製]
 核となるポリスチレンからなる粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.04μmの金層を設けた平均粒径4μmの導電粒子を準備した。一方、スチレン-(メタ)アクリル共重合体からなる絶縁性粒子を準備した。ハイブリダイザーを用いて、上記導電粒子の表面を上記絶縁性粒子で被覆し、第一の導電粒子aを準備した。この第一の導電粒子aのD/Dは1/12であり、被覆率は50%であった。
[Production of First Conductive Particles a]
Conductive particles having an average particle diameter of 4 μm were prepared by providing a nickel layer having a thickness of 0.2 μm on the surface of particles made of polystyrene serving as a nucleus, and providing a gold layer having a thickness of 0.04 μm outside the nickel layer. On the other hand, insulating particles made of a styrene- (meth) acrylic copolymer were prepared. Using a hybridizer, the surface of the conductive particles was covered with the insulating particles to prepare first conductive particles a. D 2 / D 1 of the first conductive particles a was 1/12, and the coverage was 50%.
[第二の導電粒子aの作製]
 核となるポリスチレンからなる粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側にNi突起を設けた、平均粒径4μmの第二の導電粒子aを準備した。この第二の導電粒子aのNiのビッカース硬度は350Hv、突起の高さは120nm、突起間距離は420nmであった。
[Production of Second Conductive Particles a]
Second conductive particles a having an average particle diameter of 4 μm were prepared in which a nickel layer having a thickness of 0.2 μm was provided on the surface of particles made of polystyrene serving as a nucleus and Ni protrusions were provided on the outside of the nickel layer. The second conductive particles a had a Ni Vickers hardness of 350 Hv, a protrusion height of 120 nm, and an interprotrusion distance of 420 nm.
[回路接続材料の作製]
 ラジカル重合性物質としての上記ウレタンアクリレート30質量部及びイソシアヌレート型アクリレート(製品名:M-325、東亞合成社製)20質量部、2-メタクリロイロキシエチルアシッドホスフェート(製品名:P-2M、共栄社化学社製)1質量部、遊離ラジカル発生剤としてのベンゾイルパーオキサイド(製品名:ナイパーBMT-K40、日本油脂社製)3質量部、並びに、上記ポリエステルウレタン樹脂の20質量%メチルエチルケトン溶液60質量部(固形分:12質量部)を混合し、攪拌して接着剤成分とした。
[Production of circuit connection materials]
30 parts by mass of the above urethane acrylate as a radical polymerizable substance, 20 parts by mass of isocyanurate type acrylate (product name: M-325, manufactured by Toagosei Co., Ltd.), 2-methacryloyloxyethyl acid phosphate (product name: P-2M, 1 part by weight of Kyoeisha Chemical Co., Ltd.), 3 parts by weight of benzoyl peroxide (product name: Nyper BMT-K40, manufactured by NOF Corporation) as a free radical generator, and 60 parts by weight of a 20% by weight methyl ethyl ketone solution of the above polyester urethane resin Parts (solid content: 12 parts by mass) were mixed and stirred to obtain an adhesive component.
 上記第一の導電粒子a及び上記第二の導電粒子aを、接着剤成分に配合分散させ、塗工用の分散液を得た。第一の導電粒子a及び第二の導電粒子aの配合量は、塗工用の分散液の固形分全量を基準として、いずれも1.5体積%となる量とした。 The first conductive particles a and the second conductive particles a were blended and dispersed in the adhesive component to obtain a coating dispersion. The blending amounts of the first conductive particles a and the second conductive particles a are both 1.5% by volume based on the total solid content of the coating dispersion.
