KR20110048079A - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
KR20110048079A
KR20110048079A KR1020117009581A KR20117009581A KR20110048079A KR 20110048079 A KR20110048079 A KR 20110048079A KR 1020117009581 A KR1020117009581 A KR 1020117009581A KR 20117009581 A KR20117009581 A KR 20117009581A KR 20110048079 A KR20110048079 A KR 20110048079A
Authority
KR
South Korea
Prior art keywords
circuit
particles
particle
connection
metal
Prior art date
Application number
KR1020117009581A
Other languages
Korean (ko)
Inventor
토모미 요코즈미
마사키 후지이
켄조 타케무라
Original Assignee
히다치 가세고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 가세고교 가부시끼가이샤 filed Critical 히다치 가세고교 가부시끼가이샤
Publication of KR20110048079A publication Critical patent/KR20110048079A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution

Abstract

본 발명의 접착제 조성물은, 접착제 성분과, 접착제 성분 중에 분산 하고 있는 도전입자(10)를 구비하는 것으로서, 도전입자(10)는, 그 중심 부분을 구성하는 기재 입자(1)와 기재 입자(1)의 표면의 적어도 일부를 덮는 금속 도금층(3)과, 금속 도금층(3)의 내측에 있는 기재 입자(1)의 표면상에 배치된 복수의 금속미립자(2)를 가지고 있다.The adhesive composition of the present invention includes the adhesive component and the conductive particles 10 dispersed in the adhesive component, and the conductive particles 10 include the substrate particles 1 and the substrate particles 1 constituting the center portion thereof. The metal plating layer 3 which covers at least one part of the surface of (), and the some metal microparticles | fine-particles 2 arrange | positioned on the surface of the substrate particle 1 inside the metal plating layer 3 are included.

Description

접착제 조성물{ADHESIVE COMPOSITION}Adhesive composition {ADHESIVE COMPOSITION}

본 발명은, 접착제 조성물, 회로 접속 재료 및 접속 구조, 및 회로부재의 접속방법에 관한 것이다.The present invention relates to an adhesive composition, a circuit connection material and a connection structure, and a connection method of a circuit member.

전자 기기의 소형화, 박형화에 따라, 회로부재에 형성되는 회로전극의 고밀도화 및 고정밀화가 진전하고 있다. 또한, 회로전극의 한층 더 미세화, 즉, 다전극화나 협피치화 등의 파인피치화로의 요구가 높아지고 있다. 미세 회로가 형성된 회로부재끼리의 접속은, 종래의 핸더나 고무 커넥터로는 대응이 곤란하기 때문에, 이방 전기전도성을 가지는 접착제 조성물이 사용되고 있다.BACKGROUND With the miniaturization and thinning of electronic devices, the densification and high precision of the circuit electrodes formed on the circuit members have advanced. In addition, there is an increasing demand for further miniaturization of circuit electrodes, that is, fine pitch such as multi-electrode or narrow pitch. Since the connection of the circuit members in which the fine circuit was formed is difficult to respond with a conventional hander and a rubber connector, the adhesive composition which has anisotropic electrical conductivity is used.

상기의 접착제 조성물은, 일반적으로, 접착제 성분과 이것에 분산하고 있는 도전입자로 이루어진다. 대향 배치된 한쌍의 회로부재의 사이에 상기 접착제 조성물을 배치하고, 접착제 조성물을 사이에 둔 방향으로 전체를 가압함으로써 서로 대향하는 회로전극끼리가 전기적으로 접속된다. 이것과 동시에 인접하는 전극끼리는, 전기 절연성이 확보된 상태에서 한쌍의 회로부재가 접착 고정된다.The said adhesive composition generally consists of an adhesive component and the electroconductive particle disperse | distributed to this. Circuit electrodes facing each other are electrically connected by arranging the adhesive composition between a pair of oppositely arranged circuit members and pressing the whole in the direction sandwiching the adhesive composition. At the same time, a pair of circuit members are adhesively fixed to adjacent electrodes in a state where electrical insulation is ensured.

종래에는, 접착제 조성물이 가지는 도전입자로서, 전도성을 가지는 다양한 미립자가 이용되고 있다. 예를 들면, 금속 미분말, 혹은 금속 박막으로 표면이 피복된 플라스틱 미립자 등을 들 수 있다.Conventionally, various fine particles having conductivity are used as the conductive particles of the adhesive composition. For example, the fine metal powder or the plastic fine particle whose surface was coat | covered with the metal thin film is mentioned.

그런데, 액정 디스플레이 등의 제조공정에 있어서는, 고도의 파인피치화 및 높은 접속신뢰성이 요구되고 있는 한편, 표면에 산화막이 형성되기 쉬운 금속 재료로 이루어지는 회로전극이 사용되는 경우가 있다. 상기의 금속 미분말 및 금속 박막으로 표면이 피복된 플라스틱 미립자는, 각각 일장일단이 있다. 그 때문에, 종래의 접착제 조성물을 이용한 것은, 반드시 파인피치화 및 접속 신뢰성의 양쪽 모두를 동시에 고수준으로 달성할 수는 없었다.By the way, in manufacturing processes, such as a liquid crystal display, while high fine pitch formation and high connection reliability are calculated | required, the circuit electrode which consists of metal materials in which an oxide film is easy to form on the surface may be used. The plastic fine particles coated on the surface of the fine metal powder and the metal thin film are each one end. Therefore, using the conventional adhesive composition was not always able to achieve both high pitch and connection reliability at a high level at the same time.

구체적으로는, 도전입자로서 금속 미분말을 이용한 경우, 금속 미분말은 충분히 높은 경도를 가지고 있기 때문에, 회로전극의 표면에 산화막이 형성되어 있었다고 해도 이것을 돌파하여 회로전극끼리를 접속할 수 있다. 그렇지만, 금속 미분말은 일반적으로 입도분포가 넓고, 이 경우, 파인피치화에 적절하지 않다고 할 수 있다. 또한, 회로전극끼리를 접속 후, 시간의 경과에 따라 접속부분의 저항값이 상승하는 현상이 생기는 경우가 있다. 이것은, 온도의 변동이나 접속 구조의 접속 상태의 완화 등에 수반하는 회로전극 사이의 간격의 확대에, 금속 미분말이 충분히 추종하지 못하는 것에 기인한다고 생각할 수 있다. 또한, 일반적으로, 금속 미분말의 선열팽창계수는 접착제 성분의 경화물이 그 보다도 작기 때문에, 승온 강온을 반복하는 열사이클 시험 후에 이러한 현상이 생기는 일이 있다.Specifically, in the case where the fine metal powder is used as the conductive particles, the fine metal powder has a sufficiently high hardness, so that even if an oxide film is formed on the surface of the circuit electrode, it is possible to connect the circuit electrodes with each other. However, the fine metal powder generally has a wide particle size distribution, and in this case, it can be said that it is not suitable for fine pitch formation. Further, after connecting the circuit electrodes, there may be a phenomenon in which the resistance value of the connecting portion increases with time. This may be attributed to the inability to sufficiently follow the fine metal powder due to the expansion of the interval between the circuit electrodes accompanied by fluctuations in temperature, relaxation of the connection state of the connection structure, and the like. In general, since the coefficient of thermal expansion of the fine metal powder is smaller than that of the cured product of the adhesive component, such a phenomenon may occur after a thermal cycle test in which the elevated temperature and temperature are repeated.

이것에 대해, 도전입자로서 금속 박막으로 표면이 피복된 플라스틱 미립자를 사용했을 경우, 좁은 입도분포의 도전입자를 얻는 것이 비교적 용이하다. 이 점에 있어서는, 플라스틱 미립자를 이용한 도전입자는 파인피치화에 적절하다고 할 수 있다. 또한, 플라스틱 미립자의 선열팽창율은 접착제 성분의 경화물의 그것과 가까운 값이다. 이 때문에, 온도의 변동 등에 수반하는 회로전극 사이의 간격의 확대에 플라스틱 미립자는 충분히 추종할 수 있고, 접속 당초의 저항값을 유지할 수 있었다는 이점이 있다. 그렇지만, 플라스틱 미립자는 일반적으로 금속 미분말과 비교하면 경도가 낮다. 그 때문에, 회로전극의 표면에 산화막이 형성되어 있는 경우에는 이것을 충분히 돌파하지 못하고, 접속부분의 초기 저항값이 비교적 높아지는 문제가 생긴다.On the other hand, when using the plastic fine particle whose surface was coat | covered with the metal thin film as a conductive particle, it is comparatively easy to obtain the conductive particle of narrow particle size distribution. In this respect, it can be said that the conductive particles using plastic fine particles are suitable for fine pitch formation. Moreover, the linear thermal expansion rate of a plastic microparticle is a value close to that of the hardened | cured material of an adhesive agent component. For this reason, there is an advantage that the plastic fine particles can sufficiently follow the expansion of the interval between the circuit electrodes accompanying the fluctuation in temperature and the like, and thus the resistance value at the time of connection can be maintained. However, plastic microparticles generally have a lower hardness than metal fine powders. Therefore, when an oxide film is formed on the surface of a circuit electrode, it does not fully penetrate this and the problem of the initial stage resistance value of a connection part becomes comparatively high.

따라서, 금속 미분말 및 금속 박막으로 표면이 피복된 플라스틱 미립자의 각각의 특장(特長)을 구비시키기 위한 검토가 이루어졌다. 구체적으로는, 금속 박막으로 피복된 플라스틱 입자의 표면에 돌기 등을 구비하는 도전입자가 검토되어 왔다. 예를 들면, 특허 문헌 1 및 2에는 도전성 박막의 표면에 돌기가 설치된 도전입자가 기재되어 있다. 또한, 특허 문헌 3에는 금속 박막의 표면에 금속입자를 더 부착시킨 도전입자가 기재되어 있다. 또한, 특허 문헌 4 및 5에는 요철이 있는 플라스틱 입자에 금속 도금을 실시하여 얻어지는 도전입자가 기재되어 있다.Therefore, studies have been made to provide respective features of the fine plastic particles coated on the surface of the fine metal powder and the thin metal film. Specifically, conductive particles having protrusions or the like on the surface of the plastic particles covered with the metal thin film have been studied. For example, Patent Documents 1 and 2 describe conductive particles provided with projections on the surface of a conductive thin film. In addition, Patent Document 3 describes conductive particles in which metal particles are further attached to the surface of the metal thin film. In addition, Patent Documents 4 and 5 describe conductive particles obtained by performing metal plating on uneven plastic particles.

특허 문헌 1: 특허공개공보 제2000-195339호Patent Document 1: Patent Publication No. 2000-195339

특허 문헌 2: 특허공개공보 제2000-243132호Patent Document 2: Patent Publication No. 2000-243132

특허 문헌 3: 특허공개공보 소63-301408호Patent Document 3: Patent Publication No. 63-301408

특허 문헌 4: 특허공개공보 평4-36902호Patent Document 4: Patent Publication No. Hei 4-36902

특허 문헌 5: 특허공개공보 평11-73818호Patent Document 5: Patent Publication No. Hei 11-73818

특허 문헌 1 및 2의 도전입자는, 금속 박막을 형성하는 무전해 도금 공정에 있어서 돌기를 석출시킴으로써 제조된다. 이 경우, 돌기 사이즈나 돌기수의 제어를 충분히 실시하는 것이 곤란하다. 이 때문에, 돌기의 불균일성에 기인하여 충분히 높은 접속 신뢰성을 달성하는 것이 곤란하다고 할 수 있다. 또한, 특허 문헌 3의 도전입자는, 금속 박막과 그 표면에 부착한 금속입자와의 밀착성이 불충분하고, 상기 금속입자가 탈락하는 가능성이 있다. 금속입자가 탈락하면, 접속 구조의 초기 저항값이 높아지거나 인접하는 회로전극과의 절연성이 불충분해지거나 하여, 충분히 높은 접속 신뢰성을 달성하는 것이 곤란해진다.The electroconductive particle of patent documents 1 and 2 is manufactured by depositing a processus | protrusion in the electroless plating process which forms a metal thin film. In this case, it is difficult to sufficiently control the projection size and the projection number. For this reason, it can be said that it is difficult to achieve sufficiently high connection reliability due to the unevenness of the projections. Moreover, the electrically conductive particle of patent document 3 is inadequate adhesiveness with a metal thin film and the metal particle adhering to the surface, and there exists a possibility that the said metal particle may fall off. If the metal particles fall off, the initial resistance value of the connection structure becomes high or the insulation with adjacent circuit electrodes becomes insufficient, and it is difficult to achieve sufficiently high connection reliability.

또한, 특허 문헌 4 및 5의 도전입자는, 요철이 플라스틱 입자 그 자체로 형성되어 있다. 이 때문에, 회로전극의 표면에 산화막이 형성되어 있는 경우에는 이것을 충분히 돌파하지 못하고, 접속 구조의 초기 저항값이 높아질 우려가 있다.In addition, as for the electroconductive particle of patent documents 4 and 5, unevenness | corrugation is formed by the plastic particle itself. For this reason, when an oxide film is formed in the surface of a circuit electrode, it cannot fully penetrate this and there exists a possibility that the initial resistance value of a connection structure may become high.

본 발명은, 이러한 실정에 감안하여 이루어 것이며, 접속해야 할 전극이, 표면에 산화막이 형성되기 쉬운 금속 재료로 이루어지는 것이라도, 접속 구조의 초기 저항값을 충분히 낮게 하는 것이 가능한 접착제 조성물 및 이것을 이용한 회로 접속 재료를 제공하는 것을 목적으로 한다.This invention is made | formed in view of such a situation, Even if the electrode to connect is made from the metal material with which an oxide film is easy to form on the surface, the adhesive composition which can make initial stage resistance value of a connection structure low enough, and a circuit using the same It is an object to provide a connection material.

또한, 본 발명은 낮은 접속 저항으로 회로부재가 접속된 접속 구조 및 이를 얻기 위한 회로부재의 접속방법을 제공하는 것을 목적으로 한다.It is also an object of the present invention to provide a connection structure in which a circuit member is connected with a low connection resistance and a connection method of a circuit member for obtaining the same.

본 발명의 접착제 조성물은, 접착제 성분과, 접착제 성분 중에 분산하고 있는 도전입자를 구비하는 것으로서, 도전입자는, 상기 도전입자의 중심부분을 구성하는 기재 입자와 기재 입자의 표면의 적어도 일부를 덮는 금속 도금층과, 금속 도금층의 내측인 기재 입자의 표면상에 배치된 복수의 금속 미립자를 가지고 있다The adhesive composition of the present invention comprises an adhesive component and conductive particles dispersed in the adhesive component, wherein the conductive particles cover at least a part of the surface of the substrate particles and the substrate particles constituting the central portion of the conductive particles. It has a plating layer and the some metal microparticles | fine-particles arrange | positioned on the surface of the substrate particle which is inside of a metal plating layer.

