JP2000319309A - Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle - Google Patents

Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle

Info

Publication number
JP2000319309A
JP2000319309A JP11125953A JP12595399A JP2000319309A JP 2000319309 A JP2000319309 A JP 2000319309A JP 11125953 A JP11125953 A JP 11125953A JP 12595399 A JP12595399 A JP 12595399A JP 2000319309 A JP2000319309 A JP 2000319309A
Authority
JP
Japan
Prior art keywords
fine particles
weight
polymer
polymer fine
acrylate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11125953A
Other languages
Japanese (ja)
Other versions
JP3739232B2 (en
Inventor
Hiroko Minamino
裕子 南野
Yasuhiko Nagai
康彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP12595399A priority Critical patent/JP3739232B2/en
Publication of JP2000319309A publication Critical patent/JP2000319309A/en
Application granted granted Critical
Publication of JP3739232B2 publication Critical patent/JP3739232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain polymer fine particles added with flexibility and good elasticity and useful for spacers for liquid crystal displays and electroconductive fine particles by limiting values of a compressive elasticity modulus, a compressive deformation recovery factor and fracture distortion to specific values. SOLUTION: Polymer fine particles are obtained by limiting a compressive elasticity modulus to 10-250 kgf/mm2 when 10% of the particle diameters are deformed, a compressive deformation recovery factor to >=30% and fracture distortion to >=30%. The aforementioned fine particles are obtained by adding an aqueous emulsion containing >=10 wt.% of a (poly)alkyl glycol group- containing di(meth)acrylate [e.g. polytetramethylene glycol di(meth)acrylate and the like] and an aqueous emulsion of an oil-soluble initiator (e.g. benzoyl peroxide and the like) into water in which polymer seed particles having 1,000-20,000 weight average molecular weight are dispersed, to be absorbed by the polymer seeds and subsequently polymerizing an ethylenic unsaturated monomer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、液晶表示素子用ス
ペーサー、導電性微粒子等に用いられる重合体微粒子に
関し、詳しくは、液晶表示素子に用いられるスペーサ
ー、マイクロ素子実装用導電性接着剤、異方導電性接着
剤、導電接続構造体等における導電材料、などに用いら
れる重合体微粒子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer fine particle used for a spacer for a liquid crystal display element, a conductive fine particle and the like, and more particularly, to a spacer used for a liquid crystal display element, a conductive adhesive for mounting a micro element, The present invention relates to polymer fine particles used for conductive adhesives, conductive materials in conductive connection structures, and the like.

【0001】[0001]

【従来の技術】従来より液晶表示素子においては、基板
間のギャップを一定に保持するためにスペーサーが配置
されている。上記スペーサーは、酸化アルミニウム、二
酸化硅素等を含む無機質材料、ベンゾグアナミン、ポリ
スチレン系ポリマー等を含む有機質材料(合成樹脂材
料)などから形成されている。無機質材料からなるスペ
ーサーは、例えば、特開昭63−73225号公報、特
開平1−59974号公報等に開示されており、有機質
材料(合成樹脂材料)からなるスペーサーは、特開昭6
0−200228公報、特開平1−293316号公報
等に開示されている。
2. Description of the Related Art Conventionally, in a liquid crystal display device, a spacer is arranged to keep a gap between substrates constant. The spacer is made of an inorganic material containing aluminum oxide, silicon dioxide, or the like, or an organic material (synthetic resin material) containing benzoguanamine, a polystyrene-based polymer, or the like. A spacer made of an inorganic material is disclosed in, for example, JP-A-63-73225 and JP-A-1-59974, and a spacer made of an organic material (synthetic resin material) is disclosed in
No. 0-220288 and Japanese Patent Application Laid-Open No. 1-293316.

【0002】上記無機質スペーサーを用いて液晶表示素
子を作製した場合には、スペーサーが硬過ぎるため両基
板に加圧される際に配向制御膜を傷つけ、傷つけられた
部分では液晶配列を所望の状態に保つことができなくな
るという問題があった。
When a liquid crystal display device is manufactured using the above-mentioned inorganic spacer, the spacer is too hard, so that the alignment control film is damaged when pressed against both substrates. There was a problem that can not be maintained.

【0003】また、エレクトロニクス実装分野では、一
対の微細電極を接続するために、金、銀、ニッケル等の
金属粒子とバインダー樹脂とを混合して導電性ペースト
を調製し、このペーストを一対の微細電極間に充填する
ことにより微細電極間を接続させることが行われる。し
かしながら、このような金属粒子は形状が不均一であ
り、且つバインダー樹脂に比べて比重が大きいためにバ
インダー樹脂中に均一に分散させることが困難であっ
た。
[0003] In the field of electronics packaging, in order to connect a pair of fine electrodes, a conductive paste is prepared by mixing metal particles such as gold, silver, and nickel and a binder resin, and this paste is mixed with a pair of fine electrodes. The connection between the fine electrodes is performed by filling between the electrodes. However, it is difficult to uniformly disperse such metal particles in the binder resin because of their non-uniform shape and higher specific gravity than the binder resin.

【0004】これに対して、特開昭59−2815号公
報には、粒径が比較的揃ったガラスビーズ、シリカビー
ズ、グラスファイバー等の粒子の表面に、金属メッキ層
を設けて導電性微粒子を作製することが開示されてい
る。ここで、導電性微粒子は、電極間を良好に導通させ
るという点から、電極表面との接触面積を大きくできる
ことが必要である。このため、必要とされる要求性能と
しては、重合体微粒子が柔軟で且つ粒子の変形時に破壊
しないこと、連続使用に対して粒子の弾性回復が耐え得
ること等が挙げられる。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 59-2815 discloses a method in which a metal plating layer is provided on the surface of particles such as glass beads, silica beads, and glass fibers having a relatively uniform particle size to form conductive fine particles. Is disclosed. Here, the conductive fine particles need to have a large contact area with the electrode surface from the viewpoint of providing good conduction between the electrodes. For this reason, the required performance requirements include that the polymer fine particles are flexible and do not break when the particles are deformed, and that the particles can withstand elastic recovery for continuous use.

【0005】しかしながら、上記公報に開示された導電
性微粒子は、中心部分の粒子が硬すぎて、圧縮変形させ
ることが困難であるため、この導電性微粒子を使用して
電極間を接続しようとすると、導電性微粒子と電極表面
との接触面積が広がらず、接触抵抗を低減させることが
困難であった。また、接触面積を広げるために導電性微
粒子の圧縮変形量を大きくすると、粒子の歪みが大きく
なった時点で粒子破壊が発生するため接続信頼性が低下
するという問題があった。
However, in the conductive fine particles disclosed in the above publication, the particles at the center are too hard to be compressed and deformed. Therefore, it is difficult to connect the electrodes using the conductive fine particles. However, the contact area between the conductive fine particles and the electrode surface did not increase, and it was difficult to reduce the contact resistance. In addition, when the amount of compressive deformation of the conductive fine particles is increased in order to increase the contact area, there is a problem that the connection reliability is reduced because the particles are destroyed when the distortion of the particles increases.

【0006】また、特開昭62−185749号公報及
び特開平1−225776号公報には、基材粒子として
ポリフェニレンスルフィド粒子やフェノール樹脂粒子等
を用いた導電性微粒子が開示されている。しかしなが
ら、このような合成樹脂粒子を基材粒子として用いた導
電性微粒子は、圧縮変形後の変形回復性に乏しい。その
ため、該導電性微粒子を使用して電極間の接続を行う際
に、両電極に作用する圧縮荷重を取り除くと、該導電性
微粒子と電極表面との界面にわずかなすき間が形成さ
れ、その結果、接触不良を起こすという問題があった。
Japanese Unexamined Patent Publications Nos. 62-185749 and 1-2225776 disclose conductive fine particles using polyphenylene sulfide particles or phenol resin particles as base particles. However, conductive fine particles using such synthetic resin particles as base particles have poor deformation recovery after compression deformation. Therefore, when the connection between the electrodes is performed using the conductive fine particles, if a compressive load acting on both electrodes is removed, a slight gap is formed at the interface between the conductive fine particles and the electrode surface, and as a result, However, there is a problem that poor contact is caused.