 得られた分散液を、厚み50μmの片面を表面処理したPETフィルムに塗工装置を用いて塗布し、70℃、10分間の熱風乾燥を行うことにより、厚みが16μmの接着剤層(異方導電性接着剤層)(幅15cm、長さ70m)を形成した。得られた接着剤層とPETフィルムとの積層体を1.5mm幅に裁断し、内径40mm及び外径48mmのプラスチック製リールの側面(1.7mm幅)に接着フィルム面を内側にして50m巻きつけ、テープ状の回路接続材料を得た。 The obtained dispersion liquid was applied to a PET film having a surface treated on one side of 50 μm thickness using a coating apparatus, and dried with hot air at 70 ° C. for 10 minutes, whereby an adhesive layer (anisotropic) with a thickness of 16 μm was obtained. A conductive adhesive layer (width 15 cm, length 70 m) was formed. The resulting laminate of the adhesive layer and the PET film was cut to a width of 1.5 mm, and wound on the side of the plastic reel having an inner diameter of 40 mm and an outer diameter of 48 mm (1.7 mm width) with the adhesive film side facing inward by 50 m. A tape-like circuit connecting material was obtained.
(実施例2~3)
 第一の導電粒子a及び第二の導電粒子aの配合量を、表1に示すように変化させた以外は実施例1と同様にして、実施例2~3のテープ状の回路接続材料を得た。
(Examples 2 to 3)
The tape-like circuit connecting materials of Examples 2 to 3 were obtained in the same manner as in Example 1 except that the blending amounts of the first conductive particles a and the second conductive particles a were changed as shown in Table 1. Obtained.
(実施例4~6)
[第一の導電粒子bの作製]
 核となるポリスチレンからなる粒子の表面に、厚み0.09μmのニッケル層を設け、このニッケル層の外側に、厚み0.03μmの金層を設けた平均粒径3μmの導電粒子を準備した。一方、スチレン-(メタ)アクリル共重合体からなる絶縁性粒子を準備した。ハイブリダイザーを用いて、上記導電粒子の表面を上記絶縁性粒子で被覆し、第一の導電粒子bを準備した。この第一の導電粒子bのD/Dは1/15であり、被覆率は55%であった。
(Examples 4 to 6)
[Production of First Conductive Particles b]
Conductive particles having an average particle diameter of 3 μm were prepared by providing a nickel layer having a thickness of 0.09 μm on the surface of particles made of polystyrene serving as a nucleus, and providing a gold layer having a thickness of 0.03 μm on the outside of the nickel layer. On the other hand, insulating particles made of a styrene- (meth) acrylic copolymer were prepared. Using a hybridizer, the surface of the conductive particles was coated with the insulating particles to prepare first conductive particles b. D 2 / D 1 of the first conductive particles b was 1/15, and the coverage was 55%.
[第二の導電粒子bの作製]
 核となるポリスチレンからなる粒子の表面に、厚み0.1μmのニッケル層を設け、このニッケル層の外側にNi突起を設けた、平均粒径3μmの第二の導電粒子bを準備した。この第二の導電粒子bのNiのビッカース硬度は350Hv、突起の高さは100nm、突起間距離は200nmであった。
[Production of Second Conductive Particles b]
Second conductive particles b having an average particle diameter of 3 μm were prepared in which a nickel layer having a thickness of 0.1 μm was provided on the surface of particles made of polystyrene serving as a nucleus and Ni protrusions were provided on the outside of the nickel layer. The second conductive particles b had a Ni Vickers hardness of 350 Hv, a protrusion height of 100 nm, and an interprotrusion distance of 200 nm.
[回路接続材料の作製]
 第一の導電粒子a及び第二の導電粒子aに代えて、第一の導電粒子b及び第二の導電粒子bを用い、それらの配合量を表1に示す量とした以外は実施例1と同様にして、実施例4~6のテープ状の回路接続材料を得た。
[Production of circuit connection materials]
Example 1 except that the first conductive particles b and the second conductive particles b were used in place of the first conductive particles a and the second conductive particles a, and the blending amounts thereof were as shown in Table 1. In the same manner, tape-like circuit connecting materials of Examples 4 to 6 were obtained.
(比較例1~7)
[Au被覆導電粒子の作製]
 核となるポリスチレンからなる粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に厚み0.04μmの金層を設けた、平均粒径4μmのAu被覆導電粒子を準備した。このAu被覆導電粒子のAuのビッカース硬度は150Hvであった。
(Comparative Examples 1 to 7)
[Preparation of Au-coated conductive particles]
Au-coated conductive particles having an average particle diameter of 4 μm were prepared, in which a nickel layer having a thickness of 0.2 μm was provided on the surface of particles made of polystyrene as a core, and a gold layer having a thickness of 0.04 μm was provided outside the nickel layer. . The Vickers hardness of Au of the Au-coated conductive particles was 150 Hv.