또한, 복수의 금속미립자와 기재 입자의 위치 관계에 대해, 「기재 입자의 표면 상에 배치」란, 금속미립자가 기재 입자의 표면에 접한 상태로 배치되어 있는 것에 더하여, 접하지 않은 상태로 배치되어 있는 것도 포함하는 의미이다. 복수의 금속미립자가 상기 위치에 배치되어 있는 도전입자는, 기재 입자에 금속미립자를 부착시킨 후, 도금처리에 의해서 금속 도금층을 형성함으로써 제조가능하다.In addition, with regard to the positional relationship between the plurality of metal fine particles and the substrate particles, "disposing on the surface of the substrate particles" means that the metal fine particles are arranged in contact with the surface of the substrate particles, and are arranged in a non-contact state. It is also meant to include. The conductive particles in which a plurality of metal fine particles are arranged at the above positions can be produced by attaching the metal fine particles to the substrate particles and then forming a metal plating layer by plating.

기재 입자에 대해 부착시키는 금속미립자의 개수 및 그 입자경을 제어함으로써 도전입자의 표면에 소망하는 수 및 크기의 돌기를 설치할 수 있다. 따라서, 도금 공정의 조건 등을 조정하여 돌기가 설치된 도전입자와 비교하면, 본 발명에 있어서는, 금속미립자의 부착수 및 입자경의 균일성이 충분히 높아지고 있다. 균일성이 높은 금속미립자를 구비하는 도전입자에 의해서, 회로전극이 산화막으로 덮여 있는 금속 전극에 있어서도, 전극끼리를 보다 확실하게 전기적으로 접속할 수 있다. 그 결과, 접속 구조의 초기 저항값을 충분히 낮게 할 수 있다.By controlling the number of metal fine particles to be adhered to the substrate particles and the particle diameter thereof, projections of a desired number and size can be provided on the surface of the conductive particles. Therefore, compared with the electroconductive particle provided with protrusion by adjusting the conditions of a plating process, etc., in this invention, the uniformity of the adhesion number and particle diameter of a metal fine particle is fully high. By the electroconductive particle provided with the metal particle with high uniformity, even in the metal electrode in which a circuit electrode is covered with the oxide film, electrodes can be electrically connected more reliably. As a result, the initial stage resistance value of a connection structure can be made low enough.

또한, 본 발명의 접착제 조성물이 가지는 도전입자는, 기재 입자 및 금속미립자를 일체적으로 피복하는 금속 도금층을 구비하고 있다. 이 때문에, 금속미립자와 기재 입자와의 밀착성이 높고, 금속미립자가 도전입자로부터 탈락하는 것이 충분히 억제된다. 그 결과, 회로전극끼리를 보다 확실하게 전기적으로 접속할 수 있는 동시에 인접하는 회로전극의 절연성을 충분히 확보할 수 있다.Moreover, the electroconductive particle which the adhesive composition of this invention has is equipped with the metal plating layer which coat | covers a base material particle and a metal fine particle integrally. For this reason, adhesiveness of a metal fine particle and a substrate particle is high, and it is fully suppressed that metal fine particle falls out from an electrically conductive particle. As a result, the circuit electrodes can be electrically connected more reliably, and the insulation of adjacent circuit electrodes can be sufficiently secured.

금속 미립자의 평균 입경은 200~1000nm인 것이 바람직하다. 또한, 기재입자의 평균입경은 1~10㎛인 것이 바람직하다. 이들 입자의 평균 입경이, 각각 상기의 범위내이면, 낮은 초기 접속 저항값을 보다 확실하게 달성할 수 있다. 이것에 더하여, 접속 저항값의 상승의 억제 및 인접하는 회로전극과의 절연성의 양쪽 모두를 고수준으로 달성할 수 있다. 본 발명에서 말하는 「평균 입경」은 이하와 같이 하여 측정된 값을 의미하는 것이다. 즉, 임의로 선택한 금속미립자를 주사형 전자현미경(SEM)으로 관찰하고, 그 최대경 및 최소경을 측정한다. 이 최대경 및 최소경의 제곱의 평방근을 그 입자의 입경으로 한다. 임의로 선택한 입자 50개에 대하여 상기와 같이 하여 입경을 측정하고, 그 평균값을 평균 입경으로 한다.It is preferable that the average particle diameter of a metal microparticle is 200-1000 nm. Moreover, it is preferable that the average particle diameter of a substrate particle is 1-10 micrometers. If the average particle diameter of these particles is in the said range, respectively, the low initial stage connection resistance value can be achieved more reliably. In addition to this, both the suppression of the increase in the connection resistance value and the insulation with adjacent circuit electrodes can be achieved at a high level. The "average particle diameter" as used in this invention means the value measured as follows. That is, the metal particles arbitrarily selected are observed with a scanning electron microscope (SEM), and the maximum and minimum diameters are measured. The square root of the square of this largest diameter and minimum diameter is made into the particle diameter of the particle | grains. About 50 particles arbitrarily selected, the particle diameter is measured as mentioned above, and the average value is made into the average particle diameter.

본 발명의 효과를 효율적으로 또한 확실하게 얻는 관점에서, 금속미립자의 수는, 기재 입자 1개당 10~40개인 것이 바람직하다. 또한, 금속미립자의 수가 10~40개이고, 접속 저항값의 상승의 억제 및 인접하는 회로전극과의 절연성의 양쪽 모두가 고수준으로 달성된다는 이점이 있다. 기재 입자 1개당의 금속미립자의 수는, 이하와 같이 하여 측정되는 값을 의미하는 것이다. 즉, 임의로 선택한 도전입자를 SEM으로 촬상(撮像)하여, 관찰할 수 있는 도전입자 표면의 돌기의 수를 금속미립자의 수로서 카운트한다. 이것에 의해 얻어진 카운트 수를 2배로 함으로써 1개의 도전입자의 금속미립자의 수를 산출한다. 임의로 선택한 도전입자 50개에 대하여, 상기와 같이 하여 금속미립자의 수를 측정하고, 그 평균값을 기재 입자 1개당의 금속미립자의 수로 한다.From the viewpoint of efficiently and reliably obtaining the effects of the present invention, the number of the metal fine particles is preferably 10 to 40 per substrate particle. Further, the number of the metal fine particles is 10 to 40, and there is an advantage that both suppression of the increase in the connection resistance value and insulation with adjacent circuit electrodes are achieved at a high level. The number of metal fine particles per substrate particle means the value measured as follows. That is, the conductive particles arbitrarily selected are imaged by SEM, and the number of protrusions on the surface of the conductive particles that can be observed is counted as the number of metal fine particles. By doubling the count number thus obtained, the number of metal fine particles of one conductive particle is calculated. With respect to 50 electrically-conductive particles arbitrarily selected, the number of metal fine particles is measured as mentioned above, and the average value is made into the number of metal fine particles per substrate particle.

또한, 기재 입자는, 입자직경의 20% 압축 변형시의 압축 탄성율이 100~1000kgf/mm2인 재질로 이루어지는 것이 바람직하다. 기재 입자가 상기와 같은 경도를 가지고 있으면, 회로전극의 표면에 산화막이 형성되어 있어도, 금속 도금층의 내측에 배치되어 있는 금속미립자가 이 산화막을 보다 확실하게 돌파할 수 있다. 이에 더하여, 온도의 변동 등에 수반하여 회로전극간의 간격이 넓어졌다고 해도 기재 입자가 회로전극간격의 확대에 충분히 추종할 수 있다. 그 때문에, 접속 저항값의 상승을 충분히 억제할 수 있다.Moreover, it is preferable that a base material particle consists of a material whose compressive elastic modulus at the time of 20% compression deformation of a particle diameter is 100-1000 kgf / mm <2> . If the substrate particles have the hardness as described above, even if the oxide film is formed on the surface of the circuit electrode, the metal fine particles disposed inside the metal plating layer can more reliably break through the oxide film. In addition, even when the distance between the circuit electrodes is widened due to temperature fluctuations or the like, the substrate particles can sufficiently follow the expansion of the circuit electrode intervals. Therefore, an increase in the connection resistance value can be sufficiently suppressed.

또한, 기재 입자는, 최대 하중 5mN로 압축시킨 후의 압축 회복율이 40% 이상인 것이 바람직하다. 기재 입자가 상기와 같은 압축 회복율을 가지고 있으면, 온도의 변동 등에 수반하여 회로전극 사이의 간격이 넓어졌다고 해도, 기재 입자가 회로전극간격의 확대에 충분히 추종할 수 있다. 그 때문에, 접속 저항값의 상승을 충분히 억제할 수 있다.Moreover, it is preferable that the compression recovery factor after compressing a substrate particle by 5 mN of maximum loads is 40% or more. If the substrate particles have the compression recovery ratio as described above, the substrate particles can sufficiently follow the expansion of the circuit electrode intervals even if the distance between the circuit electrodes is widened due to fluctuations in temperature or the like. Therefore, an increase in the connection resistance value can be sufficiently suppressed.

본 발명의 회로 접속 재료는, 상기 본 발명의 접착제 조성물로 이루어지며 회로부재끼리를 접착하는 동시에 각각의 회로부재가 가지는 회로전극끼리를 전기적으로 접속하는 것이다.The circuit connection material of this invention consists of the adhesive composition of the said invention, adhere | attaches circuit members, and electrically connects the circuit electrodes which each circuit member has.

본 발명의 접속 구조는, 대향 배치된 한쌍의 회로부재와, 상기 본 발명의 회로 접속재료의 경화물로 이루어지며 상기 한쌍의 회로부재의 사이에 개재하여 각각의 회로부재가 가지는 회로전극끼리가 전기적으로 접속되도록 상기 회로부재끼리를 접착하는 접속부를 구비한다.The connection structure of this invention consists of a pair of circuit members opposingly arrange | positioned, and the hardened | cured material of the circuit connection material of this invention, and the circuit electrodes which each circuit member has between the pair of circuit members are electrically connected. A connection part for adhering the circuit members to each other is provided.

본 발명은, 또한, 대향 배치된 한쌍의 회로부재의 사이에 본 발명의 회로 접속 재료를 개재시켜, 전체를 가열 및 가압하고, 상기 회로 접속 재료의 경화물로 이루어지며 상기 한쌍의 회로부재의 사이에 개재하여 각각의 회로부재가 가지는 회로전극끼리가 전기적으로 접속되도록 회로부재끼리를 접착하는 접속부를 형성함으로써, 상기 한쌍의 회로부재 및 접속부를 구비하는 접속구조를 얻는, 회로부재의 접속방법이다.The present invention further includes a circuit connecting material of the present invention between a pair of circuit members arranged opposite to each other to heat and pressurize the whole, and is made of a cured product of the circuit connecting material, and between the pair of circuit members. A circuit member connection method is obtained by forming a connection portion for adhering circuit members to each other such that the circuit electrodes included in each circuit member are electrically connected to each other so as to obtain a connection structure including the pair of circuit members and the connection portion.

본 발명에 의하면, 접속해야 할 전극이, 표면에 산화막이 형성되기 쉬운 금속 재료로 이루어지는 것이어도, 접속 구조의 초기 저항값을 충분히 낮게 하는 것이 가능한 접착제 조성물 및 이것을 이용한 회로 접속 재료를 제공할 수 있다. 또한, 본 발명에 의하면, 낮은 접속 저항으로 회로부재가 접속된 접속 구조, 및 이를 얻기 위한 회로부재의 접속방법을 제공할 수 있다.ADVANTAGE OF THE INVENTION According to this invention, even if the electrode to be connected is made from the metal material with which an oxide film is easy to form on the surface, the adhesive composition which can make initial stage resistance value of a connection structure low enough, and the circuit connection material using this can be provided. . Moreover, according to this invention, the connection structure with which the circuit member was connected by low connection resistance, and the connection method of the circuit member for obtaining the same can be provided.

[도 1] 본 발명에 관한 회로 접속 재료가 회로전극 사이에 사용되어, 회로전극끼리가 접속된 상태를 나타내는 단면도이다.
[도 2] 본 발명에 관한 회로 접속 재료의 일실시 형태를 나타내는 단면도이다.
[도 3] 본 발명에 관한 회로 접속 재료에 포함되는 도전입자의 한 형태를 나타내는 단면도이다.
[도 4] 본 발명에 관한 회로 접속 재료가 지지체 상에 설치되어 있는 상태를 나타내는 단면도이다.
[도 5] 본 발명에 관한 회로 접속 재료가 지지체에 지지되어 있는 상태를 나타내는 단면도이다.
[도 6] 본 발명에 관한 회로부재의 접속방법의 일실시 형태를 개략 단면도에 의해 나타내는 공정도이다.
1 is a cross-sectional view showing a state in which circuit connection materials according to the present invention are used between circuit electrodes and the circuit electrodes are connected.
2 is a cross-sectional view showing an embodiment of a circuit connecting material according to the present invention.
It is sectional drawing which shows one form of the electroconductive particle contained in the circuit connection material which concerns on this invention.
4 is a cross-sectional view showing a state in which a circuit connection material according to the present invention is provided on a support.
5 is a cross-sectional view showing a state in which the circuit connection material according to the present invention is supported by a support.
Fig. 6 is a process diagram showing, in a schematic sectional view, an embodiment of a circuit member connection method according to the present invention.

이하, 첨부도면을 참조하면서 본 발명의 적합한 실시형태를 상세하게 설명한다. 도면의 설명에 있어서 동일한 요소에는 동일한 부호를 붙여 중복하는 설명은 생략한다. 또한, 도면의 편의상, 도면의 치수 비율은 설명한 것과 반드시 일치 하지는 않는다.EMBODIMENT OF THE INVENTION Hereinafter, preferred embodiment of this invention is described in detail, referring an accompanying drawing. In description of drawing, the same code | symbol is attached | subjected to the same element, and the overlapping description is abbreviate | omitted. In addition, for convenience of drawing, the dimension ratio of drawing does not necessarily correspond with what was described.

또한, 본 명세서에 있어서의 「(메타)아크릴레이트」란 「아크릴레이트」 및 그에 대응하는 「메타크릴레이트」를 의미한다.In addition, "(meth) acrylate" in this specification means "acrylate" and the "methacrylate" corresponding to it.

도 1은, 본 발명에 관한 접착제 조성물이 회로 접속 재료로서 사용되어, 회로전극끼리가 접속된 접속구조를 나타내는 개략 단면도이다. 도 1에 나타내는 접속 구조(100)는, 서로 대향하는 제 1의 회로부재(30) 및 제 2의 회로부재(40)를 구비하고, 제 1의 회로부재(30)와 제 2의 회로부재(40)의 사이에는, 이들을 접속하는 접속부(50a)가 설치되어 있다.1 is a schematic cross-sectional view showing a connection structure in which an adhesive composition according to the present invention is used as a circuit connection material and circuit electrodes are connected. The connection structure 100 shown in FIG. 1 is provided with the 1st circuit member 30 and the 2nd circuit member 40 which oppose each other, and the 1st circuit member 30 and the 2nd circuit member ( Between 40), the connection part 50a which connects these is provided.

