JP2005149764A - Covered conductive particle, anisotropic conductive material, and conductive connection structure - Google Patents

Covered conductive particle, anisotropic conductive material, and conductive connection structure Download PDF

Info

Publication number
JP2005149764A
JP2005149764A JP2003381658A JP2003381658A JP2005149764A JP 2005149764 A JP2005149764 A JP 2005149764A JP 2003381658 A JP2003381658 A JP 2003381658A JP 2003381658 A JP2003381658 A JP 2003381658A JP 2005149764 A JP2005149764 A JP 2005149764A
Authority
JP
Japan
Prior art keywords
particles
core
particle
shell
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003381658A
Other languages
Japanese (ja)
Other versions
JP2005149764A5 (en
JP4686120B2 (en
Inventor
Shigeo Mahara
茂雄 真原
Takeshi Wakiya
武司 脇屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003381658A priority Critical patent/JP4686120B2/en
Publication of JP2005149764A publication Critical patent/JP2005149764A/en
Publication of JP2005149764A5 publication Critical patent/JP2005149764A5/ja
Application granted granted Critical
Publication of JP4686120B2 publication Critical patent/JP4686120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a covered conductive particle surely performing a conductive connection between electrodes on a base plate or the like by crimping, as well as preventing leakage between adjacent particles, and also to provide an anisotropic conductive material using the covered conductive particle, and a conductive connection structure. <P>SOLUTION: The covered conductive particle is composed of: a base material particle made of metal having a conductive surface; and a core shell particles covering the base material particle. The core shell particle is composed of a core particle and a shell layer formed on the surface of the core particle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板間の導電接続を確実に行うことができるとともに、隣接する粒子間でのリ
ークを防止することができる被覆導電粒子、該被覆導電粒子を用いてなる異方性導電材料
及び導電接続構造体に関する。
The present invention provides a coated conductive particle capable of reliably performing conductive connection between substrates and preventing leakage between adjacent particles, an anisotropic conductive material using the coated conductive particle, and a conductive film. It relates to a connection structure.

基材粒子の表面の一部を樹脂により被覆した粒子(以下、被覆粒子ともいう)は、基材粒
子に耐熱性、耐磨耗性、絶縁性、導電性、撥水性、接着性、分散性、光沢、着色等の性能
が付与可能であり、種々の充填剤、改質剤としてフィルム、粘着剤、接着剤、塗料等に用
いられている。なかでも、金属表面を有した導電性粒子の表面を絶縁性の樹脂で被覆した
被覆導電粒子を接着剤に分散した異方導電フィルムや異方導電接着剤は、被覆した絶縁樹
脂により隣接する導電粒子間の導通を防ぐことが可能となり、接続信頼性の向上が期待さ
れている。
Particles in which a part of the surface of the base particle is coated with a resin (hereinafter also referred to as coated particle) are heat resistance, wear resistance, insulation, conductivity, water repellency, adhesiveness, dispersibility on the base particle. Further, it is possible to impart performance such as gloss and coloring, and it is used as various fillers and modifiers for films, pressure-sensitive adhesives, adhesives, paints and the like. In particular, anisotropic conductive films and anisotropic conductive adhesives in which coated conductive particles whose surfaces are coated with an insulating resin are coated with an insulating resin are bonded to the adjacent insulating resin by the coated insulating resin. It is possible to prevent conduction between particles, and improvement in connection reliability is expected.

このような被覆導電粒子としては、例えば、特許文献1には、ハイブリダイゼーションに
より導電粒子の表面に絶縁層を形成させた被覆導電粒子が開示されており、また、例えば
、特許文献2には、導電粒子の表面に導電粒子より粒径が小さくかつ導電粒子と電荷の符
号が異なる子粒子を用いて被覆した被覆導電粒子が開示されている。
しかしながら、絶縁層や子粒子のガラス転移温度(Tg)又は軟化点温度が低いと、貯蔵
安定性が低く、被覆導電粒子同士が合着や凝集を起こしやすくなり、また、異方導電ペー
ストや異方導電フィルムとして電極間で熱圧着を行う際に、隣接粒子間でのリークが起こ
りやすくなるといった問題があり、絶縁層や子粒子のTg又は軟化点温度が高いと、電極
間で熱圧着する際の条件が厳しくなり、基板や液晶セルガラスに大きな負担がかかるとい
った問題があった。
As such coated conductive particles, for example, Patent Document 1 discloses coated conductive particles in which an insulating layer is formed on the surface of the conductive particles by hybridization, and for example, Patent Document 2 A coated conductive particle is disclosed in which the surface of a conductive particle is coated with a child particle having a particle size smaller than that of the conductive particle and having a charge sign different from that of the conductive particle.
However, if the glass transition temperature (Tg) or softening point temperature of the insulating layer or the child particles is low, the storage stability is low, and the coated conductive particles tend to coalesce or agglomerate with each other. When performing thermocompression bonding between electrodes as a conductive film, there is a problem that leakage between adjacent particles is likely to occur. When the Tg or softening point temperature of the insulating layer or the child particles is high, thermocompression bonding is performed between the electrodes. The conditions at the time became severe, and there was a problem that a large burden was placed on the substrate and the liquid crystal cell glass.

特開平7−105716号公報JP-A-7-105716 特開2003−26813号公報JP 2003-26813 A

本発明は、上記に鑑み、基板間の導電接続を確実に行うことができるとともに、隣接する
粒子間でのリークを防止することができる被覆導電粒子、該被覆導電粒子を用いてなる異
方性導電材料及び導電接続構造体を提供することを目的する。
In view of the above, the present invention can reliably perform conductive connection between substrates and can prevent leakage between adjacent particles, and an anisotropic film formed using the coated conductive particles. An object is to provide a conductive material and a conductive connection structure.

本発明は、表面が導電性を有する金属からなる基材粒子と前記基材粒子を被覆するコアシ
ェル粒子とからなる被覆導電性粒子であって、前記コアシェル粒子は、コア粒子と前記コ
ア粒子の表面に形成されたシェル層とからなる被覆導電粒子である。
以下に本発明を詳述する。
The present invention is a coated conductive particle comprising a base particle made of a metal having a conductive surface and a core-shell particle covering the base particle, wherein the core-shell particle is a surface of the core particle and the core particle Coated conductive particles comprising a shell layer formed in
The present invention is described in detail below.

本発明の被覆粒子は、表面が導電性を有する金属からなる基材粒子と該基材粒子を被覆す
る絶縁性のコアシェル粒子とからなる。
上記基材粒子は、その表面が導電性を有する金属からなる。このような被覆導電粒子は、
半導体素子等の小型電機部品を基板に電気的に接続したり、基板同士を電気的に接続した
りするためのいわゆる異方性導電材料として用いることができる。
この場合、上記基材粒子は、後述する無機化合物や有機化合物からなる球状芯材粒子の表
面に上記導電性を有する金属の層が形成されていてもよく、上記導電性を有する金属のみ
からなる金属粒子であってもよい。なかでも、有機化合物からなる球状芯材粒子の表面に
導電性の金属層が形成されたものは、基板間を導電接続する際の圧着時に変形して接合面
積を増やすことができることから、接続安定性の点で好ましい。
The coated particles of the present invention are composed of base particles made of a metal whose surface is conductive and insulating core-shell particles that coat the base particles.
The base particles are made of a metal whose surface has conductivity. Such coated conductive particles are
It can be used as a so-called anisotropic conductive material for electrically connecting small electrical parts such as semiconductor elements to substrates or electrically connecting substrates.
In this case, the base material particle may be formed with the conductive metal layer on the surface of the spherical core particle made of an inorganic compound or an organic compound, which will be described later, and is made of only the conductive metal. Metal particles may also be used. Among them, those in which a conductive metal layer is formed on the surface of spherical core particles made of an organic compound can be deformed at the time of pressure bonding when conductively connecting between substrates, so that the joining area can be increased. From the viewpoint of sex.

上記導電性を有する金属としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄
、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモ
ン、ビスマス、ゲルマニウム、カドミウム等の金属や、ITO、ハンダ等の金属化合物か
らなるもの等が挙げられる。
The conductive metal is not particularly limited. For example, gold, silver, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium And those made of metal compounds such as ITO and solder.

上記導電性を有する金属からなる金属層が有機化合物からなる球状芯材粒子の表面に形成
されている場合、上記金属層は、単層構造であってもよく、複数の層からなる積層構造で
あってもよい。積層構造からなる場合には、最外層は金からなることが好ましい。最外層
を金からなるものにすることにより、耐食性が高く接触抵抗も小さいので、得られる被覆
粒子は更に優れたものとなる。
When the metal layer made of the conductive metal is formed on the surface of the spherical core particles made of an organic compound, the metal layer may have a single layer structure or a laminated structure made up of a plurality of layers. There may be. In the case of a laminated structure, the outermost layer is preferably made of gold. By making the outermost layer of gold, since the corrosion resistance is high and the contact resistance is small, the obtained coated particles are further improved.

上記有機化合物からなる球状芯材粒子の表面に導電性の金属層を形成する方法としては特
に限定されず、例えば、物理的な金属蒸着法、化学的な無電解メッキ法等の公知の方法が
挙げられるが、工程の簡便さから無電解メッキ法が好適である。無電解メッキ法で形成で
きる金属層としては、例えば、金、銀、銅、プラチナ、パラジウム、ニッケル、ロジウム
、ルテニウム、コバルト、錫及びこれらの合金等が挙げられるが、本発明の被覆導電粒子
においては、均一な被覆を高密度で形成できることから金属層の一部又は全部が無電解ニ
ッケルメッキによって形成されたものであることが好ましい。
The method for forming the conductive metal layer on the surface of the spherical core particles made of the organic compound is not particularly limited. For example, a known method such as physical metal vapor deposition or chemical electroless plating may be used. The electroless plating method is preferable because of the simplicity of the process. Examples of the metal layer that can be formed by the electroless plating method include gold, silver, copper, platinum, palladium, nickel, rhodium, ruthenium, cobalt, tin, and alloys thereof. In the coated conductive particles of the present invention, Since a uniform coating can be formed at a high density, it is preferable that a part or all of the metal layer is formed by electroless nickel plating.

上記金属層の最外層に金層を形成する方法としては特に限定されず、例えば、無電解メッ
キ、置換メッキ、電気メッキ、スパッタリング等の既知の方法等が挙げられる。
The method for forming the gold layer on the outermost layer of the metal layer is not particularly limited, and examples thereof include known methods such as electroless plating, displacement plating, electroplating, and sputtering.

上記金属層の厚みとしては特に限定されないが、好ましい下限は0.005μm、好まし
い上限は2μmである。0.005μm未満であると、導電層としての充分な効果が得ら
れないことがあり、2μmを超えると、得られる被覆導電粒子の比重が高くなりすぎたり
、有機化合物からなる母粒子の硬さがもはや充分変形できる硬度ではなくなったりするこ
とがある。より好ましい下限は0.01μm、より好ましい上限は1μmである。
Although it does not specifically limit as thickness of the said metal layer, A preferable minimum is 0.005 micrometer and a preferable upper limit is 2 micrometers. When the thickness is less than 0.005 μm, a sufficient effect as the conductive layer may not be obtained. When the thickness exceeds 2 μm, the specific gravity of the obtained coated conductive particles becomes too high, or the hardness of the mother particles made of an organic compound May no longer be hard enough to deform. A more preferable lower limit is 0.01 μm, and a more preferable upper limit is 1 μm.

また、上記金属層の最外層を金層とする場合には、金層の厚みの好ましい下限は0.00
1μm、好ましい上限は0.5μmである。0.001μm未満であると、均一に金属層
を被覆することが困難になり耐食性や接触抵抗値の向上効果が期待できないことがあり、
0.5μmを超えると、その効果の割には高価である。より好ましい下限は0.01μm
、より好ましい上限は0.3μmである。
When the outermost layer of the metal layer is a gold layer, the preferred lower limit of the gold layer thickness is 0.00
1 μm and a preferable upper limit is 0.5 μm. If it is less than 0.001 μm, it may be difficult to uniformly coat the metal layer, and the improvement effect of corrosion resistance and contact resistance value may not be expected.
If it exceeds 0.5 μm, it is expensive for its effect. A more preferable lower limit is 0.01 μm.
A more preferable upper limit is 0.3 μm.

上記基材粒子が球状芯材粒子の表面に上記導電性を有する金属の層が形成されている場合
、上記球状芯材粒子としては特に限定されず、例えば、均一な組成からなる粒子や、複数
の原料が層状に構成された多層構造の粒子等が挙げられる。なかでも、基材粒子に機械的
特性や電気的特性等の種々の特性を付与したい場合には、多層構造の粒子が好適である。
When the base metal particles are formed with the conductive metal layer on the surface of the spherical core particles, the spherical core particles are not particularly limited. For example, particles having a uniform composition, And particles having a multilayer structure in which the raw materials are formed in layers. In particular, when it is desired to impart various properties such as mechanical properties and electrical properties to the base particles, particles having a multilayer structure are preferable.