[回路接続材料の作製]
 表2に示す導電粒子を同表に示す配合量で用いた以外は実施例1と同様にして、比較例1~7のテープ状の回路接続材料を得た。
[Production of circuit connection materials]
Tape-like circuit connecting materials of Comparative Examples 1 to 7 were obtained in the same manner as in Example 1 except that the conductive particles shown in Table 2 were used in the blending amounts shown in the same table.
 なお、表1及び2中、個数比は、第一の導電粒子と第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)を意味する。また、第二の導電粒子に代えてAu被覆導電粒子を用いた場合、個数比は、第一の導電粒子とAu被覆導電粒子との個数比(第一の導電粒子の個数/Au被覆導電粒子の個数)を意味する。 In Tables 1 and 2, the number ratio means the number ratio between the first conductive particles and the second conductive particles (number of first conductive particles / number of second conductive particles). When Au-coated conductive particles are used instead of the second conductive particles, the number ratio is the number ratio of the first conductive particles to the Au-coated conductive particles (number of first conductive particles / Au-coated conductive particles). Number of units).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(回路接続構造体の作製)
 回路部材として、厚み0.7mmのITOコートガラス基板(15~20Ω/□、全面電極)、及び、厚み0.7mmのCr/IZO[Al(2000Å)+Cr(500Å)+IZO(1000Å)、全面電極]コートガラス基板の2種類の回路部材を用意した。
(Production of circuit connection structure)
As a circuit member, a 0.7 mm thick ITO coated glass substrate (15 to 20 Ω / □, full surface electrode) and a 0.7 mm thick Cr / IZO [Al (2000 mm) + Cr (500 mm) + IZO (1000 mm), full surface electrode Two types of circuit members of a coated glass substrate were prepared.
 ITOコートガラス基板、及び、Cr/IZOコートガラス基板のそれぞれに対し、上記実施例及び比較例で得られた回路接続材料(幅1.5mm及び長さ3cm)を、接着剤層側を基板に向けて、70℃、1MPaで2秒間加熱加圧して積層し、PETフィルムを剥離して接着剤層を基板に転写した。 For each of the ITO-coated glass substrate and the Cr / IZO-coated glass substrate, the circuit connecting material (width 1.5 mm and length 3 cm) obtained in the above examples and comparative examples is used with the adhesive layer side as the substrate. The film was laminated by heating and pressing at 70 ° C. and 1 MPa for 2 seconds, the PET film was peeled off, and the adhesive layer was transferred to the substrate.
 次いで、ライン幅25μm、ピッチ50μm、厚み8μmのすずめっき銅回路600本がポリイミドフィルム上に形成されたフレキシブル回路板(FPC)を、転写した接着剤層上に回路側を接着剤層に向けて置き、24℃、0.5MPaで1秒間加圧して仮固定した。 Next, a flexible circuit board (FPC) in which 600 lines of tin-plated copper circuits having a line width of 25 μm, a pitch of 50 μm, and a thickness of 8 μm are formed on a polyimide film is placed on the transferred adhesive layer with the circuit side facing the adhesive layer. And temporarily fixed at 24 ° C. and 0.5 MPa for 1 second.
 このFPCが接着剤層によって仮固定されたガラス基板を本圧着装置に設置し、厚み200μmのシリコーンゴムをクッション材として、FPC側から、ヒートツールによって170℃、3MPaで6秒間加熱加圧することにより幅1.5mmにわたり接続した。これにより、回路接続構造体を得た。 A glass substrate on which this FPC is temporarily fixed by an adhesive layer is placed in a main pressure bonding apparatus, and a 200 μm-thick silicone rubber is used as a cushioning material from the FPC side by heating and pressing at 170 ° C. and 3 MPa for 6 seconds using a heat tool. The connection was made over a width of 1.5 mm. Thereby, a circuit connection structure was obtained.