【0007】また、特公平5−19241号公報には、
スチレンを主成分とする軟質な低密度架橋重合体を基材
粒子として、その表面に導電性材料を被覆した導電性微
粒子が開示されている。このような軟質な基材粒子を用
いた導電性微粒子は、荷重を負荷して取り除いた後の圧
縮変形回復率が10%以下と小さく、時間経過と共に復
元力が低下するため、接着剤に配合して導電性接着剤と
して使用する場合には、時間経過と共に接続抵抗が大き
くなり導電性接着剤としての信頼性に欠けるという問題
があった。
Further, Japanese Patent Publication No. Hei 5-19241 discloses that
Conductive fine particles in which a soft low-density crosslinked polymer containing styrene as a main component is used as base particles and the surface thereof is coated with a conductive material are disclosed. The conductive fine particles using such soft base particles have a small compression deformation recovery rate of 10% or less after removal by applying a load, and the restoring force decreases with time. When used as a conductive adhesive, there is a problem that the connection resistance increases with the passage of time and the reliability of the conductive adhesive is lacking.

【0008】更に、このような液晶表示用スペーサーや
導電性微粒子に使用する重合体微粒子は、粒子径分布が
均一な単分散微粒子であることが要求されている。この
ような微粒子を得る方法としては、例えば、懸濁重合で
得られた微粒子を分級により均一な粒子径分布とする方
法が古くから知られており、現在でも数多く利用されて
いる。しかしながら、懸濁重合で得られる微粒子は粒子
径分布が広く、分級を行っても完全に同じ大きさの微粒
子だけを取り出すことは難しく、更に、分級を行い均一
な粒子径分布を有する微粒子を得るためには数ヶ月とい
う時間が掛かること、必要な粒子径のみを分級して取る
ため残りの部分がロスとなり効率が悪いという問題もあ
った。
Further, polymer fine particles used for such a spacer for liquid crystal display and conductive fine particles are required to be monodisperse fine particles having a uniform particle size distribution. As a method of obtaining such fine particles, for example, a method of classifying fine particles obtained by suspension polymerization to obtain a uniform particle size distribution has been known for a long time, and many methods are still used today. However, the fine particles obtained by suspension polymerization have a wide particle size distribution, and it is difficult to take out only fine particles of the same size even if classification is performed, and further, classification is performed to obtain fine particles having a uniform particle size distribution. For this purpose, it takes several months, and since only the required particle size is classified and taken, the remaining portion is lost and the efficiency is poor.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記問題を
解決するために、液晶表示素子用スペーサとして用いら
れた場合には、液晶表示素子の配向制御膜を傷つけて液
晶の配向特性の変調を誘起したり、表示画像の質を低下
させることがなく、導電性微粒子として用いられた場合
には、基板及びその配線を傷つけない柔軟性を有し、且
つ適度の圧縮変形性、変形回復性を有し、タッチパネル
等の基板間に配置される際に接触面積向上のために粒子
を大変形させても破壊せず良好な導電性能を有する重合
体微粒子を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention, when used as a spacer for a liquid crystal display device, damages the alignment control film of the liquid crystal display device and modulates the alignment characteristics of the liquid crystal. When used as conductive fine particles without inducing or deteriorating the quality of the displayed image, it has the flexibility not to damage the substrate and its wiring, and has an appropriate compressive deformation property and deformation recovery property. It is an object of the present invention to provide polymer fine particles having good conductivity without breaking even when the particles are largely deformed in order to improve a contact area when the particles are arranged between substrates such as a touch panel.

【0010】また、本発明は、上記重合体微粒子が用い
られた液晶表示素子用スペーサ、及び、上記重合体微粒
子が用いられ、マイクロ素子実装用導電性接着剤、異方
導電性接着剤、導電接続構造体等における導電材料とし
て用いられる、優れた接続抵抗及び接続信頼性を有する
柔軟な導電性微粒子を提供することにある。
Further, the present invention provides a spacer for a liquid crystal display element using the above polymer fine particles, and a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive, a conductive adhesive using the above polymer fine particles. An object of the present invention is to provide flexible conductive fine particles having excellent connection resistance and connection reliability used as a conductive material in a connection structure or the like.

【0011】[0011]

【課題を解決するための手段】本発明の重合体微粒子
は、粒子直径の10%が変位したときの圧縮弾性率(1
0%K値)10〜250kgf/mm2 、圧縮変形回復
率30%以上、破壊歪み30%以上の重合体微粒子であ
る。
Means for Solving the Problems The polymer fine particles of the present invention have a compression elastic modulus (1) at a displacement of 10% of the particle diameter.
(0% K value) 10 to 250 kgf / mm 2 , polymer fine particles having a compression deformation recovery rate of 30% or more and a breaking strain of 30% or more.

【0012】上記粒子直径の10%が変位したときの圧
縮弾性率(以下、10%K値という)が10kgf/m
2 未満であると、重合体微粒子の強度が低下し、25
0kgf/mm2 を越えると重合体微粒子の柔軟性が低
下するため、10〜250kgf/mm2 に限定され
る。
The compression modulus (hereinafter referred to as 10% K value) when 10% of the particle diameter is displaced is 10 kgf / m.
If it is less than m 2 , the strength of the polymer fine particles decreases,
If it exceeds 0 kgf / mm 2 , the flexibility of the polymer fine particles is reduced, so that it is limited to 10 to 250 kgf / mm 2 .

【0013】上記10%K値とは、微小圧縮試験器(島
津製作所製PCT−200)を用い、直径50μmのダ
イヤモンド製円柱の平滑端面で、圧縮硬度0.27g/
秒、最大試験荷重10gにて得られた微粒子を圧縮した
際の荷重値、圧縮変位等を測定し、下記の式により求め
られる値である。
The above 10% K value is determined by using a micro-compression tester (PCT-200 manufactured by Shimadzu Corporation) and measuring the smooth hardness of a diamond cylinder having a diameter of 50 μm with a compression hardness of 0.27 g /
It is a value obtained by measuring the load value, compression displacement, and the like when compressing the fine particles obtained at a maximum test load of 10 g in seconds, and obtaining the following formula.

【0014】K=(3/√2)・F・S-3/2・R-1/2 F:微粒子の10%圧縮変形における荷重値(kg) S:微粒子の10%圧縮変形における圧縮変位(mm) R:微粒子の半径(mm)K = (3 / √2) ・FS -3 / 2 ・ R- 1 / 2 F: Load value at 10% compressive deformation of fine particles (kg) S: Compressive displacement at 10% compressive deformation of fine particles (Mm) R: radius of fine particles (mm)

【0015】上記10%K値は、微粒子の硬さを普遍的
且つ定量的に表すものであり、該10%K値を用いるこ
とにより、本発明の重合体微粒子の好適な硬さを定量的
且つ一義的に表すことが可能となる。
The above 10% K value universally and quantitatively represents the hardness of the fine particles. By using the 10% K value, the suitable hardness of the polymer fine particles of the present invention can be quantitatively determined. And it can be expressed uniquely.

【0016】上記圧縮変形回復率が30%未満であると
重合体微粒子の弾力性が低下するため、30%以上に限
定される。上記圧縮変形回復率とは、上記試験器にて微
粒子を反転荷重値1.0gfまで圧縮した後、逆に荷重
を減らして行く時の、荷重値と圧縮変位との関係を測定
して得られる値であり、荷重を除く際の終点を原点荷重
値0.1gf、負荷及び除負荷における圧縮速度0.0
29gf/秒として測定され、反転の点までの変位(L
1)と反転の点から原点荷重値を取る点までの変位(L
2)との比(L2/L1)を%にて表される値である。
If the compressive deformation recovery rate is less than 30%, the elasticity of the polymer fine particles is reduced, so that it is limited to 30% or more. The compressive deformation recovery rate is obtained by measuring the relationship between the load value and the compressive displacement when the load is reduced after compressing the fine particles to a reversal load value of 1.0 gf with the tester. The end point at which the load is removed is the origin load value 0.1 gf, and the compression speed 0.0 at the load and unload.
Measured as 29 gf / sec and the displacement (L
1) and the displacement (L
This is a value in which the ratio (L2 / L1) to 2) is expressed in%.

【0017】上記破壊歪みが30%未満であると、重合
体微粒子の粒子破壊が発生するため30%以上に限定さ
れる。上記破壊歪みとは、上記微小圧縮試験器による試
験を行い、微粒子が破壊した時点での変形量を定義した
ものであり、粒子直径(D)と破壊時までの変位量
(L)との比(L/D)を%にて表した値である。
When the breaking strain is less than 30%, the polymer fine particles are broken, so that the breaking strain is limited to 30% or more. The fracture strain is defined as the amount of deformation at the time when the fine particles are broken by performing a test using the above-mentioned micro-compression tester, and is the ratio between the particle diameter (D) and the displacement (L) up to the time of breaking. (L / D) is a value expressed in%.