上記球状芯材粒子を構成する材料としては特に限定されず、公知のシリカ等の無機材料や
有機材料等が挙げられる。なかでも、本発明の被覆導電粒子が異方性導電材料に用いられ
る場合に、基板間を導電接続する際の圧着時に変形して基材粒子表面と電極との接合面積
を増やすことができ、接続安定性に優れることから、有機材料が好ましい。
It does not specifically limit as a material which comprises the said spherical core material particle, Well-known inorganic materials, such as a silica, an organic material, etc. are mentioned. Among them, when the coated conductive particles of the present invention are used for an anisotropic conductive material, it can be deformed at the time of pressure bonding when conductively connecting between the substrates, and the bonding area between the surface of the base particle and the electrode can be increased. An organic material is preferable because of excellent connection stability.

上記有機材料としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリス
チレン、ポリプロピレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン、ポリ
メチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂、ポリアルキレンテレ
フタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒ
ド樹脂等のフェノール樹脂、メラミンホルムアルデヒド樹脂等のメラミン樹脂、ベンゾグ
アナミンホルムアルデヒド樹脂等のベンゾグアナミン樹脂、尿素ホルムアルデヒド樹脂、
エポキシ樹脂、(不)飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホ
ン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリ
エーテルエーテルケトン、ポリエーテルスルホン等からなるものが挙げられる。なかでも
、エチレン性不飽和基を有する種々の重合性単量体を1種又は2種以上重合させてなる樹
脂を用いてなるものは、好適な硬さを得やすいことから好ましい。
The organic material is not particularly limited. For example, polyolefins such as polyethylene, polypropylene, polystyrene, polypropylene, polyisobutylene, and polybutadiene, acrylic resins such as polymethyl methacrylate and polymethyl acrylate, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, Phenol resin such as phenol formaldehyde resin, melamine resin such as melamine formaldehyde resin, benzoguanamine resin such as benzoguanamine formaldehyde resin, urea formaldehyde resin,
Examples thereof include epoxy resin, (un) saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, polyetheretherketone, polyethersulfone and the like. Especially, what uses the resin formed by superposing | polymerizing 1 type, or 2 or more types of various polymerizable monomers which have an ethylenically unsaturated group is preferable from being easy to obtain suitable hardness.

上記エチレン性不飽和基を有する重合性単量体は、非架橋性の単量体でも架橋性の単量体
でもよい。
上記非架橋性の単量体としては、例えば、スチレン、α−メチルスチレン、p−メチルス
チレン、p−クロロスチレン、クロロメチルスチレン等のスチレン系単量体;(メタ)ア
クリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)
アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(
メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アク
リレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキ
シル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチレングリコール(
メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピ
ル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2−ヒドロキシエチル(
メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)
アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート
類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチル
ビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニ
ル、ラウリン酸ビニル、ステアリン酸ビニル、フッ化ビニル、塩化ビニル、プロピオン酸
ビニル等の酸ビニルエステル類;エチレン、プロピレン、ブチレン、メチルペンテン、イ
ソプレン、ブタジエン等の不飽和炭化水素等が挙げられる。
The polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer.
Examples of the non-crosslinkable monomer include styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene; (meth) acrylic acid, maleic acid, Carboxyl group-containing monomers such as maleic anhydride; methyl (meth)
Acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (
(Meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, ethylene glycol (
Alkyl (meth) acrylates such as meth) acrylate, trifluoroethyl (meth) acrylate and pentafluoropropyl (meth) acrylate; 2-hydroxyethyl (
(Meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth)
Oxygen atom-containing (meth) acrylates such as acrylate and glycidyl (meth) acrylate; Nitrile-containing monomers such as (meth) acrylonitrile; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether and propyl vinyl ether; Vinyl acetate, vinyl butyrate and laurin Acid vinyl esters such as vinyl acid vinyl, vinyl stearate, vinyl fluoride, vinyl chloride and vinyl propionate; and unsaturated hydrocarbons such as ethylene, propylene, butylene, methylpentene, isoprene and butadiene.

上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレ
ート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(
メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリ
スリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリ
レート、グリセロールトリ(メタ)アクリレート;グリセロールジ(メタ)アクリレート
、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ
)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、
トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリル
アミド、ジアリルエーテル等;γ―(メタ)アクリロキシプロピルトリメトキシシラン、
トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体;フタル
酸等のジカルボン酸類;ジアミン類;ジアリルフタレート、ベンゾグアナミン、トリアリ
ルイソシアネート等が挙げられる。
Examples of the crosslinkable monomer include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (
(Meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate; glycerol di (meth) acrylate, polyethylene glycol di (meth) ) Polyfunctional (meth) acrylates such as acrylate and polypropylene glycol di (meth) acrylate; triallyl (iso) cyanurate,
Triallyl trimellitate, divinylbenzene, diallyl phthalate, diallyl acrylamide, diallyl ether, etc .; γ- (meth) acryloxypropyltrimethoxysilane,
Silane-containing monomers such as trimethoxysilylstyrene and vinyltrimethoxysilane; dicarboxylic acids such as phthalic acid; diamines; diallyl phthalate, benzoguanamine, triallyl isocyanate and the like.

上記球状芯材粒子の平均粒子径の好ましい下限は0.5μm、好ましい上限は1000μ
mである。0.5μm未満であると、球状芯材粒子の表面に金属層を形成する場合、球状
芯材粒子の凝集が生じやすく、このような凝集を起こした球状芯材粒子を用いて製造され
る被覆導電粒子が、異方性導電材料に用いられると隣接する電極間でショートを引き起こ
すことがある。1000μmを超えると、電極当たりの被覆導電粒子の個数が少なくなり
すぎ接続信頼性が低下し、基板間の導電接続が不良となることがある。なお、上記球状芯
材粒子の平均粒子径は光学顕微鏡、電子顕微鏡、粒度分布計等を用いて計測した粒子径を
統計的に処理して求めることができる。
The preferable lower limit of the average particle diameter of the spherical core particles is 0.5 μm, and the preferable upper limit is 1000 μm.
m. When the metal layer is formed on the surface of the spherical core particles when the thickness is less than 0.5 μm, the spherical core particles are likely to be aggregated, and the coating produced using the spherical core particles that have caused such aggregation When the conductive particles are used as an anisotropic conductive material, a short circuit may occur between adjacent electrodes. If it exceeds 1000 μm, the number of coated conductive particles per electrode becomes too small, and the connection reliability may be lowered, resulting in poor conductive connection between the substrates. The average particle size of the spherical core particles can be obtained by statistically processing the particle size measured using an optical microscope, an electron microscope, a particle size distribution meter or the like.

上記球状芯材粒子の平均粒子径の変動係数は10%以下であることが好ましい。10%を
超えると、得られる被覆導電粒子が異方性導電材料に用いられると、相対向する基板間隔
を任意に制御することが困難になる。なお、上記変動係数とは、粒子径分布から得られる
標準偏差を平均粒子径で除して得られる数値である。
上記球状芯材粒子の10%K値の好ましい下限は1000MPa、好ましい上限は150
00MPaである。1000MPa未満であると、得られる被覆導電粒子の強度が不充分
であるため、本発明の被覆導電粒子が異方性導電材料に用いられると、圧縮変形させたと
きに粒子の破壊が生じ導電材料としての機能を果たさなくなることがあり、15000M
Paを超えると、本発明の被覆導電粒子が異方性導電材料に用いられると、基板を傷つけ
ることがある。より好ましい下限は2000MPa、より好ましい上限は10000MP
aである。なお、上記10%K値は、微小圧縮試験器(例えば、島津製作所製PCT−2
00等)を用い、粒子を直径50μmのダイアモンド製円柱からなる平滑圧子端面で、圧
縮速度2.6mN/秒、最大試験荷重10gの条件下で圧縮した場合の圧縮変位(mm)
を測定し、下記式により求めることができる。
K値(N/mm2)=(3/√2)・F・S−3/2・R−1/2
F:粒子の10%圧縮変形における荷重値(N)
S:粒子の10%圧縮変形における圧縮変位(mm)
R:粒子の半径(mm)
The variation coefficient of the average particle diameter of the spherical core particles is preferably 10% or less. If it exceeds 10%, when the coated conductive particles obtained are used as an anisotropic conductive material, it becomes difficult to arbitrarily control the distance between the opposing substrates. The coefficient of variation is a numerical value obtained by dividing the standard deviation obtained from the particle size distribution by the average particle size.
The preferable lower limit of the 10% K value of the spherical core particles is 1000 MPa, and the preferable upper limit is 150.
00 MPa. If it is less than 1000 MPa, the strength of the coated conductive particles obtained is insufficient. Therefore, when the coated conductive particles of the present invention are used as an anisotropic conductive material, the particles are destroyed when compressed and deformed. 15000M may not function as
When it exceeds Pa, the substrate may be damaged when the coated conductive particles of the present invention are used as an anisotropic conductive material. A more preferable lower limit is 2000 MPa, and a more preferable upper limit is 10,000 MP.
a. In addition, the 10% K value is a micro compression tester (for example, PCT-2 manufactured by Shimadzu Corporation).
, Etc.), and the particles are compressed with a smooth indenter end face made of a diamond cylinder having a diameter of 50 μm under a compression rate of 2.6 mN / sec and a maximum test load of 10 g (mm).
Can be obtained by the following formula.
K value (N / mm 2) = ( 3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of particles (N)
S: Compression displacement (mm) in 10% compression deformation of particles
R: radius of particle (mm)

なお、10%K値が上記条件を満たす球状芯材粒子を得るためには、球状芯材粒子は、上
述のエチレン性不飽和基を有する重合性単量体を重合させてなる樹脂からなることが好ま
しく、この場合、構成成分として架橋性単量体を少なくとも20重量%以上含有すること
がより好ましい。
In order to obtain spherical core particles having a 10% K value satisfying the above conditions, the spherical core particles are made of a resin obtained by polymerizing the above polymerizable monomer having an ethylenically unsaturated group. In this case, it is more preferable to contain at least 20% by weight of a crosslinkable monomer as a constituent component.

上記球状芯材粒子は、回復率が20%以上であることが好ましい。20%未満であると、
得られる被覆導電粒子を圧縮した場合に変形しても元に戻らないため接続不良を起こすこ
とがある。より好ましくは40%以上である。なお、上記回復率とは、粒子に9.8mN
の荷重を負荷した後の回復率をいう。
The spherical core particles preferably have a recovery rate of 20% or more. If it is less than 20%,
If the resulting coated conductive particles are compressed, they will not return to their original shape even if they are deformed, which may cause poor connection. More preferably, it is 40% or more. The recovery rate is 9.8 mN per particle.
It means the recovery rate after applying the load.

このような球状芯材粒子の製造方法としては、従来公知の方法を用いることができ特に限
定されないが、例えば、エマルジョン重合法、転相乳化重合、懸濁重合法、分散重合法、
シード重合法、ソープフリー析出重合法等が挙げられる。なかでも粒径の制御性に優れる
シード重合法が好適である。
また、上記球状芯材粒子として市販されているものを用いることもできる。
As a method for producing such spherical core particles, conventionally known methods can be used and are not particularly limited. For example, emulsion polymerization, phase inversion emulsion polymerization, suspension polymerization, dispersion polymerization,
Examples thereof include a seed polymerization method and a soap-free precipitation polymerization method. Among these, a seed polymerization method that is excellent in controllability of particle diameter is preferable.
Moreover, what is marketed as said spherical core material particle can also be used.

本発明の被覆導電粒子において、上記基材粒子の表面には絶縁性のコアシェル粒子が被覆
されており、上記コアシェル粒子は、コア粒子と該コア粒子の表面に形成されたシェル層
とから構成されている。
上記コアシェル粒子を構成するコア粒子及びシェル層の材料としては絶縁性を有するもの
であれば特に限定されないが、有機材料からなることが好ましい。上記コア粒子及びシェ
ル層を構成する有機材料の種類を適宜選択することで上記コアシェル粒子の熱的特性を調
整することができるため、コアシェル粒子が変形又は破壊されやすくなり、基板間の圧着
を行う際に、基板との間からコアシェル粒子を確実に排除することができるようにするこ
とができる。
また、上記コア粒子及びシェル層の材料は、必要に応じて、熱特性、光学特性及び力学特
性等の異なる組み合わせを適宜選択することができる。
In the coated conductive particle of the present invention, the surface of the substrate particle is coated with an insulating core-shell particle, and the core-shell particle is composed of a core particle and a shell layer formed on the surface of the core particle. ing.
The material of the core particle and shell layer constituting the core-shell particle is not particularly limited as long as it has insulating properties, but is preferably made of an organic material. Since the thermal characteristics of the core-shell particles can be adjusted by appropriately selecting the type of the organic material that constitutes the core particles and the shell layer, the core-shell particles are easily deformed or broken, and pressure bonding between the substrates is performed. In this case, the core-shell particles can be surely excluded from the space between the substrates.
In addition, the materials for the core particles and the shell layer may be appropriately selected from different combinations such as thermal characteristics, optical characteristics, and mechanical characteristics as necessary.