(接続抵抗の測定)
 得られた回路接続構造体について、FPCの回路電極と、該回路電極に対向するITOコートガラス基板又はCr/IZOコートガラス基板の回路電極との間の接続抵抗を、マルチメータ(装置名:TR6845、アドバンテスト社製)により測定した。接続抵抗は、対向する回路電極間の抵抗値40点を測定し、それらの平均値として求めた。得られた結果を表3~4に示す。
(Measurement of connection resistance)
For the obtained circuit connection structure, the connection resistance between the circuit electrode of the FPC and the circuit electrode of the ITO-coated glass substrate or Cr / IZO-coated glass substrate facing the circuit electrode was measured using a multimeter (device name: TR6845). , Manufactured by Advantest Corporation). The connection resistance was obtained as an average value of 40 resistance values measured between circuit electrodes facing each other. The results obtained are shown in Tables 3-4.
(絶縁性の測定)
 厚み38μmのポリイミドフィルムと、ライン幅50μm、スペース幅50μm、厚み1000ÅのITO電極が50μmピッチで形成されたガラス基板とを、上記実施例及び比較例で得られた回路接続材料(幅1.5mm及び長さ3cm)を介して圧着した。このとき、ガラスエッジ部に導電粒子の凝集が発生した。図6は、ITO電極が形成されたガラス基板のエッジ部に導電粒子の凝集が発生した場合の外観を示す接続体写真である。図6は、接続体をガラス基板側から撮影した写真であり、ITO電極15が形成されたガラス基板のエッジ部17に導電粒子の凝集16が生じているのが確認できる。なお、図中の18は、基板外への樹脂フロー部である。そして、図6に示すように、ガラス基板のエッジ部17に導電粒子の凝集16が生じた場合、絶縁性の低い回路接続材料では隣接するITO電極15間で短絡が生じて接続抵抗が得られることになる。
(Measurement of insulation)
A circuit connecting material (width 1.5 mm) obtained in the above-mentioned Examples and Comparative Examples was prepared by using a polyimide film having a thickness of 38 μm and a glass substrate on which ITO electrodes having a line width of 50 μm, a space width of 50 μm, and a thickness of 1000 mm were formed at a pitch of 50 μm And a length of 3 cm). At this time, aggregation of conductive particles occurred in the glass edge portion. FIG. 6 is a photograph of a connected body showing the appearance when conductive particles agglomerate at the edge of the glass substrate on which the ITO electrode is formed. FIG. 6 is a photograph of the connection body taken from the glass substrate side, and it can be confirmed that agglomeration 16 of conductive particles is generated at the edge portion 17 of the glass substrate on which the ITO electrode 15 is formed. In addition, 18 in the figure is a resin flow part to the outside of the substrate. And as shown in FIG. 6, when the aggregation 16 of a conductive particle arises in the edge part 17 of a glass substrate, in a circuit connection material with low insulation, a short circuit will arise between adjacent ITO electrodes 15, and connection resistance will be obtained. It will be.
 その後、隣接するITO電極間の抵抗値をマルチメータ(装置名:TR6845、アドバンテスト社製)により測定した。抵抗値は、隣接するITO電極間の抵抗値20点を測定し、1×1010Ω以下の接続抵抗が得られた点(ショートが発生した電極)の数を記録し、それにより絶縁性を評価した。得られた結果を表3~4に示す。 Then, the resistance value between adjacent ITO electrodes was measured with a multimeter (device name: TR6845, manufactured by Advantest). For the resistance value, 20 resistance values between adjacent ITO electrodes were measured, and the number of points where the connection resistance of 1 × 10 10 Ω or less was obtained (electrode where the short circuit occurred) was recorded. evaluated. The results obtained are shown in Tables 3-4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上説明した通り、本発明によれば、従来の回路接続材料に比べ、回路間におけるショートが発生し難く、IZO電極などの高抵抗電極を用いた場合でも良好な接続抵抗が得られ、かつ接続信頼性にも優れる回路接続材料及び回路接続構造体を提供することができる。 As described above, according to the present invention, compared to conventional circuit connection materials, short-circuits between circuits are less likely to occur, and even when a high resistance electrode such as an IZO electrode is used, a good connection resistance can be obtained and connection can be achieved. A circuit connection material and a circuit connection structure excellent in reliability can be provided.