제 1의 회로부재(30)는, 회로기판(제 1의 회로기판)(31)과 회로기판(31)의 주면(31a) 상에 형성되는 회로전극(제 1의 회로전극)(32)을 구비하고 있다. 제 2의 회로부재(40)는, 회로기판(제 2의 회로기판)(41)과 회로기판(41)의 주면(41a) 상에 형성되는 회로전극(제 2의 회로전극)(42)을 구비하고 있다. 회로기판(31), (41)에 있어서, 회로전극(32), (42)의 표면은 평탄하게 되어 있다. 또한, 여기에서 말하는 「회로전극의 표면이 평탄」이란, 회로전극의 표면의 요철이 충분히 작은 것을 말하고, 표면의 요철은 20nm 이하인 것이 바람직하다.The first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31a of the circuit board 31. Equipped. The second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41a of the circuit board 41. Equipped. In the circuit boards 31 and 41, the surfaces of the circuit electrodes 32 and 42 are flat. In addition, the "flatness of the surface of a circuit electrode" here means that the unevenness | corrugation of the surface of a circuit electrode is small enough, and it is preferable that the unevenness | corrugation of a surface is 20 nm or less.

접속부(50a)는 회로 접속 재료에 포함되는 접착제 성분의 경화물(20a)과, 이것에 분산하고 있는 도전입자(10)를 구비하고 있다. 그리고, 접속구조(100)에 있어서는, 대향하는 회로전극(32)과 회로전극(42)이 도전입자(10)를 개재하여 전기적으로 접속되어 있다. 즉, 도전입자(10)가, 회로전극(32), (42)의 쌍방으로 직접접촉하고 있다.The connection part 50a is equipped with the hardened | cured material 20a of the adhesive component contained in a circuit connection material, and the electroconductive particle 10 disperse | distributed to this. In the connection structure 100, the opposing circuit electrodes 32 and the circuit electrodes 42 are electrically connected via the conductive particles 10. In other words, the conductive particles 10 are in direct contact with both the circuit electrodes 32 and 42.

이 때문에, 회로전극(32), (42)사이의 접속 저항이 충분히 저감되어, 회로전극(32), (42)사이의 양호한 전기적 접속이 가능해진다. 한편, 경화물(20a)은 전기 절연성을 가지는 것이고, 인접하는 회로전극끼리는 절연성이 확보된다. 따라서, 회로전극(32), (42)사이의 전류의 흐름을 원활히 할 수 있고, 회로가 가지는 기능을 충분히 발휘할 수 있다.For this reason, the connection resistance between the circuit electrodes 32 and 42 is fully reduced, and favorable electrical connection between the circuit electrodes 32 and 42 is attained. On the other hand, the hardened | cured material 20a has electrical insulation, and the insulation of adjacent circuit electrodes is ensured. Therefore, the flow of electric current between the circuit electrodes 32 and 42 can be made smooth, and the function which a circuit has can fully be exhibited.

이어서, 접착제 성분이 경화하기 이전 상태의 접착제 조성물에 대해 상세하게 설명한다. 도 2는, 본 발명에 관한 접착제 조성물을 회로 접속 재료로서 사용 할 때의 적합한 실시형태를 나타내는 개략 단면도이다. 도 2에 나타내는 회로 접속 재료(50)의 형상은 필름상태이다. 회로 접속 재료(50)는 접착제 성분(20)과 접착제 성분(20) 중에 분산하고 있는 도전입자(10)를 구비한다.Next, the adhesive composition in a state before the adhesive component is cured will be described in detail. 2 is a schematic cross-sectional view showing a preferred embodiment when using the adhesive composition according to the present invention as a circuit connection material. The shape of the circuit connection material 50 shown in FIG. 2 is a film state. The circuit connection material 50 includes the adhesive component 20 and the conductive particles 10 dispersed in the adhesive component 20.

회로 접속 재료(50)는 필름 상태의 지지체 상에 도공 장치를 이용하여 접착제 성분 및 도전입자를 함유하는 접착제 조성물을 도포하고, 소정 시간 열풍 건조함으로써 제작된다.The circuit connection material 50 is produced by apply | coating the adhesive composition containing an adhesive component and conductive particle on a support body of a film state, and drying by hot air for predetermined time.

도전입자(10)의 구성에 대하여 도 3을 참조하면서 설명한다. 도 3은, 본 발명에 관한 회로 접속 재료에 포함되는 도전입자의 형태를 나타내는 단면도이다. 도 3에 나타내는 도전입자(10)는 중심부분을 구성하는 기재 입자(1)와, 이 기재 입자(1) 상에 설치된 복수의 금속미립자(2)와, 기재 입자(1) 및 금속미립자(2)의 표면을 덮도록 형성된 금속 도금층(3)으로 구성되어 있다. 금속미립자(2)는 금속 도금층(3)의 내측에 위치하고 있다.The structure of the conductive particle 10 is demonstrated, referring FIG. 3 is a cross-sectional view showing the shape of the conductive particles included in the circuit connection material according to the present invention. The conductive particles 10 shown in FIG. 3 include substrate particles 1 constituting the central portion, a plurality of metal particles 2 provided on the substrate particles 1, substrate particles 1, and metal particles 2. It consists of the metal plating layer 3 formed so that the surface of () may be covered. The metal fine particles 2 are located inside the metal plating layer 3.

기재 입자(1)의 재질로서는, 금속 및 유기 고분자 화합물을 들 수 있다. 기재 입자(1)를 구성하는 금속으로서, 예를 들면, 니켈, 동, 금, 은, 코발트 및 이들의 합금을 들 수 있다. 기재 입자(1)를 구성하는 유기 고분자 화합물로서, 예를 들면, 아크릴수지, 스티렌수지, 벤조구아나민수지, 실리콘수지, 폴리부타디엔 수지 또는 이들의 공중합체를 들 수 있고, 이들을 가교한 것이어도 좋다.As a material of the substrate particle 1, a metal and an organic high molecular compound are mentioned. As a metal which comprises the substrate particle 1, nickel, copper, gold, silver, cobalt, and these alloys are mentioned, for example. Examples of the organic polymer compound constituting the substrate particle 1 include acrylic resins, styrene resins, benzoguanamine resins, silicone resins, polybutadiene resins, and copolymers thereof, and may be crosslinked ones thereof. .

기재 입자(1)의 재질로서는, 높은 접속 신뢰성을 달성하는 관점에서, 회로전극끼리의 접속 후에 있어서의 회로전극간격의 확대에 충분히 추종할 수 있는 재질을 이용하는 것이 바람직하다. 온도의 변동 등에 따르는 회로전극간격의 확대에, 기재 입자(1)이 충분히 추종할 수 없으면, 접속부분의 저항값이 상승하는 경우가 있다. 이러한 저항값의 상승을 효율적으로 방지하는 관점에서, 기재 입자(1)로서는, 유기 고분자 화합물로 이루어지는 입자를 이용하는 것이 바람직하다.As a material of the substrate particle 1, it is preferable to use the material which can fully follow the expansion of the circuit electrode space after connection of circuit electrodes from a viewpoint of achieving high connection reliability. If the substrate particles 1 cannot sufficiently follow the expansion of the circuit electrode interval due to the fluctuation in temperature or the like, the resistance value of the connecting portion may increase. It is preferable to use the particle | grains which consist of organic high molecular compounds as the substrate particle 1 from a viewpoint of preventing such a raise of resistance value efficiently.

유기 고분자 화합물로 이루어지는 입자는, 회로전극끼리를 접속할 때에 회로전극 사이에서 편평형상(扁平形狀)으로 눌려찌그러졌다고 해도, 편평형상으로부터 원래의 구상(球狀)으로 회복하는 경향이 있다. 이 때문에, 온도의 변동 등에 수반하는 회로전극간격의 확대에 도전입자(10)가 충분히 추종할 수 있다. 이러한 관점으로부터, 기재 입자(1)의 최대 하중 5mN로 압축시킨 후의 압축 회복율은 40% 이상인 것이 바람직하다. 상기와 같은 압축 회복율을 가지는 유기 화합물로 이루어지는 입자로서는, 예를 들면, 아크릴수지, 스티렌수지, 벤조구아나민수지, 실리콘수지, 폴리부타디엔 수지 또는 이들의 공중합체로 이루어지는 입자를 들 수 있다. 해당 압축 회복율이 40% 미만이면, 회로전극 사이의 간격의 확대에 대한 추종이 불충분해지는 경향이 있다. 해당 압축 회복율은, 주식회사 피셔인스트루먼트 제조 H-100 미소 경도계에 의해 측정할 수 있다.Particles made of an organic polymer compound tend to recover from the flat shape to the original spherical shape even if they are crushed in a flat shape between the circuit electrodes when connecting the circuit electrodes. For this reason, the electrically conductive particle 10 can fully follow the expansion of the circuit electrode interval with the fluctuation of temperature. From this viewpoint, it is preferable that the compression recovery rate after compressing by the maximum load of 5 mN of the substrate particle 1 is 40% or more. As particle | grains which consist of organic compounds which have the above compression recovery rate, the particle | grains which consist of acrylic resin, a styrene resin, benzoguanamine resin, a silicone resin, polybutadiene resin, or these copolymers are mentioned, for example. If the compression recovery rate is less than 40%, there is a tendency that following the expansion of the interval between the circuit electrodes becomes insufficient. The compression recovery rate can be measured by Fischer Instruments Co., Ltd. H-100 micro hardness tester.

또한, 기재 입자(1)의 재질로서는, 입자직경의 20% 압축변형시에, 바람직하게는 100~1000kgf/mm2, 보다 바람직하게는 100~800kgf/mm2의 압축 탄성율을 가지는 것이 사용된다. 상기와 같은 경도를 가지는 유기 화합물로 이루어지는 입자로서는, 예를 들면, 아크릴수지, 스티렌수지, 벤조구아나민수지, 실리콘수지, 폴리부타디엔 수지 또는 이들의 공중합체로 이루어지는 입자를 들 수 있다.Further, as the material of the base particles (1), is used to have a 20% at the time of compression deformation, the compression modulus of elasticity of preferably 100 ~ 1000kgf / mm 2, more preferably 100 ~ 800kgf / mm 2 of the particle diameter. As particle | grains which consist of the organic compound which has the above hardness, the particle | grains which consist of acrylic resin, styrene resin, benzoguanamine resin, silicone resin, polybutadiene resin, or these copolymers are mentioned, for example.

상기 20% 압축 변형시의 압축 탄성율이 100kgf/mm2 미만이면, 표면에 산화막이 형성되어 있는 금속의 회로전극을 접속하는 경우, 표면의 산화막을 충분히 돌파할 수 없고, 접속부분의 저항값이 높아지는 경향이 있다. 또한, 압축 탄성율이 1000kgf/mm2를 초과하면, 서로 대향하는 회로전극을 가압할 때에, 기재입자(1)가 편평형상으로 충분히 변형되지 않게 되는 경향이 있다. 기재 입자(1)의 변형이 불충분하면, 회로전극과의 접촉면적이 불충분해져서, 접속부분의 저항값이 높아진다. 또한, 기재 입자(1)를 편평형상으로 충분히 변형시키기 위해서 높은 압력으로 가압했을 때에는, 입자가 분쇄되어 접속이 불충분해질 우려가 있다. 해당 압축 탄성율은, 주식회사 피셔인스트루먼트 제조 H-100 미소 경도계에 의해 측정할 수 있다.When the compressive elastic modulus at the time of 20% compression deformation is less than 100 kgf / mm 2 , when connecting a circuit electrode of a metal having an oxide film formed on the surface, the oxide film on the surface cannot be sufficiently broken and the resistance value of the connection portion becomes high. There is a tendency. In addition, when the compressive elastic modulus exceeds 1000 kgf / mm 2 , there is a tendency that the substrate particles 1 do not sufficiently deform into a flat shape when the circuit electrodes facing each other are pressed. If the deformation of the substrate particle 1 is insufficient, the contact area with the circuit electrode becomes insufficient, and the resistance value of the connection portion becomes high. In addition, when pressurization at high pressure in order to sufficiently deform the substrate particles 1 into a flat shape, the particles may be pulverized, resulting in insufficient connection. The compressive elastic modulus can be measured by Fischer Instruments Co., Ltd. H-100 microhardness meter.

또한, 기재 입자(1)는 입자 간에 동일 또는 다른 종류의 재질이어도 좋고, 동일 입자에 1종의 재질을 단독으로, 또는 2종 이상의 재질을 혼합하여 사용해도 좋다.In addition, the substrate particle 1 may be the same or different kind of material between particle | grains, 1 type of material may be used individually or 2 or more types may be mixed and used for the same particle | grain.

기재 입자(1)의 평균 입경은, 용도 등에 따라 적절히 설계할 수 있지만, 1~10㎛인 것이 바람직하고, 2~8㎛인 것이 보다 바람직하고, 3~5㎛인 것이 더욱 바람직하다. 평균 입경이 1㎛ 미만이면 입자의 2차 응집이 생겨서, 인접하는 회로와의 절연성이 불충분해지는 경향이 있다. 한편, 평균 입경이 10㎛를 초과하면, 그 크기에 기인하여 인접하는 회로와의 절연성이 불충분해지는 경향이 있다.Although the average particle diameter of the substrate particle 1 can be designed suitably according to a use etc., it is preferable that it is 1-10 micrometers, It is more preferable that it is 2-8 micrometers, It is further more preferable that it is 3-5 micrometers. When the average particle diameter is less than 1 µm, secondary aggregation of the particles occurs, which tends to result in insufficient insulation with adjacent circuits. On the other hand, when an average particle diameter exceeds 10 micrometers, there exists a tendency for insulation with adjacent circuits to become inadequate due to the magnitude | size.

금속미립자(2)를 구성하는 금속으로서, 예를 들면, Ni, Ag, Au, Cu, Co, Zn, Al, Sb, U, Ga, Ca, Sn, Se, Fe, Th, Be, Mg, Mn 및 이들의 합금을 들 수 있다. 이들의 금속 중, 도전성 및 내부식성의 관점으로부터 Ni, Ag, Au, Cu가 바람직하고, Ni가 보다 바람직하다. 이들은 1종을 단독으로, 또는 2종 이상을 조합시켜서 사용할 수 있다.As the metal constituting the metal fine particles 2, for example, Ni, Ag, Au, Cu, Co, Zn, Al, Sb, U, Ga, Ca, Sn, Se, Fe, Th, Be, Mg, Mn And these alloys. Among these metals, Ni, Ag, Au, and Cu are preferable, and Ni is more preferable from a viewpoint of electroconductivity and corrosion resistance. These can be used individually by 1 type or in combination of 2 or more type.