【0018】本発明の重合体微粒子の材質は特に限定さ
れず、例えば、ウレタン樹脂、不飽和ポリエステル樹
脂、(メタ)アクリル酸エステル樹脂、ポリエチレン、
ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ
テトラフルオロエチレン、ブタジエン樹脂、エポキシ樹
脂、フェノール樹脂、メラミン樹脂、ポリメチルペンテ
ン、ポリスチレン、ポリエチレンテレフタレート、ポリ
ブチレンテレフタレート、ポリアミド、ポリイミド、ポ
リスルフォン、ポリフェニレンオキサイド、ポリアセタ
ール等が挙げられる。
The material of the polymer fine particles of the present invention is not particularly limited, and examples thereof include urethane resin, unsaturated polyester resin, (meth) acrylate resin, polyethylene,
Polypropylene, polyvinyl chloride, polystyrene, polytetrafluoroethylene, butadiene resin, epoxy resin, phenol resin, melamine resin, polymethylpentene, polystyrene, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyimide, polysulfone, polyphenylene oxide, polyacetal, etc. Is mentioned.

【0019】中でも、(メタ)アクリル酸エステル樹脂
を使用することが好ましい。該(メタ)アクリル酸エス
テル樹脂に用いられる架橋性単量体は特に限定されず、
例えば、1,6−ヘキサンジオールジ(メタ)アクリレ
ート、1,9−ノナンジオールジ(メタ)アクリレー
ト、ジメチロールトリシクロデカンジアクリレート、2
−ヒドロキシ−1−アクリロキシ−3−メタクリロキシ
プロパンジ(メタ)アクリレート等のジ(メタ)アクリ
ル酸エステル誘導体が挙げられる。
Among them, it is preferable to use a (meth) acrylate resin. The crosslinkable monomer used in the (meth) acrylate resin is not particularly limited,
For example, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dimethylol tricyclodecane diacrylate,
Di (meth) acrylate derivatives such as -hydroxy-1-acryloxy-3-methacryloxypropanedi (meth) acrylate.

【0020】また、上記架橋性単量体として、アルキル
グリコール基含有ジ(メタ)アクリレートを使用するこ
とも好適である。即ち、アルキルグリコール基含有ジ
(メタ)アクリレートとしては特に限定されず、例え
ば、エチレングリコールジ(メタ)アクリレート等のポ
リエチレングリコールジ(メタ)アクリレート;プロピ
レングリコールジ(メタ)アクリレート等のポリプロピ
レングリコールジ(メタ)アクリレート;ポリテトラメ
チレングリコールジ(メタ)アクリレート;ネオペンチ
ルグリコールジ(メタ)アクリレート;1, 3−ブチレ
ングリコールジ(メタ)アクリレート;2, 2−ビス
[4−(メタクリロキシエトキシ)フェニル]プロパン
ジ(メタ)アクリレート等の2, 2−ビス[4−(メタ
クリロキシポリエトキシ)フェニル]プロパンジ(メ
タ)アクリレート;2, 2−水添ビス[4−(アクリロ
キシポリエトキシ)フェニル]プロパンジ(メタ)アク
リレート、2, 2−ビス[4−(アクリロキシエトキシ
ポリプロポキシ)フェニル]プロパンジ(メタ)アクリ
レート等が挙げられる。
It is also preferable to use an alkyl glycol group-containing di (meth) acrylate as the crosslinkable monomer. That is, the alkyl glycol group-containing di (meth) acrylate is not particularly limited. For example, polyethylene glycol di (meth) acrylate such as ethylene glycol di (meth) acrylate; polypropylene glycol di (meth) acrylate such as propylene glycol di (meth) acrylate (Meth) acrylate; polytetramethylene glycol di (meth) acrylate; neopentyl glycol di (meth) acrylate; 1,3-butylene glycol di (meth) acrylate; 2,2-bis [4- (methacryloxyethoxy) phenyl] 2,2-bis [4- (methacryloxypolyethoxy) phenyl] propanedi (meth) acrylate such as propanedi (meth) acrylate; 2,2-hydrogenated bis [4- (acryloxypolyethoxy) phenyl] propanedi (meth) acrylate ) Acrylate, 2, 2-bis [4- (acryloxyethoxy poly propoxy) phenyl] propanedioic (meth) acrylate.

【0021】上記アルキルグリコール基含有ジ(メタ)
アクリレートの配合量としては、使用する架橋性単量体
中5〜100重量%が好ましく、より好ましくは40〜
100重量%である。5重量%未満では重合体微粒子の
柔軟性が低下することがある。
The above alkyl glycol group-containing di (meth)
The amount of the acrylate is preferably from 5 to 100% by weight, more preferably from 40 to 100% by weight of the crosslinking monomer used.
100% by weight. If the amount is less than 5% by weight, the flexibility of the polymer fine particles may decrease.

【0022】上記架橋性単量体と併用される単量体とし
ては特に限定されず、例えば、上記架橋性単量体と共重
合可能な重合性不飽和単量体が挙げられる。その具体例
としては、スチレン、α−メチルスチレン、p−メチル
スチレン、p−クロロスチレン、クロロメチルスチレン
等のスチレン誘導体;塩化ビニル;酢酸ビニル、プロピ
オン酸ビニル等のビニルエステル類;アクリロニトリル
等の不飽和ニトリル類;ブタジエン、イソプレン等の共
役ジエン類;(メタ)アクリル酸メチル、(メタ)アク
リル酸エチル、(メタ)アクリル酸ブチル、(メタ)ア
クリル酸2- エチルヘキシル、(メタ)アクリル酸ステ
アリル、エチレングリコール(メタ)アクリレート、ト
リフルオロエチル(メタ)アクリレート、ペンタフルオ
ロプロピル(メタ)アクリレート、シクロヘキシル(メ
タ)アクリレート等の(メタ)アクリル酸エステル誘導
体;トリメチロールプロパントリ(メタ)アクリレー
ト、テトラメチロールメタントリ(メタ)アクリレー
ト、テトラメチロールプロパンテトラ(メタ)アクリレ
ート、ジアリルフタレート及びその異性体;トリアリル
イソシアヌレート及びその誘導体;ペンタエリスリトー
ルトリ(メタ)アクリレート、ペンタエリスリトールテ
トラ(メタ)アクリレート、ジペンタエリスリトールヘ
キサ(メタ)アクリレート、などが挙げられる。
The monomer used in combination with the crosslinkable monomer is not particularly restricted but includes, for example, polymerizable unsaturated monomers copolymerizable with the crosslinkable monomer. Specific examples thereof include styrene derivatives such as styrene, α-methylstyrene, p-methylstyrene, p-chlorostyrene, and chloromethylstyrene; vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; and styrene derivatives such as acrylonitrile. Saturated nitriles; conjugated dienes such as butadiene and isoprene; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate; (Meth) acrylate derivatives such as ethylene glycol (meth) acrylate, trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate, and cyclohexyl (meth) acrylate; trimethylolpropane tri (meth) acrylate, tetra Methylolmethane tri (meth) acrylate, tetramethylolpropanetetra (meth) acrylate, diallyl phthalate and its isomers; triallyl isocyanurate and its derivatives; pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipenta Erythritol hexa (meth) acrylate, and the like.

【0023】本発明の重合体微粒子の粒子径(直径)
は、0.1μm未満では重合体微粒子が凝集し易くな
り、5000μmを越える重合体微粒子が使用されるこ
とはまれであるため、0.1〜5000μmが好まし
く、より好ましくは1〜100μmである。
Particle size (diameter) of the polymer fine particles of the present invention
When the particle size is less than 0.1 μm, the polymer particles tend to agglomerate, and the use of polymer particles exceeding 5000 μm is rarely used. Therefore, the particle size is preferably from 0.1 to 5000 μm, more preferably from 1 to 100 μm.