 1…核粒子、1a…基材粒子、1b…導電層、2A…絶縁性粒子、2B…絶縁性層、10,10A,10B…第一の導電粒子、14…突起部、20,20A,20B…第二の導電粒子、21…核体、21a…中核部、21b…突起部、22…金属層、50…フィルム状の回路接続材料、51…接着剤成分、60…回路接続部、70…回路接続構造体、72,76…回路電極、73…LCDパネル、74…液晶表示部、75…回路基板。 DESCRIPTION OF SYMBOLS 1 ... Core particle, 1a ... Base particle, 1b ... Conductive layer, 2A ... Insulating particle, 2B ... Insulating layer, 10, 10A, 10B ... First conductive particle, 14 ... Projection part, 20, 20A, 20B ... second conductive particles, 21 ... nuclear body, 21a ... core part, 21b ... projection part, 22 ... metal layer, 50 ... film-like circuit connecting material, 51 ... adhesive component, 60 ... circuit connecting part, 70 ... Circuit connection structure, 72, 76 ... circuit electrode, 73 ... LCD panel, 74 ... liquid crystal display unit, 75 ... circuit board.

Claims (11)

  1.  相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、
     接着剤成分と、
     表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子と、
     表面の少なくとも一部がNi又はその合金若しくは酸化物で被覆され、且つ、突起を有する第二の導電粒子と、を含有し、
     前記第一の導電粒子と前記第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)が0.4~3である、回路接続材料。
    A circuit connecting material that is interposed between circuit electrodes facing each other, presses opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction,
    An adhesive component;
    First conductive particles having at least a part of the surface coated with an insulating coating;
    And at least a part of the surface is coated with Ni or an alloy or oxide thereof, and has second conductive particles having protrusions,
    A circuit connection material, wherein the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles) is 0.4 to 3.
  2.  相対峙する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路接続材料であって、
     接着剤成分と、
     表面の少なくとも一部が絶縁被覆体で被覆された第一の導電粒子と、
     表面の少なくとも一部がビッカース硬度300Hv以上の金属、合金又は金属酸化物で被覆され、且つ、突起を有する第二の導電粒子と、を含有し、
     前記第一の導電粒子と前記第二の導電粒子との個数比(第一の導電粒子の個数/第二の導電粒子の個数)が0.4~3である、回路接続材料。
    A circuit connecting material that is interposed between circuit electrodes facing each other, presses opposite circuit electrodes, and electrically connects the electrodes in the pressurizing direction,
    An adhesive component;
    First conductive particles having at least a part of the surface coated with an insulating coating;
    And at least a part of the surface is coated with a metal, an alloy or a metal oxide having a Vickers hardness of 300 Hv or more, and contains second conductive particles having protrusions,
    A circuit connection material, wherein the number ratio of the first conductive particles to the second conductive particles (number of first conductive particles / number of second conductive particles) is 0.4 to 3.
  3.  前記第一の導電粒子と前記第二の導電粒子との体積比(第一の導電粒子の体積/第二の導電粒子の体積)が0.4~3である、請求項1又は2記載の回路接続材料。 The volume ratio of the first conductive particles to the second conductive particles (volume of the first conductive particles / volume of the second conductive particles) is 0.4 to 3. Circuit connection material.
  4.  前記第二の導電粒子において、前記突起の高さが50~500nmであり、隣接する前記突起間の距離が1000nm以下である、請求項1~3のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 3, wherein, in the second conductive particles, the height of the protrusion is 50 to 500 nm, and the distance between the adjacent protrusions is 1000 nm or less.
  5.  前記第一の導電粒子において、被覆率が20~70%となるように前記絶縁被覆体が設けられている、請求項1~4のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 4, wherein the insulating covering is provided so that the coverage of the first conductive particles is 20 to 70%.