금속미립자(2)의 평균 입경은, 용도 등에 따라 적절하게 설계할 수 있지만, 200~100Onm인 것이 바람직하고, 400~800nm인 것이 보다 바람직하고, 400~500nm인 것이 더욱 바람직하다. 평균입경이 200nm 미만이면, 표면에 산화막이 생성되어 있는 금속의 회로 전극을 접속하는 경우, 산화막을 충분히 돌파할 수 없고, 접속부분의 저항값이 높아지는 경향이 있다. 한편, 평균 입경이 1000nm를 초과하면, 인접하는 회로와의 절연성이 불충분해지는 경향이 있다.Although the average particle diameter of the metal fine particle 2 can be designed suitably according to a use etc., it is preferable that it is 200-100 Onm, It is more preferable that it is 400-800 nm, It is further more preferable that it is 400-500 nm. If the average particle diameter is less than 200 nm, when the circuit electrode of the metal in which the oxide film is formed is connected to the surface, the oxide film cannot be sufficiently penetrated, and the resistance value of the connection portion tends to be high. On the other hand, when an average particle diameter exceeds 1000 nm, there exists a tendency for insulation with adjacent circuits to become inadequate.

금속 도금층(3)의 내측인 기재 입자(1)의 표면상에 배치하는 금속미립자(2)의 수는, 기재 입자 1개당 10~40개인 것이 바람직하고, 10~30개인 것이 보다 바람직하고, 10~20개인 것이 더욱 바람직하다. 금속미립자(2)의 수가 10개 미만이면, 접속 저항값의 상승의 억제가 불충분해지는 경향이 있다. 또한, 금속미립자(2)의 수가 40개를 초과하면, 인접하는 회로와의 절연성이 불충분해지는 경향이 있다.It is preferable that the number of the metal fine particles 2 arrange | positioned on the surface of the substrate particle 1 which is inside of the metal plating layer 3 is 10-40 per substrate particle, It is more preferable that it is 10-30, 10 It is more preferable that it is -20. When the number of the metal fine particles 2 is less than ten, there exists a tendency for suppression of a raise of connection resistance value to become inadequate. In addition, when the number of the metal fine particles 2 exceeds 40, there exists a tendency for the insulation with adjacent circuits to become inadequate.

금속 도금층(3)은 기재 입자(1) 및 금속미립자(2)의 표면의 적어도 일부를 덮는 것이다. 다만, 금속미립자(2)의 탈락을 보다 확실하게 방지하는 관점에서, 실질적으로 기재 입자(1) 및 금속미립자(2)의 표면을 모두 덮는 것이 바람직하다.The metal plating layer 3 covers at least a part of the surface of the substrate particle 1 and the metal fine particles 2. However, it is preferable to substantially cover both the surface of the substrate particle 1 and the metal fine particles 2 from a viewpoint of preventing the fall of the metal fine particles 2 more reliably.

금속 도금층(3)의 막두께는, 80~200nm인 것이 바람직하고, 100~150nm인 것이 보다 바람직하고, 100~110nm인 것이 더욱 바람직하다. 금속 도금층(3)의 막두께가 80nm미만이면 접속부분의 저항값이 높아지는 경향이 있다. 한편, 금속 도금층(3)의 막두께가 200nm를 초과하면, 인접하는 회로와의 절연성이 불충분해지는 경향이 있다.It is preferable that it is 80-200 nm, as for the film thickness of the metal plating layer 3, it is more preferable that it is 100-150 nm, It is still more preferable that it is 100-110 nm. When the film thickness of the metal plating layer 3 is less than 80 nm, there exists a tendency for the resistance value of a connection part to become high. On the other hand, when the film thickness of the metal plating layer 3 exceeds 200 nm, there exists a tendency for the insulation with adjacent circuits to become inadequate.

도전입자(10)를 제조하는 방법으로서는, 기재 입자(1)의 표면에 금속미립자(2)를 물리적으로 부착시킨 후, 금속 도금층(3)을 형성시키는 도금처리를 실시하는 방법을 들 수 있다. 이 경우, 첨가하는 금속미립자(2)의 양을 조정함으로써 기재 입자(1)의 표면에 부착하는 금속미립자(2)의 수를 제어할 수 있다. 그리고, 이것에 대해서 무전해 도금처리를 실시하는 것으로 도전입자(10)가 제조된다.As a method of manufacturing the electrically-conductive particle 10, the method of performing the plating process which forms the metal plating layer 3 after physically attaching the metal fine particles 2 to the surface of the substrate particle 1 is mentioned. In this case, the number of the metal fine particles 2 adhering to the surface of the substrate particle 1 can be controlled by adjusting the amount of the metal fine particles 2 to be added. And the electroconductive particle 10 is manufactured by electroless-plating on this.

이어서, 도전입자(1)를 분산시키는 접착제 성분에 대해서 설명한다. 접착제 성분(20)으로서는, (a) 열경화성 수지 및 (b) 열경화성 수지용 경화제로 이루어지는 접착제를 함유하는 조성물, 및 (c) 가열 또는 광에 의해서 유리(遊離) 라디칼을 발생하는 경화제 및 (d) 라디칼 중합성 물질로 이루어지는 접착제를 함유하는 조성물이 바람직하다. 혹은, 상기의 (a), (b), (c) 및 (d)의 혼합 조성물이 바람직하다.Next, the adhesive component which disperse | distributes the electroconductive particle 1 is demonstrated. As the adhesive component 20, the composition containing the adhesive which consists of (a) thermosetting resin and (b) hardening | curing agent for thermosetting resins, (c) the hardening | curing agent which generate | occur | produces free radicals by heating or light, and (d) Preference is given to a composition containing an adhesive consisting of a radically polymerizable substance. Or the mixed composition of said (a), (b), (c) and (d) is preferable.

(a) 열경화성 수지로서는, 임의의 온도범위에 있어서의 경화 처리가 가능한 열경화성 수지이면 특별히 한정되지 않지만, 에폭시 수지인 것이 바람직하다. 에폭시 수지로서는, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 F 노볼락형 에폭시 수지, 지환식 에폭시 수지, 글리시딜에스테르형 에폭시 수지, 글리시딜아민형 에폭시 수지, 히단토인형 에폭시 수지, 이소시아누레이트형 에폭시 수지, 지방족 쇄상 에폭시 수지 등을 들 수 있다. 이러한 에폭시 수지는, 할로겐화되어 있어도 좋고, 수소 첨가되어 있어도 좋다. 이러한 에폭시 수지는, 1종을 단독으로, 또는 2종 이상을 조합시켜서 사용할 수 있다.The thermosetting resin (a) is not particularly limited as long as it is a thermosetting resin capable of curing treatment in an arbitrary temperature range, but is preferably an epoxy resin. Examples of the epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, and bisphenol F novolac type epoxy resins. Resin, alicyclic epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, isocyanurate type epoxy resin, aliphatic chain epoxy resin and the like. Such epoxy resin may be halogenated and may be hydrogenated. These epoxy resins can be used individually by 1 type or in combination of 2 or more type.

(b) 열경화성 수지용 경화제로서는, 아민계, 페놀계, 산무수물계, 이미다졸계, 히드라지드계, 디시안디아미드, 삼불화붕소-아민착체, 술포늄염, 요오드늄염, 아민이미드류 등을 들 수 있다. 이들은, 단독 또는 2종 이상을 혼합하여 사용할 수 있고, 분해촉진제, 억제제 등을 혼합하여 사용해도 좋다. 또한, 이러한 경화제를 폴리우레탄계, 폴리에스테르계의 고분자물질 등으로 피복하여 마이크로캡슐화한 것은, 가사시간이 연장되기 때문에 바람직하다.Examples of the curing agent for thermosetting resins include amines, phenols, acid anhydrides, imidazoles, hydrazides, dicyandiamides, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, and amineimides. Can be. These can be used individually or in mixture of 2 or more types, You may use them, mixing a decomposition accelerator, an inhibitor, etc. In addition, microencapsulation by coating such a curing agent with a polyurethane-based, polyester-based polymer material or the like is preferable because the pot life is extended.

(b) 열경화성 수지용 경화제의 배합량은, 접착제 성분의 총 질량을 기준으로 하여, 0.1~60.0중량% 정도인 것이 바람직하고, 1.0~20.0중량%이면 보다 바람직하다. 열경화성 수지용 경화제의 배합량이 0.1중량% 미만이면, 경화 반응의 진행이 불충분해져서, 양호한 점착 강도나 접속 저항값을 얻는 것이 곤란해지는 경향이 있다. 한편, 배합량이 60중량%를 초과하면, 접착제 성분의 유동성이 저하하거나, 포트 라이프(pot life)가 짧아지거나 하는 경향이 있는 것과 동시에, 접속부분의 접속 저항값이 높아지는 경향이 있다.(b) It is preferable that it is about 0.1-60.0 weight% on the basis of the gross mass of an adhesive component, and, as for the compounding quantity of the hardening | curing agent for thermosetting resins, it is more preferable if it is 1.0-20.0 weight%. When the compounding quantity of the thermosetting resin hardening | curing agent is less than 0.1 weight%, advancing of hardening reaction will become inadequate and it will become difficult to obtain favorable adhesive strength and connection resistance value. On the other hand, when the blending amount exceeds 60% by weight, there is a tendency that the fluidity of the adhesive component is reduced or the pot life is shortened, and the connection resistance value of the connecting portion tends to be high.

(c) 가열 또는 광에 의해 유리 라디칼을 발생하는 경화제로서는, 과산화 화합물, 아조계 화합물 등의, 가열 또는 광에 의해 분해하여 유리 라디칼을 발생하는 것을 들 수 있다. 경화제는 목적으로 하는 접속 온도, 접속시간, 포트 라이프 등에 의해 적절하게 선정된다. 고반응성과 포트 라이프의 점에서, 반감기 10시간의 온도가 40℃ 이상, 또한 반감기 1분의 온도가 180℃ 이하인 유기과산화물이 바람직하다. 이 경우, (c) 가열 또는 광에 의해 유리 라디칼을 발생하는 경화제의 배합량은, 접착제 성분의 총 질량을 기준으로 하여, 0.05~10중량%이면 바람직하고, 0.1~5중량%이면 보다 바람직하다.(c) As a hardening | curing agent which generate | occur | produces a free radical by heating or light, what decomposes | disassembles by heating or light, such as a peroxide compound and an azo type compound, is mentioned. The curing agent is appropriately selected depending on the desired connection temperature, connection time, pot life and the like. In view of high reactivity and pot life, an organic peroxide having a temperature of 10 hours for a half life of 40 ° C or more and a temperature of 1 minute for a half life of 180 ° C or less is preferable. In this case, the compounding quantity of the hardening | curing agent which generate | occur | produces a free radical by heating or light (c) is preferable in it being 0.05-10 weight% on the basis of the gross mass of an adhesive component, and it is more preferable in it being 0.1-5 weight%.

(c) 가열 또는 광에 의해 유리 라디칼을 발생하는 경화제는, 구체적으로는, 디아실퍼옥사이드, 퍼옥시디카보네이트, 퍼옥시에스테르, 퍼옥시케탈, 디알킬퍼옥사이드, 하이드로퍼옥사이드 등으로부터 선정할 수 있다. 회로부재의 접속 단자의 부식을 억제하기 위해서, 퍼옥시에스테르, 디알킬퍼옥사이드, 하이드로퍼옥사이드로부터 선정되는 것이 바람직하고, 고반응성이 얻어지는 퍼옥시에스테르로부터 선정되는 것이 보다 바람직하다.(c) The curing agent which generates free radicals by heating or light can be specifically selected from diacyl peroxide, peroxydicarbonate, peroxy ester, peroxy ketal, dialkyl peroxide, hydroperoxide and the like. . In order to suppress corrosion of the connection terminal of a circuit member, it is preferable to select from peroxy ester, dialkyl peroxide, and hydroperoxide, and it is more preferable to select from peroxy ester from which high reactivity is obtained.

디아실퍼옥사이드류로서는, 예를 들면, 이소부틸퍼옥사이드, 2,4-디클로로벤조일퍼옥사이드, 3,5,5-트리메틸헥사노일퍼옥사이드, 옥타노일퍼옥사이드, 라우로일퍼옥사이드, 스테아로일퍼옥사이드, 숙시닉퍼옥사이드, 벤조일퍼옥시톨루엔, 벤조일퍼옥사이드 등을 들 수 있다.As diacyl peroxides, for example, isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide And succinic peroxide, benzoyl peroxy toluene, benzoyl peroxide and the like.

퍼옥시디카보네이트류로서는, 예를 들면, 디-n-프로필퍼옥시디카보네이트, 디이소프로필퍼옥시디카보네이트, 비스(4-t-부틸시클로헥실)퍼옥시디카보네이트, 디-2-에톡시메톡시퍼옥시디카보네이트, 디(2-에틸헥실퍼옥시)디카보네이트, 디메톡시부틸퍼옥시디카보네이트, 디(3-메틸-3-메톡시부틸퍼옥시)디카보네이트 등을 들 수 있다.Examples of the peroxydicarbonates include di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydi Carbonate, di (2-ethylhexyl peroxy) dicarbonate, dimethoxybutyl peroxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, and the like.

퍼옥시에스테르류로서는, 예를 들면, 쿠밀퍼옥시네오데카노에이트, 1,1,3,3- 테트라메틸부틸퍼옥시네오데카노에이트, 1-시클로헥실-1-메틸에틸퍼옥시네오데카노에이트, t-헥실퍼옥시네오데카노에이트, t-부틸퍼옥시피발레이트, 1,1,3,3-테트라메틸부틸퍼옥시-2-에틸헥사노에이트, 2,5-디메틸-2,5-비스(2-에틸헥사노일퍼옥시) 헥산, 1-시클로헥실-1-메틸에틸퍼옥시-2-에틸헥사노에이트, t-헥실퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시-2-에틸헥사노에이트, t-부틸퍼옥시이소부틸레이트, 1,1-비스(t-부틸퍼옥시)시클로헥산, t-헥실퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시-3,5,5-트리메틸헥사노에이트, t-부틸퍼옥시라우레이트, 2,5-디메틸-2,5-비스(m-톨루오일퍼옥시)헥산, t-부틸퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시-2-에틸헥실모노카보네이트, t-헥실퍼옥시벤조에이트, t-부틸퍼옥시아세테이트 등을 들 수 있다.As peroxy ester, for example, cumyl peroxy neodecanoate, 1,1,3,3- tetramethylbutyl peroxy neodecanoate, 1-cyclohexyl-1-methylethyl peroxy neodecano Eight, t-hexyl peroxy neodecanoate, t-butyl peroxy pivalate, 1,1,3,3-tetramethylbutyl peroxy-2-ethylhexanoate, 2,5-dimethyl-2,5 -Bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy 2-ethylhexanoate, t-butylperoxy isobutylate, 1,1-bis (t-butylperoxy) cyclohexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3, 5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m-toluylperoxy) hexane, t-butylperoxyisopropylmonocarbonate, t- Butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl Benzoate, and the like t- butylperoxy acetate.