【0024】上記粒子径(直径)のCv値は、25%を
越えると得られる導電性微粒子の接続信頼性が低下する
ことがあるため、25%以下であることが好ましい。な
お、上記Cv値とは、下記計算式により求められる値の
ことをいう。 Cv値(%)=(粒子径の標準偏差/平均粒子径)×1
00
If the Cv value of the particle diameter (diameter) exceeds 25%, the connection reliability of the obtained conductive fine particles may decrease, and therefore, the Cv value is preferably 25% or less. In addition, the said Cv value means the value calculated | required by the following formula. Cv value (%) = (standard deviation of particle diameter / average particle diameter) × 1
00

【0025】本発明において用いられる重合体微粒子の
製造方法は特に限定されず、例えば、懸濁重合法、シー
ド重合法等が好適に用いられる。中でも、分級による粒
子径分布の均一化という工程を必要としないシード重合
法は、生産性が高く好ましい。シード重合法の詳細は、
例えば、特公平1−32945号公報に記載されてい
る。
The method for producing the polymer fine particles used in the present invention is not particularly limited, and for example, a suspension polymerization method, a seed polymerization method and the like are preferably used. Among them, a seed polymerization method that does not require a step of uniformizing the particle size distribution by classification is preferable because of high productivity. For details of the seed polymerization method,
For example, it is described in Japanese Patent Publication No. 1-39455.

【0026】上記シード重合法の具体的方法としては、
例えば、重合体シード粒子を分散した水中に、ポリテト
ラメチレングリコールジ(メタ)アクリレート、ポリプ
ロピレングリコールジ(メタ)アクリレート等を10重
量%以上含有するエチレン性不飽和単量体からなる水性
エマルジョンと、油溶性開始剤の水性エマルジョンとを
添加し、重合体シード粒子にエチレン性不飽和単量体及
び油溶性開始剤を吸収させた後、エチレン性不飽和単量
体を重合する方法が挙げられる。
Specific examples of the seed polymerization method include:
For example, an aqueous emulsion of an ethylenically unsaturated monomer containing 10% by weight or more of polytetramethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, or the like in water in which polymer seed particles are dispersed; A method of adding an aqueous emulsion of an oil-soluble initiator, absorbing the ethylenically unsaturated monomer and the oil-soluble initiator into the polymer seed particles, and then polymerizing the ethylenically unsaturated monomer.

【0027】上記重合体シード粒子の重量平均分子量は
1, 000〜20, 000が好ましく、上記エチレン性
不飽和単量体は、重合体シード粒子1重量部に対して1
0〜500重量部を吸収させることが好ましい。
The weight average molecular weight of the polymer seed particles is preferably from 1,000 to 20,000, and the amount of the ethylenically unsaturated monomer is 1 to 1 part by weight of the polymer seed particles.
It is preferable to absorb 0 to 500 parts by weight.

【0028】上記重合体微粒子の製造において用いられ
るラジカル重合開始剤としては特に限定されず、例え
ば、有機過酸化物、アゾ系化合物、等が好適に用いられ
る。上記有機過酸化物としては、例えば、ベンゾイルパ
ーオキサイド及びその誘導体、ラウロイルパーオキサイ
ド、アセチルパーオキサイド、ジクミルパーオキサイ
ド、ジ−t−ブチルパーオキサイド、t−ブチルパーオ
キサイド、t−ブチルパーオキシビバレート、t−ブチ
ルパーオキシベンゾエート、t−ブチルパーオキシオク
トエート、t−ブチルパーオキシアセテート、t―ブチ
ルパーオキシイソブチレート、t−ブチルー2−エチル
ヘキサノエート等が挙げられる。
The radical polymerization initiator used in the production of the polymer fine particles is not particularly limited, and for example, organic peroxides, azo compounds and the like are preferably used. Examples of the organic peroxide include benzoyl peroxide and its derivatives, lauroyl peroxide, acetyl peroxide, dicumyl peroxide, di-t-butyl peroxide, t-butyl peroxide, and t-butyl peroxyviva. Rate, t-butyl peroxybenzoate, t-butyl peroxy octoate, t-butyl peroxy acetate, t-butyl peroxyisobutyrate, t-butyl-2-ethylhexanoate and the like.

【0029】上記アゾ系化合物としては、例えば、アゾ
ビスイソブチロニトリル、アゾビスシクロヘキサカルボ
ニトリル、アゾビス(2,4−ジメチルバレロニトリ
ル)等のアゾ系化合物が挙げられる。
Examples of the azo compound include azo compounds such as azobisisobutyronitrile, azobiscyclohexacarbonitrile, and azobis (2,4-dimethylvaleronitrile).

【0030】上記ラジカル重合開始剤の配合量は、通
常、重合性単量体100重量部に対して、0.1〜15
重量部が好ましい。
The amount of the radical polymerization initiator is usually 0.1 to 15 parts by weight per 100 parts by weight of the polymerizable monomer.
Parts by weight are preferred.

【0031】上記重合体微粒子の重合に際しては、必要
に応じて、界面活性剤、分散安定剤等を用いることもで
きる。上記界面活性剤としては、例えば、アニオン系、
カチオン系、ノニオン系等の界面活性剤が使用される。
In the polymerization of the polymer fine particles, a surfactant, a dispersion stabilizer and the like can be used, if necessary. As the surfactant, for example, anionic,
A surfactant such as a cationic or nonionic surfactant is used.

【0032】上記分散安定剤としては、通常、媒体に可
溶の高分子が用いられ、例えば、ポリビニルアルコー
ル、ポリビニルピロリドン、メチルセルロース、エチル
セルロース、ポリアクリル酸、ポリアクリルアミド、ポ
リエチレンオキシド、デンプン、カルボキシメチルセル
ロース、ヒドロキシエチルセルロース、ポリメタクリル
酸ナトリウム等の水溶性高分子、硫酸バリウム、硫酸カ
ルシウム、硫酸アルミニウム、炭酸カルシウム、リン酸
カルシウム、タルク、粘土、ケイソウ土、金属酸化物粉
末等が挙げられる。
As the dispersion stabilizer, a polymer which is soluble in a medium is usually used. Examples of the dispersion stabilizer include polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, ethylcellulose, polyacrylic acid, polyacrylamide, polyethylene oxide, starch, carboxymethylcellulose, and the like. Examples include water-soluble polymers such as hydroxyethyl cellulose and polysodium methacrylate, barium sulfate, calcium sulfate, aluminum sulfate, calcium carbonate, calcium phosphate, talc, clay, diatomaceous earth, and metal oxide powder.

【0033】上記分散安定剤の配合量は、重合性単量体
100重量部に対して0.01〜20重量部が好まし
い。これらは、単独で用いられてもよいし、2種類以上
併用されてもよい。
The amount of the dispersion stabilizer is preferably 0.01 to 20 parts by weight based on 100 parts by weight of the polymerizable monomer. These may be used alone or in combination of two or more.

【0034】本発明の液晶表示素子用スペーサは、上記
重合体微粒子をそのまま用いるか、又は、重合体微粒子
の表面を有機物質にて被覆したり、表面に有機物質等を
結合させたり、表面を改質させたりするること等により
得られる。
The spacer for a liquid crystal display element of the present invention uses the above polymer fine particles as they are, or covers the surface of the polymer fine particles with an organic substance, binds an organic substance or the like to the surface, It is obtained by reforming or the like.

【0035】本発明の導電性微粒子は、上記重合体微粒
子を基材粒子として、その表面が導電材料で被覆され導
電層が形成されることにより得られる。上記導電層に使
用される金属としては特に限定されず、例えば、ニッケ
ル、金、銀、銅、コバルト、錫、インジウム、ITO、
及びこれらを主成分とする合金等が挙げられる。
The conductive fine particles of the present invention are obtained by using the above-mentioned polymer fine particles as base particles and coating the surface with a conductive material to form a conductive layer. The metal used for the conductive layer is not particularly limited. For example, nickel, gold, silver, copper, cobalt, tin, indium, ITO,
And alloys containing these as main components.

【0036】上記基材粒子の表面に金属層を形成する方
法としては特に限定されず、例えば、無電解メッキによ
る方法、金属微粉を単独又はバインダーに混ぜ合わせて
得られるペーストをコーティングする方法、真空蒸着、
イオンプレーティング、イオンスパッタリング等の物理
的蒸着方法などが挙げられる。
The method for forming the metal layer on the surface of the base particles is not particularly limited, and examples thereof include a method by electroless plating, a method of coating a paste obtained by mixing metal fine powder alone or with a binder, and a method of vacuum coating. Evaporation,
Examples include physical vapor deposition methods such as ion plating and ion sputtering.