  6.  前記第一の導電粒子は、導電性を有する核粒子と、該核粒子の表面上に設けられた複数の絶縁性粒子を含む前記絶縁被覆体と、を備え、
     前記絶縁性粒子の平均粒径(D)と前記核粒子の平均粒径(D)との比(D/D)が1/10以下である、請求項1~5のいずれか一項に記載の回路接続材料。
    The first conductive particle includes a core particle having conductivity, and the insulating covering including a plurality of insulating particles provided on a surface of the core particle,
    The ratio (D 2 / D 1 ) between the average particle diameter (D 2 ) of the insulating particles and the average particle diameter (D 1 ) of the core particles is 1/10 or less. The circuit connection material according to one item.
  7.  前記第一の導電粒子は、導電性を有する核粒子と、該核粒子の表面上に設けられた有機高分子化合物を含有する絶縁性層を含む前記絶縁被覆体と、を備え、
     前記絶縁性層の厚さ(T)と前記核粒子の平均粒径(D)との比(T/D)が1/10以下である、請求項1~6のいずれか一項に記載の回路接続材料。
    The first conductive particles include conductive core particles, and the insulating covering including an insulating layer containing an organic polymer compound provided on the surface of the core particles,
    7. The ratio (T 2 / D 1 ) between the thickness (T 2 ) of the insulating layer and the average particle diameter (D 1 ) of the core particles is 1/10 or less. The circuit connection material according to Item.
  8.  前記第一の導電粒子及び前記第二の導電粒子の平均粒径が、いずれも2~6μmの範囲内である、請求項1~7のいずれか一項に記載の回路接続材料。 The circuit connection material according to any one of claims 1 to 7, wherein the average particle diameters of the first conductive particles and the second conductive particles are both in the range of 2 to 6 μm.
  9.  第一の回路電極を有する第一の回路部材と、第二の回路電極を有する第二の回路部材とを、前記第一の回路電極と前記第二の回路電極とが対向するように配置し、対向配置した前記第一の回路電極と前記第二の回路電極との間に、請求項1~8のいずれか一項に記載の回路接続材料を介在させ、加熱加圧することにより、対向配置した前記第一の回路電極と前記第二の回路電極とを電気的に接続させてなる、回路接続構造体。 A first circuit member having a first circuit electrode and a second circuit member having a second circuit electrode are arranged so that the first circuit electrode and the second circuit electrode face each other. The circuit connection material according to any one of claims 1 to 8 is interposed between the first circuit electrode and the second circuit electrode that are disposed to face each other, and are heated and pressed to face each other. A circuit connection structure obtained by electrically connecting the first circuit electrode and the second circuit electrode.
  10.  前記第一の回路電極及び前記第二の回路電極の少なくとも一方がITO電極である、請求項9記載の回路接続構造体。 The circuit connection structure according to claim 9, wherein at least one of the first circuit electrode and the second circuit electrode is an ITO electrode.
  11.  前記第一の回路電極及び前記第二の回路電極の少なくとも一方がIZO電極である、請求項9記載の回路接続構造体。 The circuit connection structure according to claim 9, wherein at least one of the first circuit electrode and the second circuit electrode is an IZO electrode.