퍼옥시케탈류로서는, 예를 들면, 1,1-비스(t-헥실퍼옥시)-3,5,5-트리메틸시클로헥산, 1,1-비스(t-헥실퍼옥시)시클로헥산, 1,1-비스(t-부틸퍼옥시)-3,5,5-트리메틸시클로헥산, 1,1-(t-부틸퍼옥시)시클로도데칸, 2,2-비스(t-부틸퍼옥시)데칸 등을 들 수 있다.As peroxy ketals, 1, 1-bis (t-hexyl peroxy) -3, 5, 5- trimethyl cyclohexane, 1, 1-bis (t-hexyl peroxy) cyclohexane, 1, 1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like Can be mentioned.

디알킬퍼옥사이드류로서는, 예를 들면, α,α'-비스(t-부틸퍼옥시)디이소프로필벤젠, 디쿠밀퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, t-부틸쿠밀퍼옥사이드 등을 들 수 있다.As the dialkyl peroxides, for example, α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumylperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy ) Hexane, t-butyl cumyl peroxide, etc. are mentioned.

하이드로퍼옥사이드류로서는, 예를 들면, 디이소프로필벤젠하이드로퍼옥사이드, 쿠멘하이드로퍼옥사이드 등을 들 수 있다.As hydroperoxides, diisopropyl benzene hydroperoxide, cumene hydroperoxide, etc. are mentioned, for example.

이들의 (c) 가열 또는 광에 의해 유리 라디칼을 발생하는 경화제는 1종을 단독으로 또는 2종 이상을 혼합하여 사용할 수 있고, 분해촉진제, 억제제 등을 혼합하여 사용해도 좋다.
These (c) hardening | curing agents which generate | occur | produce a free radical by heating or light can be used individually by 1 type or in mixture of 2 or more types, You may mix and use a decomposition accelerator, an inhibitor, etc.

(d) 라디칼 중합성 물질은, 라디칼에 의해 중합하는 관능기를 가지는 물질이고, 예를 들면, (메타)아크릴레이트, 말레이미드 화합물 등을 들 수 있다.(d) A radically polymerizable substance is a substance which has a functional group superposing | polymerizing by a radical, for example, a (meth) acrylate, a maleimide compound, etc. are mentioned.

(메타)아크릴레이트로서는, 예를 들면, 우레탄(메타)아크릴레이트, 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 이소프로필(메타)아크릴레이트, 이소부틸(메타)아크릴레이트, 에틸렌글리콜디(메타)아크릴레이트, 디에틸렌글리콜디(메타)아크릴레이트, 트리에틸렌글리콜디(메타)아크릴레이트, 트리메티롤프로판트리(메타)아크릴레이트, 테트라메티롤메탄테트라(메타)아크릴레이트, 2-히드록시-1,3-디(메타)아크릴옥시프로판, 2,2-비스[4-((메타)아크릴옥시메톡시)페닐]프로판, 2,2-비스[4-((메타)아크릴옥시폴리에톡시)페닐]프로판, 디시클로펜테닐(메타)아크릴레이트, 트리시클로데카닐(메타)아크릴레이트, 비스((메타)아크릴옥시에틸)이소시아누레이트, ε-카프로락톤 변성 트리스((메타)아크릴옥시에틸)이소시아누레이트, 트리스((메타)아크릴옥시에틸)이소시아누레이트 등을 들 수 있다.As (meth) acrylate, urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol, for example Di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimetholpropane tri (meth) acrylate, tetrametholmethane tetra (meth) acrylate, 2 -Hydroxy-1,3-di (meth) acryloxypropane, 2,2-bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acrylic Oxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate, tricyclodecanyl (meth) acrylate, bis ((meth) acryloxyethyl) isocyanurate, (epsilon) -caprolactone modified tris ( (Meth) acryloxyethyl) isocyanurate, tris ((meth) acryloxye ) Isocyanurate can be given cyanurate and the like.

이러한 라디칼 중합성 물질은 1종을 단독으로, 또는 2종 이상을 조합시켜서 사용할 수 있다. 접착제 성분은, 25℃에서의 점도가 100000~1000000mPa·S인 라디칼 중합성 물질을 적어도 함유하는 것이 특히 바람직하고, 특히 100000~500000mPa·S의 점도(25℃)를 가지는 라디칼 중합성 물질을 함유하는 것이 바람직하다. 라디칼 중합성 물질의 점도의 측정은, 시판의 E형 점도계를 이용하여 측정할 수 있다.Such radically polymerizable substances can be used individually by 1 type or in combination of 2 or more type. It is especially preferable that an adhesive component contains the radically polymerizable substance whose viscosity in 25 degreeC is 100000-1000000mPa * S at least, and especially contains the radically polymerizable substance which has the viscosity (25 degreeC) of 100000-500000mPa * S. It is preferable. The measurement of the viscosity of a radically polymerizable substance can be measured using a commercially available E-type viscometer.

라디칼 중합성 물질 중에서도, 접착성의 관점에서 우레탄아크릴레이트 또는 우레탄메타아크릴레이트를 사용하는 것이 바람직하다. 또한, 내열성을 향상시키기 위해서 사용하는 유기과산화물과의 가교 후, 단독으로 100℃ 이상의 Tg를 나타내는 라디칼 중합성 물질을 병용하여 사용하는 것이 특히 바람직하다. 이러한 라디칼 중합성 물질로서는, 디시클로펜테닐기, 트리시클로데카닐기 및/또는 트리아진환을 분자내에 가지는 것을 사용할 수 있다. 특히, 트리시클로데카닐기나 트리아진환을 분자내에 가지는 라디칼 중합성 물질이 적합하게 사용된다.Among the radically polymerizable substances, it is preferable to use urethane acrylate or urethane methacrylate from the viewpoint of adhesion. Moreover, after crosslinking with the organic peroxide used in order to improve heat resistance, it is especially preferable to use together the radically polymerizable substance which shows Tg of 100 degreeC or more independently. As such a radically polymerizable substance, what has a dicyclopentenyl group, a tricyclo decanyl group, and / or a triazine ring in a molecule | numerator can be used. In particular, the radically polymerizable substance which has a tricyclo decanyl group and a triazine ring in a molecule | numerator is used suitably.

말레이미드 화합물로서는, 분자 중에 말레이미드기를 적어도 2개 이상 함유하는 것이 바람직하고, 예를 들면, 1-메틸-2,4-비스말레이미드벤젠, N,N'-m-페닐렌비스말레이미드, N,N'-p-페닐렌비스말레이미드, N,N'-m-톨루일렌비스말레이미드, N,N'-4,4-비페닐렌비스말레이미드, N,N'-4,4-(3,3'-디메틸-비페닐렌)비스말레이미드, N,N'-4,4-(3,3'-디메틸디페닐메탄)비스말레이미드, N,N'-4,4-(3,3'-디에틸디페닐메탄)비스말레이미드, N,N'-4,4-디페닐메탄비스말레이미드, N,N'-4,4-디페닐프로판비스말레이미드, N,N'-4,4-디페닐에테르비스말레이미드, N,N'-3,3'-디페닐술폰 비스말레이미드, 2,2-비스[4-(4-말레이미드페녹시)페닐]프로판, 2,2-비스[3-s-부틸-4,8-(4-말레이미드페녹시)페닐]프로판, 1,1-비스[4-(4-말레이미드페녹시)페닐]데칸, 4,4'-시클로헥실리덴-비스[1-(4-말레이미드페녹시)-2-시클로헥실]벤젠, 2,2-비스[4-(4-말레이미드페녹시)페닐]헥사플루오로프로판 등을 들 수 있다. 이들은, 1종을 단독으로 또는 2종 이상을 병용하여 사용해도 좋고, 알릴페놀, 알릴페닐에테르, 벤조산알릴 등의 알릴 화합물과 병용하여 사용해도 좋다.As a maleimide compound, what contains at least 2 or more maleimide groups in a molecule | numerator is preferable, For example, 1-methyl- 2, 4-bismaleimide benzene, N, N'-m-phenylene bismaleimide, N, N'-p-phenylenebismaleimide, N, N'-m-toluylenebismaleimide, N, N'-4,4-biphenylenebismaleimide, N, N'-4,4 -(3,3'-dimethyl-biphenylene) bismaleimide, N, N'-4,4- (3,3'-dimethyldiphenylmethane) bismaleimide, N, N'-4,4- (3,3'-diethyldiphenylmethane) bismaleimide, N, N'-4,4-diphenylmethanebismaleimide, N, N'-4,4-diphenylpropanebismaleimide, N, N'-4,4-diphenyletherbismaleimide, N, N'-3,3'-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane , 2,2-bis [3-s-butyl-4,8- (4-maleimidephenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidephenoxy) phenyl] decane, 4 , 4'-cyclohexylidene-bis [1- (4-maleimidephenoxy) -2-cyclo Room] benzene, 2,2-bis [4- (4-maleimidophenoxy) phenyl] hexafluoropropane. These may be used individually by 1 type or in combination of 2 or more types, and may be used in combination with allyl compounds, such as allyl phenol, allyl phenyl ether, and allyl benzoate.

또한, 필요에 따라, 하이드로퀴논, 메틸에테르하이드로퀴논류 등의 중합 억지제를 적절히 사용해도 좋다.Moreover, you may use suitably polymerization inhibitors, such as hydroquinone and methyl ether hydroquinones as needed.

접착제 성분(20)은 필름 형성성 고분자를 함유해도 좋다. 접착제 성분(20)의 전체 중량을 기준으로 하여, 필름 형성성 고분자의 함유량은, 2~80중량%인 것이 바람직하고, 5~70중량%인 것이 보다 바람직하고, 10~60중량%인 것이 더욱 바람직하다. 필름 형성성 고분자로서는, 폴리스티렌, 폴리에틸렌, 폴리비닐부티랄, 폴리비닐포르말, 폴리이미드, 폴리아미드, 폴리에스테르, 폴리염화비닐, 폴리페닐렌옥사이드, 요소수지, 멜라민수지, 페놀수지, 크실렌수지, 폴리이소시아네이트수지, 페녹시수지, 폴리이미드수지, 폴리에스테르우레탄수지 등이 사용된다.The adhesive component 20 may contain a film forming polymer. Based on the total weight of the adhesive component 20, the content of the film-forming polymer is preferably 2 to 80% by weight, more preferably 5 to 70% by weight, and even more preferably 10 to 60% by weight. desirable. Examples of the film-forming polymer include polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, Polyisocyanate resin, phenoxy resin, polyimide resin, polyester urethane resin, etc. are used.

상기의 필름 형성성 고분자 중에서도 수산기 등의 관능기를 가지는 수지는 접착성을 향상시킬 수 있으므로, 보다 바람직하다. 또한, 이러한 고분자를 라디칼 중합성의 관능기로 변성한 것도 사용할 수 있다. 필름 형성성 고분자의 중량 평균 분자량은 10000~10000000인 것이 바람직하다.Resin which has functional groups, such as a hydroxyl group, can improve adhesiveness among the said film formation polymer | macromolecule, and is more preferable. Moreover, what modified | denatured such a polymer with the radically polymerizable functional group can also be used. It is preferable that the weight average molecular weights of a film forming polymer are 10000-10 million.

또한, 회로 접속 재료(50)는, 충전재, 연화제, 촉진제, 노화방지제, 착색제, 난연화제, 틱소트로픽제, 커플링제, 페놀수지, 멜라민수지, 이소시아네이트류 등을 함유할 수도 있다.In addition, the circuit connection material 50 may contain a filler, a softener, an accelerator, an antiaging agent, a coloring agent, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, and an isocyanate.

충전재를 함유했을 경우, 접속 신뢰성 등의 향상을 얻을 수 있으므로 바람직하다. 충전재는, 그 최대경이 도전입자의 입경 미만이면 사용할 수 있고, 5~60부피%의 범위가 바람직하다. 60부피%를 초과하면, 신뢰성 향상의 효과가 포화한다.When it contains a filler, since improvement, such as connection reliability, can be obtained, it is preferable. The filler can be used as long as the maximum diameter is less than the particle size of the conductive particles, and a range of 5 to 60% by volume is preferable. When it exceeds 60% by volume, the effect of improving reliability is saturated.

커플링제로서는, 비닐기, 아크릴기, 아미노기, 에폭시기 및 이소시아네이트기로 이루어지는 군으로부터 선택되는 1종 이상의 기를 함유하는 화합물이, 접착성의 향상의 점에서 바람직하다.As a coupling agent, the compound containing 1 or more types chosen from the group which consists of a vinyl group, an acryl group, an amino group, an epoxy group, and an isocyanate group is preferable at the point of the adhesive improvement.

회로 접속 재료(50)에 있어서 도전입자(10)의 함유량은, 회로 접속 재료(50)의 전체 부피를 100부피부로 하면, 0.5~60부피부인 것이 바람직하고, 그 함유량은 용도에 따라 구분하여 사용한다.In the circuit connection material 50, when the total volume of the circuit connection material 50 is 100 parts by volume, the content of the conductive particles 10 is preferably 0.5 to 60 parts by volume, and the content is classified according to the use. use.

도 4는 본 발명에 관한 회로 접속 재료(50)가 필름 상태의 지지체(60) 상에 설치되어 있는 상태를 나타내는 단면도이다. 지지체(60)로서는, 예를 들면, 폴리에틸렌테레프탈레이트 필름, 폴리에틸렌나프탈레이트 필름, 폴리에틸렌이소프탈레이트 필름, 폴리부티렌테레프탈레이트 필름, 폴리올레핀계 필름, 폴리아세테이트 필름, 폴리카르보네이트 필름, 폴리페닐렌설파이드 필름, 폴리아미드 필름, 에틸렌-아세트산비닐 공중합체 필름, 폴리염화비닐 필름, 폴리염화비닐리덴 필름, 합성고무계 필름, 액정폴리머-필름 등의 각종 필름을 사용하는 것이 가능하다. 상기의 필름의 표면에 대하여, 필요에 따라 코로나 방전처리, 앙카 코트처리, 대전방지 처리 등이 실시된 지지체를 사용해도 좋다.4 is a cross-sectional view showing a state in which the circuit connection material 50 according to the present invention is provided on the support 60 in a film state. As the support body 60, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethylene isophthalate film, a polybutylene terephthalate film, a polyolefin type film, a polyacetate film, a polycarbonate film, a polyphenylene sulfide, for example It is possible to use various films such as a film, a polyamide film, an ethylene-vinyl acetate copolymer film, a polyvinyl chloride film, a polyvinylidene chloride film, a synthetic rubber film, and a liquid crystal polymer film. As needed, you may use the support body to which the corona discharge process, the anchor coat process, the antistatic process, etc. were given with respect to the surface of the said film.