すなわち、上記コアシェル粒子は、上記コア粒子及びシェル層を構成する有機化合物の種
類を適宜選択することで、1)コア粒子のガラス転移温度(Tg)又は軟化点温度よりも
シェル層のTg又は軟化点温度が高く、及び/又は、コア粒子の融点よりもシェル層の融
点が高いものや、逆に、2)シェル層のTg又は軟化点温度に対するコア粒子のTg又は
軟化点温度、及び/又は、シェル層の融点温度に対するコア粒子の融点温度が高いものと
することができる。
That is, the core-shell particles can be selected by appropriately selecting the type of organic compound that constitutes the core particles and the shell layer. 1) Tg or softening of the shell layer over the glass transition temperature (Tg) or softening point temperature of the core particles. The point temperature is high and / or the melting point of the shell layer is higher than the melting point of the core particle, and conversely 2) the Tg or softening point temperature of the core particle relative to the Tg or softening point temperature of the shell layer, and / or The melting point temperature of the core particles can be higher than the melting point temperature of the shell layer.

本発明の被覆導電粒子において、上記コアシェル粒子は、上記1)コア粒子のTg又は軟
化点温度よりもシェル層のTg又は軟化点温度が高く、及び/又は、コア粒子の融点より
もシェル層の融点が高いものであることが好ましい。上記コアシェル粒子の材料として、
従来凝集してしまうという問題があったTg又は軟化点温度の低い有機材料を使用するこ
とができるからである。即ち、コア粒子構成する材料としてTg又は軟化点温度の低い有
機材料を使用し、シェル層を構成する材料としてコア粒子よりTg又は軟化点温度の高い
有機材料を使用することで、本発明の被覆導電粒子は、従来の熱圧着条件より低温低圧で
被覆粒子が変形・溶融しやすくなり、その結果、電極と導電被覆粒子間で確実に導電接続
が可能となる。
この場合、上記コア粒子のTg又は軟化点温度の上限は60℃であることが好ましく、上
記シェル層のTg又は軟化点温度の上限は80℃であることが好ましい。
In the coated conductive particle of the present invention, the core-shell particle has the above-mentioned 1) Tg or softening point temperature of the shell layer higher than the Tg or softening point temperature of the core particle, and / or the shell layer higher than the melting point of the core particle. It is preferable that the melting point is high. As a material of the core-shell particles,
This is because an organic material having a low Tg or softening point temperature, which has conventionally been a problem of agglomeration, can be used. That is, by using an organic material having a lower Tg or softening point temperature as a material constituting the core particle and using an organic material having a higher Tg or softening point temperature than the core particle as the material constituting the shell layer, The conductive particles are easily deformed and melted at a lower temperature and lower pressure than conventional thermocompression bonding conditions, and as a result, a conductive connection can be reliably established between the electrode and the conductive coated particles.
In this case, the upper limit of the Tg or softening point temperature of the core particles is preferably 60 ° C., and the upper limit of the Tg or softening point temperature of the shell layer is preferably 80 ° C.

上記コアシェル粒子のコア粒子の軟化点温度に対するシェル層の軟化点温度、及び/又は
、コア粒子の融点に対するシェル層の融点に差をつける方法としては特に限定されず、例
えば、コア粒子及びシェル層を構成する材料としてTgが異なる材料を用いてマイクロカ
プセル化する方法や、コア粒子及びシェル層を構成する材料として架橋度の異なる材料を
用いてマイクロカプセル化する方法等が挙げられる。
The method for differentiating the softening point temperature of the shell layer with respect to the softening point temperature of the core shell particle and / or the melting point of the shell layer with respect to the melting point of the core particle is not particularly limited. And a method of microencapsulating using a material having a different Tg as a material constituting the core, and a method of microencapsulating using a material having a different degree of crosslinking as a material constituting the core particle and the shell layer.

なお、樹脂のTgは、用いる重合性単量体を選択することにより、また、Tgの異なる2
種以上の重合性単量体を共重合させることにより任意に調整可能である。例えば、Tg又
は軟化点温度が単独で60℃以下となる重合性単量体としては、イソブチルメタクリレー
ト、グリシジルメタクリレート等が挙げられる。また、Tgが60℃以上のスチレンやメ
タクリル酸メチル等とTgが60℃未満のブチルアクリレートやドデシルメタクリレート
等とを適当な比率で共重合させることによりTgを60℃以下にすることができる。
また、Tgが80℃以上の樹脂としては、例えば、スチレン、α−メチルスチレン、メチ
ルメタクリレート、t−ブチルメタクリレート等が挙げられる。これらは、単独で用いら
れてもよく、2種以上が併用されてもよい。
The Tg of the resin can be changed by selecting a polymerizable monomer to be used,
It can be arbitrarily adjusted by copolymerizing more than one type of polymerizable monomer. For example, isobutyl methacrylate, glycidyl methacrylate, etc. are mentioned as a polymerizable monomer which Tg or softening point temperature becomes 60 degrees C or less independently. Moreover, Tg can be 60 degrees C or less by copolymerizing styrene, methyl methacrylate, etc. whose Tg is 60 degreeC or more, and butyl acrylate, dodecyl methacrylate, etc. whose Tg is less than 60 degreeC.
Examples of the resin having a Tg of 80 ° C. or higher include styrene, α-methylstyrene, methyl methacrylate, t-butyl methacrylate, and the like. These may be used independently and 2 or more types may be used together.

また、コア粒子及びシェル層を構成する材料として架橋度の異なる材料を用い、上記コア
粒子の軟化点温度よりもシェル層の軟化温度が高く、及び/又は、コア粒子の融点よりも
シェル層の融点が高いものである場合、上記コア粒子となる樹脂の架橋度は5%未満であ
ることが好ましく、上記シェル層となる樹脂の架橋度は5%以上であることが好ましい。
Further, materials having different degrees of crosslinking are used as the material constituting the core particle and the shell layer, the softening temperature of the shell layer is higher than the softening point temperature of the core particle, and / or the shell layer has a melting point higher than the melting point of the core particle. When the melting point is high, the degree of cross-linking of the resin serving as the core particles is preferably less than 5%, and the degree of cross-linking of the resin serving as the shell layer is preferably 5% or more.

上記コアシェル粒子のコア粒子及びシェル層を構成する有機材料としては絶縁性を有する
ものであれば特に限定されず、例えば、上述の基材粒子に用いられる有機材料等が挙げら
れる。
なお、上記コアシェル粒子を構成する材料としては上記有機材料に限定されることはなく
、例えば、シリカ等の無機材料からなるものであってもよい。
The organic material constituting the core particle and the shell layer of the core-shell particle is not particularly limited as long as it has insulating properties, and examples thereof include organic materials used for the above-described base material particles.
In addition, as a material which comprises the said core-shell particle, it is not limited to the said organic material, For example, you may consist of inorganic materials, such as a silica.

上記有機材料の中では、本発明の被覆導電粒子が異方性導電材料として用いられる場合に
は、加熱圧着の際に、上記被覆導電粒子と基板間の有機材料粒子が溶融又は軟化し、良好
な基板間の導電接続が得られるため、熱可塑性の樹脂が好適に用いられる。
Among the organic materials, when the coated conductive particles of the present invention are used as an anisotropic conductive material, the organic material particles between the coated conductive particles and the substrate are melted or softened during thermocompression bonding. Since a conductive connection between the substrates can be obtained, a thermoplastic resin is preferably used.

なお、本発明の被覆導電粒子において、上記コアシェル粒子を作製する方法としては、例
えば、ソープフリー重合が好適に用いられる。
In the coated conductive particles of the present invention, for example, soap-free polymerization is suitably used as a method for producing the core-shell particles.

上記コアシェル粒子において、コア粒子の粒径及びシェル層の厚さとしては特に限定され
ないが、好ましくはシェル層の厚さがコア粒子の粒径の1/100以上、より好ましくは
1/50以上であり、また、シェル層の厚さはコア層の粒径の1/5以下であることが好
ましい。1/100未満であると、シェル層が薄すぎ、シェル層が破壊されやすく被覆粒
子同士が凝集することがあり、1/5を超えると、コアシェル粒子の物性がシェル層の物
性に支配され、コアシェル粒子が変形しにくくなり、基材粒子表面が露出しにくくなるた
め、基板間の導電接続を行う場合に電極間の導通不良を起こしやすくなることがある。
In the core-shell particles, the particle diameter of the core particles and the thickness of the shell layer are not particularly limited, but preferably the thickness of the shell layer is 1/100 or more, more preferably 1/50 or more of the particle diameter of the core particles. In addition, the thickness of the shell layer is preferably 1/5 or less of the particle size of the core layer. If it is less than 1/100, the shell layer is too thin and the shell layer is likely to be broken, and the coated particles may aggregate together. If it exceeds 1/5, the physical properties of the core-shell particles are governed by the physical properties of the shell layer, Since the core-shell particles are less likely to be deformed and the surface of the base material particles is less likely to be exposed, poor conduction between the electrodes may be likely to occur when conducting conductive connection between the substrates.

上記コアシェル粒子の粒子径は、基材粒子の粒子径及び本発明の被覆導電粒子の用途によ
っても異なるが、基材粒子の粒子径の1/10以下であることが好ましい。1/10を超
えると、基材粒子の物性が、コアシェル粒子の物性によって支配されることがあり、基材
粒子を用いる効果が得られにくくなる。更に好ましくは、コアシェル粒子の粒子径の下限
は10nm、好ましい上限は2000nmである。
また、上記コアシェル粒子の粒子径が上記基材粒子の粒子径の1/10以下である場合、
後述するヘテロ凝集法により本発明の被覆導電粒子を製造する際に、効率よく基材粒子上
にコアシェル粒子を吸着させることができる。
また、本発明の被覆粒子を異方性導電材料として用いる場合は、上記コアシェル粒子の粒
子径の好ましい下限は5nm、上限は1000nmであり、より好ましい下限は10nm
、上限は500nmである。5nm未満であると、隣接する被覆導電粒子間の距離が電子
のホッピング距離より小さくなり、リークが起こりやすくなり、1000nmを超えると
、圧着する際に必要な圧力や熱が大きくなりすぎることがある。
なお、大きなコアシェル粒子により被覆された隙間に小さなコアシェル粒子が入り込み、
被覆密度を向上できるため、粒子径の異なる2種以上のコアシェル粒子を併用してもよい
。この際、小さなコアシェル粒子の粒子径は大きなコアシェル粒子の粒子径の1/2以下
であることが好ましく、また、小さなコアシェル粒子の数は大きなコアシェル粒子の数の
1/4以下であることが好ましい。
The particle diameter of the core-shell particle varies depending on the particle diameter of the base particle and the application of the coated conductive particle of the present invention, but is preferably 1/10 or less of the particle diameter of the base particle. If it exceeds 1/10, the physical properties of the base particles may be governed by the physical properties of the core-shell particles, and the effect of using the base particles will be difficult to obtain. More preferably, the lower limit of the particle diameter of the core-shell particles is 10 nm, and the preferable upper limit is 2000 nm.
When the particle diameter of the core-shell particles is 1/10 or less of the particle diameter of the base particles,
When the coated conductive particles of the present invention are produced by the heteroaggregation method described later, the core-shell particles can be efficiently adsorbed on the substrate particles.
When using the coated particles of the present invention as an anisotropic conductive material, the preferred lower limit of the particle diameter of the core-shell particles is 5 nm, the upper limit is 1000 nm, and the more preferred lower limit is 10 nm.
The upper limit is 500 nm. If the thickness is less than 5 nm, the distance between adjacent coated conductive particles is smaller than the electron hopping distance, and leakage easily occurs. If the thickness exceeds 1000 nm, the pressure and heat required for pressure bonding may be too large. .
In addition, small core shell particles enter the gap covered with large core shell particles,
Since the coating density can be improved, two or more kinds of core-shell particles having different particle diameters may be used in combination. At this time, the particle diameter of the small core-shell particles is preferably 1/2 or less of the particle diameter of the large core-shell particles, and the number of small core-shell particles is preferably 1/4 or less of the number of large core-shell particles. .