PCT/JP2009/061974 2008-07-01 2009-06-30 Circuit connection material and circuit connection structure WO2010001900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801200765A CN102047347B (en) 2008-07-01 2009-06-30 Circuit connection material and circuit connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008172265 2008-07-01
JP2008-172265 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001900A1 true WO2010001900A1 (en) 2010-01-07

Family

ID=41465992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061974 WO2010001900A1 (en) 2008-07-01 2009-06-30 Circuit connection material and circuit connection structure

Country Status (5)

Country Link
JP (1) JP4862921B2 (en)
KR (1) KR20110019392A (en)
CN (1) CN102047347B (en)
TW (1) TWI398880B (en)
WO (1) WO2010001900A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417794A (en) * 2010-08-24 2012-04-18 日立化成工业株式会社 Circuit connecting material, connecting method, connecting structure, manufacturing method and use thereof
WO2018230470A1 (en) * 2017-06-12 2018-12-20 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure and liquid crystal display element
JP2019207896A (en) * 2019-09-18 2019-12-05 日立金属株式会社 Crimp terminal and wiring with terminal
CN113078486A (en) * 2016-10-24 2021-07-06 迪睿合株式会社 Method for manufacturing anisotropic conductive film

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375374B2 (en) * 2009-07-02 2013-12-25 日立化成株式会社 Circuit connection material and circuit connection structure
JP5476168B2 (en) * 2010-03-09 2014-04-23 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5184612B2 (en) * 2010-11-22 2013-04-17 日本化学工業株式会社 Conductive powder, conductive material containing the same, and method for producing the same
JP2014149918A (en) * 2011-06-06 2014-08-21 Hitachi Chemical Co Ltd Film-like circuit connection material and circuit connection structure
CN103765527B (en) * 2012-01-20 2017-12-19 积水化学工业株式会社 Electroconductive particle, conductive material and connection structural bodies
JP6079425B2 (en) * 2012-05-16 2017-02-15 日立化成株式会社 Conductive particles, anisotropic conductive adhesive film, and connection structure
KR102076066B1 (en) * 2012-07-03 2020-02-11 세키스이가가쿠 고교가부시키가이샤 Conductive particles with insulating particles, conductive material, and connection structure
JP6119130B2 (en) * 2012-07-11 2017-04-26 日立化成株式会社 Composite particles and anisotropic conductive adhesive
WO2014054572A1 (en) * 2012-10-02 2014-04-10 積水化学工業株式会社 Conductive particle, conductive material and connecting structure
JP6149683B2 (en) * 2013-10-18 2017-06-21 日立化成株式会社 Film-like circuit connection material and connection structure using the same
JP6119718B2 (en) * 2013-11-19 2017-04-26 デクセリアルズ株式会社 Anisotropic conductive film and connection structure
CN115449317A (en) 2013-11-19 2022-12-09 迪睿合株式会社 Anisotropic conductive film and connection structure
KR20160106004A (en) * 2014-01-08 2016-09-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
WO2015105120A1 (en) * 2014-01-08 2015-07-16 積水化学工業株式会社 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
US10176903B2 (en) 2014-02-05 2019-01-08 Japan Science And Technology Agency Stretchable conductor, method for manufacturing same, and paste for forming stretchable conductor
TWI664783B (en) * 2014-03-31 2019-07-01 日商迪睿合股份有限公司 Anisotropic conductive film, method for manufacturing the same, connection structure, and method for manufacturing connection structure
JP6523794B2 (en) * 2014-06-06 2019-06-05 積水化学工業株式会社 Conductive material and connection structure
JP6114883B1 (en) * 2015-05-20 2017-04-12 積水化学工業株式会社 Conductive adhesive and conductive adhesive with conductive substrate
EP3375808B1 (en) * 2015-11-11 2022-12-21 Sekisui Chemical Co., Ltd. Particles, particle material, connecting material, and connection structure
JP6652513B2 (en) * 2016-03-03 2020-02-26 信越化学工業株式会社 Bioelectrode manufacturing method
CN106367016A (en) * 2016-08-29 2017-02-01 无锡万能胶粘剂有限公司 Arogel slurry
CN113053562B (en) * 2017-01-27 2023-03-31 昭和电工材料株式会社 Insulating coated conductive particle, anisotropic conductive film and method for producing same, connection structure and method for producing same
JP7358065B2 (en) * 2019-04-10 2023-10-10 日本化学工業株式会社 coated particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371570A (en) * 1989-08-10 1991-03-27 Casio Comput Co Ltd Binder for conduction and conductive connection structure
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure
JP2005216753A (en) * 2004-01-30 2005-08-11 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
WO2007099965A1 (en) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
WO2008053873A1 (en) * 2006-10-31 2008-05-08 Hitachi Chemical Company, Ltd. Circuit connection structure