회로 접속 재료(50)를 사용할 때에, 회로 접속 재료(50)로부터 지지체(60)를 용이하게 박리되도록, 필요에 따라 지지체(60)의 표면에는 박리 처리제를 코팅하여 사용해도 좋다. 박리 처리제로서 실리콘수지, 실리콘과 유기계 수지와의 공중합체, 알키드 수지, 아미노알키드 수지, 긴사슬 알킬기를 가지는 수지, 플루오로알킬기를 가지는 수지, 셀락 수지 등의 각종 박리 처리제를 사용할 수 있다.When using the circuit connection material 50, you may coat and use a peeling treatment agent on the surface of the support body 60 as needed so that the support body 60 may be easily peeled from the circuit connection material 50. FIG. As the peeling treatment agent, various peeling treatment agents such as a silicone resin, a copolymer of silicone and an organic resin, an alkyd resin, an aminoalkyd resin, a resin having a long chain alkyl group, a resin having a fluoroalkyl group, and a shellac resin can be used.

지지체(60)의 막두께는, 특별히 제한되는 것은 아니지만, 제작된 회로 접속 재료(50)의 보관, 사용시의 편리성 등을 고려하여 4~200㎛로 하는 것이 바람직하다. 또한, 지지체(60)의 막두께는, 재료 코스트나 생산력을 고려하여, 15~75㎛로 하는 것이 보다 바람직하다.Although the film thickness of the support body 60 is not specifically limited, It is preferable to set it as 4-200 micrometers in consideration of the storage of the produced circuit connection material 50, the convenience at the time of use, etc. In addition, the film thickness of the support body 60 is more preferably 15 to 75 µm in consideration of material cost and productivity.

회로 접속 재료는, 회로 접속 재료(50)와 같은 단층 구조로 한정되지 않고, 복수의 층이 적층된 다층구조이어도 좋다. 다층구조의 회로 접속 재료는, 접착제 성분 및 도전입자의 종류 혹은 이들의 함유량이 다른 층을 복수 적층함으로써 제조 할 수 있다. 예를 들면, 회로 접속 재료는, 도전입자를 함유하는 도전입자 함유층과, 이 도전입자 함유층의 적어도 한쪽의 면상에 설치된, 도전입자를 함유하지 않는 도전입자 비함유층을 구비하는 것이어도 좋다.The circuit connection material is not limited to the single layer structure like the circuit connection material 50, and may be a multilayer structure in which a plurality of layers are laminated. The circuit connection material of a multilayer structure can be manufactured by laminating | stacking multiple layers from which the kind of adhesive component and electroconductive particle, or these content differ. For example, the circuit connection material may include a conductive particle-containing layer containing conductive particles and a conductive particle-free layer which does not contain conductive particles provided on at least one surface of the conductive particle-containing layer.

도 5는, 이층 구조의 회로 접속 재료가 지지체에 지지되어 있는 상태를 나타내는 단면도이다. 도 5에 나타내는 회로 접속 재료(70)는, 도전입자를 함유하는 도전입자 함유층(70a) 및 도전입자를 함유하지 않는 도전입자 비함유층(70b)으로 구성되어 있다. 회로 접속 재료(70)의 양 가장 바깥면에는, 각각 지지체(60a), (60b)가 설치되어 있다. 회로 접속 재료(70)는 지지체(60a)의 표면상에 도전입자 함유층(70a)을 형성하고, 한편, 지지체(60b)의 표면상에 도전입자 비함유층(70b)을 형성하여, 이러한 층을 종래 공지의 라미네이트 등을 사용하여 부착시킴으로써 제작할 수 있다. 회로 접속 재료(70)를 사용하는 때에는, 적절한 지지체(60a), (60b)를 박리하여 사용한다.5 is a cross-sectional view showing a state in which a circuit connection material having a two-layer structure is supported by a support. The circuit connection material 70 shown in FIG. 5 is comprised from the electroconductive particle containing layer 70a containing electroconductive particle, and the electroconductive particle non-containing layer 70b containing no electroconductive particle. Support bodies 60a and 60b are provided in both outermost surfaces of the circuit connection material 70, respectively. The circuit connection material 70 forms the conductive particle-containing layer 70a on the surface of the support 60a, and on the other hand, forms the conductive particle-free layer 70b on the surface of the support 60b, thereby providing such a layer. It can manufacture by sticking using a well-known lamination etc. When using the circuit connection material 70, the appropriate support bodies 60a and 60b are peeled and used.

회로 접속 재료(70)에 의하면, 회로부재끼리의 접합시에, 접착제 성분의 유동에 기인하는 회로전극상에 있어서의 도전입자의 개수의 감소를 충분히 억제할 수 있다. 이 때문에, 예를 들면, IC 칩을 기판상에 실장하는 경우, IC 칩의 금속 범프(접속단자) 상의 도전입자의 개수를 충분히 확보할 수 있다. 이 경우, IC 칩의 금속 범프를 구비하는 면과 도전입자 비함유층(70b)이, 다른 쪽, IC 칩을 실장해야 할 기판과 도전입자 함유층(70a)이, 각각 서로 접하도록 회로 접속 재료(70)를 배치하는 것이 바람직하다.According to the circuit connection material 70, the reduction of the number of the electroconductive particles on the circuit electrode resulting from the flow of an adhesive agent at the time of joining of circuit members can fully be suppressed. For this reason, for example, when mounting an IC chip on a board | substrate, the number of electroconductive particles on the metal bump (connection terminal) of an IC chip can be ensured enough. In this case, the circuit connection material 70 so that the surface with the metal bump of the IC chip and the conductive particle free layer 70b are in contact with each other, and the substrate on which the IC chip is to be mounted and the conductive particle containing layer 70a are in contact with each other. ) Is preferable.

(접속방법)(Connection method)

도 6은 본 발명에 관한 회로부재의 접속방법의 일실시 형태를 개략 단면도에 의해 나타내는 공정도이고, 회로 접속 재료(50)를 열경화시켜 접속 구조를 제조할 때까지의 일련의 공정을 나타낸다.Fig. 6 is a process diagram showing, in a schematic sectional view, one embodiment of a circuit member connection method according to the present invention, and shows a series of steps until the circuit connection material 50 is thermoset to produce a connection structure.

우선, 상술한 제 1의 회로부재(30)와, 필름상태의 회로 접속 재료(50)를 준비한다. 회로 접속 재료(50)는, 도전입자(10)를 함유하는 접착제 조성물로 이루어진다.First, the 1st circuit member 30 mentioned above and the circuit connection material 50 of a film state are prepared. The circuit connection material 50 consists of an adhesive composition containing the conductive particle 10.

회로 접속 재료(50)의 두께는, 5~50㎛인 것이 바람직하다. 회로 접속 재료(50)의 두께가 5㎛ 미만이면, 제 1 및 제 2의 회로전극(32), (42) 사이에 회로 접속 재료(50)이 충전 부족해지는 경향이 있다. 한편, 두께가 50㎛를 초과하면, 제 1 및 제 2의 회로전극 (32), (42) 사이의 도통의 확보가 곤란해지는 경향이 있다.It is preferable that the thickness of the circuit connection material 50 is 5-50 micrometers. When the thickness of the circuit connection material 50 is less than 5 micrometers, there exists a tendency for the circuit connection material 50 to become insufficient in charge between the 1st and 2nd circuit electrodes 32 and 42. FIG. On the other hand, when thickness exceeds 50 micrometers, it exists in the tendency for securing the conduction between the 1st and 2nd circuit electrodes 32 and 42 to become difficult.

이어서, 회로 접속 재료(50)를 제 1의 회로부재(30)의 회로전극(32)이 형성되어 있는 면상에 올린다. 그리고, 회로 접속 재료(50)를, 도 6(a)의 화살표 A 및 B 방향으로 가압하여, 회로 접속 재료(50)를 제 1의 회로부재(30)에 가접속한다(도 6(b)).Subsequently, the circuit connecting material 50 is placed on the surface on which the circuit electrode 32 of the first circuit member 30 is formed. And the circuit connection material 50 is pressurized in the arrow A and B direction of FIG. 6 (a), and the circuit connection material 50 is temporarily connected to the 1st circuit member 30 (FIG. 6 (b)). ).

이 때의 압력은 회로부재에 손상을 주지 않는 범위이면 특별히 제한되지 않지만, 일반적으로는 0.1~30.OMPa로 하는 것이 바람직하다. 또한, 가열하면서 가압해도 좋고, 가열 온도는 회로 접속 재료(50)가 실질적으로 경화하지 않는 온도로 한다. 가열 온도는 일반적으로는 50~190℃에서 하는 것이 바람직하다. 이러한 가열 및 가압은 0.5~120초간의 범위에서 실시하는 것이 바람직하다.Although the pressure in this case will not be restrict | limited especially if it is a range which does not damage a circuit member, Generally, it is preferable to set it as 0.1-30. OMPa. In addition, you may pressurize while heating, and heating temperature shall be temperature which the circuit connection material 50 does not harden substantially. It is preferable to carry out heating temperature at 50-190 degreeC generally. It is preferable to perform such heating and pressurization in the range for 0.5 to 120 second.

이어서, 도 6(c)에 나타낸 바와 같이, 제 2의 회로부재(40)를, 제 2의 회로전극(42)를 제 1의 회로부재(30)의 측으로 향하도록 하여 회로 접속 재료(50) 상에 올린다. 그리고, 필름 상태 회로 접속 재료(50)를 가열하면서, 도 6(c)의 화살표 A 및 B 방향으로 전체를 가압한다.Subsequently, as shown in FIG. 6C, the circuit connection material 50 with the second circuit member 40 facing the second circuit electrode 42 toward the first circuit member 30. Post to the prize. And the whole is pressed in the arrow A and B direction of FIG. 6 (c), heating the film state circuit connection material 50. FIG.

이 때의 가열 온도는, 회로 접속 재료(50)가 경화 가능한 온도로 한다. 가열 온도는, 60~180℃가 바람직하고, 70~170℃가 보다 바람직하고, 80~160℃가 더욱 바람직하다. 가열 온도가 60℃ 미만이면 경화 속도가 늦어지는 경향이 있고, 180℃를 초과하면 바람직하지 않은 부반응이 진행하기 쉬운 경향이 있다. 가열시간은 0.1~180초가 바람직하고, 0.5~180초가 보다 바람직하고, 1~180초가 더욱 바람직하다.The heating temperature at this time is made into the temperature at which the circuit connection material 50 can harden | cure. 60-180 degreeC is preferable, as for heating temperature, 70-170 degreeC is more preferable, and 80-160 degreeC is further more preferable. When heating temperature is less than 60 degreeC, hardening rate will become slow, and when it exceeds 180 degreeC, there exists a tendency for undesirable side reaction to advance easily. 0.1-180 second is preferable, 0.5-180 second is more preferable, and, as for a heat time, 1-180 second is still more preferable.

회로 접속 재료(50)의 경화에 의해 접착부(50a)가 형성되고, 도 1에 나타내는 바와 같은 접속체(100)를 얻을 수 있다. 접속의 조건은, 사용하는 용도, 접착제 조성물, 회로부재에 의해서 적절히 선택된다. 또한, 회로 접속 재료(50)의 접착제 성분으로서, 광에 의해서 경화하는 것을 사용한 경우에는, 회로 접속 재료(50)에 대해서 활성 광선이나 에너지선을 적절히 조사하면 좋다. 활성 광선으로서는, 자외선, 가시광, 적외선 등을 들 수 있다. 에너지선으로서는, 전자선, 엑스선, γ선, 마이크로파 등을 들 수 있다.The adhesion part 50a is formed by hardening of the circuit connection material 50, and the connection body 100 as shown in FIG. 1 can be obtained. The conditions of connection are suitably selected by the use, adhesive composition, and circuit member to be used. In addition, when using what hardens | cures with light as an adhesive agent component of the circuit connection material 50, what is necessary is just to irradiate an active light ray and an energy ray with respect to the circuit connection material 50 suitably. Examples of the active light include ultraviolet rays, visible light, infrared light, and the like. Examples of the energy rays include electron beams, X-rays, γ-rays, microwaves, and the like.

이상, 본 발명의 적절한 실시 형태에 대하여 설명했지만, 본 발명은 상기 실시 형태로 한정되는 것은 아니다. 본 발명은, 그 요지를 일탈하지 않는 범위에서 다양한 변형이 가능하다.As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be modified in various ways without departing from the spirit of the invention.

실시예Example

이하, 실시예에 의해 본 발명의 내용을 더욱 구체적으로 설명하지만, 본 발명은 이러한 실시예에 제한되는 것은 아니다.Hereinafter, the content of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

(( 실시예Example 1) One)

필름 형성성 고분자로서, 페녹시수지 용액(페녹시수지/톨루엔/아세트산에틸=40/30/30중량부) 100중량부, 에폭시 수지와 잠재성 경화제의 혼합물로서 마이크로 캅셀형 잠재성 경화제를 함유하는 액상 에폭시(아사히화성 주식회사 제조, 상품명: 노바큐어 3941) 60중량부, 도전입자로서 Ni/Au 도금 폴리스티렌 입자 10중량부, 및 실란커플링제(토오레·다우코닝·실리콘 주식회사 제조, 상품명:SZ6030) 10중량부를 혼합하여, 회로 접속용의 접착제 조성물을 조제했다. 또한, 페녹시수지로서, FX-293(상품명, 토토 화성 주식회사 제조)을 사용했다.A film-forming polymer comprising 100 parts by weight of a phenoxy resin solution (phenoxy resin / toluene / ethyl acetate = 40/30/30 parts by weight) and containing a microcapsule-type latent curing agent as a mixture of an epoxy resin and a latent curing agent. 60 parts by weight of liquid epoxy (manufactured by Asahi Kasei Co., Ltd., trade name: Novacure 3941), 10 parts by weight of Ni / Au plated polystyrene particles as conductive particles, and a silane coupling agent (manufactured by Toray Dow Corning Silicon Co., Ltd., product name: SZ6030) 10 weight part was mixed and the adhesive composition for circuit connection was prepared. As the phenoxy resin, FX-293 (trade name, manufactured by Toto Chemical Co., Ltd.) was used.

상기의 Ni/Au 도금 폴리스티렌 입자는, 평균 입경 3㎛의 폴리스티렌 입자(기재 입자)의 표면에, 평균 입경 400nm의 Ni 미립자(금속미립자)를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의한 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수(금속 도금층의 내측에 배치되어 있는 금속미립자의 수)는 32개였다. 폴리스티렌 입자의 20% 압축 변형시의 압축 탄성율은 750kgf/mm2이며, 최대 하중 5mN로 압축시킨 후의 압축 회복율은 70%였다.Said Ni / Au plating polystyrene particle forms Ni layer by electroless plating, after attaching Ni microparticles | fine-particles (metal microparticles) of average particle diameter 400nm to the surface of polystyrene particle (substrate particle) of 3 micrometers of average particle diameters, Finally, Au layer was formed and produced. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions (the number of metal fine particles disposed inside the metal plating layer) due to Ni fine particles was 32. The compressive elastic modulus at 20% compression deformation of the polystyrene particles was 750 kgf / mm 2 , and the compression recovery rate after compressing at a maximum load of 5 mN was 70%.