上記コアシェル粒子は、粒子径のCV値が20%以下であることことが好ましい。20%
を超えると、得られる被覆導電粒子の大きさが不均一となり、本発明の被覆導電粒子が異
方性導電材料に用いられる場合、基板間で圧着する際に均一に圧力がかけにくくなり、導
電接続が不良となることがある。なお、上記粒子径のCV値は、下記式により算出するこ
とができる。
粒子径のCV値(%)=粒子径の標準偏差/平均粒子径×100
上記粒子径分布の測定方法としては、基材粒子を被覆する前は粒度分布計等で測定できる
が、被覆した後はSEM写真の画像解析等で測定することができる。
The core-shell particles preferably have a particle diameter CV value of 20% or less. 20%
If the coated conductive particles of the present invention are used as an anisotropic conductive material, it is difficult to uniformly apply pressure when pressure bonding between substrates. Connections may be poor. The CV value of the particle diameter can be calculated by the following formula.
CV value of particle diameter (%) = standard deviation of particle diameter / average particle diameter × 100
As a method for measuring the particle size distribution, it can be measured with a particle size distribution meter or the like before coating the substrate particles, but after coating, it can be measured by image analysis of an SEM photograph or the like.

本発明の被覆導電粒子は、このようなコアシェル粒子が基材粒子の表面に被覆されている
のであるが、上記コアシェル粒子は、その表面積の20%以下が上記基材表面粒子の表面
と接触していることが好ましい。20%を超えると、上記コアシェル粒子の変形が大きく
、得られる被覆導電粒子の大きさが不均一となったり、シェル層が破壊されてコアシェル
構造を維持できなくなったりする。なお、下限については特に限定されず、コアシェル粒
子と基材粒子とが、例えば鎖長の長いポリマー等により結ばれている場合には、実質的に
0%であってもよい。
In the coated conductive particle of the present invention, such a core-shell particle is coated on the surface of the base material particle. The core-shell particle has a surface area of 20% or less in contact with the surface of the base material surface particle. It is preferable. If it exceeds 20%, the deformation of the core-shell particles is large, resulting in non-uniform size of the coated conductive particles, or the shell layer is destroyed and the core-shell structure cannot be maintained. The lower limit is not particularly limited, and may be substantially 0% when the core-shell particles and the base particles are bound by, for example, a polymer having a long chain length.

本発明の被覆導電粒子は、上記基材粒子の表面の5%以上が上記コアシェル粒子により被
覆されていることが好ましい。5%未満であると、被覆導電粒子の絶縁性を確保できなこ
とがある。また、本発明の被覆粒子が異方性導電材料に用いられる場合、コアシェル粒子
の被覆密度の好ましい下限は5%、好ましい上限は60%である。5%未満であると、隣
接粒子間で基材粒子の金属表面が接触して横方向のリークが起こりやすくなり、60%を
超えると、充分な導通性を確保することができなくなるおそれがある。
なお、上記基材粒子表面のコアシェル粒子による被覆率は、コアシェル粒子の添加量(濃
度)、基材粒子表面に導入する官能基の量(密度)、反応溶媒の種類等によって制御可能
である。
In the coated conductive particles of the present invention, it is preferable that 5% or more of the surface of the substrate particles is coated with the core-shell particles. If it is less than 5%, the insulating properties of the coated conductive particles may not be ensured. When the coated particles of the present invention are used for an anisotropic conductive material, the preferable lower limit of the coating density of the core-shell particles is 5%, and the preferable upper limit is 60%. If it is less than 5%, the metal surfaces of the base particles come into contact with each other between adjacent particles, and lateral leakage tends to occur. If it exceeds 60%, sufficient conductivity may not be ensured. .
The coverage with the core-shell particles on the surface of the substrate particles can be controlled by the amount (concentration) of core-shell particles, the amount of functional groups introduced to the surface of the substrate particles (density), the type of reaction solvent, and the like.

本発明の被覆導電粒子において、上記コアシェル粒子は、基材粒子に対して結合性を有す
る官能基(A)を介して上記基材粒子の表面を部分的に被覆していることが好ましい。こ
の場合、上記コアシェル粒子は、上記基材粒子に化学結合されることとなり、ファンデル
ワールス力や静電気力のみによる結合に比べて結合力が強く、本発明の被覆導電粒子が異
方性導電材料に用いられる場合、バインダー樹脂等に混練する際にコアシェル粒子が剥が
れ落ちたり、隣接する被覆導電粒子との接触によりコアシェル粒子が剥がれ落ちてリーク
が起こったりするのを防ぐことができる。また、この化学結合は基材粒子とコアシェル粒
子との間にのみ形成され、コアシェル粒子同士が結合することはないので、コアシェル粒
子は単層で被覆されることとなる。このことから、基材粒子及びコアシェル粒子として粒
子径の揃ったものを用いれば、容易に本発明の被覆導電粒子の粒子径を均一なものとする
ことができる。
In the coated conductive particle of the present invention, it is preferable that the core-shell particle partially covers the surface of the base particle through a functional group (A) having a binding property to the base particle. In this case, the core-shell particle is chemically bonded to the base material particle, and has a stronger bonding force than a bond using only van der Waals force or electrostatic force, and the coated conductive particle of the present invention is an anisotropic conductive material. When used in the above, it is possible to prevent the core-shell particles from peeling off when kneaded with the binder resin or the like, or the core-shell particles from peeling off due to contact with the adjacent coated conductive particles, thereby causing leakage. In addition, since this chemical bond is formed only between the base particle and the core-shell particle, and the core-shell particle is not bonded to each other, the core-shell particle is covered with a single layer. From this, if the particles having the same particle diameter are used as the base particles and the core-shell particles, the coated conductive particles of the present invention can be easily made uniform in particle diameter.

上記官能基(A)としては、金属とイオン結合、共有結合、配位結合が可能な基であれば
特に限定されず、例えば、シラン基、シラノール基、カルボキシル基、アミノ基、アンモ
ニウム基、ニトロ基、水酸基、カルボニル基、チオール基、スルホン酸基、スルホニウム
基、ホウ酸基、オキサゾリン基、ピロリドン基、燐酸基、ニトリル基等が挙げられる。基
材粒子が金属からなる表面を有する本発明の被覆導電粒子では、金属との結合は配位結合
が好適に用いられるため、S、N、P原子を有する官能基が好適に用いられる。例えば、
上記金属が金の場合には、金に対して配位結合を形成するS原子を有する官能基、特にチ
オール基、スルフィド基であることが好ましい。
The functional group (A) is not particularly limited as long as it is a group capable of ionic bond, covalent bond, and coordinate bond with a metal. For example, silane group, silanol group, carboxyl group, amino group, ammonium group, nitro group Group, hydroxyl group, carbonyl group, thiol group, sulfonic acid group, sulfonium group, boric acid group, oxazoline group, pyrrolidone group, phosphoric acid group, nitrile group and the like. In the coated conductive particles of the present invention in which the base particles have a surface made of a metal, a coordinate bond is preferably used for the bond with the metal, and therefore a functional group having S, N, and P atoms is preferably used. For example,
When the metal is gold, it is preferably a functional group having an S atom that forms a coordinate bond with gold, particularly a thiol group or a sulfide group.

このような官能基(A)を用いて基材粒子とコアシェル粒子とを化学結合させる方法とし
ては特に限定されないが、例えば、1)官能基(A)を表面に有するコアシェル粒子を基
材粒子の表面に導入する方法、2)官能基(A)と反応性官能基(B)とを有する化合物
を基材粒子表面に導入し、その後一段階又は多段階の反応により反応性官能基(B)とコ
アシェル粒子とを反応させて結合する方法等が挙げられる。
The method for chemically bonding the base particle and the core-shell particle using such a functional group (A) is not particularly limited. For example, 1) The core-shell particle having the functional group (A) on the surface is used as the base particle. 2) Introduction of a compound having a functional group (A) and a reactive functional group (B) onto the surface of the substrate particle, and then a reactive functional group (B) by a one-step or multi-step reaction. And a method of binding the core-shell particles to each other.

上記1)の方法において、官能基(A)を表面に有するコアシェル粒子を作製する方法と
しては特に限定されず、例えば、官能基(A)を有するモノマーをコアシェル粒子の製造
時に混入させる方法;コアシェル粒子の表面に化学結合により官能基(A)を導入する方
法;コアシェル粒子の表面を化学処理し官能基(A)に改質する方法;コアシェル粒子の
表面をプラズマ等で官能基(A)に改質する方法等が挙げられる。
In the method 1), the method for producing the core-shell particles having the functional group (A) on the surface is not particularly limited. For example, a method in which a monomer having the functional group (A) is mixed during the production of the core-shell particles; A method of introducing a functional group (A) to the surface of the particle by chemical bonding; a method of chemically treating the surface of the core-shell particle to modify it to the functional group (A); a surface of the core-shell particle being converted into the functional group (A) by plasma or the like Examples of the method include reforming.

上記2)の方法としては、例えば、同一分子内に官能基(A)とヒドロキシル基、カルボ
キシル基、アミノ基、エポキシ基、シリル基、シラノール基、イソシアネート基等の反応
性官能基(B)とを有する化合物を基材粒子と反応させ、次いで、反応性官能基(B)に
共有結合可能な官能基を表面に有する有機化合物粒子を反応させる方法等が挙げられる。
このような同一分子内に官能基(A)と反応性官能基(B)とを有する化合物としては、
例えば、2−アミノエタンチオール、p−アミノチオフェノール等が挙げられる。2−ア
ミノエタンチオールを用いれば、基材粒子の表面にSH基を介して2−アミノエタンチオ
ールを結合させ、一方のアミノ基に対して例えば表面にエポキシ基やカルボキシル基等を
有するコアシェル粒子を反応させることにより、基材粒子とコアシェル粒子とを結合する
ことができる。
Examples of the method 2) include a functional group (A) and a reactive functional group (B) such as hydroxyl group, carboxyl group, amino group, epoxy group, silyl group, silanol group, and isocyanate group in the same molecule. And a method of reacting organic compound particles having functional groups that can be covalently bonded to the reactive functional group (B) on the surface.
As such a compound having a functional group (A) and a reactive functional group (B) in the same molecule,
Examples thereof include 2-aminoethanethiol and p-aminothiophenol. If 2-aminoethanethiol is used, core-shell particles having 2-aminoethanethiol bonded to the surface of the base particle via an SH group and having, for example, an epoxy group or a carboxyl group on the surface with respect to one amino group. By making it react, a base particle and a core-shell particle can be couple | bonded.

本発明の被覆導電粒子を製造する方法としては特に限定されず、例えば、静電相互作用、
ドライブレンド法、融解分散冷却法、溶解分散乾燥法、ヘテロ凝集法、スプレードライ法
、界面重合法等で基材粒子の表面にコアシェル粒子を導入し、コアシェル粒子と基材粒子
とを化学結合させる方法が挙げられる。基材粒子の表面が導電性の金属からなる本発明の
被覆導電粒子では、単層のコアシェル粒子で被覆する場合、コアシェル粒子の導入の際に
はヘテロ凝集法が好適に用いられる。
The method for producing the coated conductive particles of the present invention is not particularly limited, for example, electrostatic interaction,
Core-shell particles are introduced into the surface of the base particles by dry blending, melt dispersion cooling, dissolution dispersion drying, hetero-aggregation, spray-drying, interfacial polymerization, etc., and the core-shell particles and base particles are chemically bonded. A method is mentioned. In the coated conductive particles of the present invention in which the surface of the base particle is made of a conductive metal, when the core-shell particles are introduced, the heteroaggregation method is suitably used when the coated particles are coated with a single-layer core-shell particle.

上記ヘテロ凝集法は、水及び/又は有機溶剤中でコアシェル粒子を基材粒子表面に凝集さ
せことにより導電性を有する金属からなる基材粒子表面に均一にコアシェル粒子を被覆す
ることができる。また、水及び/又は有機溶剤が介在することにより、溶媒効果により基
材粒子表面又は基材粒子表面に導入された官能基とコアシェル粒子の官能基との化学反応
が迅速に起こるため、必要以上の圧力を必要とせず、また、系全体の温度の制御も容易で
あるため、基材粒子への負荷が小さくなる。また、コアシェル粒子が過剰の熱により変形
や破壊するといった問題が起こりにくくなり、被覆の精度が極めて高くなる。
In the heteroaggregation method, the core-shell particles can be uniformly coated on the surface of the base particles made of a conductive metal by aggregating the core-shell particles on the surface of the base particles in water and / or an organic solvent. In addition, the presence of water and / or organic solvent causes the chemical reaction between the functional group introduced into the surface of the base particle or the surface of the base particle due to the solvent effect and the functional group of the core-shell particle to occur more quickly than necessary. Is not required, and the temperature of the entire system is easily controlled, so the load on the base particles is reduced. In addition, the problem that the core-shell particles are deformed or broken by excessive heat is less likely to occur, and the accuracy of the coating becomes extremely high.