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047228A (en) * 2002-07-10 2004-02-12 Bridgestone Corp Anisotropic conductive film and bonding method of substrate with electrode
JP2004265823A (en) * 2003-03-04 2004-09-24 Asahi Kasei Electronics Co Ltd Anisotropic conductive film and its connector
KR100756120B1 (en) * 2003-03-26 2007-09-05 제이에스알 가부시끼가이샤 Anisotropic conductive connector, conductive paste composition, probe member, wafer inspection device and wafer inspection method
JP5247968B2 (en) * 2003-12-02 2013-07-24 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
JP4593302B2 (en) * 2005-02-03 2010-12-08 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) * 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
CN101309993B (en) * 2005-11-18 2012-06-27 日立化成工业株式会社 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP4735229B2 (en) * 2005-12-12 2011-07-27 住友ベークライト株式会社 Anisotropic conductive film
JP2007287654A (en) * 2006-03-23 2007-11-01 Alps Electric Co Ltd Connection unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371570A (en) * 1989-08-10 1991-03-27 Casio Comput Co Ltd Binder for conduction and conductive connection structure
JPH0436902A (en) * 1990-06-01 1992-02-06 Sekisui Fine Chem Kk Conductive fine grain and conductive adhesive
JP2005044773A (en) * 2003-07-07 2005-02-17 Sekisui Chem Co Ltd Particles having electrically conductive coating, anisotropically conductive material, and electrically conductive connection structure
JP2005216753A (en) * 2004-01-30 2005-08-11 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
WO2007099965A1 (en) * 2006-02-27 2007-09-07 Hitachi Chemical Company, Ltd. Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
WO2008053873A1 (en) * 2006-10-31 2008-05-08 Hitachi Chemical Company, Ltd. Circuit connection structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417794A (en) * 2010-08-24 2012-04-18 日立化成工业株式会社 Circuit connecting material, connecting method, connecting structure, manufacturing method and use thereof
CN113078486A (en) * 2016-10-24 2021-07-06 迪睿合株式会社 Method for manufacturing anisotropic conductive film
CN113078486B (en) * 2016-10-24 2023-10-20 迪睿合株式会社 Method for manufacturing anisotropic conductive film
WO2018230470A1 (en) * 2017-06-12 2018-12-20 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure and liquid crystal display element
JPWO2018230470A1 (en) * 2017-06-12 2020-03-19 積水化学工業株式会社 Resin particles, conductive particles, conductive material, adhesive, connection structure, and liquid crystal display element
JP2019207896A (en) * 2019-09-18 2019-12-05 日立金属株式会社 Crimp terminal and wiring with terminal

Also Published As

Publication number Publication date
CN102047347B (en) 2012-11-28
JP4862921B2 (en) 2012-01-25
KR20110019392A (en) 2011-02-25
TWI398880B (en) 2013-06-11
TW201015588A (en) 2010-04-16
CN102047347A (en) 2011-05-04
JP2010034045A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
JP4862944B2 (en) Circuit connection material
JP5067355B2 (en) Circuit connection material and circuit member connection structure
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP4877230B2 (en) Adhesive composition, circuit connection material, connection structure, and circuit member connection method
KR101410108B1 (en) Circuit-connecting material, and connection structure for circuit member
EP2339695A1 (en) Circuit connecting material, connection structure for circuit member using the same and production method thereof
JPWO2005002002A1 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
WO2011083824A1 (en) Circuit connecting adhesion film and circuit connecting structure
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP5375374B2 (en) Circuit connection material and circuit connection structure
EP2040268A1 (en) Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP7020029B2 (en) Conductive adhesive film
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
JP3937299B2 (en) Adhesive with support and circuit connection structure using the same
JP2005206717A (en) Substrate-provided adhesive, manufacturing method of substrate-provided adhesive, and circuit connecting structure using the adhesive
CN115516057A (en) Conductive adhesive, method for manufacturing circuit connection structure, and circuit connection structure
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2011054988A (en) Circuit connecting material
JP2011119154A (en) Connection method and connection structure
KR100934802B1 (en) Modified polyurethane resin, adhesive composition using the same, circuit member connection method and circuit member connection structure
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980120076.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773478

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773478

Country of ref document: EP

Kind code of ref document: A1