【0037】上記無電解メッキ法としては、例えば、金
置換メッキ法が挙げられる。上記金置換メッキ法の作業
工程は、エッチング工程、アクチベーション工程、化学
ニッケルメッキ工程及び金置換メッキ工程に分けられ
る。上記エッチング工程は、基材粒子の表面に触媒を付
着させるための凹凸を形成させる工程であり、エッチン
グ液としては、例えば、カセイソーダ水溶液、濃塩酸、
濃硫酸、無水クロム酸等が挙げられる。
The electroless plating method includes, for example, a gold displacement plating method. The working steps of the gold displacement plating method are divided into an etching step, an activation step, a chemical nickel plating step, and a gold displacement plating step. The etching step is a step of forming irregularities for adhering the catalyst to the surface of the base particles, as an etchant, for example, aqueous caustic soda, concentrated hydrochloric acid,
Examples include concentrated sulfuric acid and chromic anhydride.

【0038】上記アクチベーション工程は、エッチング
された微粒子の表面に触媒層を形成させると共に、この
触媒層を活性化させるための工程である。即ち、微粒子
の表面のPd2+及びSn2+を含む触媒層を濃硫酸又は濃
塩酸で処理しPd2+の金属化を行い、金属化されたパラ
ジウムは、カセイソーダ濃厚溶液等のパラジウム活性剤
により活性化されて増感される。触媒層の活性化により
後述の化学ニッケルメッキ工程における金属ニッケルの
析出が促進される。
The activation step is a step for forming a catalyst layer on the surface of the etched fine particles and activating the catalyst layer. That is, the catalyst layer containing Pd 2+ and Sn 2+ on the surface of the fine particles is treated with concentrated sulfuric acid or concentrated hydrochloric acid to metallize Pd 2+ , and the metalized palladium is a palladium activator such as a concentrated solution of sodium hydroxide. Is activated and sensitized. The activation of the catalyst layer promotes the deposition of metallic nickel in a chemical nickel plating step described below.

【0039】上記化学ニッケルメッキ工程は、触媒層が
形成された基材粒子の表面に、更に金属ニッケル層を形
成させる工程であり、例えば、塩化ニッケルを次亜リン
酸ナトリウムによって還元し、ニッケルを基材粒子の表
面に析出させる。
The chemical nickel plating step is a step of further forming a metal nickel layer on the surface of the base particles on which the catalyst layer has been formed. For example, nickel chloride is reduced with sodium hypophosphite, and nickel is reduced. Precipitates on the surface of the substrate particles.

【0040】上記金置換メッキ工程は、上記ニッケルに
より被覆された微粒子を金シアン化カリウム溶液中に入
れ、昇温させながらニッケルを溶出させ、基材粒子表面
に金を析出させる工程である。
The gold displacement plating step is a step of placing the fine particles coated with nickel in a potassium gold cyanide solution, eluting nickel while increasing the temperature, and depositing gold on the surface of the base particles.

【0041】本発明の導電性微粒子における導電層の厚
みは0.02〜5μmが好ましい。導電層の厚みが0.
02μm未満であると、所望の導電性が得られにくく、
5μmを越えると導電性微粒子を一対の電極間に挟んで
両電極を加圧する際に、導電性微粒子の柔軟性が有効に
発現されにくくなり、導電性微粒子同士の凝集が起こり
易くなる。
The thickness of the conductive layer in the conductive fine particles of the present invention is preferably 0.02 to 5 μm. The thickness of the conductive layer is 0.
If it is less than 02 μm, it is difficult to obtain desired conductivity,
When the thickness exceeds 5 μm, the flexibility of the conductive fine particles is not effectively exerted when both the electrodes are pressurized with the conductive fine particles sandwiched between a pair of electrodes, and the conductive fine particles easily aggregate.

【0042】[0042]

【発明の実施の形態】以下に実施例を掲げて本発明を更
に詳細に説明するが、本発明はこれら実施例のみに限定
されるものではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0043】実施例1 (シード粒子の合成)ポリビニルピロリドン(重量平均
分子量(Mw)3万)1.2重量部、エアロゾルOT
(和光純薬社製)0.57重量部及びアゾビスメチルバ
レロニトリル1.43重量部を、メタノール74重量部
及び水10重量部に溶解させた溶液を窒素気流下で攪拌
しながら、スチレン18.1重量部及びα−メチルスチ
レン1.9重量部を投入した後60℃に昇温して24時
間重合を行いシード粒子を得た。得られたシード粒子
は、重量平均分子量(Mw)15000、平均粒径2.
0μmであった。
Example 1 (Synthesis of seed particles) 1.2 parts by weight of polyvinylpyrrolidone (weight average molecular weight (Mw) 30,000), aerosol OT
While stirring 0.57 parts by weight (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.43 parts by weight of azobismethylvaleronitrile in 74 parts by weight of methanol and 10 parts by weight of water, styrene 18 was stirred under a nitrogen stream. After adding 0.1 parts by weight and 1.9 parts by weight of α-methylstyrene, the mixture was heated to 60 ° C. and polymerized for 24 hours to obtain seed particles. The obtained seed particles had a weight average molecular weight (Mw) of 15000 and an average particle size of 2.
It was 0 μm.

【0044】(重合体微粒子の合成)上記シード粒子5
重量部にイオン交換水200重量部とラウリル硫酸ナト
リウム0.13重量部を加え均一に分散させた後、ポリ
テトラメチレングリコールジアクリレート(PTMG
A)80重量部、イソアミルアクリレート20重量部及
び過酸化ベンゾイル3重量部を混合してホモジナイザー
で分散させ、0.2μmに微分散乳化した。得られた乳
化液をシード粒子の分散液に加え、25℃、100rp
mの回転数で12時間攪拌してシード粒子に吸収させ
た。この分散液にポリビニルアルコールの3重量%水溶
液を100重量部加えた後、窒素気流下、80℃で12
時間重合を行った。得られた分散液から遠心分離により
取り出し、熱水及びアセトンで分散剤を完全に洗浄した
後乾燥し、重合体微粒子を得た。
(Synthesis of Polymer Fine Particles) Seed Particle 5
After adding 200 parts by weight of ion-exchanged water and 0.13 parts by weight of sodium lauryl sulfate to the parts by weight and dispersing them uniformly, polytetramethylene glycol diacrylate (PTMG)
A) 80 parts by weight, 20 parts by weight of isoamyl acrylate and 3 parts by weight of benzoyl peroxide were mixed, dispersed by a homogenizer, and finely dispersed and emulsified to 0.2 μm. The obtained emulsion is added to the dispersion of the seed particles, and 25 ° C., 100 rpm
The mixture was stirred at a rotation speed of m for 12 hours to be absorbed by the seed particles. After 100 parts by weight of a 3% by weight aqueous solution of polyvinyl alcohol was added to this dispersion, the dispersion was heated at 80 ° C. under a nitrogen stream at 12 ° C.
Polymerization was carried out for hours. The dispersion was removed from the resulting dispersion by centrifugation, and the dispersant was completely washed with hot water and acetone, and then dried to obtain polymer fine particles.

【0045】(導電性微粒子の製造)得られた重合体微
粒子の表面を水酸化ナトリウムによりエッチングし、無
電解ニッケルメッキを行った後、金置換反応によりニッ
ケル−金メッキ層が形成された導電性微粒子を得た。
(Production of Conductive Fine Particles) The conductive fine particles having a nickel-gold plated layer formed thereon by etching the surface of the obtained polymer fine particles with sodium hydroxide, performing electroless nickel plating, and then performing a gold substitution reaction. I got

【0046】(重合体微粒子及び導電性微粒子の評価)
上記得られた重合体微粒子について、10%K値及び圧
縮変形回復率を測定した。また、得られた導電性微粒子
をボールミルに入れ、6時間解砕後の金属層のはがれ状
態を走査電子顕微鏡(SEM)により観察した。得られ
た結果を表1に示した。
(Evaluation of Polymer Fine Particles and Conductive Fine Particles)
The 10% K value and the compression deformation recovery rate of the obtained polymer fine particles were measured. Further, the obtained conductive fine particles were put into a ball mill, and the peeling state of the metal layer after crushing for 6 hours was observed by a scanning electron microscope (SEM). Table 1 shows the obtained results.

【0047】実施例2 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、ポリテトラ
メチレングリコールジアクリレート(PTMGA)50
重量部及びイソオクチルアクリレート50重量部を用い
た以外は実施例1と同様にして重合体微粒子及び導電性
微粒子を得、得られた重合体微粒子及び導電性微粒子に
ついて実施例1と同様にして評価し、その結果を表1に
示した。
Example 2 Polytetramethylene glycol diacrylate (PTMGA) 50 was used instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles.
Polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1, except that 50 parts by weight of isooctyl acrylate and 50 parts by weight of isooctyl acrylate were used. The obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0048】実施例3 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、NKエステ
ルAPG700(新中村化学社製)60重量部及びペン
タエリスリトールトリアクリレート40重量部を用いた
以外は実施例1と同様にして重合体微粒子及び導電性微
粒子を得、得られた重合体微粒子及び導電性微粒子につ
いて実施例1と同様にして評価し、その結果を表1に示
した。
Example 3 Instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles, 60 parts by weight of NK ester APG700 (manufactured by Shin-Nakamura Chemical Co.) and pentaerythritol Except that 40 parts by weight of triacrylate was used, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1, and the results were obtained. Are shown in Table 1.