これに比べて、例えば、高速攪拌機やハイブリダイザー等を用いた乾式方法により基材粒
子表面にコアシェル粒子を導入すると、必要以上の圧力や摩擦熱等の負荷がかかりやすく
なる。この際、コアシェル粒子が基材粒子との衝撃や塵擦熱により変形または破壊し、被
覆粒子の膜厚が不均一になったり、コアシェル粒子が積層付着し、被覆厚の制御が困難に
なったりすることがある。
上記有機溶剤としては、コアシェル粒子を溶解しないのもであれば特に限定されない。
In comparison with this, for example, when the core-shell particles are introduced onto the surface of the base material particles by a dry method using a high-speed stirrer, a hybridizer, or the like, an excessive load such as pressure or frictional heat is easily applied. At this time, the core-shell particles are deformed or broken by impact with the base particles or dust heat, and the coating particle thickness becomes non-uniform, or the core-shell particles are stacked and adhered, making it difficult to control the coating thickness. There are things to do.
The organic solvent is not particularly limited as long as it does not dissolve the core-shell particles.

本発明の被覆導電粒子は、コアシェル粒子によって基材粒子表面が単層で被覆されている
ことが好ましい。単層であると、コアシェル粒子の粒子径を制御することで、容易に本発
明の被覆導電粒子の粒子径を制御することができ、本発明の被覆導電粒子を用いて圧着に
より基板等の接続を行う際、被覆粒子に加わる圧力を均一なものとすることができ、確実
な接続を実現することができるからである。なお、コアシェル粒子によって基材粒子表面
を単層で被覆する方法としては、上述したヘテロ凝集法が好ましい。
In the coated conductive particles of the present invention, the surface of the substrate particles is preferably coated with a single layer by core-shell particles. When it is a single layer, the particle diameter of the coated conductive particles of the present invention can be easily controlled by controlling the particle diameter of the core-shell particles, and the substrate or the like can be connected by pressure bonding using the coated conductive particles of the present invention. This is because the pressure applied to the coated particles can be uniform when performing the above, and a reliable connection can be realized. In addition, as a method of coating the surface of the substrate particle with a single layer with the core-shell particles, the above-described heteroaggregation method is preferable.

本発明の被覆導電粒子は、被覆導電粒子1gと10mLの超純水とを石英管に封入し、1
20℃、24時間抽出したときに、上記超純水中に抽出されるイオンの濃度が10ppm
以下であることが好ましい。10ppmを超えると、本発明の被覆導電粒子を液晶表示素
子用上下導通材料として用いた場合、被覆導電粒子に起因するイオンマイグレーションが
発生し、短絡等の原因となったり、液晶を汚染したりすることがある。
このような抽出されるイオンの濃度を達成する方法としては特に限定されないが、上記被
覆導電粒子を構成する基材粒子又は被覆するコアシェル粒子を以下の方法により作製する
方法が挙げられる。
The coated conductive particles of the present invention include 1 g of coated conductive particles and 10 mL of ultrapure water enclosed in a quartz tube.
When extracted at 20 ° C. for 24 hours, the concentration of ions extracted into the ultrapure water is 10 ppm.
The following is preferable. If it exceeds 10 ppm, when the coated conductive particles of the present invention are used as a vertical conduction material for a liquid crystal display element, ion migration caused by the coated conductive particles occurs, which may cause a short circuit or contaminate the liquid crystal. Sometimes.
A method for achieving the concentration of ions to be extracted is not particularly limited, and examples thereof include a method for producing the base particles constituting the coated conductive particles or the core-shell particles to be coated by the following method.

すなわち、イオン性官能基を有する重合性単量体を含む重合性単量体混合物と、ノニオン
性重合開始剤とを含有する重合性組成物を水中に均一に分散した状態で重合して表面にイ
オン性官能基を有する基材樹脂又はコアシェル粒子となる樹脂微粒子を得る。更に、得ら
れた樹脂微粒子のイオン性官能基を非イオン性官能基に変換する方法により基材粒子又は
被覆するコアシェル粒子を作製したり、基材粒子をコアシェル粒子で被覆した後、コアシ
ェル粒子表面のイオン性官能基を非イオン性官能基に変換したりすることによって作製す
る。
That is, a polymerizable monomer mixture containing a polymerizable monomer having an ionic functional group and a polymerizable composition containing a nonionic polymerization initiator are polymerized in a state of being uniformly dispersed in water to form a surface. Resin fine particles to be a base resin or core-shell particles having an ionic functional group are obtained. Further, the surface of the core-shell particle is prepared after the base particle or the core-shell particle to be coated is prepared by the method of converting the ionic functional group of the obtained resin fine particle to the nonionic functional group, or the base particle is coated with the core-shell particle. The ionic functional group is converted into a nonionic functional group.

本発明の被覆導電粒子は、異方性導電材料、熱線反射材料、電磁波シールド材料等の用途
に用いることができる。なかでも、絶縁性のバインダー樹脂中に分散させることにより異
方性導電材料として好適に用いることができる。
本発明の被覆導電粒子が絶縁性のバインダー樹脂中に分散されている異方性導電材料もま
た、本発明の1つである。
なお、本明細書において、異方性導電材料には、異方性導電膜、異方性導電ペースト、異
方性導電接着剤、異方性導電インク等が含まれる。
The coated conductive particles of the present invention can be used for applications such as anisotropic conductive materials, heat ray reflective materials, and electromagnetic shielding materials. Especially, it can use suitably as an anisotropic conductive material by disperse | distributing in insulating binder resin.
An anisotropic conductive material in which the coated conductive particles of the present invention are dispersed in an insulating binder resin is also one aspect of the present invention.
Note that in this specification, the anisotropic conductive material includes an anisotropic conductive film, an anisotropic conductive paste, an anisotropic conductive adhesive, an anisotropic conductive ink, and the like.

上記絶縁性のバインダー樹脂としては、絶縁性であれば特に限定されないが、例えば、ア
クリル酸エステル、エチレン−酢酸ビニル樹脂、スチレン−ブタジエンブロック共重合体
及びその水添物、スチレン−イソプレンブロック共重合体及びその水添物等の熱可塑性樹
脂;エポキシ樹脂、アクリル酸エステル樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂
等の熱硬化性樹脂;多価アルコールのアクリル酸エステル、ポリエステルアクリレート、
多価カルボン酸の不飽和エステル等の紫外線、電子線等により硬化する樹脂等が挙げられ
る。なかでも、熱及び/又は光により硬化する粘接着剤が好適である。
The insulating binder resin is not particularly limited as long as it is insulative. For example, acrylic ester, ethylene-vinyl acetate resin, styrene-butadiene block copolymer and its hydrogenated product, styrene-isoprene block copolymer Thermoplastic resins such as coalesced and hydrogenated products; thermosetting resins such as epoxy resins, acrylate resins, melamine resins, urea resins, phenol resins; acrylic acid esters of polyhydric alcohols, polyester acrylates,
Examples include resins that are cured by ultraviolet rays, electron beams, and the like, such as unsaturated esters of polyvalent carboxylic acids. Especially, the adhesive agent hardened | cured with a heat | fever and / or light is suitable.

また、本発明の異方性導電材料を用いて液晶表示素子の液晶基板を導電接続する場合、上
記バインダー樹脂は、液晶の汚染を防止するために光及び/又は熱による硬化後の体積抵
抗値が1×1013Ω・cm以上、100kHzにおける誘電率(比誘電率)が3以上で
あることが好ましい。
In addition, when the liquid crystal substrate of the liquid crystal display element is conductively connected using the anisotropic conductive material of the present invention, the binder resin has a volume resistance value after curing by light and / or heat in order to prevent contamination of the liquid crystal. Is 1 × 10 13 Ω · cm or more, and the dielectric constant (relative dielectric constant) at 100 kHz is preferably 3 or more.

本発明の異方性導電材料においては、含有される本発明の被覆導電粒子のコアシェル粒子
に含まれる官能基と、バインダー樹脂中の官能基とが化学結合することが好ましい。上記
コアシェル粒子とバインダー樹脂とが化学結合することにより、バインダー樹脂中に分散
された本発明の被覆導電粒子の安定性に優れるとともに、熱溶融したコアシェル粒子がブ
リードアウトして基板や液晶を汚染することがなく、かつ、長期的な接続の安定性や信頼
性に優れる異方性導電材料となる。
In the anisotropic conductive material of the present invention, it is preferable that the functional group contained in the core-shell particle of the coated conductive particle of the present invention contained is chemically bonded to the functional group in the binder resin. The core-shell particles and the binder resin are chemically bonded, so that the coated conductive particles of the present invention dispersed in the binder resin have excellent stability, and the hot-melt core-shell particles bleed out to contaminate the substrate and liquid crystal. And an anisotropic conductive material having excellent long-term connection stability and reliability.

このようなコアシェル粒子とバインダー樹脂との組み合わせとしては、例えば、コアシェ
ル粒子はカルボキシル基、エポキシ基、イソシアネート基、アミノ基、水酸基、スルホン
酸、シラン基、シラノール基等の官能基を有することが好ましく、なかでもエポキシ基、
アミノ基を有することがより好ましい。これに対して、バインダー樹脂は、常温下、加熱
下又は光照射下でこれらの官能基と反応性の官能基を有する(共)重合体や、上記反応性
の官能基を有し、重合反応や重縮合反応により(共)重合体や重縮合体を形成することが
できる単量体等を用いることが好ましい。これらのバインダー樹脂は、単独で用いられて
もよいし、2種類以上が併用されてもよい。
As a combination of such core-shell particles and a binder resin, for example, the core-shell particles preferably have a functional group such as a carboxyl group, an epoxy group, an isocyanate group, an amino group, a hydroxyl group, a sulfonic acid, a silane group, and a silanol group. , Especially epoxy groups,
More preferably, it has an amino group. On the other hand, the binder resin has a (co) polymer having a functional group reactive with these functional groups at room temperature, under heating or under light irradiation, and has a reactive functional group as described above. It is preferable to use a monomer or the like that can form a (co) polymer or a polycondensate by a polycondensation reaction. These binder resins may be used alone or in combination of two or more.

本発明の異方性導電材料には、必須成分であるバインダー樹脂及び本発明の被覆導電粒子
以外に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、充填剤、増量剤、
軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外
線吸収剤、滑剤、帯電防止剤、難燃剤等の各種添加剤の1種類又は2種類以上が添加され
てもよい。
In the anisotropic conductive material of the present invention, in addition to the binder resin which is an essential component and the coated conductive particles of the present invention, for example, a filler, an extender,
One or two kinds of various additives such as softener, plasticizer, polymerization catalyst, curing catalyst, colorant, antioxidant, heat stabilizer, light stabilizer, ultraviolet absorber, lubricant, antistatic agent, flame retardant, etc. The above may be added.

上記バインダー樹脂中に本発明の被覆導電粒子を分散させる方法としては特に限定されず
、従来公知の分散方法を用いることができ、例えば、バインダー樹脂中に被覆導電粒子を
添加した後、プラネタリーミキサー等で混練して分散させる方法;被覆導電粒子を水や有
機溶剤中にホモジナイザー等を用いて均一に分散させた後、バインダー樹脂中へ添加し、
プラネタリーミキサー等で混練して分散させる方法;バインダー樹脂を水や有機溶剤等で
希釈した後、被覆導電粒子を添加し、プラネタリーミキサー等で混練して分散させる方法
等の機械的剪断力を付与する分散方法等が挙げられる。これらの分散方法は、単独で用い
られてもよいし、2種類以上が併用されてもよい。
The method for dispersing the coated conductive particles of the present invention in the binder resin is not particularly limited, and a conventionally known dispersion method can be used. For example, after adding the coated conductive particles to the binder resin, a planetary mixer Method of kneading and dispersing, etc .; after uniformly dispersing the coated conductive particles in water or an organic solvent using a homogenizer, etc., adding to the binder resin,
A method of kneading and dispersing with a planetary mixer or the like; a mechanical shearing force such as a method of adding coated conductive particles after diluting the binder resin with water or an organic solvent and kneading and dispersing with a planetary mixer or the like Examples of the dispersion method are given. These dispersion methods may be used alone or in combination of two or more.

上記機械的剪断力を付与する方法としては特に限定されず、例えば、遊星式攪拌機、万能
攪拌機、プラネタリーミキサー、ロール、プロペラ撹拌機、ディスパー等の各種混合攪拌
機やこれらを用いる各種混合撹拌方法等が挙げられる。なお、上記機械的剪断力の付与に
際しては、バインダー樹脂中に分散させる本発明の被覆導電粒子の構造を破壊するほどの
機械的剪断力を加えないような方法や条件を適宜選択して行うことが好ましい。
The method for applying the mechanical shearing force is not particularly limited. For example, planetary stirrers, universal stirrers, planetary mixers, rolls, propeller stirrers, dispersers and the like, various mixing stirrers using these, and the like. Is mentioned. In addition, when applying the mechanical shearing force, a method and conditions that do not apply a mechanical shearing force that destroys the structure of the coated conductive particles of the present invention dispersed in the binder resin are appropriately selected. Is preferred.