PET(폴리에틸렌테레프탈레이트)로 이루어지는 지지체(막두께 50㎛) 상에 상기의 접착제 조성물을 도포했다. 그 후, 이것을 70℃에서 10분간 건조시키고, 지지체 상에 설치된 도전입자 함유층(막두께 25㎛)을 얻었다.Said adhesive composition was apply | coated on the support body (film thickness 50 micrometers) which consists of PET (polyethylene terephthalate). Then, it dried at 70 degreeC for 10 minutes, and obtained the electrically-conductive particle containing layer (film thickness 25 micrometers) provided on the support body.

한편, 접착제 조성물의 용액 대신에, 페녹시수지 용액(페녹시수지/톨루엔/아세트산에틸=40/30/30중량부) 100중량부 및 에폭시 수지와 잠재성 경화제의 혼합물로서 마이크로 캅셀형 잠재성 경화제를 함유하는 액상 에폭시(아사히화성 주식회사 제, 상품명=노바 큐어 3941) 60중량부로 이루어지는 접착제 성분의 용액을, PET로 이루어지는 지지체(막두께 50㎛) 상에 도포했다. 그 후, 이것을 70℃에서 10분간 건조시키고, 지지체 상에 설치된 도전입자 비함유층(막두께 25㎛)을 얻었다.On the other hand, instead of the solution of the adhesive composition, a microcapsule-type latent curing agent as 100 parts by weight of a phenoxy resin solution (phenoxy resin / toluene / ethyl acetate = 40/30/30 parts by weight) and a mixture of an epoxy resin and a latent curing agent The solution of the adhesive component which consists of 60 weight part of liquid epoxy (Asahi Kasei Co., Ltd. make, brand name = Nova Cure 3941) containing was apply | coated on the support body (film thickness 50 micrometers) which consists of PET. Then, this was dried for 10 minutes at 70 degreeC, and the conductive particle free layer (film thickness 25 micrometers) provided on the support body was obtained.

상기의 도전입자 함유층과 도전입자 비함유층을, 종래 공지된 라미네이터를 이용하여 첩합(貼合)시켰다. 이것에 의해 도 5에 나타내는 상태의 이층 구성의 회로 접속 재료를 얻었다. 이것을 끈모양(帶狀)으로 절단하여, 회로 접속 재료를 제작했다.The said electrically-conductive particle containing layer and the electrically-conductive particle-free layer were bonded together using the conventionally well-known laminator. This obtained the circuit connection material of the double layer structure of the state shown in FIG. This was cut | disconnected to string shape and the circuit connection material was produced.

(( 실시예Example 2) 2)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 실시예 1에서 사용한 것과 동일한 폴리스티렌 입자의 표면에, 평균 입경 200nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 20개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. Ni / Au-plated polystyrene particles are formed by attaching Ni particles having an average particle diameter of 200 nm to the surface of the same polystyrene particles used in Example 1, forming a Ni layer by electroless plating, and finally forming an Au layer. Made. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions caused by the Ni fine particles was 20.

(( 실시예Example 3) 3)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 실시예 1에서 사용한 것과 동일한 폴리스티렌 입자의 표면에, 평균 입경 800nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 15개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. The Ni / Au plated polystyrene particles are formed by attaching Ni particles having an average particle diameter of 800 nm to the surface of the same polystyrene particles as used in Example 1, forming a Ni layer by electroless plating, and finally forming an Au layer. Made. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 15.

(( 실시예Example 4) 4)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 20% 압축 변형시의 압축 탄성율이 300kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 400nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au를 형성시켜 제작하였다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 30개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. Ni / Au plated polystyrene particles are formed by attaching Ni particles having an average particle diameter of 400 nm to the surface of the polystyrene particles having a compressive modulus of 300 kgf / mm 2 at 20% compression deformation, thereby forming a Ni layer by electroless plating. Finally, Au was produced. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 30.

(( 실시예Example 5) 5)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 20% 압축 변형시의 압축 탄성율이 600kgf/mm2이며, 또한, 최대 하중 5mN로 압축시킨 후의 압축 회복율이 40%인 폴리스티렌 입자의 표면에, 평균 입경 400nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 30개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. Ni / Au plated polystyrene particles have Ni particles having an average particle diameter of 400 nm on the surface of the polystyrene particles having a compressive elastic modulus of 600 kgf / mm 2 at 20% compression deformation and a compression recovery ratio of 40% after compression at a maximum load of 5 mN. After attaching, Ni layer was formed by electroless plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 30.

(( 실시예Example 6) 6)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 평균 입경이 4㎛이며, 또한, 20% 압축 변형시의 압축 탄성율이 700kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 400nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 32개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. The Ni / Au-plated polystyrene particles had an average particle diameter of 4 µm and were electroless after attaching Ni particles having an average particle diameter of 400 nm to the surface of the polystyrene particles having a compressive modulus of 700 kgf / mm 2 at 20% compression deformation. Ni layer was formed by plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 32.

(( 실시예Example 7) 7)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 평균 입경이 3㎛이며, 또한, 20% 압축 변형시의 압축 탄성율이 450kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 160nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 8개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. The Ni / Au plated polystyrene particles were electroless after attaching Ni particles having an average particle diameter of 160 nm to the surface of the polystyrene particles having an average particle diameter of 3 μm and a compressive modulus of elasticity of 450 kgf / mm 2 at 20% compression deformation. Ni layer was formed by plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was eight.

(( 실시예Example 8) 8)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 평균 입경이 3㎛이며, 또한, 20% 압축 변형시의 압축 탄성율이 500kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 230nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 47개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. The Ni / Au plated polystyrene particles were electroless after attaching Ni particles having an average particle diameter of 230 nm to the surface of the polystyrene particles having an average particle diameter of 3 μm and a compressive modulus of elasticity of 500 kgf / mm 2 at 20% compression deformation. Ni layer was formed by plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 47.

(( 참고예Reference Example 9) 9)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 평균 입경이 3㎛이며, 또한, 20% 압축 변형시의 압축 탄성율이 90kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 200nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 23개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. The Ni / Au plated polystyrene particles have an average particle diameter of 3 μm, and after the Ni microparticles having an average particle diameter of 200 nm are attached to the surface of the polystyrene particles having a compressive modulus of 90 kgf / mm 2 at 20% compression deformation, they are electroless Ni layer was formed by plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 23.

(( 참고예Reference Example 10) 10)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 최대 하중 5mN로 압축시킨 후의 압축 회복율이 25%이며, 또한, 20% 압축 변형시의 압축 탄성율이 700kgf/mm2인 폴리스티렌 입자의 표면에, 평균 입경 400nm의 Ni 미립자를 부착시킨 후, 무전해 도금에 의해 Ni층을 형성하고, 최후에 Au층을 형성시켜 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 미립자에 기인하는 돌기의 수는 30개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. Ni / Au-plated polystyrene particles have a Ni recovery of 25% in compression after compression at a maximum load of 5 mN, and Ni particles having an average particle diameter of 400 nm on the surface of polystyrene particles having a compressive modulus of 700 kgf / mm 2 at 20% compression deformation. After attaching, Ni layer was formed by electroless plating and Au layer was formed last. As a result of observing the conductive particles after the plating treatment at a magnification of 6000 times by SEM, the number of protrusions due to Ni fine particles was 30.

(( 비교예Comparative example 1) One)

Ni/Au 도금 폴리스티렌 입자 대신에, 하기와 같이 하여 제작한 Au 도금 폴리스티렌 입자를 사용한 것 이외는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. 실시예 1에서 사용한 것과 동일한 폴리스티렌 입자의 표면상에, 무전해 도금에 의해 Au층을 형성하고, Au도금 폴리스티렌 입자를 제작했다.A circuit connection material was obtained like Example 1 except having used Au plating polystyrene particle | grains produced as follows instead of Ni / Au plating polystyrene particle | grains. On the surface of the same polystyrene particles used in Example 1, an Au layer was formed by electroless plating to prepare Au-plated polystyrene particles.

(( 비교예Comparative example 2) 2)

Ni/Au 도금 폴리스티렌 입자를 하기와 같이 하여 제작한 것 이외에는, 실시예 1과 마찬가지로 하여 회로 접속 재료를 얻었다. Ni/Au 도금 폴리스티렌 입자는, 실시예 1에서 사용한 것과 동일한 폴리스티렌 입자의 표면에, 무전해 니켈 도금을 실시하여 Ni층을 형성함과 동시에 Ni 덩어리를 석출시키고, 그 후, Au층을 도금하여 제작했다. 도금처리 후의 도전입자를 SEM에 의해 배율 6000배로 관찰한 결과, Ni 덩어리에 기인하는 돌기의 수는 35개였다.A circuit connection material was obtained in the same manner as in Example 1 except that the Ni / Au plated polystyrene particles were produced as follows. Ni / Au-plated polystyrene particles are produced by electroless nickel plating on the surface of the same polystyrene particles as used in Example 1 to form a Ni layer, simultaneously depositing Ni agglomerates and then plating an Au layer. did. As a result of observing the electroconductive particle after plating process at 6000 times magnification by SEM, the number of protrusions resulting from Ni mass was 35 pieces.

이어서, 상기 실시예, 참고예 및 비교예에서 제작한 회로 접속 재료에 대해서, 각종 평가를 실시했다.Next, various evaluation was performed about the circuit connection material produced by the said Example, the reference example, and the comparative example.

(초기접속 저항의 평가)(Evaluation of initial connection resistance)

범프치수 50㎛×50㎛, 피치 100㎛, 높이 20㎛의 금범프를 구비한 IC 칩과 표면상에 알루미늄전극이 형성된 유리 기판(두께 0.7mm)을 준비했다. 알루미늄전극과 금범프를 회로 접속 재료로 전기적으로 접속하여 접속 구조를 제작하고, 이 저항값을 측정하는 것으로 접속부분의 초기접속 저항값의 평가를 실시했다.An IC chip provided with gold bumps having a bump dimension of 50 μm × 50 μm, a pitch of 100 μm, and a height of 20 μm, and a glass substrate (0.7 mm thick) having an aluminum electrode formed on the surface thereof were prepared. An aluminum electrode and a gold bump were electrically connected with a circuit connection material, the connection structure was produced, and this resistance value was measured, and the initial connection resistance value of the connection part was evaluated.

구체적으로는, 우선, 도전입자 함유층 측의 지지체를 박리하고, 도전입자 함유층이 유리 기판과 서로 접하도록 회로 접속 재료를 유리 기판상에 배치하여, 예비 압착을 실시했다. 그리고, 도전입자 비함유층 측의 지지체를 박리한 후, 금범프가 도전입자 비함유층과 서로 접하도록 IC칩을 올려놓았다. IC칩의 배치 후, 가열하면서 회로 접속 재료를 사이에 둔 방향으로 가압하여 접속했다. 예비 압착의 조건은, 온도 70℃, 압력 0.5MPa(범프 면적 환산), 유지 시간 1초간으로 했다. 한편, 접속의 조건은, 온도 210℃, 압력 70MPa(범프 면적 환산), 유지 시간 5초간으로 했다.Specifically, first, the support on the conductive particle-containing layer side was peeled off, and the circuit connection material was disposed on the glass substrate so as to contact the glass substrate, and preliminarily crimped. After the support on the conductive particle free layer side was peeled off, the IC chip was placed so that the gold bumps contacted with the conductive particle free layer. After the arrangement of the IC chip, the circuit connection material was pressurized in the direction sandwiched while heating, and connected. The conditions of preliminary crimping were made into temperature 70 degreeC, pressure 0.5MPa (bump area conversion), and holding time for 1 second. In addition, the conditions of connection were made into temperature 210 degreeC, pressure 70MPa (bump area conversion), and holding time for 5 second.

이와 같이 하여 접속된 접속 구조의 저항치(R0)를 측정했다. 초기접속저항의 평가는 이하의 기준에 근거해서 행하였다.In this way, the resistance value R 0 of the connected connection structure was measured. The initial connection resistance was evaluated based on the following criteria.

A: R0가 1Ω 미만,A: R 0 is less than 1Ω,

B: R0가 1~2Ω,B: R 0 is 1-2 Ω,

C: R0가 2Ω을 초과한다.C: R 0 exceeds 2Ω.

회로 접속 재료로서 상기 실시예, 참고예 및 비교예의 회로 접속 재료를, 각각 사용한 경우의 초기 접속 저항의 평가 결과를 표 1 및 표 2에 나타낸다.Table 1 and Table 2 show the evaluation results of the initial connection resistance when the circuit connection materials of the above examples, reference examples and comparative examples were used as circuit connection materials, respectively.

(열사이클 시험 후의 접속 저항의 평가)(Evaluation of connection resistance after thermal cycle test)

상기의 초기 접속 저항의 평가를 실시한 후, 접속 구조에 대해서 승온 강온을 반복하는 열사이클 시험을 실시하고, 열사이클 시험 후의 접속 저항의 평가를 실시했다. 열사이클 시험은 접속 구조를 실온으로부터 100℃로 승온, 이어서 -40℃까지 강온한 후에 실온까지 승온하는 공정을 20회 반복하는 것으로 행하였다. 열사이클 시험 후의 접속 구조의 저항값(R1)을 이용하여 측정했다.After evaluating said initial stage connection resistance, the heat cycle test which repeats temperature rising and falling temperature about the connection structure was implemented, and the connection resistance after the heat cycle test was evaluated. The heat cycle test was performed by repeating the step of raising the temperature of the bonded structure from room temperature to 100 ° C, followed by lowering the temperature to -40 ° C, and then raising the temperature to room temperature 20 times. It was measured using a resistance value (R 1) of the connection structure after the heat cycle test.

열사이클 시험 후의 접속 저항의 평가는 이하의 기준에 근거하여 행하였다.Evaluation of the connection resistance after a thermal cycle test was performed based on the following references | standards.

A: R1이 3Ω 미만A: R 1 is less than 3Ω

B: R1이 3~4ΩB: R 1 is 3 ~ 4Ω

C: R1이 4Ω을 초과한다.C: R1 exceeds 4Ω.

회로 접속 재료로서 상기 실시예, 참고예 및 비교예의 회로 접속 재료를 각각 사용한 경우의 열사이클 시험 후의 접속 저항의 평가 결과를 표 1 및 표 2에 나타낸다.Table 1 and Table 2 show the evaluation results of the connection resistance after the heat cycle test when the circuit connection materials of the above examples, reference examples and comparative examples were used as circuit connection materials, respectively.