【0049】実施例4 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、NKエステ
ルAPG700(新中村化学社製)80重量部及びトリ
メチロールプロパントリアクリレート20重量部を用い
た以外は実施例1と同様にして重合体微粒子及び導電性
微粒子を得、得られた重合体微粒子及び導電性微粒子に
ついて実施例1と同様にして評価し、その結果を表1に
示した。
Example 4 Instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles, 80 parts by weight of NK ester APG700 (manufactured by Shin-Nakamura Chemical Co.) and trimethylol Except for using 20 parts by weight of propane triacrylate, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0050】実施例5 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、NKエステ
ルAPG700(新中村化学社製)100重量部を用い
た以外は実施例1と同様にして重合体微粒子及び導電性
微粒子を得、得られた重合体微粒子及び導電性微粒子に
ついて実施例1と同様にして評価し、その結果を表1に
示した。
Example 5 Instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles, 100 parts by weight of NK ester APG700 (manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. Except for the above, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0051】実施例6 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、NKエステ
ルAPG400(新中村化学社製)100重量部を用い
た以外は実施例1と同様にして重合体微粒子及び導電性
微粒子を得、得られた重合体微粒子及び導電性微粒子に
ついて実施例1と同様にして評価し、その結果を表1に
示した。
Example 6 In the synthesis of polymer fine particles, 100 parts by weight of NK ester APG400 (manufactured by Shin-Nakamura Chemical Co.) was used instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate. Except for the above, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0052】実施例7 セパラブルフラスコにて、ポリテトラメチレングリコー
ルジアクリレート15重量部、イソオクチルアクリレー
ト5重量部に重合開始剤として酸化ベンゾイル1.3重
量部を均一に混合し、これにポリビニルアルコール(ク
ラレ社製)の3%水溶液20重量部、ドデシル硫酸ナト
リウム0.5重量部を加えてよく攪拌した後、イオン交
換水140重量部を加えた。この溶液を攪拌しながら窒
素気流下80℃で15時間反応を行った。得られた微粒
子を熱水及びアセトンにて洗浄後、分級操作を行い平均
粒径5μmの重合体微粒子を得た。得られた重合体微粒
子を用いて導電性微粒子を作製し、該重合体微粒子及び
導電性微粒子について実施例1と同様にして評価し、そ
の結果を表1に示した。
Example 7 In a separable flask, 1.3 parts by weight of benzoyl oxide as a polymerization initiator were uniformly mixed with 15 parts by weight of polytetramethylene glycol diacrylate and 5 parts by weight of isooctyl acrylate. After adding 20 parts by weight of a 3% aqueous solution (manufactured by Kuraray Co., Ltd.) and 0.5 part by weight of sodium dodecyl sulfate and stirring well, 140 parts by weight of ion-exchanged water was added. The solution was reacted at 80 ° C. for 15 hours under a nitrogen stream while stirring. The obtained fine particles were washed with hot water and acetone, and then classified to obtain polymer fine particles having an average particle size of 5 μm. Conductive fine particles were prepared using the obtained polymer fine particles, and the polymer fine particles and the conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0053】実施例8 ポリテトラメチレングリコールジアクリレート15重量
部及びイソオクチルアクリレート5重量部の代わりに、
NKエステルAPG400を18重量部及びイソアミル
アクリレートを2重量部用いた以外は実施例7と同様に
して平均粒径5μmの重合体微粒子を得た。得られた重
合体微粒子を用いて導電性微粒子を作製し、該重合体微
粒子及び導電性微粒子について実施例1と同様にして評
価し、その結果を表1に示した。
Example 8 Instead of 15 parts by weight of polytetramethylene glycol diacrylate and 5 parts by weight of isooctyl acrylate,
Polymer fine particles having an average particle size of 5 μm were obtained in the same manner as in Example 7, except that 18 parts by weight of NK ester APG400 and 2 parts by weight of isoamyl acrylate were used. Conductive fine particles were prepared using the obtained polymer fine particles, and the polymer fine particles and the conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0054】実施例9 ポリテトラメチレングリコールジアクリレート15重量
部及びイソオクチルアクリレート5重量部の代わりに、
NKエステルAPG700を20重量部用いた以外は実
施例7と同様にして平均粒径5μmの重合体微粒子を得
た。得られた重合体微粒子を用いて導電性微粒子を作製
し、該重合体微粒子及び導電性微粒子について実施例1
と同様にして評価し、その結果を表1に示した。
Example 9 Instead of 15 parts by weight of polytetramethylene glycol diacrylate and 5 parts by weight of isooctyl acrylate,
Polymer fine particles having an average particle size of 5 μm were obtained in the same manner as in Example 7, except that 20 parts by weight of NK ester APG700 was used. Conductive fine particles were prepared using the obtained polymer fine particles, and the polymer fine particles and the conductive fine particles were prepared in Example 1.
The evaluation was performed in the same manner as described above, and the results are shown in Table 1.

【0055】比較例1 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、ジビニルベ
ンゼン100重量部を用いた以外は実施例1と同様にし
て重合体微粒子及び導電性微粒子を得、得られた重合体
微粒子及び導電性微粒子について実施例1と同様にして
評価し、その結果を表1に示した。
Comparative Example 1 The procedure of Example 1 was repeated, except that 100 parts by weight of divinylbenzene was used in place of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles. Thus, polymer fine particles and conductive fine particles were obtained, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0056】比較例2 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、イソオクチ
ルアクリレート100重量部を用いた以外は実施例1と
同様に行い重合体微粒子を得たが、洗浄段階でアセトン
に溶解したため評価できなかった。
Comparative Example 2 Same as Example 1 except that 100 parts by weight of isooctyl acrylate was used instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles. To obtain polymer fine particles, but could not be evaluated because they were dissolved in acetone at the washing stage.

【0057】比較例3 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、ジビニルベ
ンゼン80重量部及びトリメチロールプロパントリアク
リレート20重量部を用いた以外は実施例1と同様にし
て重合体微粒子及び導電性微粒子を得、得られた重合体
微粒子及び導電性微粒子について実施例1と同様にして
評価し、その結果を表1に示した。
Comparative Example 3 In the synthesis of polymer fine particles, instead of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate, 80 parts by weight of divinylbenzene and 20 parts by weight of trimethylolpropane triacrylate were used. Polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1 except for the difference, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0058】比較例4 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、1,9−ノ
ナンジオールジアクリレート100重量部を用いた以外
は実施例1と同様にして重合体微粒子を得たが、表面に
小粒子が多く付着していた。得られた重合体微粒子を用
いて導電性微粒子を作製し、該得られた重合体微粒子及
び導電性微粒子について実施例1と同様にして評価し、
その結果を表1に示した。
Comparative Example 4 Except that 100 parts by weight of 1,9-nonanediol diacrylate was used in place of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles. Polymer fine particles were obtained in the same manner as in Example 1, but many small particles adhered to the surface. Conductive fine particles were prepared using the obtained polymer fine particles, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1,
The results are shown in Table 1.

【0059】比較例5 重合体微粒子の合成におけるポリテトラメチレングリコ
ールジアクリレート(PTMGA)80重量部及びイソ
アミルアクリレート20重量部の代わりに、ライトアク
リレート14EG−A(共栄社化学社製)100重量部
を用いた以外は実施例1と同様に行い重合体微粒子を得
たが、使用した単量体が水溶性のため、乳化できなかっ
た。
Comparative Example 5 In place of 80 parts by weight of polytetramethylene glycol diacrylate (PTMGA) and 20 parts by weight of isoamyl acrylate in the synthesis of polymer fine particles, 100 parts by weight of light acrylate 14EG-A (manufactured by Kyoeisha Chemical Co., Ltd.) was used. Polymer particles were obtained in the same manner as in Example 1, except that the monomer used was water-soluble, and could not be emulsified.

【0060】比較例6 ポリテトラメチレングリコールジアクリレート15重量
部及びイソオクチルアクリレート5重量部の代わりに、
ジビニルベンゼン20重量部を用いた以外は実施例7と
同様にして重合体微粒子及び導電性微粒子を得、得られ
た重合体微粒子及び導電性微粒子について実施例1と同
様にして評価し、その結果を表1に示した。
Comparative Example 6 Instead of 15 parts by weight of polytetramethylene glycol diacrylate and 5 parts by weight of isooctyl acrylate,
Except for using 20 parts by weight of divinylbenzene, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 7, and the obtained polymer fine particles and conductive fine particles were evaluated in the same manner as in Example 1. Are shown in Table 1.

【0061】比較例7 ポリテトラメチレングリコールジアクリレート15重量
部及びイソオクチルアクリレート5重量部の代わりに、
1,9−ノナンジオールジアクリレート20重量部を用
いた以外は実施例7と同様にして重合体微粒子及び導電
性微粒子を得、得られた重合体微粒子及び導電性微粒子
について実施例1と同様にして評価し、その結果を表1
に示した。
Comparative Example 7 Instead of 15 parts by weight of polytetramethylene glycol diacrylate and 5 parts by weight of isooctyl acrylate,
Except that 20 parts by weight of 1,9-nonanediol diacrylate was used, polymer fine particles and conductive fine particles were obtained in the same manner as in Example 7, and the obtained polymer fine particles and conductive fine particles were obtained in the same manner as in Example 1. Table 1 shows the results.
It was shown to.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【発明の効果】本発明の重合体微粒子は、粒子直径の1
0%が変位したときの圧縮弾性率(10%K値)10〜
250kgf/mm2 、圧縮変形回復率30%以上、破
壊歪み30%以上であるので、液晶表示素子用スペーサ
として用いられた場合には、液晶表示素子の配向制御膜
を傷つけて液晶の配向特性の変調を誘起したり、表示画
像の質を低下させることがなく、導電性微粒子として用
いられた場合には、基板及びその配線を傷つけない柔軟
性を有し、且つ適度の圧縮変形性、変形回復性を有し、
タッチパネル等の基板間に配置される際に接触面積向上
のために粒子を大変形させても破壊せず優れた接続抵抗
及び接続信頼性を有する。
The polymer fine particles of the present invention have a particle diameter of 1%.
Compressive modulus at 0% displacement (10% K value) 10
Since it is 250 kgf / mm 2 , the compressive deformation recovery rate is 30% or more, and the breaking strain is 30% or more, when used as a spacer for a liquid crystal display element, the alignment control film of the liquid crystal display element is damaged and the alignment characteristics of the liquid crystal are deteriorated. When used as conductive fine particles without inducing modulation or deteriorating the quality of the displayed image, it has the flexibility not to damage the substrate and its wiring, and has an appropriate compressive deformability and deformation recovery. Has the nature
When placed between substrates such as a touch panel, the particles do not break even when the particles are greatly deformed to improve the contact area, and have excellent connection resistance and connection reliability.

【0064】また、本発明の重合体微粒子は、該重合体
微粒子中に、主鎖の柔らかい(ポリ)アルキルグリコー
ル基を含有することにより柔軟性が付与され、更に、そ
の架橋密度を必要に応じて調整されることにより良好な
弾力性が付与されるため、液晶表示用スペーサー、導電
性微粒子、等として好適に用いられる。
The polymer fine particles of the present invention are given flexibility by containing a soft (poly) alkyl glycol group having a main chain in the polymer fine particles. When adjusted in such a manner, good elasticity is imparted, so that it is suitably used as a spacer for liquid crystal display, conductive fine particles, or the like.

【0065】なお、上記重合体微粒子が用いられてなる
液晶表示素子用スペーサ及び導電性微粒子もまた本発明
の一つである。更に、上記液晶表示素子用スペーサは液
晶表示素子に、導電性微粒子はマイクロ素子実装用導電
性接着剤、異方導電性接着剤、導電接続構造体等におけ
る導電材料に、それぞれ好適に用いられる。
The present invention also includes a spacer for a liquid crystal display element and conductive fine particles using the above polymer fine particles. Further, the spacer for a liquid crystal display element is suitably used for a liquid crystal display element, and the conductive fine particles are preferably used for a conductive adhesive for mounting a micro element, an anisotropic conductive adhesive, and a conductive material in a conductive connection structure.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J011 AA05 AA08 PA04 PA07 PA09 PA10 PA13 PA53 PA54 PA64 PA65 PA66 PA67 PA69 PA74 PA84 PA85 PA86 PA88 PA90 PA95 PA96 PA97 PA98 PB06 PB40 PC07 PC08 4J026 AA11 AA12 AA13 AA17 AA25 AA26 AA45 AA68 AB01 AB02 AB04 AB08 AB14 AB15 AB18 AB19 AB28 AB34 AB40 AC33 BA05 BA06 BA10 BA20 BA22 BA27 BA28 BA31 BA40 BA46 BA47 CA10 DA04 DB04 DB12 DB13 EA06 FA02 FA04 FA07 FA09 GA01 GA02 5F044 LL07 LL09  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4J011 AA05 AA08 PA04 PA07 PA09 PA10 PA13 PA53 PA54 PA64 PA65 PA66 PA67 PA69 PA74 PA84 PA85 PA86 PA88 PA90 PA95 PA96 PA97 PA98 PB06 PB40 PC07 PC08 4J026 AA11 AA12 AA13 AA26A AB01 AB02 AB04 AB08 AB14 AB15 AB18 AB19 AB28 AB34 AB40 AC33 BA05 BA06 BA10 BA20 BA22 BA27 BA28 BA31 BA40 BA46 BA47 CA10 DA04 DB04 DB12 DB13 EA06 FA02 FA04 FA07 FA09 GA01 GA02 5F044 LL07 LL09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】粒子直径の10%が変位したときの圧縮弾
性率(10%K値)10〜250kgf/mm2 、圧縮
変形回復率30%以上、破壊歪み30%以上であること
を特徴とする重合体微粒子。
The present invention is characterized in that the compression elastic modulus (10% K value) when 10% of the particle diameter is displaced is 10 to 250 kgf / mm 2 , the compression deformation recovery rate is 30% or more, and the breaking strain is 30% or more. Polymer particles.
【請求項2】(ポリ)アルキルグリコール基を有するジ
(メタ)アクリレートを含有することを特徴とする重合
体微粒子。
2. Polymer fine particles containing a di (meth) acrylate having a (poly) alkyl glycol group.
【請求項3】平均粒子径0.1〜5000μm、Cv値
25%以下であることを特徴とする請求項1又は2記載
の重合体微粒子。
3. The polymer fine particles according to claim 1, wherein the average particle diameter is 0.1 to 5000 μm and the Cv value is 25% or less.
【請求項4】重合体シード粒子を分散した水中に、ポリ
テトラメチレングリコールジ(メタ)アクリレート又は
ポリプロピレングリコールジ(メタ)アクリレートを1
0重量%以上含有するエチレン性不飽和単量体からなる
水性エマルジョン及び油溶性開始剤の水性エマルジョン
を添加し、重合体シード粒子にエチレン性不飽和単量体
及び油溶性開始剤を吸収させた後、エチレン性不飽和単
量体を重合する重合体微粒子の製造方法であって、上記
重合体シード粒子の重量平均分子量が1, 000〜2
0, 000であり、且つ、上記エチレン性不飽和単量体
を重合体シード粒子1重量部に対して10〜500重量
部を吸収させることを特徴とする請求項1〜3記載の重
合体微粒子の製造方法。
4. Polytetramethylene glycol di (meth) acrylate or polypropylene glycol di (meth) acrylate is dispersed in water in which polymer seed particles are dispersed.
An aqueous emulsion composed of an ethylenically unsaturated monomer containing 0% by weight or more and an aqueous emulsion of an oil-soluble initiator were added, and the ethylenically unsaturated monomer and the oil-soluble initiator were absorbed by the polymer seed particles. Thereafter, a method for producing polymer fine particles by polymerizing an ethylenically unsaturated monomer, wherein the weight average molecular weight of the polymer seed particles is 1,000 to 2
4. The polymer fine particles according to claim 1, wherein the polymer fine particles have a molecular weight of 0.000 and absorb 10 to 500 parts by weight of the ethylenically unsaturated monomer per 1 part by weight of the polymer seed particles. Manufacturing method.
【請求項5】請求項1〜3記載の重合体微粒子が用いら
れてなることを特徴とする液晶表示素子用スペーサー。
5. A spacer for a liquid crystal display device, wherein the polymer fine particles according to claim 1 are used.
【請求項6】請求項1〜3記載の重合体微粒子の表面に
導電層が形成されてなることを特徴とする導電性微粒
子。
6. A conductive fine particle comprising the polymer fine particle according to claim 1 and a conductive layer formed on the surface thereof.
JP12595399A 1999-05-06 1999-05-06 Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles Expired - Lifetime JP3739232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12595399A JP3739232B2 (en) 1999-05-06 1999-05-06 Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12595399A JP3739232B2 (en) 1999-05-06 1999-05-06 Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles

Publications (2)

Publication Number Publication Date
JP2000319309A true JP2000319309A (en) 2000-11-21
JP3739232B2 JP3739232B2 (en) 2006-01-25

Family

ID=14923069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12595399A Expired - Lifetime JP3739232B2 (en) 1999-05-06 1999-05-06 Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles

Country Status (1)

Country Link
JP (1) JP3739232B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
JP2003323813A (en) * 2002-02-28 2003-11-14 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using the same
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
KR100507339B1 (en) * 2002-09-05 2005-08-08 제일모직주식회사 Full-interpenetrated structured monodisperse polymer particle, process for producing the same and application as a spacer for liquid crystal display
JP2006117850A (en) * 2004-10-22 2006-05-11 Nippon Shokubai Co Ltd Polymer fine particles and production process thereof, conductive fine particles
EP1715373A1 (en) * 2004-02-10 2006-10-25 Sekisui Chemical Co., Ltd. Column spacer, liquid crystal display element and curable resin composition for column spacer
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
JP2012193242A (en) * 2011-03-15 2012-10-11 Sekisui Plastics Co Ltd Resin particle, method for producing the same, foamable resin particle, foamed particle and foamed molded article
JP2013119594A (en) * 2011-12-07 2013-06-17 Nippon Shokubai Co Ltd Polymer particle, conductive particle, and anisotropic conductive material
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
WO2014189110A1 (en) * 2013-05-24 2014-11-27 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
WO2015002067A1 (en) * 2013-07-03 2015-01-08 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical-conduction material, liquid crystal display element, and light-shielding flexible silicone particles
JP2015118382A (en) * 2013-05-15 2015-06-25 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP2016081064A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2016210980A (en) * 2015-04-30 2016-12-15 積水化学工業株式会社 Base material particle, manufacturing method of base material particle, conductive particle, conductive material and connection structure
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284027B1 (en) 2012-12-31 2013-07-10 덕산하이메탈(주) Conductive particles for touch screen panel, and conductive materials including the same
CN108884178B (en) 2016-03-23 2021-06-04 日立化成株式会社 Reaction device, and method for producing resin particles, conductive particles, anisotropic conductive material, and connection structure

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
JP4642286B2 (en) * 2001-08-01 2011-03-02 早川ゴム株式会社 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP2003323813A (en) * 2002-02-28 2003-11-14 Hitachi Chem Co Ltd Circuit connecting material and connection structure of circuit terminal using the same
US7524559B2 (en) 2002-06-06 2009-04-28 Sony Chemical & Information Device Corporation Resin particle, conductive particle, and anisotropic conductive adhesive containing the same
WO2003104285A1 (en) * 2002-06-06 2003-12-18 ソニーケミカル株式会社 Resin particle, conductive particle and anisotropic conductive adhesive containing the same
US7338710B2 (en) 2002-06-06 2008-03-04 Sony Chemicals & Information Device Corporation Resin particle, conductive particle and anisotropic conductive adhesive containing the same
JP2008231438A (en) * 2002-06-06 2008-10-02 Sony Chemical & Information Device Corp Resin particle, conductive particle and anisotropic conductive adhesive containing the same
KR100507339B1 (en) * 2002-09-05 2005-08-08 제일모직주식회사 Full-interpenetrated structured monodisperse polymer particle, process for producing the same and application as a spacer for liquid crystal display
EP1715373A1 (en) * 2004-02-10 2006-10-25 Sekisui Chemical Co., Ltd. Column spacer, liquid crystal display element and curable resin composition for column spacer
EP1715373A4 (en) * 2004-02-10 2007-10-03 Sekisui Chemical Co Ltd Column spacer, liquid crystal display element and curable resin composition for column spacer
JP4527495B2 (en) * 2004-10-22 2010-08-18 株式会社日本触媒 Polymer fine particles and method for producing the same, conductive fine particles
JP2006117850A (en) * 2004-10-22 2006-05-11 Nippon Shokubai Co Ltd Polymer fine particles and production process thereof, conductive fine particles
JP2008521963A (en) * 2004-12-16 2008-06-26 チェイル インダストリーズ インコーポレイテッド Polymer resin fine particles, conductive fine particles, and anisotropic conductive connecting material containing the same
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
JP5584468B2 (en) * 2008-07-31 2014-09-03 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP2012193242A (en) * 2011-03-15 2012-10-11 Sekisui Plastics Co Ltd Resin particle, method for producing the same, foamable resin particle, foamed particle and foamed molded article
JP2013119594A (en) * 2011-12-07 2013-06-17 Nippon Shokubai Co Ltd Polymer particle, conductive particle, and anisotropic conductive material
JP2015118382A (en) * 2013-05-15 2015-06-25 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JPWO2014189110A1 (en) * 2013-05-24 2017-02-23 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
CN105229525A (en) * 2013-05-24 2016-01-06 积水化学工业株式会社 Sealant for liquid crystal dripping process, up and down conductive material and liquid crystal display cells
KR20160011187A (en) * 2013-05-24 2016-01-29 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
WO2014189110A1 (en) * 2013-05-24 2014-11-27 積水化学工業株式会社 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
CN105229525B (en) * 2013-05-24 2020-09-22 积水化学工业株式会社 Sealing agent for liquid crystal dropping process, vertical conduction material, and liquid crystal display element
KR102164731B1 (en) * 2013-05-24 2020-10-13 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
WO2015002067A1 (en) * 2013-07-03 2015-01-08 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical-conduction material, liquid crystal display element, and light-shielding flexible silicone particles
JPWO2015002067A1 (en) * 2013-07-03 2017-02-23 積水化学工業株式会社 Sealant for liquid crystal dropping method, vertical conduction material, liquid crystal display element, and light-shielding flexible silicone particle
JP2016081064A (en) * 2014-10-14 2016-05-16 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2016210980A (en) * 2015-04-30 2016-12-15 積水化学工業株式会社 Base material particle, manufacturing method of base material particle, conductive particle, conductive material and connection structure
CN109384886A (en) * 2017-08-02 2019-02-26 镇江爱邦电子科技有限公司 A kind of high cross-linking supports microballoon of New type LCD frame adhesive

Also Published As

Publication number Publication date
JP3739232B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3739232B2 (en) Polymer fine particles and manufacturing method thereof, spacer for liquid crystal display element, conductive fine particles
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
US7851063B2 (en) Polymer particles and conductive particles having enhanced conducting properties, and anisotropic conductive packaging materials containing the same
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
TW200826120A (en) Conductive particles and method of preparing the same
JP2002033022A (en) Conductive multilayer structure resin particle and anisotropic conductive adhesive using it
JP2003313304A (en) Conductive fine particle, its manufacturing method and bonding material for electronic component
JP4902853B2 (en) Resin fine particles and conductive fine particles
JP3587398B2 (en) Conductive particles and anisotropic conductive adhesive
JP2001216841A (en) Conductive partiulates and conductive connecting fabric
JPH10259253A (en) Metal-coated particle and conductive material
JP4278374B2 (en) Conductive fine particles, method for producing conductive fine particles, and conductive material
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JPH08225625A (en) Elastic microparticle, its production, and elastic conductive microparticle
JP2000309715A (en) Polymer microparticle and conductive microparticle
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
KR100667376B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP2006196411A (en) Conductive fine particle and anisotropic conductive material
JP2000034306A (en) Production of fine particle, fine particle, spacer for liquid crystal display element, liquid crystal display element, electrically conductive fine particle and conductive connection structure
JPH09185069A (en) Fine spherical body and liquid crystal display element
JP3427967B2 (en) Metal-coated fine particles and conductive material containing the same
JP2001216840A (en) Conductive particulates and conductive connecting fabric
KR100772423B1 (en) Monodisperse, crosslinked polymer particles and process for producing the same
JP3140995B2 (en) Spherical spacer for liquid crystal display device and liquid crystal display device using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term