本発明の異方性導電材料の形態としては特に限定されず、例えば、バインダー樹脂として
絶縁性の液状又は固形の粘接着剤を用い、この粘接着剤中に本発明の被覆粒子を分散させ
てなる不定形の異方性導電接着剤であってもよいし、定形の異方性導電膜であってもよい
The form of the anisotropic conductive material of the present invention is not particularly limited. For example, an insulating liquid or solid adhesive is used as a binder resin, and the coated particles of the present invention are dispersed in the adhesive. It may be an amorphous anisotropic conductive adhesive, or an anisotropic anisotropic conductive film.

本発明の異方性導電材料を用いて基板間の接合を行う場合、熱及び圧力を加えて圧着する
ことにより基材粒子の金属表面を露出させて導電接続を行う。ここで金属表面が露出する
とは、基材粒子の金属表面がコアシェル粒子に妨げられずに直接基板の電極等と接するこ
とができる状態になることをいう。なお、上記圧着の条件としては、異方性導電材料中の
被覆導電粒子の密度や接続する電子部品の種類等により必ずしも限定されないが、通常は
120〜220℃の温度で、9.8×10〜4.9×10Paの圧力により行う。
When bonding between substrates using the anisotropic conductive material of the present invention, conductive connection is performed by exposing the metal surface of the base particles by applying heat and pressure and pressing. Here, the exposure of the metal surface means that the metal surface of the base particle can be in direct contact with the electrode of the substrate without being blocked by the core-shell particle. The pressure bonding conditions are not necessarily limited by the density of the coated conductive particles in the anisotropic conductive material, the type of electronic component to be connected, and the like, but usually at a temperature of 120 to 220 ° C., 9.8 × 10 The pressure is 4 to 4.9 × 10 6 Pa.

本発明の被覆導電粒子は、表面が導電性を有する金属からなる基材粒子の表面に絶縁性の
コアシェル粒子が被覆されたものであるため、上記コアシェル粒子のコア粒子及びシェル
層を構成する材料を適宜選択することで、該コアシェル粒子の熱的特性等を調整すること
ができる。その結果、コアシェル粒子を変形又は破壊されやすくすることができるため、
本発明の被覆導電粒子を用いて基板の圧着を行うと、基板との間のコアシェル粒子のみを
確実に排除することができ、基板間を確実に導電接続させることができ、隣接する被覆導
電粒子間の絶縁性は確保することができる。
また、基材粒子を被覆する材料としてはガラス転移温度(Tg)又は軟化点温度が低くブ
ロック化しやすいため長期保存ができないとされていた長鎖アルキル基を有する(メタ)
アクリル樹脂やポリオレフィン系樹脂等であっても、コアシェル粒子のコア粒子とし、シ
ェル層のTgをより高い物質とすることで、長期安定性に優れ、低温低圧条件下で基板間
の圧着を行った場合であっても、基材粒子と基板との間のコアシェル粒子のみが排除され
、基材粒子表面と基板表面とを確実に接触させた状態で導電接続することができる。
また、コアシェル粒子のコア粒子を構成する材料を変えることで、複数の成分からなるコ
アシェル粒子を基材粒子の表面に被覆させることができ、被覆導電粒子の粒径の制御もコ
アシェル粒子の粒径を制御することで可能となる。
The coated conductive particle of the present invention is a material constituting the core particle and the shell layer of the core-shell particle because the surface of the base particle made of a metal having conductivity is coated with the insulating core-shell particle. As appropriate, the thermal characteristics and the like of the core-shell particles can be adjusted. As a result, the core-shell particles can be easily deformed or broken,
When the coated conductive particles of the present invention are used for pressure bonding of the substrate, only the core-shell particles between the substrates can be surely removed, and the conductive conductive connection between the substrates can be reliably performed. The insulation between them can be secured.
In addition, the material for coating the base particles has a long chain alkyl group that has been considered to be unable to be stored for a long time because it has a low glass transition temperature (Tg) or softening point temperature and is easily blocked (meta).
Even if it is an acrylic resin or a polyolefin-based resin, it is excellent in long-term stability by making the core particle of the core-shell particle and the Tg of the shell layer higher, and the bonding between the substrates is performed under low temperature and low pressure conditions. Even in this case, only the core-shell particles between the base material particles and the substrate are excluded, and the conductive connection can be made in a state where the base material particle surface and the substrate surface are in reliable contact.
In addition, by changing the material constituting the core particle of the core-shell particle, the core-shell particle composed of a plurality of components can be coated on the surface of the base particle, and the particle size of the coated conductive particle can also be controlled. This is possible by controlling

また、本発明の被覆導電粒子のコアシェル粒子が基材粒子に対して結合性を有する官能基
(A)を介して基材粒子表面に被覆されている場合、隣接する粒子間にかかる圧力では絶
縁性を有するコアシェル粒子が基材粒子の表面から剥がれることはなく、確実な絶縁性を
得ることができる。
In addition, when the core-shell particle of the coated conductive particle of the present invention is coated on the surface of the base particle through the functional group (A) having a binding property to the base particle, insulation is performed with a pressure applied between adjacent particles. The core-shell particles having the property are not peeled off from the surface of the base particles, and reliable insulation can be obtained.

このような本発明の被覆導電粒子が絶縁性のバインダー樹脂中に分散されている本発明の
異方性導電材料は、圧着により基板等の電極同士を電気的に接続する際に、基板と基材粒
子との間のコアシェル粒子のみが変形又は破壊されことで排除され、基材粒子の金属表面
が露出して確実な導通が得られる。
また、被覆導電粒子のコアシェル粒子が基材粒子に対して結合性を有する官能基(A)を
介して基材粒子表面に被覆されている場合、隣接する被覆導電粒子間にかかる圧力や、バ
インダー樹脂中に分散させる際の衝撃等によってコアシェル粒子が基材粒子の表面から剥
がれることはなく、確実な絶縁性を得ることができる。
The anisotropic conductive material of the present invention in which the coated conductive particles of the present invention are dispersed in an insulating binder resin is used to electrically connect the substrate and other electrodes to each other by pressure bonding. Only the core-shell particles between the material particles are eliminated by being deformed or destroyed, and the metal surface of the substrate particles is exposed, and reliable conduction is obtained.
In addition, when the core / shell particles of the coated conductive particles are coated on the surface of the substrate particles via the functional group (A) having binding properties to the substrate particles, the pressure applied between the adjacent coated conductive particles, the binder The core-shell particles are not peeled off from the surface of the base particles due to impact or the like when dispersed in the resin, and reliable insulation can be obtained.

本発明の被覆導電粒子又は本発明の異方性導電材料により接続される対象物としては、例
えば、表面に電極若しくは導電パターンが形成された基板、又は、フィルム、半導体パッ
ケージ、半導体チップ等の微細な電子部品や、スイッチ、コネクタ等を含む電子部品等が
挙げられる。これらの電子部品が導電接続されてなる導電接続構造体もまた、本発明の1
つである。
Examples of the object to be connected by the coated conductive particle of the present invention or the anisotropic conductive material of the present invention include, for example, a substrate having an electrode or conductive pattern formed on the surface, or a fine film, semiconductor package, semiconductor chip or the like Electronic components including electronic components including switches and connectors. A conductive connection structure in which these electronic components are conductively connected is also a 1 of the present invention.
One.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定
されるものではない。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(1)コアシェル粒子の作製
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた10
00mL容のセパラブルフラスコに、メタクリル酸グリシジル150mmol、ジメタク
リル酸エチレングリコール4.5mmol、メタクリル酸フェニルジメチルスルホニウム
メチル硫酸塩3mmol、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メ
チル−プロピオンアミジン]4水和物3mmol、及び、蒸留水500mLを秤量した後
、200rpmで攪拌し、窒素雰囲気下70℃で5時間重合を行い粒径165nmのポリ
メタクリル酸グリシジルを主成分とするコア粒子を得た。
引き続き、メタクリル酸メチル135mmol、メタクリル酸グリシジル15mmol、
ジメタクリル酸エチレングリコール4.5mmol、メタクリル酸フェニルジメチルスル
ホニウムメチル硫酸塩3mmol、及び、2,2’−アゾビス[N−(2−カルボキシエ
チル)−2−メチル−プロピオンアミジン]4水和物3mmolの混合物を1時間かけて
滴下し、更に、4時間重合を行った。
得られたコアシェル粒子を遠心分離操作による未反応モノマー、開始剤塔の除去・洗浄を
2回行うことにより、ポリメタクリル酸グリシジルを主成分とするコアとメタクリル酸メ
チルを主成分とするシェルとからなり、表面にエポキシ基を有するコアシェル粒子を得た
。得られたコアシェル粒子は、粒子径203nm、CV値8.5%であった。なお、粒子
径及び分布は、動的光散乱粒度分布計(大塚電子社製、「DLS8000」)により測定
した。
(1) Preparation of core-shell particles 10 equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube, and temperature probe
In a 00 mL separable flask, 150 mmol of glycidyl methacrylate, 4.5 mmol of ethylene glycol dimethacrylate, 3 mmol of phenyldimethylsulfonium methylsulfate methacrylate, 2,2′-azobis [N- (2-carboxyethyl) -2- Methyl-propionamidine] tetrahydrate 3 mmol and distilled water 500 mL were weighed, stirred at 200 rpm, polymerized at 70 ° C. for 5 hours in a nitrogen atmosphere, and mainly composed of polyglycidyl methacrylate having a particle size of 165 nm. Core particles were obtained.
Subsequently, methyl methacrylate 135 mmol, glycidyl methacrylate 15 mmol,
Ethylene glycol dimethacrylate 4.5 mmol, phenyldimethylsulfonium methylmethacrylate 3 mmol, and 2,2′-azobis [N- (2-carboxyethyl) -2-methyl-propionamidine] tetrahydrate 3 mmol The mixture was added dropwise over 1 hour, and polymerization was further performed for 4 hours.
By removing and washing the unreacted monomer and the initiator tower by centrifuging the obtained core-shell particles twice, from the core mainly composed of polyglycidyl methacrylate and the shell mainly composed of methyl methacrylate. Thus, core-shell particles having an epoxy group on the surface were obtained. The obtained core-shell particles had a particle size of 203 nm and a CV value of 8.5%. The particle size and distribution were measured with a dynamic light scattering particle size distribution meter (“DLS8000” manufactured by Otsuka Electronics Co., Ltd.).

(2)基材粒子の作製
平均粒子径5μmのテトラメチロールメタンテトラアクリレート/ジビニルベンゼンから
なる球状芯材粒子(積水化学工業社製、「ミクロパールSP−205」)に、脱脂、セン
シタイジング、アクチベイチングを行い樹脂表面にPd核を生成させ、無電解メッキの触
媒核とした。次に、所定の方法に従って建浴、加温した無電解Niメッキ浴に浸漬し、N
iメッキ層を形成した。次に、ニッケル層の表面に無電解置換金メッキを行い、金属表面
を有する基材粒子(1)を得た。
得られた基材粒子(1)のNiメッキ厚みは900nmであり、金メッキの厚みは210
nmであった。
(2) Preparation of substrate particles Spherical core particles composed of tetramethylolmethanetetraacrylate / divinylbenzene having an average particle diameter of 5 μm (Sekisui Chemical Co., Ltd., “Micropearl SP-205”) were degreased, sensitized, Activating was performed to generate Pd nuclei on the resin surface, which was used as a catalyst nucleus for electroless plating. Next, it is immersed in a building bath and a heated electroless Ni plating bath according to a predetermined method, and N
An i-plated layer was formed. Next, electroless displacement gold plating was performed on the surface of the nickel layer to obtain base particles (1) having a metal surface.
The obtained substrate particles (1) have a Ni plating thickness of 900 nm and a gold plating thickness of 210 nm.
nm.