(절연성의 평가)(Evaluation of insulation)

범프 치수 50㎛×100㎛, 피치 15㎛, 높이 20㎛의 금범프를 구비한 IC 칩과 ITO 기판을 준비했다. ITO 기판과 복수의 금범프를 회로 접속 재료로 전기적으로 접속하여 접속 구조를 제작하고, 인접하는 금범프사이의 저항값을 측정함으로써 접속부분의 인접하는 금범프 사이의 전기 절연성의 평가를 실시했다. 또한, ITO 기판은, 유리 기판(두께 0.7mm) 상에, 인듐-주석산화물(ITO)을 증착시키고, ITO 전극(표면저항≤20Ω/□)을 형성한 것이다.An IC chip and an ITO substrate provided with gold bumps having a bump dimension of 50 μm × 100 μm, a pitch of 15 μm, and a height of 20 μm were prepared. The ITO board | substrate and some gold bumps were electrically connected with the circuit connection material, the connection structure was produced, and the electrical insulation between adjacent gold bumps of the connection part was evaluated by measuring the resistance value between adjacent gold bumps. The ITO substrate is formed by depositing indium tin oxide (ITO) on a glass substrate (thickness 0.7 mm) and forming an ITO electrode (surface resistance? 20? /?).

우선, 도전입자 함유층 측의 지지체를 박탈하고, 도전입자 함유층이 ITO 기판과 서로 접하도록 회로 접속 재료를 ITO 기판 상에 배치하여 예비 압착을 실시했다. 그리고, 도전입자 비함유층 측의 지지체를 박탈한 후, 금범프가 도전입자 비함유층과 서로 접하도록 IC 칩을 올려놓았다. IC 칩의 배치 후, 가열하면서 회로 접속 재료를 사이에 둔 방향으로 가압하여 접속했다. 예비 압착의 조건은 온도 70℃, 압력 0.5MPa(범프 면적 환산), 유지 시간 1초간으로 했다. 한편, 접속의 조건은 온도 210℃, 압력 70MPa(범프 면적 환산), 유지 시간 5초간으로 했다.First, the support body on the side of the conductive particle-containing layer was stripped, and the circuit connection material was disposed on the ITO substrate so as to be in contact with the ITO substrate, and preliminarily crimped. Then, after depriving the support on the conductive particle-free layer side, the IC chip was placed so that gold bumps contacted with the conductive particle-free layer. After the arrangement of the IC chip, the circuit connection material was pressurized in the direction interposed while heating, and connected. The conditions of preliminary crimping were made into the temperature of 70 degreeC, the pressure of 0.5 MPa (bump area conversion), and the holding time for 1 second. In addition, the conditions of connection were made into temperature 210 degreeC, pressure 70MPa (bump area conversion), and holding time for 5 second.

이와 같이 하여 접속된 접속 구조의 인접하는 금범프 사이에, 50V의 전압을 1분간 인가한 후, 상기 금범프간의 절연저항값(R2)을 측정했다. 절연성의 평가는 이하의 기준에 근거하여 행하였다.In this way, between adjacent gold bump connection structure of the connection, and then applied for one minute voltage of 50V, to measure the insulation resistance value (R 2) between the gold bumps. Evaluation of insulation was performed based on the following criteria.

A: R2가 1×1010Ω 이상,A: R 2 is 1 × 10 10 Ω or more,

B: R2가 1×109~1×1010Ω,B: R 2 is 1 × 10 9 to 1 × 10 10 Ω,

C: R2가 1×109Ω 미만.C: R 2 is less than 1 × 10 9 Ω.

회로 접속 재료로서 상기 실시예, 참고예 및 비교예의 회로 접속 재료를 각각 사용한 경우의 절연성의 평가 결과를 표 1 및 표 2에 나타낸다.Table 1 and Table 2 show the results of evaluation of insulation properties when the circuit connection materials of the above examples, reference examples and comparative examples were used as circuit connection materials, respectively.

[표 1]TABLE 1

Figure pat00001
Figure pat00001

[표 2]TABLE 2

Figure pat00002
Figure pat00002

표 1에 나타난 바와 같이, 실시예 1~6의 회로 접속 재료는, 평가 항목 모두에 있어 평가가 A였다. 이것에 의해, 실시예 1~6에 관한 회로 접속 재료에 의하면, 낮은 초기 접속 저항 및 인접하는 회로전극의 양호한 절연성의 양방을 고수준으로 달성할 수 있는 것으로 나타났다. 이것에 더하여, 열사이클 시험 후의 접속 저항의 평가가 A로 되어 있기 때문에, 접속 저항값의 상승을 충분히 억제할 수 있는 것으로 나타났다.As shown in Table 1, evaluation of the circuit connection material of Examples 1-6 was A in all evaluation items. Thereby, according to the circuit connection material which concerns on Examples 1-6, it turned out that both the low initial connection resistance and the favorable insulation of the adjacent circuit electrode can be achieved at a high level. In addition, since the evaluation of the connection resistance after a heat cycle test was A, it turned out that the rise of connection resistance value can fully be suppressed.

또한, Ni 미립자에 기인하는 돌기가 설치되지 않은 비교예 1의 회로 접속 재료는, 초기접속 저항의 평가가 B이며, 열사이클 시험 후의 접속 저항의 평가가 C였다.In addition, in the circuit connection material of the comparative example 1 in which the protrusion which originated in Ni microparticles | fine-particles was not evaluated, initial stage connection resistance evaluation was B, and evaluation of the connection resistance after a heat cycle test was C.

상기의 결과로부터, 본 발명에 의하면, 높은 파인피치화가 요구되고 있는 회로전극끼리를 접속할 때에, 회로전극이 표면에 산화막이 형성되기 쉬운 금속 재료로 이루어지는 것이어도, 접속 구조의 초기 저항값을 충분히 낮게 하는 것이 가능한 회로 접속 재료를 제공할 수 있는 것으로 나타났다.From the above results, according to the present invention, when connecting circuit electrodes requiring high fine pitch, even if the circuit electrodes are made of a metal material which is easy to form an oxide film on the surface, the initial resistance value of the connection structure is sufficiently low. It has been shown that it is possible to provide possible circuit connection materials.

본 발명에 의하면, 접속해야 할 전극이, 표면에 산화막이 형성되기 쉬운 금속 재료로 이루어지는 것이어도, 접속 구조의 초기 저항값을 충분히 낮게 하는 것이 가능한 접착제 조성물 및 이를 이용한 회로 접속 재료를 제공할 수 있다. 또한, 본 발명에 의하면, 낮은 접속 저항에서 회로부재가 접속된 접속 구조, 및 이를 얻기 위한 회로부재의 접속방법을 제공할 수 있다.ADVANTAGE OF THE INVENTION According to this invention, even if the electrode to be connected is made from the metal material with which an oxide film is easy to form on the surface, the adhesive composition which can make initial stage resistance value of a connection structure low enough, and a circuit connection material using the same can be provided. . Moreover, according to this invention, the connection structure with which the circuit member was connected at low connection resistance, and the connection method of the circuit member for obtaining the same can be provided.

1…기재입자, 2…금속미립자, 3…금속 도금층, 10…도전입자, 20…접착제 성분, 30…제 1의 회로부재, 31…회로기판(제 1의 회로기판), 32…회로전극(제 1의 회로전극), 40…제 2의 회로부재, 41…회로기판(제 2의 회로기판), 42…회로전극(제 2의 회로전극), 50, 70…회로 접속 재료, 60, 60a, 60b…지지체, 100…접속 구조.One… Substrate particles, 2... Metal fine particles, 3... 10 metal plating layer; Conductive particles, 20. Adhesive component, 30... First circuit member, 31... Circuit board (first circuit board), 32.. Circuit electrode (first circuit electrode), 40.. Second circuit member, 41... Circuit board (second circuit board), 42... Circuit electrode (second circuit electrode), 50, 70... Circuit connection material, 60, 60a, 60b... Support, 100... Connection structure.

Claims (1)

접착제 성분과, 상기 접착제 성분 중에 분산하고 있는 도전입자를 구비하는 접착제 조성물로서,
상기 도전입자는, 상기 도전입자의 중심부분을 구성하는 기재 입자와, 상기 기재 입자의 표면의 적어도 일부를 덮는 금속 도금층과, 상기 금속 도금층의 내측인 상기 기재 입자의 표면상에 배치된 복수의 금속미립자를 가지는, 접착제 조성물.
An adhesive composition comprising an adhesive component and conductive particles dispersed in the adhesive component,
The conductive particles include a substrate particle constituting the central portion of the conductive particle, a metal plating layer covering at least a part of the surface of the substrate particle, and a plurality of metals disposed on the surface of the substrate particle that is inside the metal plating layer. Adhesive composition which has microparticles | fine-particles.
KR1020117009581A 2005-11-18 2006-11-14 Adhesive composition KR20110048079A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005334235 2005-11-18
JPJP-P-2005-334235 2005-11-18
JP2006178346 2006-06-28
JPJP-P-2006-178346 2006-06-28
PCT/JP2006/322628 WO2007058159A1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020087011623A Division KR101049609B1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method

Publications (1)

Publication Number Publication Date
KR20110048079A true KR20110048079A (en) 2011-05-09

Family

ID=38048545

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020087011623A KR101049609B1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
KR1020117009581A KR20110048079A (en) 2005-11-18 2006-11-14 Adhesive composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020087011623A KR101049609B1 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method

Country Status (5)

Country Link
JP (2) JP4877230B2 (en)
KR (2) KR101049609B1 (en)
CN (1) CN101309993B (en)
TW (2) TW201202375A (en)
WO (1) WO2007058159A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018270B2 (en) * 2007-06-22 2012-09-05 パナソニック株式会社 Semiconductor laminate and semiconductor device using the same
KR20130088187A (en) * 2007-08-02 2013-08-07 히타치가세이가부시끼가이샤 Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
KR101183317B1 (en) * 2007-10-18 2012-09-14 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
KR20110019392A (en) * 2008-07-01 2011-02-25 히다치 가세고교 가부시끼가이샤 Circuit connection material and circuit connection structure
JP4596086B2 (en) * 2009-02-27 2010-12-08 日立化成工業株式会社 Adhesive reel
CN102474024B (en) * 2009-07-02 2014-09-17 日立化成株式会社 Conductive particle
JP5375374B2 (en) * 2009-07-02 2013-12-25 日立化成株式会社 Circuit connection material and circuit connection structure
JP4640531B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Conductive particles
JP4640532B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Coated conductive particles
JP5589361B2 (en) * 2009-11-16 2014-09-17 日立化成株式会社 Conductive particles and method for producing the same
JP5580729B2 (en) * 2010-12-28 2014-08-27 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
KR101151366B1 (en) 2011-11-24 2012-06-08 한화케미칼 주식회사 Conductive particles and method for preparing the same
JP6333552B2 (en) * 2012-01-19 2018-05-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP5936882B2 (en) * 2012-03-02 2016-06-22 デクセリアルズ株式会社 CIRCUIT CONNECTION MATERIAL, AND METHOD FOR MANUFACTURING MOUNTING BODY USING THE SAME
JP6364191B2 (en) * 2012-12-06 2018-07-25 積水化学工業株式会社 Conductive material, connection structure, and manufacturing method of connection structure
JP6212366B2 (en) * 2013-08-09 2017-10-11 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
US9960140B2 (en) * 2013-11-11 2018-05-01 Nippon Steel & Sumitomo Metal Corporation Metal joining structure using metal nanoparticles and metal joining method and metal joining material
KR20160106004A (en) * 2014-01-08 2016-09-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
WO2015107996A1 (en) * 2014-01-14 2015-07-23 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing same and conductive coated article
JP2015195178A (en) * 2014-03-26 2015-11-05 デクセリアルズ株式会社 Conductive particle, conductive adhesive, method for producing connection body, method for connecting electronic component, and connection body
CN112863732B (en) * 2014-10-29 2023-01-17 迪睿合株式会社 Method for manufacturing connection structure, and conductive material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
JP7007138B2 (en) * 2016-09-09 2022-02-10 積水化学工業株式会社 Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504057B2 (en) * 1987-06-02 1996-06-05 日立化成工業株式会社 Conductive particles
JP3083535B2 (en) * 1990-06-01 2000-09-04 積水化学工業株式会社 Conductive fine particles and conductive adhesive
JP3420809B2 (en) * 1993-12-16 2003-06-30 信越ポリマー株式会社 Conductive particles and anisotropic conductive adhesive using the same
JP2823799B2 (en) * 1994-07-29 1998-11-11 信越ポリマー株式会社 Anisotropic conductive adhesive
JP3766123B2 (en) * 1995-10-03 2006-04-12 積水化学工業株式会社 Conductive connection method between electrodes and conductive fine particles
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP4663158B2 (en) * 2000-06-14 2011-03-30 積水化学工業株式会社 Fine particle arrangement film, conductive connection film, conductive connection structure, and fine particle arrangement method
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005108870A (en) * 2003-09-26 2005-04-21 Sekisui Chem Co Ltd Ic chip, its manufacturing method, semiconductor package, and liquid crystal display device
JP5247968B2 (en) * 2003-12-02 2013-07-24 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
US7410698B2 (en) * 2004-01-30 2008-08-12 Sekisui Chemical Co., Ltd. Conductive particle with protrusions and anisotropic conductive material therefrom
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles
JP4593302B2 (en) * 2005-02-03 2010-12-08 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4674096B2 (en) * 2005-02-15 2011-04-20 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) * 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP4936678B2 (en) * 2005-04-21 2012-05-23 積水化学工業株式会社 Conductive particles and anisotropic conductive materials
JP2006331714A (en) * 2005-05-24 2006-12-07 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) * 2005-06-07 2010-12-01 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP4718926B2 (en) * 2005-07-29 2011-07-06 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4598621B2 (en) * 2005-07-29 2010-12-15 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4950451B2 (en) * 2005-07-29 2012-06-13 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure

Also Published As

Publication number Publication date
WO2007058159A1 (en) 2007-05-24
JPWO2007058159A1 (en) 2009-04-30
TW201202375A (en) 2012-01-16
CN101309993A (en) 2008-11-19
JP4877230B2 (en) 2012-02-15
JP2011231326A (en) 2011-11-17
TWI367246B (en) 2012-07-01
KR101049609B1 (en) 2011-07-14
KR20080072658A (en) 2008-08-06
CN101309993B (en) 2012-06-27
TW200730599A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR101049609B1 (en) Adhesive composition, circuit connection material, connection structure, and circuit member connection method
EP1628363B1 (en) Circuit member connecting structure and method of producing the same
KR101385899B1 (en) Adhesive composition, film-like adhesive, and connection structure for circuit member
KR101205170B1 (en) Circuit connecting material and structure for connecting circuit member
JP4967482B2 (en) Conductive particles, adhesive composition and circuit connecting material
KR100908370B1 (en) A coated particle for circuit connection material
KR20110019392A (en) Circuit connection material and circuit connection structure
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4380327B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP2019065062A (en) Conductive adhesive film
JP4386145B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP4386146B2 (en) Film-like circuit connection material, circuit member connection structure and manufacturing method thereof
JP2009289729A (en) Anisotropic conductive film
JP2015149313A (en) Adhesive for electronic device and method of bonding electronic device
JP2009182365A (en) Manufacturing method of circuit board, and circuit connection material

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application