(3)被覆導電粒子の作製
4ツ口セパラブルカバー、攪拌翼、三方コックを取り付けた2000mL容のセパラブル
フラスコ中で、2−アミノエタンチオール20mmolをメタノール1000mLに溶解
させて反応溶液を得た。(2)で得られた基材粒子(1)20gを窒素雰囲気下で反応溶
液に分散させ、室温で3時間攪拌し、濾過により未反応の2−アミノエタンチオールを除
去し、メタノールで洗浄後、乾燥し、表面に反応性の官能基であるアミノ基を有する基材
粒子(2)を得た。
得られた基材粒子(2)10gをアセトン500mLに分散させ、コアシェル粒子を超音
波照射下でアセトンに固形分率が10%となるように分散したコアシェル粒子分散液3g
を添加し、室温で3時間攪拌した。3μmのメッシュフィルターで濾過後、更に、乳鉢で
軽く粉砕した後、10μmの篩を通すことにより単粒子状態の被覆導電粒子(1)を得た

得られた被覆導電粒子(1)は、基材粒子(2)の表面にコアシェル粒子が1層のみ形成
されており、画像解析により被覆導電粒子の中心より2.5μmの面積に対するコアシェ
ル粒子の被覆面積(即ち、コアシェル粒子の粒子径の投影面積)を算出したところ、被覆
率は30%であった。また、TEMによる断面間接により、コアシェル粒子と基材粒子(
2)との結合界面は、コアシェル粒子の円周の12%であることから、基材粒子(2)と
の界面結合面積は、コアシェル粒子の表面積の12%であった。
(3) Preparation of coated conductive particles In a 2000 mL separable flask equipped with a 4-neck separable cover, a stirring blade, and a three-way cock, 20 mmol of 2-aminoethanethiol was dissolved in 1000 mL of methanol to obtain a reaction solution. . Disperse 20 g of the base particle (1) obtained in (2) in the reaction solution under a nitrogen atmosphere, stir at room temperature for 3 hours, remove unreacted 2-aminoethanethiol by filtration, and wash with methanol. And dried to obtain base particles (2) having amino groups as reactive functional groups on the surface.
10 g of the obtained base particle (2) is dispersed in 500 mL of acetone, and the core-shell particle dispersion 3 g in which the core-shell particles are dispersed in acetone so that the solid content is 10% under ultrasonic irradiation.
And stirred at room temperature for 3 hours. After filtering with a 3 μm mesh filter, and further lightly pulverized with a mortar, the coated conductive particles (1) in a single particle state were obtained by passing through a 10 μm sieve.
In the obtained coated conductive particles (1), only one layer of the core-shell particles is formed on the surface of the base particle (2), and the core-shell particles are coated on an area of 2.5 μm from the center of the coated conductive particles by image analysis. When the area (that is, the projected area of the particle diameter of the core-shell particles) was calculated, the coverage was 30%. In addition, the core-shell particle and the base particle (
Since the bonding interface with 2) was 12% of the circumference of the core-shell particle, the interface bonding area with the base particle (2) was 12% of the surface area of the core-shell particle.

(4)異方性導電材料の作製
バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製:「エピコート828」)
100部及びトリスジメチルアミノエチルフェノール、トルエン100部を、遊星式攪拌
機を用い、充分に分散混合させ、離型フィルム上に乾燥後の厚みが10μmとなるように
一定の厚みで塗布し、トルエンを蒸発させ、被覆導電粒子を含有しない接着性フィルムを
得た。
(4) Preparation of anisotropic conductive material Epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd .: “Epicoat 828”) as a binder resin
100 parts and 100 parts of trisdimethylaminoethylphenol and toluene were sufficiently dispersed and mixed using a planetary stirrer, and coated on the release film with a constant thickness so that the thickness after drying was 10 μm. Evaporated to obtain an adhesive film containing no coated conductive particles.

次に、バインダー樹脂としてエポキシ樹脂(油化シェルエポキシ社製:「エピコート82
8」)100部及びトリスジメチルアミノエチルフェノール、トルエン100部に実施例
1にかかる被覆導電粒子(1)を添加し、遊星式攪拌機を用い、充分に分散混合させ、バ
インダー樹脂分散体を得た後、離型フィルム上に乾燥後の厚みが7μmとなるように一定
の厚みで塗布し、トルエンを蒸発させ、(3)で得られた被覆導電粒子(1)を含有する
接着性フィルムを作製した。なお、被覆導電粒子(1)の添加量は、異方性導電膜中の含
有量が20万個/cmとなるように設定した。
Next, an epoxy resin (manufactured by Yuka Shell Epoxy Co., Ltd .: “Epicoat 82” is used as the binder resin.
8 ”) 100 parts of trisdimethylaminoethylphenol and 100 parts of toluene were added to the coated conductive particles (1) according to Example 1 and sufficiently dispersed and mixed using a planetary stirrer to obtain a binder resin dispersion. After that, it was applied on the release film at a constant thickness so that the thickness after drying was 7 μm, and toluene was evaporated to produce an adhesive film containing the coated conductive particles (1) obtained in (3). did. The amount of the coated conductive particles (1) added was set so that the content in the anisotropic conductive film was 200,000 pieces / cm 2 .

(3)で得られた被覆導電粒子(1)を含有する接着性フィルムに、被覆導電粒子(1)
を含有しない接着性フィルムを常温でラミネートすることにより、2層構造を有する厚さ
17μmの異方性導電フィルム(1)を得た。
To the adhesive film containing the coated conductive particles (1) obtained in (3), the coated conductive particles (1)
An anisotropic conductive film (1) having a two-layer structure and having a thickness of 17 μm was obtained by laminating an adhesive film not containing bismuth at room temperature.

(比較例1)
4ツ口セパラブルカバー、攪拌翼、三方コック、冷却管、温度プローブを取り付けた10
00mL容のセパラブルフラスコに、メタクリル酸グリシジル200mmol、ジメタク
リル酸エチレングリコール6mmol、メタクリル酸フェニルジメチルスルホニウムメチ
ル硫酸塩4mmol、2,2’−アゾビス[N−(2−カルボキシエチル)−2−メチル
−プロピオンアミジン]4水和物4mmol、及び、蒸留水500mLを秤量した後、2
00rpmで攪拌し、窒素雰囲気下70℃で5時間重合を行い粒径204nmのポリメタ
クリル酸グリシジル粒子を得た。
その後、実施例1と同様の方法により、被覆導電粒子(2)を作製し、更に、異方性導電
フィルム(2)を得た。
(Comparative Example 1)
10 equipped with a four-neck separable cover, stirring blade, three-way cock, cooling tube, and temperature probe
In a 00 mL separable flask, 200 mmol of glycidyl methacrylate, 6 mmol of ethylene glycol dimethacrylate, 4 mmol of phenyldimethylsulfonium methyl sulfate, 2,2′-azobis [N- (2-carboxyethyl) -2-methyl- Propionamidine] tetrahydrate 4 mmol and distilled water 500 mL were weighed and then 2
The mixture was stirred at 00 rpm and polymerized under a nitrogen atmosphere at 70 ° C. for 5 hours to obtain polyglycidyl methacrylate particles having a particle diameter of 204 nm.
Thereafter, coated conductive particles (2) were produced by the same method as in Example 1, and further an anisotropic conductive film (2) was obtained.

(比較例2)
メタクリル酸グリシジル200mmolの代わりに、メタクリル酸メチル180mmol
及びメタクリル酸グリシジル20mmolを用いた以外は、比較例1と同様の方法で、粒
径195nmのポリメタクリル酸メチル/メタクリル酸グリシジル粒子を得た。
その後、実施例1と同様の方法により、被覆導電粒子(3)を作製し、更に、異方性導電
フィルム(3)を得た。
(Comparative Example 2)
180 mmol methyl methacrylate instead of 200 mmol glycidyl methacrylate
In addition, polymethyl methacrylate / glycidyl methacrylate particles having a particle diameter of 195 nm were obtained in the same manner as in Comparative Example 1 except that 20 mmol of glycidyl methacrylate was used.
Thereafter, coated conductive particles (3) were produced by the same method as in Example 1, and further an anisotropic conductive film (3) was obtained.

(保存安定性の評価)
実施例1及び比較例1、2で得られた被覆導電粒子(1)〜(3)について、60℃、4
0%RHの恒温恒湿槽にて24時間の環境試験を行い、SEMにより観察した。
結果を表1に示す。なお、表1中○は、被覆導電粒子が5個以上凝集した凝集塊が観察さ
れなかったことを示し、×は、被覆導電粒子が5個以上凝集した凝集塊が観察されたこと
を示す。
(Evaluation of storage stability)
About the coated conductive particles (1) to (3) obtained in Example 1 and Comparative Examples 1 and 2, 60 ° C., 4
An environmental test for 24 hours was performed in a constant temperature and humidity chamber of 0% RH, and observed by SEM.
The results are shown in Table 1. In Table 1, “◯” indicates that aggregated aggregates of 5 or more coated conductive particles were not observed, and “X” indicates that aggregated aggregates of 5 or more coated conductive particles were observed.

(導通の評価)
ITO電極(幅100μm、高さ0.2μm、長さ2cm)を有したガラス基板(幅1c
m、長さ2.5cm)の一方に、実施例1及び比較例1、2で得られた異方性導電フィル
ム(1)〜(3)を5×5mmに切断し、ほぼ中央部に貼り付けた後、同じITO電極を
有したガラス基板を互いの電極が90度に重なるように位置合わせを行って貼り付けた。
ガラス基板の接合部を10N、150℃の圧着条件で圧着を行った後、電極間の抵抗値を
測定した。
結果を表1に示す。なお、表1中○は、良好な導通が確保されていたことを示し、×は、
導通不良が起こったことを示す。
(Evaluation of continuity)
A glass substrate (width 1c) having an ITO electrode (width 100 μm, height 0.2 μm, length 2 cm)
m, length 2.5 cm), the anisotropic conductive films (1) to (3) obtained in Example 1 and Comparative Examples 1 and 2 were cut into 5 × 5 mm and attached almost at the center. After attaching, the glass substrates having the same ITO electrode were aligned and pasted so that the electrodes overlap each other at 90 degrees.
After bonding the bonded portion of the glass substrate under pressure bonding conditions of 10 N and 150 ° C., the resistance value between the electrodes was measured.
The results are shown in Table 1. In Table 1, ○ indicates that good conduction was ensured, and × indicates
Indicates that a continuity failure has occurred.

Figure 2005149764
Figure 2005149764

表1に示したように、比較例1に係る被覆導電粒子は凝集塊が多数観察されたが、実施例
1及び比較例2に係る被覆導電粒子は凝集塊は観察されず単粒子状態を維持していた。
また、実施例1及び比較例1にかかる異方性導電フィルム(1)及び(2)は、抵抗値が
0.6〜1.3Ωであり、充分な導通性が確保されていたことから、圧着面のコアシェル
粒子が充分につぶれていたことが確認された。一方、比較例2にかかる異方性導電フィル
ム(3)は、抵抗値が12.5Ωであり、導通不良が発生したことから、圧着面に微粒子
が残っており、圧着が充分でなかったことが確認された。
As shown in Table 1, a large number of aggregates were observed in the coated conductive particles according to Comparative Example 1, but the coated conductive particles according to Example 1 and Comparative Example 2 maintained a single particle state with no aggregates observed. Was.
Moreover, the anisotropic conductive films (1) and (2) according to Example 1 and Comparative Example 1 had a resistance value of 0.6 to 1.3Ω, and sufficient conductivity was ensured. It was confirmed that the core-shell particles on the crimping surface were sufficiently crushed. On the other hand, the anisotropic conductive film (3) according to Comparative Example 2 had a resistance value of 12.5Ω and a conduction failure occurred, so that fine particles remained on the crimping surface, and the crimping was not sufficient. Was confirmed.

本発明は、上記の構成よりなるので、基板間の導電接続を確実に行うことができるととも
に、隣接する粒子間でのリークを防止することができる被覆導電粒子、該被覆導電粒子を
用いてなる異方性導電材料及び導電接続構造体を提供することができる。
Since the present invention has the above-described configuration, the conductive conductive particle can be reliably connected between the substrates, and leakage between adjacent particles can be prevented. The coated conductive particle is used. An anisotropic conductive material and a conductive connection structure can be provided.

Claims (7)

表面が導電性を有する金属からなる基材粒子と前記基材粒子を被覆する絶縁性のコアシェ
ル粒子とからなる被覆導電性粒子であって、
前記コアシェル粒子は、コア粒子と前記コア粒子の表面に形成されたシェル層とからなる
ことを特徴とする被覆導電粒子。
Covered conductive particles composed of base particles made of a metal whose surface has conductivity and insulating core-shell particles covering the base particles,
The coated conductive particle according to claim 1, wherein the core-shell particle includes a core particle and a shell layer formed on a surface of the core particle.
コアシェル粒子は、コア粒子のガラス転移温度又は軟化温度よりもシェル層のガラス転移
温度又は軟化温度が高く、及び/又は、コア粒子の融点よりもシェル層の融点が高いもの
であることを特徴とする請求項1記載の被覆導電粒子。
The core-shell particles are characterized in that the glass transition temperature or softening temperature of the shell layer is higher than the glass transition temperature or softening temperature of the core particles, and / or the melting point of the shell layer is higher than the melting point of the core particles. The coated conductive particles according to claim 1.
コアシェル粒子は、基材粒子に対して結合性を有する官能基(A)を介して前記基材粒子
の表面を部分的に被覆していることを特徴とする請求項1又は2記載の被覆導電粒子。
The coated conductive according to claim 1 or 2, wherein the core-shell particles partially cover the surface of the base particle through a functional group (A) having a binding property to the base particle. particle.
コアシェル粒子によって基材粒子表面が単層で被覆されていることを特徴とする請求項1
、2又は3記載の被覆導電粒子。
2. The surface of a base particle is covered with a single layer by core-shell particles.
2. The coated conductive particles according to 2 or 3.
被覆導電粒子1gと10mLの超純水とを石英管に封入し、120℃、24時間抽出した
ときに、前記超純水中に抽出されるイオンの濃度が10ppm以下であることを特徴とす
る請求項1、2、3又は4記載の被覆導電粒子。
1 g of coated conductive particles and 10 mL of ultrapure water are enclosed in a quartz tube and extracted at 120 ° C. for 24 hours, and the concentration of ions extracted into the ultrapure water is 10 ppm or less. The coated conductive particle according to claim 1, 2, 3 or 4.
請求項1、2、3、4又は5記載の被覆導電粒子が絶縁性のバインダー樹脂中に分散され
ていることを特徴とする異方性導電材料。
An anisotropic conductive material, wherein the coated conductive particles according to claim 1, 2, 3, 4, or 5 are dispersed in an insulating binder resin.
請求項1、2、3、4又は5記載の被覆導電粒子又は請求項6記載の異方性導電材料によ
り導電接続されていることを特徴とする導電接続構造体。
A conductive connection structure, wherein the conductive connection structure is conductively connected by the coated conductive particles according to claim 1, or the anisotropic conductive material according to claim 6.
JP2003381658A 2003-11-11 2003-11-11 Coated conductive particles, anisotropic conductive material, and conductive connection structure Expired - Fee Related JP4686120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381658A JP4686120B2 (en) 2003-11-11 2003-11-11 Coated conductive particles, anisotropic conductive material, and conductive connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003381658A JP4686120B2 (en) 2003-11-11 2003-11-11 Coated conductive particles, anisotropic conductive material, and conductive connection structure

Publications (3)

Publication Number Publication Date
JP2005149764A true JP2005149764A (en) 2005-06-09
JP2005149764A5 JP2005149764A5 (en) 2006-09-21
JP4686120B2 JP4686120B2 (en) 2011-05-18

Family

ID=34690964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381658A Expired - Fee Related JP4686120B2 (en) 2003-11-11 2003-11-11 Coated conductive particles, anisotropic conductive material, and conductive connection structure

Country Status (1)

Country Link
JP (1) JP4686120B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072912A1 (en) * 2005-12-22 2007-06-28 Sekisui Chemical Co., Ltd. Conductive fine particle and anisotropic conductive material
WO2007145657A2 (en) * 2005-11-01 2007-12-21 Massachusetts Institute Of Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
WO2008004367A1 (en) * 2006-07-03 2008-01-10 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP2008117744A (en) * 2006-11-06 2008-05-22 Korea Inst Of Science & Technology Polymer microcapsule-conductive particle complex and its manufacturing method
KR100871759B1 (en) 2007-04-13 2008-12-05 엘에스엠트론 주식회사 Conductive ball for anisotropic conductive adhesive
JP2009507336A (en) * 2005-09-02 2009-02-19 チェイル インダストリーズ インコーポレイテッド Insulating conductive particles and anisotropic conductive adhesive film using the same
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure
JP2011181525A (en) * 2011-06-09 2011-09-15 Sony Chemical & Information Device Corp Anisotropic conductive material
JP2012015019A (en) * 2010-07-02 2012-01-19 Sekisui Chem Co Ltd Conductive particles with insulating particles, method for manufacturing conductive particles with insulating particles, anisotropic conductive material, and connecting structure
JP2012155958A (en) * 2011-01-25 2012-08-16 Hitachi Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material and connection structure
JP2013033653A (en) * 2011-08-02 2013-02-14 Hitachi Chem Co Ltd Insulation-coated conductive particle and anisotropic conductive adhesive film
KR20130026991A (en) * 2011-09-06 2013-03-14 히타치가세이가부시끼가이샤 Particle for insulation coating, insulating coated conductive particle, anisotropic conductive material, and connecting structure
JP2013062069A (en) * 2011-09-12 2013-04-04 Nippon Shokubai Co Ltd Insulating fine particle, insulating fine particle covered conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molding
JP2013069678A (en) * 2011-09-06 2013-04-18 Hitachi Chemical Co Ltd Particle for insulation coating, insulation coating conductive particle, anisotropic conductive material and connection structure
JP2013125659A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particles and anisotropic conductive material containing the same
WO2018207628A1 (en) * 2017-05-08 2018-11-15 日本化学工業株式会社 Coated particles and production method therefor
WO2018207627A1 (en) * 2017-05-08 2018-11-15 日本化学工業株式会社 Coated particles and production method therefor
CN110176588A (en) * 2019-05-28 2019-08-27 中国科学院重庆绿色智能技术研究院 The Preparation Method of electrode material
WO2020194824A1 (en) * 2019-03-26 2020-10-01 古河電気工業株式会社 Anisotropic conduction sheet manufacturing method
KR20230056664A (en) 2020-08-24 2023-04-27 니폰 가가쿠 고교 가부시키가이샤 Coated particle and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939063B2 (en) * 2012-07-11 2016-06-22 日立化成株式会社 Insulating coated conductive particles and anisotropic conductive adhesive using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112011A (en) * 1989-09-26 1991-05-13 Catalysts & Chem Ind Co Ltd Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JP2003026813A (en) * 2001-07-13 2003-01-29 Nippon Shokubai Co Ltd Anisotropic electroconductive material
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2006525641A (en) * 2003-05-06 2006-11-09 ハンファ ケミカル コーポレイション Insulating conductive particles for anisotropic conductive connection, method for producing the same, and products using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112011A (en) * 1989-09-26 1991-05-13 Catalysts & Chem Ind Co Ltd Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JP2003026813A (en) * 2001-07-13 2003-01-29 Nippon Shokubai Co Ltd Anisotropic electroconductive material
WO2003025955A1 (en) * 2001-09-14 2003-03-27 Sekisui Chemical Co., Ltd. Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2006525641A (en) * 2003-05-06 2006-11-09 ハンファ ケミカル コーポレイション Insulating conductive particles for anisotropic conductive connection, method for producing the same, and products using the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507336A (en) * 2005-09-02 2009-02-19 チェイル インダストリーズ インコーポレイテッド Insulating conductive particles and anisotropic conductive adhesive film using the same
US9492805B2 (en) 2005-11-01 2016-11-15 Massachusetts Institute Of Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
WO2007145657A2 (en) * 2005-11-01 2007-12-21 Massachusetts Institute Of Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
WO2007145657A3 (en) * 2005-11-01 2008-09-25 Massachusetts Inst Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
WO2007072912A1 (en) * 2005-12-22 2007-06-28 Sekisui Chemical Co., Ltd. Conductive fine particle and anisotropic conductive material
WO2008004367A1 (en) * 2006-07-03 2008-01-10 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
JP2008117744A (en) * 2006-11-06 2008-05-22 Korea Inst Of Science & Technology Polymer microcapsule-conductive particle complex and its manufacturing method
KR100871759B1 (en) 2007-04-13 2008-12-05 엘에스엠트론 주식회사 Conductive ball for anisotropic conductive adhesive
JP2010086665A (en) * 2008-09-29 2010-04-15 Sekisui Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material, and connection structure
JP2012015019A (en) * 2010-07-02 2012-01-19 Sekisui Chem Co Ltd Conductive particles with insulating particles, method for manufacturing conductive particles with insulating particles, anisotropic conductive material, and connecting structure
JP2012155958A (en) * 2011-01-25 2012-08-16 Hitachi Chem Co Ltd Insulation coated conductive particle, anisotropic conductive material and connection structure
JP2011181525A (en) * 2011-06-09 2011-09-15 Sony Chemical & Information Device Corp Anisotropic conductive material
JP2013033653A (en) * 2011-08-02 2013-02-14 Hitachi Chem Co Ltd Insulation-coated conductive particle and anisotropic conductive adhesive film
KR101950516B1 (en) 2011-09-06 2019-02-20 히타치가세이가부시끼가이샤 Particle for insulation coating, insulating coated conductive particle, anisotropic conductive material, and connecting structure
JP2013069678A (en) * 2011-09-06 2013-04-18 Hitachi Chemical Co Ltd Particle for insulation coating, insulation coating conductive particle, anisotropic conductive material and connection structure
KR20130026991A (en) * 2011-09-06 2013-03-14 히타치가세이가부시끼가이샤 Particle for insulation coating, insulating coated conductive particle, anisotropic conductive material, and connecting structure
JP2013062069A (en) * 2011-09-12 2013-04-04 Nippon Shokubai Co Ltd Insulating fine particle, insulating fine particle covered conductive fine particle, anisotropic conductive adhesive composition, and anisotropic conductive molding
JP2013125659A (en) * 2011-12-14 2013-06-24 Nippon Shokubai Co Ltd Conductive fine particles and anisotropic conductive material containing the same
KR20200002864A (en) 2017-05-08 2020-01-08 니폰 가가쿠 고교 가부시키가이샤 Covering particle and manufacturing method thereof
US11407863B2 (en) 2017-05-08 2022-08-09 Nippon Chemical Industrial Co., Ltd. Coated particles and production method therefor
WO2018207627A1 (en) * 2017-05-08 2018-11-15 日本化学工業株式会社 Coated particles and production method therefor
KR102528599B1 (en) * 2017-05-08 2023-05-02 니폰 가가쿠 고교 가부시키가이샤 Coated particle and its manufacturing method
WO2018207628A1 (en) * 2017-05-08 2018-11-15 日本化学工業株式会社 Coated particles and production method therefor
JPWO2018207627A1 (en) * 2017-05-08 2020-03-12 日本化学工業株式会社 Coated particles and method for producing the same
JP7160801B2 (en) 2017-05-08 2022-10-25 日本化学工業株式会社 Coated particles and method for producing the same
JP6458204B1 (en) * 2017-05-08 2019-01-23 日本化学工業株式会社 Coated particle and method for producing the same
TWI750585B (en) * 2019-03-26 2021-12-21 日商古河電氣工業股份有限公司 Method for manufacturing anisotropic conductive sheet
US11198771B2 (en) 2019-03-26 2021-12-14 Furukawa Electric Co., Ltd. Method for producing anisotropic conductive sheet
WO2020194824A1 (en) * 2019-03-26 2020-10-01 古河電気工業株式会社 Anisotropic conduction sheet manufacturing method
JP7328205B2 (en) 2019-03-26 2023-08-16 古河電気工業株式会社 Method for manufacturing anisotropically conductive sheet
CN110176588B (en) * 2019-05-28 2022-01-28 中国科学院重庆绿色智能技术研究院 Preparation method of electrode material
CN110176588A (en) * 2019-05-28 2019-08-27 中国科学院重庆绿色智能技术研究院 The Preparation Method of electrode material
KR20230056664A (en) 2020-08-24 2023-04-27 니폰 가가쿠 고교 가부시키가이샤 Coated particle and its manufacturing method

Also Published As

Publication number Publication date
JP4686120B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4773685B2 (en) Coated conductive fine particles, method for producing coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP4686120B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP5368760B2 (en) Insulating coating conductive particles, anisotropic conductive material, and connection structure
KR100722493B1 (en) Insulated Conductive Particles and an Anisotropic Conductive Adhesive Film Using the Same
JP4505017B2 (en) Insulating conductive fine particles and anisotropic conductive adhesive film containing the same
JP4732424B2 (en) Microcapsule-conductive particle composite body, manufacturing method thereof, and anisotropic conductive adhesive film using the same
JP5395482B2 (en) Coated conductive fine particles, anisotropic conductive material, and conductive connection structure
JP4852311B2 (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2006269296A (en) Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP2007510268A (en) Insulating conductive fine particles and anisotropic conductive film containing the same
JP4391836B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4313664B2 (en) Protruding conductive particles, coated conductive particles, and anisotropic conductive material
JP5821551B2 (en) Conductive particles, anisotropic conductive materials, and conductive connection structures
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP5750342B2 (en) Insulating fine particles, insulating fine particle-coated conductive fine particles, anisotropic conductive adhesive composition, and anisotropic conductive molded body
JPH07268303A (en) Anisotropic electrically-conductive adhesive composition
JP2022022293A (en) Conductive particle, conductive material, and connection structure
JP6577723B2 (en) Conductive particles with insulating particles, conductive material, and connection structure
JP5821552B2 (en) Water-repellent conductive particles, anisotropic conductive material, and conductive connection structure
JP2006107881A (en) Conductive fine particle and anisotropic conductive material
KR100704907B1 (en) Insulated conductive particles and an anisotropic conductive adhesive film using the same
WO2021193911A1 (en) Resin particles, electrically conductive particles, electrically conductive material, and connection structure
JP2007172920A (en) Conductive particle, anisotropic conductive material, and conductive connection structure
JP2011076938A (en) Conductive particulate, and manufacturing method of conductive particulate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4686120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees