JP2003045230A - Synthetic resin particulate, conductive particulate and anisotropy conductive material composite - Google Patents

Synthetic resin particulate, conductive particulate and anisotropy conductive material composite

Info

Publication number
JP2003045230A
JP2003045230A JP2001233365A JP2001233365A JP2003045230A JP 2003045230 A JP2003045230 A JP 2003045230A JP 2001233365 A JP2001233365 A JP 2001233365A JP 2001233365 A JP2001233365 A JP 2001233365A JP 2003045230 A JP2003045230 A JP 2003045230A
Authority
JP
Japan
Prior art keywords
fine particles
synthetic resin
conductive
resin fine
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001233365A
Other languages
Japanese (ja)
Other versions
JP4642286B2 (en
Inventor
Toshio Sakurai
俊男 櫻井
Kosaku Yamada
巧作 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Original Assignee
Hayakawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd filed Critical Hayakawa Rubber Co Ltd
Priority to JP2001233365A priority Critical patent/JP4642286B2/en
Publication of JP2003045230A publication Critical patent/JP2003045230A/en
Application granted granted Critical
Publication of JP4642286B2 publication Critical patent/JP4642286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a synthetic resin particulate that does not bring about conduction failure and is superior in stability with the passage of time as a core material of a conductive particulate. SOLUTION: A synthetic resin particulate which is useful as a core material of a conductive particulate is provided. This synthetic resin particulate has an initial elasticity modulus (M10 ) of 0.1-10 kgf/mm<2> (0.98-98 N/mm<2> ) and a crushing strength degradation ratio of 25% or les (165 deg.C, before and after one hour heat treatment). When such synthetic resin particulate is used as a core material of the conductive particulate, a conductive particulate that does not bring about conduction failure and is superior in stability with the passage of time can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂微粒子、
かかる合成樹脂微粒子の表面に導電層が形成されている
導電性微粒子、及びかかる導電性微粒子を含む異方導電
性材料組成物に関する。
TECHNICAL FIELD The present invention relates to a synthetic resin fine particle,
The present invention relates to conductive fine particles in which a conductive layer is formed on the surface of such synthetic resin fine particles, and an anisotropic conductive material composition containing the conductive fine particles.

【0002】[0002]

【従来の技術】圧縮方向にのみ導通する異方導電材料組
成物が知られている。かかる異方導電材料組成物は、詳
しくは、表面に導電材料で被覆した微粒子を練り混んで
分散させた接着剤やフィルムなどの形態をとるバインダ
ー組成物である。
2. Description of the Related Art An anisotropic conductive material composition which conducts only in the compression direction is known. More specifically, the anisotropic conductive material composition is a binder composition in the form of an adhesive or a film in which fine particles having a surface coated with a conductive material are kneaded and dispersed.

【0003】かかる異方導電材料組成物には、導電材料
で被覆された合成樹脂微粒子が用いられている。かかる
合成樹脂微粒子は導電材料の芯材として働く。
For such an anisotropic conductive material composition, synthetic resin fine particles coated with a conductive material are used. Such synthetic resin fine particles act as a core material of a conductive material.

【0004】古くから、導電性ペーストが知られてい
る。かかる導電性ペーストは、カーボンや銀等の導電粉
末を油状物や接着剤等のバインダー中に大量に練りこん
だ材料である。かかる導電性ペーストは電極接合部での
仮導通を取る等の場合によく用いられている。
Conductive pastes have been known for a long time. Such a conductive paste is a material in which a large amount of conductive powder such as carbon or silver is kneaded in a binder such as an oily substance or an adhesive. Such a conductive paste is often used in cases such as temporary provision of electrical continuity at electrode joints.

【0005】また、これとは別に、近年、異方導電材料
も用いられている。かかる異方導電材料では、導電粉末
の粒子径を均一にし、且つ、各粒子をバインダー中に独
立に分散させている。かかる材料は、一対の微小な電極
間に挟んで圧縮し、圧縮した部分のみが単粒子層となっ
て前記両電極と接触しこれらの間を導通させる。
Apart from this, anisotropic conductive materials have also been used in recent years. In such an anisotropic conductive material, the particle size of the conductive powder is made uniform, and each particle is dispersed independently in the binder. The material is compressed by being sandwiched between a pair of minute electrodes, and only the compressed portion becomes a single particle layer and comes into contact with both electrodes to establish electrical conduction between them.

【0006】かかる異方導電材料は、小さな多数の線条
状に配置された電極板の一対の間に使用する。したがっ
て、隣接する他の電極対の間隔より大きな粒子は短絡を
生じさせる。このため、用いる微粒子の直径はある程度
小さく、且つ、全電極対を安定に導通させるよう、均一
粒径であることを要する。
Such an anisotropic conductive material is used between a pair of electrode plates arranged in a large number of small strips. Therefore, a particle larger than the distance between other adjacent electrode pairs causes a short circuit. For this reason, the diameter of the fine particles to be used must be small to some extent, and the particle diameter must be uniform so that all the electrode pairs can be stably conducted.

【0007】かかる均一粒径の微粒子は、例えば液晶パ
ネルの透明基板間隔を一定にするために用いられてい
る。かかる微粒子はシリカ製や合成樹脂製のスペーサ用
均一微粒子である。
The fine particles having a uniform particle size are used, for example, to keep the distance between transparent substrates of a liquid crystal panel constant. Such fine particles are uniform fine particles for spacers made of silica or synthetic resin.

【0008】各種微粒子の表面には、金属メッキを施す
場合がある。かかる金属メッキの技術には、種々のもの
が開発されている。金属メッキされた合成樹脂微粒子は
異方導電材料として用いられる。
Metal plating may be applied to the surfaces of various fine particles. Various techniques have been developed for such metal plating techniques. The metal-plated synthetic resin fine particles are used as an anisotropic conductive material.

【0009】したがって、従来から用いている異方導電
材料用の芯材微粒子は、液晶パネルの透明基板間隔を一
定に保つための液晶パネル面内スペーサをそのまま用い
ている。
Therefore, the core fine particles for anisotropically conductive materials that have been used conventionally use the in-plane spacers of the liquid crystal panel as they are for keeping the distance between the transparent substrates of the liquid crystal panel constant.

【0010】液晶パネル用スペーサは、ある程度の高硬
度が要求される材料である。このため、特にシリカのよ
うな硬い微粒子に金属メッキを施してそのまま異方導電
材料として用いると、以下の問題があった。電極面と金
属メッキ微粒子とが点接点となり、接触面積が小さいう
えに、電極面間隔の凹凸による接触のバラツキ、圧縮時
の圧力のバラツキ、バインダー粘度のバラツキなど不確
定要因が合わさって、導通不良を起こすことが度々であ
った。
The liquid crystal panel spacer is a material that requires a certain degree of high hardness. For this reason, particularly when hard particles such as silica are plated with metal and used as they are as an anisotropic conductive material, the following problems occur. The electrode surface and the metal-plated fine particles are point contacts, and the contact area is small.In addition, there are uncertain factors such as uneven contact due to the unevenness of the electrode surface spacing, uneven pressure during compression, and uneven binder viscosity. Was often caused.

【0011】現在では、架橋ジビニルベンゼン系樹脂や
架橋ベンゾグアナミン系樹脂からなる液晶パネル用スペ
ーサが、そのまま表面メッキ用の原料として用いられ
る。かかる異方導電微粒子は、導通をより確実にするた
めに、金属メッキ後の微粒子を、平均直径の80〜90
%程度にまで電極対間で圧縮・狭窄する。
At present, spacers for liquid crystal panels made of a crosslinked divinylbenzene resin or a crosslinked benzoguanamine resin are used as they are as a raw material for surface plating. The anisotropic conductive fine particles have a mean diameter of 80 to 90 in order to ensure conduction.
The electrode pair is compressed / constricted up to about%.

【0012】異方導電材料を使用する電気回路基板組み
立て業者や液晶表示パネルメーカーから、芯材微粒子を
柔軟化して、接触不良を起こさないように、導電性微粒
子の接触面積を大きくしたいという要望が古くからあ
る。
From an electric circuit board assembler or a liquid crystal display panel maker using an anisotropic conductive material, there is a demand for softening the core material fine particles to increase the contact area of the conductive fine particles so as to prevent contact failure. It's been around for a long time.

【0013】金属メッキ微粒子に関する技術では、以下
のものが知られている。 (1)特開昭61−277105号公報には、ポリ(ペ
ンタエリスリトールテトラアクリレート/ジビニルベン
ゼン)系合成樹脂微粒子を芯材として、表面に導電材料
を被覆した導電性微粒子が記述されている。
The following are known in the art relating to metal-plated fine particles. (1) Japanese Patent Application Laid-Open No. 61-277105 describes conductive particles having poly (pentaerythritol tetraacrylate / divinylbenzene) -based synthetic resin particles as a core material and a surface coated with a conductive material.

【0014】(2)芯材微粒子の柔軟化を図るために、
特公平5−19241号公報には、熱可塑性樹脂や架橋
度を低下させたスチレン系樹脂が提案されている。
(2) In order to soften the core fine particles,
Japanese Patent Publication No. 5-19241 proposes a thermoplastic resin or a styrene resin having a reduced degree of crosslinking.

【0015】(3)特開平12−319309号公報に
は、ポリアルキレングリコールジ(メタ)アクリレートを
主原料とする合成樹脂微粒子が、導電性微粒子の芯材粒
子として提案されている。
(3) Japanese Patent Application Laid-Open No. 12-319309 proposes fine particles of synthetic resin containing polyalkylene glycol di (meth) acrylate as a main raw material as core particles of conductive fine particles.

【0016】[0016]

【発明が解決しようとする課題】本発明者は、上述の樹
脂系スペーサを導電性微粒子として用いる場合や、金属
メッキ合成樹脂微粒子では、導通不良や経時的安定性に
対し、耐え難い問題があることを見出した。
The present inventor has a problem that when the above-mentioned resin-based spacers are used as conductive fine particles, or when metal-plated synthetic resin fine particles are used, there is an unbearable problem in terms of conduction failure and stability over time. Found.

【0017】本発明の課題は、導電性微粒子の芯材とし
て、導通不良を引き起こさず、しかも経時的安定性に優
れた合成樹脂微粒子を得ることである。
An object of the present invention is to obtain, as a core material of conductive fine particles, synthetic resin fine particles which do not cause conduction failure and are excellent in stability over time.

【0018】[0018]

【課題を解決するための手段】本発明は、導電性微粒子
の芯材として用いる合成樹脂微粒子であって、前記合成
樹脂微粒子が0.98〜98N/mm(0.1〜10
kgf/mmを換算式1kgf/mm=9.806
65N/mmにより換算した。以下同じ。)の初期弾
性率(M10)及び25%以下の圧砕強度低下率(16
5℃・1時間熱処理前後)を有することを特徴とする合
成樹脂微粒子に係るものである。また、本発明は、かか
る合成樹脂微粒子の表面に導電層が形成されている導電
性微粒子、及びかかる導電性微粒子を含む異方導電性材
料組成物に係るものである。
The present invention relates to synthetic resin fine particles used as a core material for conductive fine particles, wherein the synthetic resin fine particles are 0.98 to 98 N / mm 2 (0.1 to 10).
kgf / mm 2 the conversion formula 1kgf / mm 2 = 9.806
It was converted by 65 N / mm 2 . same as below. ) Initial modulus (M 10 ) and crushing strength decrease rate of 25% or less (16
The present invention relates to synthetic resin fine particles characterized by having a heat treatment at 5 ° C. for 1 hour). The present invention also relates to conductive fine particles in which a conductive layer is formed on the surface of the synthetic resin fine particles, and an anisotropic conductive material composition containing the conductive fine particles.

【0019】本発明者は、導通不良のない導電性微粒子
を得るため、種々の微粒子を試作し検討した。
The inventors of the present invention made various fine particles as prototypes and studied in order to obtain conductive fine particles having no conduction failure.

【0020】その結果、本発明者は、樹脂系スペーサを
導電性微粒子として用いる場合、樹脂系スペーサが樹脂
製品として高硬度であり、メッキ後の導電性微粒子も硬
く潰れ難く、複数の電極中で導通不良が度々発生する等
の不具合を見出した。
As a result, the inventors of the present invention have found that when the resin-based spacer is used as the conductive fine particles, the resin-based spacer has a high hardness as a resin product, and the conductive fine particles after plating are hard and are not easily crushed. We have found problems such as frequent occurrence of conduction defects.

【0021】本発明者の研究によれば、かかる導通不良
を避けるためには、理論的にはバインダー中に導電性微
粒子を0.1〜1重量%混入すればよいものを、時には
5〜20重量%という大量の導電性微粒子の混入を要す
ることが分かった。しかし、多量の導電性微粒子の使用
は粒子間の短絡等の別の問題を生じ易い。
According to the research conducted by the present inventor, in order to avoid such poor conduction, theoretically, it is sufficient to mix 0.1 to 1% by weight of conductive fine particles in the binder, and sometimes 5 to 20. It was found that a large amount of conductive particles, such as weight%, needs to be mixed. However, the use of a large amount of conductive fine particles is likely to cause another problem such as a short circuit between particles.

【0022】また、本発明者は、特開昭61−2771
05号公報記載の技術を追試した。その結果、この技術
で得たメッキ前の微粒子の初期弾性率M10を測定する
と、23kgf(230N)/mmと硬度が高く、こ
れを加工して異方導電接着剤として使用すると、耐久試
験中に接触不良が多く発生した。
The inventor of the present invention has disclosed in Japanese Patent Laid-Open No. 61-2771.
The technique described in Japanese Patent Publication No. 05 was additionally tested. As a result, when the initial elastic modulus M 10 of the fine particles before plating obtained by this technique was measured, the hardness was as high as 23 kgf (230 N) / mm 2, and when this was processed and used as an anisotropic conductive adhesive, a durability test was performed. There were many poor contacts.

【0023】本発明者の研究によれば、その原因は、芯
材微粒子が高硬度であり、圧縮変形量を平均直径の10
%以下とせざるを得ないことにあった。平均粒子径より
小粒子径側に分布する導電性微粒子は、接触しないか、
接触応力が小さくなる。そのため、耐久試験等におい
て、導電性微粒子がバインダーの膨張及び収縮変形に追
随できなくなり、接触不良を起こすのである。
According to the research conducted by the present inventor, the cause is that the core fine particles have a high hardness and the amount of compressive deformation is 10 of the average diameter.
There was no choice but to keep it below%. Conductive fine particles distributed on the smaller particle diameter side than the average particle diameter do not come into contact with each other, or
Contact stress is reduced. Therefore, in the durability test and the like, the conductive fine particles cannot follow the expansion and contraction deformation of the binder, resulting in poor contact.

【0024】特公平5−19241号公報記載の技術で
は、熱可塑性樹脂や架橋密度を低下させたスチレン系樹
脂が提案されているが、この場合も導通の長期的信頼性
が著しく劣り、実用化は困難であった。
In the technique described in Japanese Patent Publication No. 5-19241, a thermoplastic resin and a styrene resin having a reduced crosslink density have been proposed, but in this case also, the long-term reliability of conduction is remarkably inferior and is put to practical use. Was difficult.

【0025】この原因は、バインダー接着剤の熱硬化や
フィルムの溶融硬化のために使用する加熱圧縮の際、微
粒子が熱溶融したり、塑性変形してしまうことにあっ
た。かかる導電性微粒子は、常温に戻した後、電極板と
導電性微粒子との接触が不完全となる。即ち、この場合
は、微粒子の圧縮回復による電極への反発応力が、皆無
又は不十分であるためと考えられた。
The cause of this is that the fine particles are thermally melted or plastically deformed during the heat compression used for the heat curing of the binder adhesive and the melt curing of the film. After the temperature of the conductive fine particles is returned to room temperature, the contact between the electrode plate and the conductive fine particles becomes incomplete. That is, in this case, it was considered that the repulsive stress to the electrode due to the compression recovery of the fine particles was none or insufficient.

【0026】特開平12−319309号公報記載の技
術では、導電性微粒子は柔らか過ぎて、バインダー皮膜
を加圧によって突き破ることができないためか、接着剤
に混合した場合に導通性が上がり難く、他方、高圧で熱
圧縮すると、芯材微粒子が破断してしまう等の不具合が
発生した。
In the technique described in Japanese Patent Application Laid-Open No. 12-319309, the conductive fine particles are too soft to break through the binder film by applying pressure. Probably the conductivity is not improved when mixed with the adhesive. However, when hot-compressed under high pressure, problems such as breakage of core fine particles occurred.

【0027】また、ポリアルキレングリコールのエーテ
ル結合は酸化され易く、信頼性試験において満足な結果
が得られなかった。
Further, the ether bond of polyalkylene glycol was easily oxidized, and satisfactory results were not obtained in the reliability test.

【0028】かかる知見の下、本発明者は、導通不良を
引き起こすことなく、長期的に安定な導通性を発揮する
ことができる最適な芯材微粒子を得るため、更に種々の
微粒子を試作し、検討した。
Based on such knowledge, the present inventor further produced various fine particles in order to obtain optimum core fine particles capable of exhibiting stable conductivity for a long term without causing conduction failure. investigated.

【0029】その結果、本発明者は、導電材料被覆微粒
子を一対の電極で挟んだ際、これを圧縮変形させて接触
面積を広くとることができる、平均直径が1〜100μ
mの範囲にある均一な合成樹脂微粒子を見出した。
As a result, the present inventor can compress and deform the conductive material-coated fine particles when sandwiched by a pair of electrodes so as to have a wide contact area. The average diameter is 1 to 100 μm.
The uniform synthetic resin fine particles in the range of m were found.

【0030】本発明は、アクリルゴム系材料から、芯材
微粒子として最適な物性限界値を有する合成樹脂微粒子
が得られたことに基づく。本発明では、合成樹脂微粒子
は、物理的及び化学的な耐熱性が高く、且つゴム弾性的
な圧縮回復性を安定して示す。
The present invention is based on the fact that synthetic resin fine particles having optimum physical property limit values as core material fine particles were obtained from an acrylic rubber type material. In the present invention, the synthetic resin fine particles have high physical and chemical heat resistance and stably exhibit rubber elastic compression recovery.

【0031】本発明では、合成樹脂微粒子は初期弾性率
10が、0.98N/mm以上、98N/mm
下である。かかる範囲内では、得られる導電性微粒子
は、圧縮されて上下の電極に安定して接触させることが
でき、導通不良問題を解決することができる。
[0031] In the present invention, the synthetic resin particles initial modulus M 10 is, 0.98N / mm 2 or more and 98 N / mm 2 or less. Within such a range, the obtained conductive fine particles can be compressed and brought into stable contact with the upper and lower electrodes, and the problem of poor conduction can be solved.

【0032】すなわち、10kgf(98N)/mm
を越える高弾性率の微粒子は、硬過ぎて圧縮度を大きく
できず、耐久試験中に導通不良となる。また、0.1k
gf(0.98N)/mm未満の微粒子は、柔らか過
ぎて、圧縮圧力が小さくなり、電極板と導電粒子との間
に存在するバインダーの被膜が容易に破れず、始めから
導通がとれない。
That is, 10 kgf (98 N) / mm 2
Fine particles having a high elastic modulus of more than 5 are too hard to increase the degree of compression, resulting in poor conduction during the durability test. Also, 0.1k
Fine particles of less than gf (0.98 N) / mm 2 are too soft, the compression pressure becomes small, the coating film of the binder existing between the electrode plate and the conductive particles is not easily broken, and conduction cannot be obtained from the beginning. .

【0033】また、本発明では、合成樹脂微粒子は16
5℃・1時間の熱処理前後での圧砕強度低下率が25%
以下である。かかる強度変化の小さい芯材微粒子は、熱
劣化による問題がない。
In the present invention, the synthetic resin fine particles are 16
25% reduction in crushing strength before and after heat treatment at 5 ° C for 1 hour
It is the following. The core material fine particles having a small strength change have no problem due to thermal deterioration.

【0034】熱処理後、圧砕強度の低下が大きいという
ことは、架橋重合体の分子鎖が著しく切断されているこ
とである。この場合、バインダー硬化処理直後のみなら
ず、電気接続した製品の経時安定性に欠け、信頼性は著
しく乏しくなる。
The large decrease in crushing strength after heat treatment means that the molecular chains of the crosslinked polymer are significantly cut. In this case, not only immediately after the binder curing treatment, but also the stability of the electrically connected product with time is deteriorated and the reliability is remarkably poor.

【0035】本発明によれば、合成樹脂微粒子が0.1
〜10kgf(0.98〜98N)/mmの初期弾性
率(M10)及び25%以下の圧砕強度低下率(165
℃・1時間熱処理前後)を有しており、かかる合成樹脂
微粒子を導電性微粒子の芯材として用いれば、導通不良
を引き起こさず、しかも経時的安定性に優れた導電性微
粒子を得ることができる。
According to the present invention, the fine particles of synthetic resin are 0.1
-10 kgf (0.98-98N) / mm 2 initial elastic modulus (M 10 ) and 25% or less crushing strength decrease rate (165
By using such synthetic resin fine particles as the core material of the conductive fine particles, it is possible to obtain conductive fine particles which do not cause poor conduction and are excellent in stability over time. .

【0036】[0036]

【発明の実施の形態】本発明の実施の形態を説明する。 (1)合成樹脂微粒子の各パラメータ ここで、本発明における、圧砕強度、初期弾性率
10、圧縮回復率の定義を詳しく述べる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described. (1) Each Parameter of Synthetic Resin Fine Particles Here, the definitions of the crushing strength, the initial elastic modulus M 10 and the compression recovery rate in the present invention will be described in detail.

【0037】(1−1)圧砕強度 まず、圧砕強度は、平松の式〔日鉱誌81、1024、
(1965)〕から計算する。平松によると、粒状体の圧
縮荷重から引っ張り強度Sへの変換は、 S=2.8P/πd [式中、S:引っ張り強度(kgf/mm)、
:荷重(kgf)、d:粒子径(mm)]で表され
る。本発明では、圧砕強度は前記式のSをもって当て
る。即ち、微粒子1個当たりの破壊に要する荷重P
(kgf)を測定し、前記式に代入して求める。
(1-1) Crushing strength First, the crushing strength was calculated according to Hiramatsu's formula [Nippon Journal 81, 1024,
(1965)]. According to Hiramatsu, the conversion from the compressive load of the granular material to the tensile strength S 0 is: S 0 = 2.8P 0 / πd 2 [wherein S 0 : tensile strength (kgf / mm 2 ),
P 0 : load (kgf), d: particle diameter (mm)]. In the present invention, the crushing strength is given by S 0 in the above formula. That is, the load P required for destruction per one fine particle
It is determined by measuring 0 (kgf) and substituting it in the above equation.

【0038】(1−2)初期弾性率 次に、初期弾性率M10を求める。上記式の引っ張り強
度Sにおいて、25℃で粒子径の10%が変位する時
の応力をSとし、上記式の荷重Pにおいて、粒子径の
10%が変位する時の荷重(圧縮応力)をPとすると、上
記式は、 S=2.8P/πd となる。
(1-2) Initial Elastic Modulus Next, the initial elastic modulus M 10 is obtained. In the tensile strength S 0 of the above formula, the stress when 10% of the particle size is displaced at 25 ° C. is S, and the load (compressive stress) when 10% of the particle size is displaced at the load P 0 of the above formula. Let P be P, the above equation becomes S = 2.8P / πd 2 .

【0039】本発明にかかる25℃における粒子径の1
0%初期変位における弾性率M10は、100%変位に
換算するため、上記式を10倍するので次式で示され
る。 M10=10S 即ち、M10=28P/πd [式中、P:25℃における初期10%圧縮変位時の応
力(kgf)、d:粒子径(mm)]である。
1 of the particle size at 25 ° C. according to the present invention
Since the elastic modulus M 10 at 0% initial displacement is converted to 100% displacement, the above formula is multiplied by 10 and is therefore represented by the following formula. M 10 = 10S That is, M 10 = 28P / πd 2 [wherein, P: stress at initial 10% compression displacement at 25 ° C. (kgf), d: particle diameter (mm)].

【0040】(1−3)圧縮回復率 圧縮回復率は、一定速度で一個の粒子に、0gfから1
gfまで圧縮して1g変位を測定し、再び、0gfまで
戻して残留歪を求め、1gf変位に対する、1gf変位
と残留歪との差の割合とする。
(1-3) Compression recovery rate The compression recovery rate is from 0 gf to 1 per particle at a constant speed.
It is compressed to gf, 1 g displacement is measured, and it is returned to 0 gf again to obtain the residual strain, which is taken as the ratio of the difference between the 1 gf displacement and the residual strain to the 1 gf displacement.

【0041】(2)初期弾性率 従来から、材料の硬さを表す指標として、弾性率があ
る。一般に軟質材料微粒子の場合、測定方法のばらつき
は多少あるが、機械的性質である弾性率によっても軟ら
かさを測定することができる。本発明では、かかる弾性
率によっても、合成樹脂微粒子の軟質度の範囲を特定す
ることができる。
(2) Initial Modulus of Elasticity Conventionally, the elastic modulus has been used as an index of the hardness of a material. Generally, in the case of soft material fine particles, there is some variation in the measuring method, but the softness can be measured also by the elastic modulus which is a mechanical property. In the present invention, the range of softness of the synthetic resin fine particles can be specified also by the elastic modulus.

【0042】本発明の合成樹脂微粒子は、初期弾性率M
10が、熱処理により変化しても、0.1kgf(0.
98N)/mm以上、10kgf(98N)/mm
の範囲を維持している必要がある。熱処理前後の初期弾
性率の変化倍率は、熱処理前の0.3〜2倍程度の範囲
内であれば実用には差し支えない。熱処理前後の初期弾
性率の変化が0.5〜1.5倍の範囲であれば、なお好
ましい。
The synthetic resin fine particles of the present invention have an initial elastic modulus M.
10 is 0.1 kgf (0.
98 N) / mm 2 or more, 10 kgf (98 N) / mm 2
The range must be maintained. The change rate of the initial elastic modulus before and after the heat treatment may be practically used as long as it is within the range of about 0.3 to 2 times before the heat treatment. It is more preferable that the change in the initial elastic modulus before and after the heat treatment is in the range of 0.5 to 1.5 times.

【0043】初期弾性率の測定は、初期応力が0kgf
(0N)/mmから検知開始するため、測定誤差が大
きい。特に、弾性率が10kgf(98N)/mm
下の軟質材料の場合は、誤差が大きくなり易いが、前記
の圧砕強変化率を物性変化の代表として捕らえておけ
ば、実質上、熱劣化の有無を検知することができる。
The initial elastic modulus was measured at an initial stress of 0 kgf.
Since the detection is started from (0N) / mm 2 , the measurement error is large. In particular, in the case of a soft material having an elastic modulus of 10 kgf (98 N) / mm 2 or less, the error is likely to be large, but if the rate of crushing strength change is taken as a representative of the change in physical properties, it is possible to obtain a substantial effect of thermal deterioration. The presence or absence can be detected.

【0044】(3)圧砕強度低下率 異方導電接着剤や異方導電フィルムは、そのバインダー
成分が熱硬化性樹脂又は熱可塑性樹脂が多い。このた
め、導電性微粒子は、ほとんどの場合、加熱圧縮工程を
通る。したがって、導電性微粒子の芯材は耐熱性と耐圧
縮性が要求される。
(3) Reduction rate of crushing strength In anisotropic conductive adhesives and anisotropic conductive films, the binder component is mostly thermosetting resin or thermoplastic resin. Therefore, in most cases, the conductive fine particles pass through the heat compression process. Therefore, the core material of the conductive fine particles is required to have heat resistance and compression resistance.

【0045】ここで言う合成樹脂微粒子の耐熱性とは、
加熱圧縮工程における芯材の化学的安定性が良好で、バ
インダーの熱硬化、加熱軟化等の工程で破壊されたり、
酸化や加熱分解が起きないことである。
The heat resistance of the synthetic resin fine particles as used herein means
The chemical stability of the core material in the heating and compression process is good, and it may be destroyed in the processes such as heat curing and heat softening of the binder,
That is, no oxidation or thermal decomposition occurs.

【0046】バインダーの樹脂の種類にもよるが、導電
性微粒子は高温に曝されることがしばしばである。導電
性皮膜は金属であることが多いので問題ないが、芯材の
樹脂微粒子は、この温度に耐える必要があり、その影響
は圧砕強度に顕著に現れる。
The conductive fine particles are often exposed to a high temperature depending on the kind of the binder resin. Since the conductive film is often made of metal, there is no problem. However, the resin fine particles of the core material need to withstand this temperature, and the effect thereof is remarkable in the crushing strength.

【0047】現実の問題として、圧熱下での形状や物性
の測定は困難であり、本発明では、フリーの状態で加熱
処理して、その前後の機械的物性の変化を測定する。
As a practical matter, it is difficult to measure the shape and the physical properties under pressure heat, and in the present invention, the heat treatment is performed in a free state, and the change in the mechanical physical properties before and after the heat treatment are measured.

【0048】通常、液晶パネルの周辺シーラー中に導電
性微粒子を混入する場合は、バインダー樹脂としてはエ
ポキシ接着剤を用いる。一般に、周辺シーラーの熱硬化
条件は150〜180℃及び1〜4時間程度である。
Generally, when conductive fine particles are mixed in the peripheral sealer of the liquid crystal panel, an epoxy adhesive is used as the binder resin. Generally, the heat-curing conditions for the peripheral sealer are 150 to 180 ° C. and 1 to 4 hours.

【0049】また、異方導電フィルムでは、熱硬化条件
は、150〜160℃及び20秒、200〜230℃及
び5〜10秒であり、シーラーの場合と同程度か、より
一層高温で、極めて短い硬化時間が適用される。導電性
微粒子はこれらの熱履歴に耐える必要がある。
Further, in the anisotropic conductive film, the thermosetting conditions are 150 to 160 ° C. and 20 seconds, 200 to 230 ° C. and 5 to 10 seconds, which is almost the same as that of the sealer or much higher, and extremely high. Short cure times are applied. The conductive particles need to withstand these thermal histories.

【0050】バインダー硬化条件のうち、シーラーの方
は、多少低めの温度であるがなお常温より非常に高く、
異方導電フィルムより数百〜数千倍ほど加熱時間が長
い。微粒子に与える影響は、酸化劣化反応を主とするダ
メージに基づき、シーラーの方が大きいと考えられる。
Among the binder curing conditions, the sealer has a slightly lower temperature, but is still much higher than room temperature.
The heating time is several hundred to several thousand times longer than that of the anisotropic conductive film. It is considered that the sealer has a larger influence on the fine particles, based on the damage mainly caused by the oxidative deterioration reaction.

【0051】したがって、本発明では、熱処理条件とし
てより厳しい、シ−ラーの場合の165℃で1時間とい
う条件を設定した。この熱処理前後での圧砕強度の低下
が、少なくとも25%以下、好ましくは20%以下であ
れば、この間の芯材微粒子の熱劣化は実用的には問題な
い。
Therefore, in the present invention, a more severe heat treatment condition is set at 165 ° C. for 1 hour in the case of a sealer. If the reduction in crushing strength before and after this heat treatment is at least 25% or less, preferably 20% or less, thermal deterioration of the core material fine particles during this time is not a practical problem.

【0052】(4)圧縮回復率 次に、本発明の合成樹脂微粒子は、圧縮回復率が少なく
とも30%以上、好ましくは40%以上であるのが望ま
しい。圧縮回復率が30%未満の場合、高分子間の架橋
が不十分で、熱圧縮による永久変形が起き易く好ましく
ない。
(4) Compression Recovery Rate Next, it is desirable that the synthetic resin fine particles of the present invention have a compression recovery rate of at least 30% or more, preferably 40% or more. When the compression recovery rate is less than 30%, the crosslinking between the polymers is insufficient, and permanent deformation due to thermal compression tends to occur, which is not preferable.

【0053】しかし、架橋重合体であっても完全弾性体
であることは、現実では望むべくもなく、圧縮回復測定
の回復時間に緩和時間が追随できないため100%にな
らなくても、前記程度の圧縮回復率で実際上は問題な
い。
However, in reality, it is not desired that even a crosslinked polymer is a completely elastic body, and since the relaxation time cannot follow the recovery time of the compression recovery measurement, even if it does not reach 100%, the above-mentioned degree is obtained. The compression recovery rate of is practically no problem.

【0054】この意味において、熱処理による圧縮回復
率の保持特性も重要な物性である。導電性微粒子が、圧
熱により電極間にバインダーで固定された後に、塑性変
形し反発応力が低下し、電極と導電性微粒子との接触が
阻害されてはならない。
In this sense, the retention property of the compression recovery rate by heat treatment is also an important physical property. After the conductive fine particles are fixed with a binder between the electrodes by pressure heat, the conductive fine particles should not be plastically deformed to reduce the repulsive stress, and the contact between the electrodes and the conductive fine particles should not be disturbed.

【0055】(5)合成樹脂微粒子の原料 本発明では、合成樹脂微粒子は、0.1〜10kgf
(0.98〜98N)/mmの初期弾性率(M10
及び25%以下の圧砕強度低下率(165℃・1時間熱
処理前後)を実現できる限り、種々の原料から形成する
ことができる。
(5) Raw Material of Synthetic Resin Fine Particles In the present invention, the synthetic resin fine particles are 0.1 to 10 kgf.
(0.98 to 98 N) / mm 2 initial elastic modulus (M 10 ).
Also, as long as a crushing strength reduction rate of 25% or less (before and after heat treatment at 165 ° C. for 1 hour) can be realized, it can be formed from various raw materials.

【0056】(6)アクリルゴム 本発明の合成樹脂微粒子は、本質的にはアクリルゴムか
らなることができる。しかし、かかるアクリルゴムは、
一般のアクリルゴムとは異なる。一般のアクリルゴム
は、アクリルモノマーを線状高分子に重合させた後、成
型中又はその後、アミン等の加硫剤によって架橋させ
る。これに対して、本発明では、2官能モノマー原料の
存在によって、重合と同時に架橋した構造となる。した
がって、両者の架橋点の化学構造は全く異なり、本発明
にかかるアクリルゴムは特殊アクリルゴムに属する。
(6) Acrylic rubber The synthetic resin fine particles of the present invention can essentially consist of acrylic rubber. However, such acrylic rubber
Different from general acrylic rubber. In a general acrylic rubber, after polymerizing an acrylic monomer into a linear polymer, it is cross-linked with a vulcanizing agent such as amine during or after molding. On the other hand, in the present invention, due to the presence of the bifunctional monomer raw material, the structure becomes a structure which is crosslinked simultaneously with the polymerization. Therefore, the chemical structures of the two crosslinking points are completely different, and the acrylic rubber according to the present invention belongs to the special acrylic rubber.

【0057】特に、本発明では、かかる微粒子は、アク
リルゴムである架橋アクリル酸アルキルエステル重合体
から得ることができる。
Particularly in the present invention, such fine particles can be obtained from a crosslinked alkyl acrylate polymer which is an acrylic rubber.

【0058】本発明においては、このような架橋アクリ
ル酸エステル高分子に関しては、軟質度は密度と相関関
係が高く、合成樹脂微粒子の密度が1.01〜1.20
g/mLまでの範囲が最適である。
In the present invention, with respect to such a crosslinked acrylic acid ester polymer, the degree of softness has a high correlation with the density, and the density of the synthetic resin fine particles is 1.01 to 1.20.
The range up to g / mL is optimal.

【0059】即ち、密度が1.2g/mLを超えるもの
は硬くなり過ぎ、これを用いた導電性微粒子の信頼性は
従来の高硬度導電材料被覆微粒子と大差なくなり、好ま
しくない。また、密度が1.01g/mL未満の場合
は、柔らか過ぎ、懸濁重合後、粒子径精製工程において
水ひ分級法が使用できない等の不具合があり、好ましく
ない。
That is, if the density exceeds 1.2 g / mL, it becomes too hard, and the reliability of the conductive fine particles using this is not so different from the conventional fine particles coated with a high hardness conductive material, which is not preferable. Further, when the density is less than 1.01 g / mL, it is not preferable because it is too soft and there is a problem that the water sieving classification method cannot be used in the particle size refining step after suspension polymerization.

【0060】したがって、各種原料モノマーの組み合わ
せは、密度が1.01〜1.20g/mLの範囲に設定
することが重要である。
Therefore, it is important to set the density of the combination of various raw material monomers in the range of 1.01 to 1.20 g / mL.

【0061】本発明にかかるアクリル酸エステル架橋重
合体は、熱酸化に対する耐性のある重合体を与え、導電
体被覆後、異方導電フィルムや異方導電接着剤として応
用された場合、その圧熱工程で劣化することが無く、充
分信頼性のある芯材微粒子を与える。即ち、かかる微粒
子は、165℃及び1時間の空気中での加熱によって
も、圧砕強度の低下は25%以下に保つことができるの
である。
The acrylic acid ester crosslinked polymer according to the present invention gives a polymer having resistance to thermal oxidation, and when applied as an anisotropic conductive film or an anisotropic conductive adhesive after being coated with a conductor, it is pressed and heated. The core fine particles are sufficiently reliable and do not deteriorate in the process. That is, even if the fine particles are heated in air at 165 ° C. for 1 hour, the reduction in crushing strength can be maintained at 25% or less.

【0062】(6−1)2官能モノマー かかるアクリル酸エステル架橋重合体を得るには、従来
の液晶パネル用面内スペーサに比べて架橋度の低い特殊
アクリルゴムとするために、2官能モノマーであるアル
キレンジオールジアクリレートを原料モノマーとして用
いるのが最も好ましい。
(6-1) Bifunctional Monomer To obtain such an acrylic acid ester crosslinked polymer, in order to obtain a special acrylic rubber having a lower degree of crosslinking than conventional in-plane spacers for liquid crystal panels, a bifunctional monomer is used. Most preferably, an alkylene diol diacrylate is used as the raw material monomer.

【0063】かかるアルキレンジオールジアクリレート
としては、即ち1,2−エチレングリコールジアクリレ
ート、1,3−プロピレングリコールジアクリレ−ト及
びその異性体、1,4−ブタンジオールジアクリレート
及びその異性体、1,6−ヘキサンジオールジアクリレ
ート及びその異性体、1,7−ヘプタンジオールジアク
リレート及びその異性体、1,8−オクタンジオールジ
アクリレート及びその異性体、1,9−ノナンジオール
ジアクリレート及びその異性体、1,10−デカンジオ
ールジアクリレート及びその異性体、1,11−ウンデ
カンジオールジアクリレート及びその異性体、1,12
−ドデカンジオールジアクリレート及びその異性体、
1,13−トリデカンジオールジアクリレート及びその
異性体、1,15−ペンタデカンジオールジアクリレー
ト及びその異性体、1,16−ヘキサデカンジオールジ
アクリレート及びその異性体等から選ばれる1種以上の
モノマーを用いることができる。なお、3官能以上の多
官能モノマーは、下記単官能モノマーとの組合せ、或い
は単独で用いても、硬度が上がり過ぎて柔軟性が失われ
ない限り用いることができる。
Examples of the alkylenediol diacrylate include 1,2-ethylene glycol diacrylate, 1,3-propylene glycol diacrylate and its isomers, 1,4-butanediol diacrylate and its isomers, 1,6-hexanediol diacrylate and its isomers, 1,7-heptanediol diacrylate and its isomers, 1,8-octanediol diacrylate and its isomers, 1,9-nonanediol diacrylate and its isomers Body, 1,10-decanediol diacrylate and its isomers, 1,11-undecanediol diacrylate and its isomers, 1,12
-Dodecanediol diacrylate and its isomers,
At least one monomer selected from 1,13-tridecanediol diacrylate and its isomers, 1,15-pentadecanediol diacrylate and its isomers, 1,16-hexadecanediol diacrylate and its isomers, and the like is used. be able to. The trifunctional or higher polyfunctional monomer may be used in combination with the following monofunctional monomers or alone, as long as the hardness does not increase excessively and the flexibility is lost.

【0064】前記アルキルジアクリレートに代えて、例
えば特開平12−309715号公報や特開平12−3
19309号公報のようにして、ポリプロピレングリコ
ールジアクリレートやポリテトラメチレングリコールジ
アクリレートを用いると、これらのエーテル結合は酸化
されて劣化し易く、165℃及び1時間の空気中での加
熱による圧砕強度の低下は30%を超え、好ましくな
い。
Instead of the alkyl diacrylate, for example, JP-A-12-309715 and JP-A-12-3.
When polypropylene glycol diacrylate or polytetramethylene glycol diacrylate is used as disclosed in Japanese Patent Publication No. 19309, these ether bonds are easily oxidized and deteriorated, and the crush strength by heating in air at 165 ° C. for 1 hour is increased. The decrease is more than 30%, which is not preferable.

【0065】スチレン系やジビニルベンゼン系樹脂は、
光や熱によって容易に空気酸化され、165℃及び1時
間の空気中での加熱によって、30%以上もの強度劣化
をもたらすことがあり、好ましくない。また、かかる樹
脂は、本来ガラス転移点の高い硬い樹脂であるため、常
温において、初期弾性率M10を10kgf(98N)
/mm以下に軟らかくすることは難しい。
Styrene-based and divinylbenzene-based resins are
It is not preferable because it is easily air-oxidized by light or heat and may cause strength deterioration of 30% or more by heating in air at 165 ° C. for 1 hour. Further, since such a resin is originally a hard resin having a high glass transition point, the initial elastic modulus M 10 at room temperature is 10 kgf (98 N).
/ Mm 2 It is difficult to soften below.

【0066】(6−2)アルキルアクリレート 本発明では、原料モノマーとして、2官能モノマーのア
ルキレンジオールジアクリレート20〜80重量%を用
いる際、原料モノマーの残部にアルキルアクリレートを
用いることができる。
(6-2) Alkyl acrylate In the present invention, when 20 to 80% by weight of the bifunctional monomer alkylene diol diacrylate is used as the raw material monomer, alkyl acrylate can be used as the balance of the raw material monomer.

【0067】アルキルアクリレートを用いる利点は、こ
れから得られるポリマーは、光や熱によって空気酸化さ
れることがなく、良好な原料だからである。
The advantage of using an alkyl acrylate is that the polymer obtained from this is a good raw material which is not air-oxidized by light or heat.

【0068】また、軟質ポリマーは一般にガラス転移点
が低く、アルキルアクリレートポリマーはこれを達成す
ることができる。
In addition, soft polymers generally have a low glass transition point, and alkyl acrylate polymers can achieve this.

【0069】かかるアルキルアクリレートは、原料モノ
マーの20〜80重量%含有させることができる。本発
明では、架橋アクリルゴム材料が好ましく、このため、
直線状ポリマーを与えるアルキルアクリレートは原料モ
ノマーの100重量%未満が良い。
The alkyl acrylate can be contained in an amount of 20 to 80% by weight of the raw material monomer. In the present invention, a crosslinked acrylic rubber material is preferred and for this reason,
The alkyl acrylate that gives the linear polymer should be less than 100% by weight of the raw material monomers.

【0070】また、密度を1.01g/mL以上に保持
するために、これが80%を超えては困難となる。
Further, in order to keep the density at 1.01 g / mL or more, it becomes difficult if this exceeds 80%.

【0071】逆に2官能モノマーのみでは、合成樹脂微
粒子の密度が1.20g/mLを超えることがあり、ア
ルキルアクリレートを原料モノマーの20重量%以上加
えることによって、かかる微粒子の密度を1.20g/
mL以下に保持することができる。
On the contrary, if the bifunctional monomer alone is used, the density of the fine particles of synthetic resin may exceed 1.20 g / mL. By adding alkyl acrylate in an amount of 20% by weight or more of the raw material monomer, the density of the fine particles becomes 1.20 g. /
It can be kept below mL.

【0072】かかるアルキルアクリレートとしては、例
えばアクリル酸メチル、アクリル酸エチル、アクリル酸
n−プロピル、アクリル酸イソプロピル、アクリル酸n
−ブチル、アクリル酸イソブチル、アクリル酸n−アミ
ル、アクリル酸イソアミル、アクリル酸n−ヘキシル及
びその異性体、アクリル酸2−エチルヘキシル、アクリ
ル酸n−オクチル及びその異性体、アクリル酸n−ノニ
ル及びその異性体、アクリル酸n−ドデシル及びその異
性体、アクリル酸トリデシル及びその異性体等からなる
群より選ばれる少なくとも1種のアルキルアクリレート
を用いることができる。
Examples of the alkyl acrylate include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate and n-acrylate.
-Butyl, isobutyl acrylate, n-amyl acrylate, isoamyl acrylate, n-hexyl acrylate and its isomers, 2-ethylhexyl acrylate, n-octyl acrylate and its isomers, n-nonyl acrylate and its At least one alkyl acrylate selected from the group consisting of isomers, n-dodecyl acrylate and its isomers, tridecyl acrylate and its isomers, and the like can be used.

【0073】(6−3)その他のモノマー 本発明では、原料モノマー中、アルキレンジオールジア
クリレート及びアルキルアクリレートの残部に、アルキ
レンジオールジアクリレート及び/又はアルキルアクリ
レートと共重合可能なモノマーを用いることができる。
なお、かかる共重合可能なモノマーは、当然に合成樹脂
微粒子の前記M10が0.1〜10kgf/mmを保
てる範囲内で用いる。
(6-3) Other Monomers In the present invention, a monomer copolymerizable with alkylenediol diacrylate and / or alkyl acrylate can be used as the rest of the alkylene diol diacrylate and alkyl acrylate in the raw material monomer. .
The copolymerizable monomer is naturally used within a range in which the M 10 of the synthetic resin fine particles can maintain 0.1 to 10 kgf / mm 2 .

【0074】アルキレンジオールジアクリレート及び/
又はアルキルアクリレートと共重合可能なモノマーを用
いる利点は、得られる合成樹脂微粒子の耐熱性や耐酸化
性を向上させることができる点である。
Alkylene diol diacrylate and /
Alternatively, the advantage of using the monomer copolymerizable with the alkyl acrylate is that the heat resistance and the oxidation resistance of the obtained synthetic resin fine particles can be improved.

【0075】かかるアルキレンジオールジアクリレート
及び/又はアルキルアクリレートと共重合可能なモノマ
ーは、原料モノマーの20重量%以下の割合で用いるこ
とができる。20重量%以下の理由は、一般に、耐熱性
や耐酸化性を与えるモノマーは、それ自体からなるポリ
マーのガラス転移点が高い場合が多く、原料モノマーの
20重量%を越えて共重合させると、柔軟性が失われる
おそれがあるからである。
The monomer copolymerizable with the alkylene diol diacrylate and / or the alkyl acrylate can be used in a proportion of 20% by weight or less of the raw material monomer. The reason for the amount of 20% by weight or less is that, in general, a monomer that imparts heat resistance or oxidation resistance often has a high glass transition point of a polymer composed of itself, and when the copolymerization exceeds 20% by weight of the raw material monomer, This is because the flexibility may be lost.

【0076】アルキレンジオールジアクリレート及び/
又はアルキルアクリレートと共重合可能なモノマーとし
ては、メタアクリル酸メチル、メタアクリル酸エチル、
メタアクリル酸プロピル及びその異性体、メタアクリル
酸n−ブチル及びその異性体、メタアクリル酸アミル及
びその異性体、メタアクリル酸n−ヘキシル及びその異
性体、メタアクリル酸n−ヘプチル及びその異性体、メ
タアクリル酸n−オクチル及びその異性体、メタアクリ
ル酸n−ノニル及びその異性体、メタアクリル酸n−デ
カン及びその異性体、メタアクリル酸n−ウンデカン及
びその異性体、メタアクリル酸n−ドデカン及びその異
性体、メタアクリル酸n−トリデカン及びその異性体、
エチレン(ポリカプロラクトン)ジアクリレート等から
なる群より選ばれる少なくとも1種のモノマーを用いる
ことができる。
Alkylene diol diacrylate and /
Or, as the monomer copolymerizable with the alkyl acrylate, methyl methacrylate, ethyl methacrylate,
Propyl methacrylate and its isomers, n-butyl methacrylate and its isomers, amyl methacrylate and its isomers, n-hexyl methacrylate and its isomers, n-heptyl methacrylate and its isomers , N-octyl methacrylate and its isomers, n-nonyl methacrylate and its isomers, n-decane methacrylate and its isomers, n-undecane methacrylate and its isomers, n-methacrylate Dodecane and its isomers, n-tridecane methacrylic acid and its isomers,
At least one monomer selected from the group consisting of ethylene (polycaprolactone) diacrylate and the like can be used.

【0077】(6−4)極性モノマー 本発明では、アルキレンジオールジアクリレート単独
と、又はアルキレンジオールジアクリレート及びアルキ
ルアクリレートと共重合可能なモノマーとして、極性モ
ノマーを用いることができる。かかる極性モノマーの利
点は、本発明の微粒子とその表面に被覆する金属被膜と
の間の密着性を上げることができる点にある。
(6-4) Polar Monomer In the present invention, a polar monomer can be used as the alkylene diol diacrylate alone or as the monomer copolymerizable with the alkylene diol diacrylate and the alkyl acrylate. The advantage of such a polar monomer is that the adhesion between the fine particles of the present invention and the metal coating coating the surface thereof can be increased.

【0078】かかる極性モノマーとしては、(メタ)ア
クリル酸、イタコン酸、マレイン酸、フマル酸、N,N
−ジメチルアミノエチル(メタ)アクリレート、N,N
−ジエチルアミノエチル(メタ)アクリレート、N,N
−ジメチル(メタ)アクリルアミド等からなる群より選
ばれる少なくとも1種を用いることができる。
Examples of such polar monomers include (meth) acrylic acid, itaconic acid, maleic acid, fumaric acid, N, N
-Dimethylaminoethyl (meth) acrylate, N, N
-Diethylaminoethyl (meth) acrylate, N, N
-At least one selected from the group consisting of dimethyl (meth) acrylamide and the like can be used.

【0079】かかる極性モノマーは、原料モノマーの1
〜20重量%の割合で用いることができる。20重量%
以下の理由は、一般に極性モノマーのガラス転移点が高
く、20%を超えて共重合させると柔軟性が失われ、好
ましくない。1重量%未満では、前述の金属被膜との密
着性が得られ難く、好ましくない。
The polar monomer is one of the raw material monomers.
It can be used in a proportion of up to 20% by weight. 20% by weight
The reason for the following is not preferable because the polar monomer generally has a high glass transition point, and when it is copolymerized to exceed 20%, flexibility is lost. If it is less than 1% by weight, it is difficult to obtain the adhesion to the metal coating described above, which is not preferable.

【0080】かかる割合は、更に好ましくは、2〜10
重量%であり、かかる割合で前記密着性を十分に付与す
ることができる。
The ratio is more preferably 2 to 10
It is the weight%, and the above-mentioned adhesion can be sufficiently imparted at such a ratio.

【0081】(6−5)重合開始剤 本発明では、かかる原料モノマーの重合開始剤として、
過酸化ベンゾイル、過酸化ラウロイル、過酸化メチルエ
チルケトン等の過酸化物や、アゾビスイソブチロニトリ
ル、アゾビスメチルヴァレロニトリル等のアゾ系化合
物、その他の公知の物質を用いることができる。
(6-5) Polymerization Initiator In the present invention, as a polymerization initiator for the raw material monomer,
Peroxides such as benzoyl peroxide, lauroyl peroxide and methyl ethyl ketone peroxide, azo compounds such as azobisisobutyronitrile and azobismethylvaleronitrile, and other known substances can be used.

【0082】これらのうち、アゾ系開始剤は、重合体に
酸化物を持ち込まず、加熱による物性劣化の少ない架橋
アクリル酸エステル重合体を与え好ましい。
Of these, the azo-based initiators are preferable because they do not bring oxides into the polymer and give a crosslinked acrylic acid ester polymer with little deterioration in physical properties due to heating.

【0083】(6−7)その他添加剤 この他、モノマーへの添加剤として、過酸化物開始剤に
対するレドックス還元剤、オクチルメルカプタン、ラウ
リルメルカプタン等の重合末端安定剤、その他の公知の
物質を用いることができる。
(6-7) Other Additives In addition to these, as additives to the monomer, redox reducing agents for peroxide initiators, polymerization end stabilizers such as octyl mercaptan, lauryl mercaptan, and other known substances are used. be able to.

【0084】(6−8)重合方法 本発明の微粒子は懸濁重合によって製造することができ
る。ここで用いられる懸濁安定剤は、ポリ(メタ)アクリ
ル酸、ポリアクリルアミド、ポリビニルピロリドン、ポ
リビニルアルコール、部分加水分解ポリビニルアルコー
ル、リン酸カルシウム等、その他の公知の物質を用いる
ことができる。
(6-8) Polymerization method The fine particles of the present invention can be produced by suspension polymerization. As the suspension stabilizer used here, other known substances such as poly (meth) acrylic acid, polyacrylamide, polyvinylpyrrolidone, polyvinyl alcohol, partially hydrolyzed polyvinyl alcohol and calcium phosphate can be used.

【0085】(7)導電性微粒子 本発明では、合成樹脂微粒子の表面には、金属等の公知
の被覆用導電材料を用いて、導電層を形成することがで
きる。
(7) Conductive Fine Particles In the present invention, a conductive layer can be formed on the surface of the synthetic resin fine particles by using a known conductive material for coating such as metal.

【0086】(7−1)導電層 かかる導電層は、特に制限されず、種々の導電材料から
なることができる。厚みは、通常0.001〜0.1μ
mと非常に薄いため、導電性微粒子の硬度にほとんど影
響しない。結果として、異方導電性材料の加工工程及び
使用環境においては、合成樹脂微粒子の軟質度の影響が
最も大きい。
(7-1) Conductive Layer The conductive layer is not particularly limited and can be made of various conductive materials. Thickness is usually 0.001-0.1μ
Since it is very thin as m, it hardly affects the hardness of the conductive fine particles. As a result, the degree of softness of the synthetic resin fine particles has the greatest effect on the anisotropic conductive material processing step and usage environment.

【0087】通常、かかる導電層は、ニッケル、金等の
金属からなることができる。かかる導電層は、電解メッ
キや無電解メッキ、蒸着等、種々の方法で合成樹脂微粒
子の表面に設けることができる。
Usually, such a conductive layer can be made of a metal such as nickel or gold. Such a conductive layer can be provided on the surface of the synthetic resin fine particles by various methods such as electrolytic plating, electroless plating and vapor deposition.

【0088】(8)異方導電性材料組成物 本発明では、導電性微粒子をバインダー樹脂中に含ま
せ、分散させて、異方導電性材料組成物を得ることがで
きる。
(8) Anisotropic Conductive Material Composition In the present invention, conductive fine particles are contained in a binder resin and dispersed to obtain an anisotropic conductive material composition.

【0089】(8−1)バインダー樹脂 本発明にかかるバインダー樹脂は、特に制限されるもの
でなく、種々の樹脂を用いることができる。例えば、バ
インダー樹脂はエポキシ樹脂等からなる接着剤を用いる
ことができる。
(8-1) Binder Resin The binder resin according to the present invention is not particularly limited, and various resins can be used. For example, as the binder resin, an adhesive made of epoxy resin or the like can be used.

【0090】(9)微粒子の物性値の測定方法 次に、本発明で表示する各種の物性値の測定方法及び測
定条件を述べる。 (9−1)密度 50重量%メタノール水中に、合成樹脂微粒子試料を分
散させ、25℃でワードン型比重びん法により測定す
る。
(9) Method of measuring physical property values of fine particles Next, the method of measuring various physical property values displayed in the present invention and the measurement conditions will be described. (9-1) A synthetic resin fine particle sample is dispersed in methanol water having a density of 50% by weight, and the dispersion is measured at 25 ° C. by the Wardung's specific gravity bottle method.

【0091】(9−2)圧砕強度 島津製作所製MCTM−200型微小圧縮試験機のモー
ド1を用い、25℃における直径、破壊強度を、それぞ
れ5回測定し、平均化する。圧縮速度は0.27gf/
秒とし、表面検出は手動で補正する。
(9-2) Crushing strength Using a MCTM-200 type micro compression tester mode 1 manufactured by Shimadzu Corporation, the diameter and breaking strength at 25 ° C. are measured 5 times each and averaged. Compression speed is 0.27gf /
Seconds, surface detection is manually corrected.

【0092】軟質材料の場合、自動表面検出法による変
位は、このような速い圧縮速度では数μmの誤差が発生
してデータがばらつくため、手動で補正する。尚、応力
についてはバラツキが少ないため、強度測定にこの速度
を採用する。
In the case of a soft material, the displacement by the automatic surface detection method is manually corrected because an error of several μm occurs at such a high compression speed and the data varies. Since there is little variation in stress, this speed is used for strength measurement.

【0093】(9−3)初期弾性率M10 島津製作所製MCTM−200型微小圧縮試験機の軟質
材料試験モード3で25℃にて直径及び2gfまでの圧
縮応力を、それぞれ5回測定し、平均化する。圧縮速度
は0.0145gf/秒、表面検出は自動で安定して測
定できる。初期弾性率M10の計算方法は、前述の通り
である。
(9-3) Initial elastic modulus M 10 In the soft material test mode 3 of the MCTM-200 type micro compression tester manufactured by Shimadzu Corporation, the diameter and the compressive stress up to 2 gf were measured 5 times at 25 ° C., respectively. Average out. The compression rate is 0.0145 gf / sec, and surface detection can be automatically and stably measured. The calculation method of the initial elastic modulus M 10 is as described above.

【0094】(9−4)圧縮回復率 島津製作所製MCTM−200型微小圧縮試験機の負荷
・徐荷試験モード2で25℃にて5回測定し、平均化す
る。圧縮速度は0.029gf/秒とし、表面検出は自
動とする。この速度で、0gfから1gfまで圧縮した変
位に対して、同じ速度で0gfまで徐荷し、全変位に対
する荷重0gfに回復した変位の割合を百分率で表す。
(9-4) Compression recovery rate Measured 5 times at 25 ° C. in the load / unload test mode 2 of the MCTM-200 type micro compression tester manufactured by Shimadzu Corporation, and averaged. The compression speed is 0.029 gf / sec and the surface detection is automatic. The ratio of the displacement restored to 0 gf of load with respect to the total displacement by unloading to 0 gf at the same velocity with respect to the displacement compressed from 0 gf to 1 gf at this speed, is expressed as a percentage.

【0095】(9−5)熱処理 165℃で一定の定温乾燥機に試料を入れ、空気中で1
時間熱処理する。
(9-5) Heat treatment The sample was placed in a constant temperature dryer at 165 ° C. and kept in air for 1 hour.
Heat treatment for hours.

【0096】(9−6)粒子径 合成樹脂微粒子を、ベックマン・コールター社製コール
ターカウンター・マルチサイザーII型測定器を用い、約
3万個を測定して、平均化する。測定に際しては、同社
製の標準粒子を用いて較正することができる。
(9-6) Particle size About 30,000 fine particles of synthetic resin are measured using a Coulter Counter Multisizer II type measuring instrument manufactured by Beckman Coulter, Inc. and averaged. The measurement can be calibrated using standard particles manufactured by the same company.

【0097】(9−7)導電層の厚み 無電解メッキにおいては、金属は100%合成樹脂微粒
子上にほぼ均一に付着するので、仕込み金属の重量、金
属の比重、合成樹脂微粒子の重量、比重、平均粒径から
その厚みを計算することができる。
(9-7) Thickness of Conductive Layer In electroless plating, 100% of the metal adheres to the synthetic resin fine particles almost uniformly, so the weight of the charged metal, the specific gravity of the metal, the weight of the synthetic resin fine particles, and the specific gravity The thickness can be calculated from the average particle size.

【0098】(9−8)体積固有抵抗値 内径10mmのポリエチレン製円筒の底部に、ステンレ
ス捧を内壁に密接して固定し、1.5gの金属被覆微粒
子を円筒内にいれ、上部から別のステンレス捧を挿入
し、5kgfの荷重をかけた状態で両ステンレス捧間の
体積固有抵抗値を測定する。
(9-8) Volume resistivity value Stainless steel was fixed tightly to the inner wall of the bottom of a polyethylene cylinder having an inner diameter of 10 mm, 1.5 g of metal-coated fine particles were put in the cylinder, and another portion was added from the top. The stainless steel wire is inserted, and the volume resistivity value between both stainless steel wires is measured with a load of 5 kgf being applied.

【0099】(9−9)導通性 厚さ75μmのポリイミド基材上に、ストライプ状の厚
さ25μmのスズメッキされた50μ幅銅パターンを、
パターン間50μmとなるように形成する。得られるT
AB型端子板上に、そのストライプの端側に幅5mm、
長さ20mm程度の異方導電材料を設置する。
(9-9) Conductivity On a polyimide substrate having a thickness of 75 μm, a striped 25 μm thick tin-plated 50 μm wide copper pattern was formed.
The pattern is formed to have a distance of 50 μm. T obtained
On the AB type terminal board, the width of 5 mm on the end side of the stripe,
An anisotropic conductive material having a length of about 20 mm is installed.

【0100】ここに、透明導電材(酸化スズインジウム
=ITO)をパターン間50μmで50μm幅ストライ
プ状パターンを50本施した、幅30mm×長さ30m
m×厚さ0.7mmのガラス板の一端をパターンが重な
るようにはすかいに重ね合せ、所定の温度、圧力、時間
をかけて貼りあわせる。
Here, 50 transparent conductive materials (indium tin oxide = ITO) were provided with 50 stripe patterns each having a width of 50 μm and a distance of 50 μm, and a width of 30 mm and a length of 30 m.
One end of a glass plate having a size of m × 0.7 mm is superposed so that the patterns overlap each other, and the glass plates are bonded together at a predetermined temperature, pressure and time.

【0101】次に、TAB型端子板上の1本のパターン
と他方のガラス基板上の対応するパターンとの間の導通
性をテスターの示す抵抗値で測定し、5Ω以下で且つこ
のパターンの両隣に漏電がないか確認し、合否を判定す
る。すべてのストライプについてテストし、合格したも
のの割合で表す。
Next, the conductivity between one pattern on the TAB type terminal board and the corresponding pattern on the other glass substrate was measured by the resistance value indicated by the tester, and it was 5Ω or less and both sides of this pattern were measured. Check if there is any leakage and judge pass / fail. All stripes are tested and expressed as a percentage of those that pass.

【0102】(9−10)信頼性試験 タバイエスペック(株)製の恒温恒湿槽を用いて、85
℃、85%の相対湿度の下に、1000時間処理した
後、導通性を測定する。信頼性は、処理前と比較し百分
率で表す。
(9-10) Reliability Test Using a constant temperature and humidity chamber manufactured by Tabai Espec Co., Ltd., 85
Conductivity is measured after 1000 hours of treatment at 85 ° C. and 85% relative humidity. Reliability is expressed as a percentage compared to before treatment.

【0103】[0103]

【実施例】次に、本発明を、実施例に基づき具体的に説
明するが、本発明はこれら実施例に限定されるものでは
ない。 実施例1 撹拌機付き10リットルセパラブルタンクに、5重量%
ポリビニルアルコール〔日本合成化学(株)製ゴーセノ
ールGH−17〕水7kgを入れ、モノマー:1,9−
ノナンジオールジアクリレート〔大阪有機化学工業
(株)製、ビスコート#260)500gと2−エチル
ヘキシルアクリレート〔東亜合成(株)製〕500g
と、重合開始剤:アゾビスイソブチロニトリル〔和光純
薬(株)製〕20gとの混合液を添加した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. Example 1 5% by weight in a 10 liter separable tank equipped with a stirrer
Polyvinyl alcohol [Gosenol GH-17 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.] 7 kg of water was added, and a monomer: 1,9-
500 g of nonanediol diacrylate [Viscoat # 260 manufactured by Osaka Organic Chemical Industry Co., Ltd.] and 500 g of 2-ethylhexyl acrylate [manufactured by Toagosei Co., Ltd.]
And a polymerization initiator: azobisisobutyronitrile [manufactured by Wako Pure Chemical Industries, Ltd.] 20 g were added.

【0104】空気存在下、室温で激しく撹拌した後、還
流冷却管を取り付け、窒素ガスを導入しながらゆっくり
撹拌し、外温を65℃で一定として、16時間重合させ
た。その後熱水洗浄した後、水ひ分級し、平均粒径6.
2μm、標準偏差0.27μmの微粒子を得た。
After vigorous stirring at room temperature in the presence of air, a reflux condenser was attached, the mixture was slowly stirred while introducing nitrogen gas, and the external temperature was kept constant at 65 ° C. to carry out polymerization for 16 hours. After that, it was washed with hot water, and then classified by water sieving to give an average particle size of
Fine particles having a size of 2 μm and a standard deviation of 0.27 μm were obtained.

【0105】得られた微粒子10gを30℃の50重量
%硫酸に投入し、撹拌しながら2時間エッチング処理し
た後、濾過洗浄し、0.1重量%塩化第一スズ水溶液中
で増感処理し、濾過して洗浄した。
10 g of the obtained fine particles were put into 50% by weight sulfuric acid at 30 ° C., and the mixture was subjected to etching treatment for 2 hours while stirring, filtered and washed, and sensitized in a 0.1% by weight stannous chloride aqueous solution. , Filtered and washed.

【0106】次に、0.01重量%の塩化パラジウムを
添加した0.01容量%の塩酸水溶液中、触媒のパラジ
ウムイオンを粒子表面に捕捉させ、濾過した後、0.1
重量%の次亜リン酸ナトリウム水溶液に浸漬して、パラ
ジウムを微粒子表面に析出させた。
Next, the palladium ions of the catalyst were trapped on the surface of the particles in a 0.01% by volume aqueous hydrochloric acid solution containing 0.01% by weight of palladium chloride, filtered, and then filtered at 0.1%.
It was dipped in an aqueous solution of sodium hypophosphite at a weight percentage to deposit palladium on the surface of the fine particles.

【0107】得られた微粒子を1重量%のリンゴ酸ナト
リウム水溶液中に65℃で撹拌分散させた。ここに、硫
酸ニッケル17.92gを80mLの水に溶かした水溶
液と、次亜リン酸ナトリウム18.1gと水酸化ナトリ
ウム9.52gとを水80mLに溶かした水溶液とを、
同時に90分かけて徐々に添加し、水素ガスの発生が終
わるまで撹拌を続けた。
The fine particles obtained were stirred and dispersed in a 1% by weight aqueous sodium malate solution at 65 ° C. Here, an aqueous solution obtained by dissolving 17.92 g of nickel sulfate in 80 mL of water and an aqueous solution obtained by dissolving 18.1 g of sodium hypophosphite and 9.52 g of sodium hydroxide in 80 mL of water,
At the same time, it was gradually added over 90 minutes, and stirring was continued until the generation of hydrogen gas was completed.

【0108】その後、濾過水洗を充分行い、80℃で一
夜乾燥して、ニッケル無電解メッキ粒子を得た。このニ
ッケルメッキ粒子は、析出ニッケル重量から平均粒径は
6.35μmと計算された。無電解メッキ前後の微粒子
の物性値を測定し、結果を表1にまとめて示した。
After that, it was thoroughly washed with water by filtration and dried overnight at 80 ° C. to obtain nickel electroless plated particles. The average particle diameter of the nickel-plated particles was calculated to be 6.35 μm from the weight of the deposited nickel. The physical property values of the fine particles were measured before and after electroless plating, and the results are summarized in Table 1.

【0109】得られた合成樹脂微粒子の密度は1.04
2g/mL、圧砕強度の熱処理による変化はわずか6
%、M10は0.3kgf(2.9N)/mmと好ま
しい物性であり、また、メッキ後も耐熱性の良い導電性
微粒子であった。
The density of the obtained synthetic resin fine particles is 1.04.
2g / mL, crushing strength changes only 6 by heat treatment
%, M 10 was 0.3 kgf (2.9 N) / mm 2 , which is a preferable physical property, and was conductive fine particles having good heat resistance even after plating.

【0110】実施例2 実施例1で得たニッケルメッキ微粒子10gを、1重量
%のEDTA−4Na、1重量%のクエン酸2Na及び
0.3重量%のシアン化金カリウムを含んだ水溶液15
0mL中に撹拌しながら投入し、60℃に加熱した。
Example 2 10 g of the nickel-plated fine particles obtained in Example 1 was used as an aqueous solution containing 1% by weight of EDTA-4Na, 1% by weight of 2Na citrate and 0.3% by weight of potassium gold cyanide.
It was put into 0 mL with stirring and heated to 60 ° C.

【0111】その後、この液に、1重量%のEDTA−
4Na及び1重量%のクエン酸2Naを含む水溶液50
mLと、3重量%の水酸化ホウ素カリウムと6重量%の
水酸化ナトリウムとを含む水溶液50mLとを、同時に
約30分かけて徐々に添加した。
Thereafter, 1% by weight of EDTA-was added to this solution.
Aqueous solution containing 4Na and 1% by weight of 2Na citrate 50
mL and 50 mL of an aqueous solution containing 3% by weight potassium borohydride and 6% by weight sodium hydroxide were gradually added simultaneously over about 30 minutes.

【0112】水素ガスが発生しなくなるまで撹拌加温を
続けた後、充分水洗・濾過し、80℃で一夜乾燥して、
金メッキ粒子を得た。この金メッキ粒子の平均粒子径
は、析出金の重量から、6.40μmと計算された。
After continuing stirring and heating until hydrogen gas was not generated, it was thoroughly washed with water, filtered, and dried at 80 ° C. overnight.
Gold plated particles were obtained. The average particle size of the gold-plated particles was calculated to be 6.40 μm from the weight of the deposited gold.

【0113】物性値の測定結果を表1にまとめて示し
た。この結果から解かるように、金メッキ工程後の耐熱
性も良好であった。
The measurement results of the physical properties are summarized in Table 1. As can be seen from these results, the heat resistance after the gold plating process was also good.

【0114】実施例3 実施例1において、モノマーを1,9−ノナンジオール
ジアクリレート〔大阪有機化学工業(株)製、ビスコー
ト#260〕1000gに変えた他は、実施例1と同様
にして、平均粒径6.0μm、標準偏差0.25μmの
合成樹脂微粒子を得た。
Example 3 In the same manner as in Example 1, except that the amount of the monomer used in Example 1 was changed to 1000 g of 1,9-nonanediol diacrylate [Biscoat # 260, manufactured by Osaka Organic Chemical Industry Co., Ltd.]. Synthetic resin fine particles having an average particle diameter of 6.0 μm and a standard deviation of 0.25 μm were obtained.

【0115】この粒子10gから、実施例1と同様にし
て、ニッケルメッキ粒子を製造し、直ちに、実施例2と
同様にして、平均粒径6.2μmの金メッキ粒子を得
た。物性値の測定結果を表1にまとめて示した。
Nickel plated particles were produced from 10 g of the particles in the same manner as in Example 1, and immediately in the same manner as in Example 2, gold plated particles having an average particle size of 6.2 μm were obtained. The measurement results of the physical property values are summarized in Table 1.

【0116】本微粒子は、初期の合成樹脂微粒子の段階
で高い強度を示し、熱処理でわずか3%、未処理合成樹
脂微粒子から見てニッケル及び金メッキ後熱処理前で
も、16%と熱処理においても、メッキ処理においても
圧砕強度の劣化が少なく、極めて良好な導電性微粒子が
得られた。
The present fine particles show high strength at the stage of the initial synthetic resin fine particles, only 3% by heat treatment, nickel and gold plating from the untreated synthetic resin fine particles before and after heat treatment at 16%, even after heat treatment. The crushing strength did not deteriorate even during the treatment, and extremely good conductive fine particles were obtained.

【0117】実施例4 実施例1において、モノマーを1,9−ノナンジオール
ジアクリレート〔大阪有機化学工業(株)製、ビスコー
ト#260〕500gと2−エチルヘキシルアクリレー
ト〔東亜合成(株)製〕500gとメタアクリル酸〔和
光純薬(株)製試薬)50gとに変えた他は、実施例1
と同様にして、平均粒径6.0μm、標準偏差0.26
μmの微粒子を製造した。
Example 4 In Example 1, 500 g of 1,9-nonanediol diacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., Viscoat # 260) and 500 g of 2-ethylhexyl acrylate (manufactured by Toagosei Co., Ltd.) were used. Example 1 except that the amount of methacrylic acid (reagent manufactured by Wako Pure Chemical Industries, Ltd.) was changed to 50 g of methacrylic acid.
Similarly to the above, the average particle size is 6.0 μm, and the standard deviation is 0.26.
Micron particles were produced.

【0118】この粒子10gから、実施例1のニッケル
メッキ工程における硫酸によるエッチングに代えて、界
面活性剤「クリーンエース」〔昭和通商(株)製〕の3
倍希釈液100mLによる親水化処理を行った以外は、
実施例1と同様にして、ニッケルメッキ粒子を製造し、
直ちに、実施例2と同様にして、平均粒径6.2μmの
金メッキ粒子を得た。
From 10 g of these particles, instead of etching with sulfuric acid in the nickel plating step of Example 1, 3 of surfactant "Clean Ace" (manufactured by Showa Tsusho Co., Ltd.) was used.
Except for performing the hydrophilic treatment with 100 mL of the double dilution,
Nickel plated particles were produced in the same manner as in Example 1,
Immediately, in the same manner as in Example 2, gold-plated particles having an average particle size of 6.2 μm were obtained.

【0119】物性値の測定結果を表1にまとめて示し
た。本微粒子は、樹脂微粒子表面と金属層との密着性を
上げる目的でカルボン酸モノマー(メタアクリル酸)を
共重合し硫酸エッチングをしなかったため、合成樹脂微
粒子のみの熱処理で7%の上昇、未処理合成樹脂微粒子
から見てニッケル及び金メッキ後熱処理前もわずか5.
6%の圧砕強度の劣化であって、良好な導電性微粒子で
ある。
The results of measurement of physical properties are summarized in Table 1. This fine particle did not undergo sulfuric acid etching by copolymerizing a carboxylic acid monomer (methacrylic acid) for the purpose of improving the adhesion between the resin fine particle surface and the metal layer. From the viewpoint of treated synthetic resin particles, only 5. After nickel and gold plating and before heat treatment.
The crushing strength was 6% and the conductive fine particles were good.

【0120】実施例5 実施例1において、モノマーを1,6−ヘキサンジオー
ルジアクリレート600gとn−ブチルアクリレート4
00gとに変えた他は、実施例1と同様にし、平均粒径
6.0μm、標準偏差0.24μmの微粒子を製造し、
実施例1及び実施例2と同様にし、平均粒子径6.2μ
mの金メッキ粒子を得た。
Example 5 In Example 1, 600 g of 1,6-hexanediol diacrylate and 4 g of n-butyl acrylate were used as monomers.
In the same manner as in Example 1 except that the amount was changed to 00 g, fine particles having an average particle size of 6.0 μm and a standard deviation of 0.24 μm were produced,
The same as in Example 1 and Example 2, with an average particle size of 6.2 μm.
m gold-plated particles were obtained.

【0121】物性値の測定結果を表1にまとめて示し
た。本微粒子も、熱処理でもわずか5%、未処理合成樹
脂微粒子から見てニッケル及び金メッキ後熱処理前20
%の強度劣化であって、良好な導電性微粒子である。
The measurement results of the physical properties are summarized in Table 1. This fine particle is also only 5% by heat treatment, and after nickel and gold plating from the viewpoint of untreated synthetic resin fine particle, before heat treatment 20
% Deterioration of the strength and good conductive fine particles.

【0122】実施例6 実施例1において、モノマーを1,6−ヘキサンジオー
ルジアクリレート〔大阪有機化学工業(株)製、ビスコ
ート#230〕1000gに変えた他は、実施例1と同
様にして、平均粒径6.8μm、標準偏差0.28μm
の微粒子を製造し、実施例1及び実施例2と同様にし、
平均粒径6.95μmの金メッキ粒子を得た。物性値の
測定結果を表2にまとめて示した。
Example 6 In the same manner as in Example 1, except that the amount of the monomer used in Example 1 was changed to 1000 g of 1,6-hexanediol diacrylate [Biscoat # 230, manufactured by Osaka Organic Chemical Industry Co., Ltd.]. Average particle size 6.8 μm, standard deviation 0.28 μm
Of the microparticles of Example 1 were prepared in the same manner as in Example 1 and Example 2,
Gold-plated particles having an average particle size of 6.95 μm were obtained. The measurement results of the physical properties are summarized in Table 2.

【0123】実施例7 実施例4で得た平均6.2μmの金メッキ微粒子を2重
量%と直径5.0μmの球状シリカ2重量%とを、エポ
キシ接着剤(三井化学(株)製ストラクトボンドXN−
21−S)に添加混合してよく分散させ、異方導電性接
着剤を製造した。この異方導電性接着剤の165℃、1
0kgf/cm及び1時間での硬化後の導通性は、信
頼性試験の前後とも100%であった。
Example 7 2% by weight of the gold-plated fine particles having an average of 6.2 μm obtained in Example 4 and 2% by weight of spherical silica having a diameter of 5.0 μm were mixed with an epoxy adhesive (Structbond XN manufactured by Mitsui Chemicals, Inc.). −
21-S) and mixed well and dispersed well to produce an anisotropic conductive adhesive. 165 ° C. of this anisotropic conductive adhesive, 1
The conductivity after curing at 0 kgf / cm 2 and 1 hour was 100% before and after the reliability test.

【0124】実施例8 実施例4で得た平均6.2μmの金メッキ微粒子4重量
部を、フェノキシ樹脂(東都化成社製、YP50)40
重量部、エポキシ樹脂(油化シェルエポキシ社製、EP
828)30重量部、イミダゾール系潜在性硬化剤(旭
化成社製、HX3741)30重量部とトルエン30重
量部、酢酸エチル30重量部とからなるバインダーに混
練した。
Example 8 4 parts by weight of gold-plated fine particles having an average size of 6.2 μm obtained in Example 4 were mixed with 40 parts of a phenoxy resin (YP50 manufactured by Tohto Kasei Co., Ltd.).
Parts by weight, epoxy resin (made by Yuka Shell Epoxy Co., EP
828) 30 parts by weight, 30 parts by weight of an imidazole-based latent curing agent (HX3741 manufactured by Asahi Kasei Corp.), 30 parts by weight of toluene, and 30 parts by weight of ethyl acetate were mixed and kneaded.

【0125】これを剥離剤表面処理ポリエステルフィル
ム上に乾燥後20μmになるように塗布して、異方導電
性フィルムを製造した。このフィルムの170℃、32
kgf/cm及び15秒での硬化後の導通性は、信頼
性試験の前後とも100%であった。
This was coated on a release agent surface-treated polyester film so as to have a thickness of 20 μm after drying to prepare an anisotropic conductive film. 170 ℃ of this film, 32
The conductivity after curing at kgf / cm 2 and 15 seconds was 100% before and after the reliability test.

【0126】比較例1 実施例1において、原料モノマーを1,9−ノナンジオ
ールジアクリレート〔大阪有機化学工業(株)製、ビス
コート#260〕250gと1−ドデシルアクリレート
〔大阪有機化学工業(株)製、ラウリルアクリレート)
750gとに代えた以外は、実施例1と同様にして、合
成樹脂微粒子の懸濁液を得た。
Comparative Example 1 In Example 1, 250 g of 1,9-nonanediol diacrylate [Viscoat # 260] manufactured by Osaka Organic Chemical Industry Co., Ltd. and 1-dodecyl acrylate [Osaka Organic Chemical Industry Co., Ltd.] were used as raw material monomers. Made of lauryl acrylate)
A suspension of fine synthetic resin particles was obtained in the same manner as in Example 1 except that the suspension was changed to 750 g.

【0127】これは数日室温に放置しても沈降せず、比
重は明らかに1以下であることが解かった。濾紙上で風
乾して得た微粒子を用いて機械的物性を測定し、表2に
示したが、水ひ分級できないので、以後の実験をしなか
った。
It was found that this did not sediment even when left at room temperature for several days, and the specific gravity was obviously 1 or less. The mechanical properties were measured using the fine particles obtained by air-drying on filter paper, and the results are shown in Table 2. However, since water sieving could not be performed, no further experiments were conducted.

【0128】比較例2 実施例1において、原料モノマーをペンタエリスリトー
ルテトラアクリレート〔大阪有機化学工業(株)製、ビ
スコート#400〕500gと55%ジビニルベンゼン
(和光純薬製試薬、化学用)500gにし、重合開始剤
を再結晶過酸化ベンゾイル20gに変え、重合温度を8
0℃に変えた他は、実施例1と同様にして合成樹脂微粒
子を得、分級をして、平均粒径6.0μm標準偏差0.
28μmの均一粒子径微粒子を製造した。
Comparative Example 2 In Example 1, 500 g of pentaerythritol tetraacrylate [Viscoat # 400 manufactured by Osaka Organic Chemical Industry Co., Ltd.] and 500 g of 55% divinylbenzene (reagent for chemicals manufactured by Wako Pure Chemical Co., Ltd.) were used as raw material monomers. , The polymerization initiator was changed to 20 g of recrystallized benzoyl peroxide, and the polymerization temperature was changed to 8
Synthetic resin fine particles were obtained and classified in the same manner as in Example 1 except that the temperature was changed to 0 ° C., and the average particle diameter was 6.0 μm, standard deviation was 0.1 μm.
Fine particles with a uniform particle size of 28 μm were produced.

【0129】以下メッキ工程は、実施例1と実施例2と
同様にして、ニッケル金メッキ微粒子を製造した。メッ
キ層の厚みは、0.1μmであった。各種物性を測定
し、表2にまとめて示した。尚、本例は、特開昭61−
277105号公報の実施例1に相当し、初期の合成樹
脂微粒子から見て、熱処理のみで50%の圧砕強度の低
下、メッキ後熱処理前は初期微粒子から見て53%の圧
砕強度の低下であった。更にメッキ後でも、熱処理の前
後で48%の圧砕強度の低下があった。
In the following plating process, nickel-gold-plated fine particles were produced in the same manner as in Examples 1 and 2. The thickness of the plating layer was 0.1 μm. Various physical properties were measured and are summarized in Table 2. Incidentally, this example is disclosed in JP-A-61-1
Corresponding to Example 1 of Japanese Patent No. 277105, the crushing strength was reduced by 50% from the initial stage of the synthetic resin fine particles only by heat treatment, and the crushing strength was reduced by 53% from the initial fine particles before the heat treatment after plating. It was Further, even after the plating, the crushing strength was decreased by 48% before and after the heat treatment.

【0130】[0130]

【表1】 [Table 1]

【0131】[0131]

【表2】 [Table 2]

【0132】以上の結果から、本発明の合成樹脂微粒子
は、優れた柔軟性と圧縮回復性、即ち弾力性に富んでお
り、且つ、高温での熱工程にも耐え、その間、物性の劣
化がほとんどない。
From the above results, the synthetic resin fine particles of the present invention are excellent in flexibility and compression recovery property, that is, elasticity, and can endure a thermal process at high temperature, during which the physical properties are deteriorated. rare.

【0133】したがって、本発明の合成樹脂微粒子の表
面を金属などの導電性物質で被覆した導電性微粒子は、
タッチパネル用接点として応用した場合、その柔軟性の
ために優れた耐久性を示す。
Therefore, the conductive fine particles obtained by coating the surface of the synthetic resin fine particles of the present invention with a conductive substance such as metal are
When applied as a touch panel contact, it exhibits excellent durability due to its flexibility.

【0134】また、本発明の導電性微粒子は、バインダ
ー中に混練して、異方導電性材料組成物に加工して、一
対の電極間に狭窄して加熱接着させた場合、芯材である
合成樹脂微粒子が狭窄に対する反発力を常に維持するた
め、半永久的に電気的接続を維持することができ、非常
に信頼性が高い。これは、液晶パネル等の透明導電体へ
の接続ばかりでなく、鉛公害のあるハンダに代わって、
プリント配線基板へのICその他電子部品のマウントに
信頼性高く応用することができる。
The conductive fine particles of the present invention are a core material when kneaded in a binder, processed into an anisotropic conductive material composition, and constricted between a pair of electrodes and heat-bonded. Since the synthetic resin fine particles always maintain the repulsive force against the stenosis, the electrical connection can be maintained semipermanently, and the reliability is very high. This is not only for connecting to transparent conductors such as liquid crystal panels, but instead of lead pollution solder,
It can be applied to ICs and other electronic components mounted on a printed wiring board with high reliability.

【0135】[0135]

【発明の効果】本発明によれば、合成樹脂微粒子が0.
1〜10kgf(0.98〜98N)/mmの初期弾
性率(M10)及び25%以下の圧砕強度低下率(16
5℃・1時間熱処理前後)を有しており、かかる合成樹
脂微粒子を導電性微粒子の芯材として用いれば、導通不
良を引き起こさず、しかも経時的安定性に優れた導電性
微粒子を得ることができる。
According to the present invention, the synthetic resin fine particles have a particle size of 0.
An initial elastic modulus (M 10 ) of 1 to 10 kgf (0.98 to 98 N) / mm 2 and a crushing strength reduction rate of 25% or less (16
By using such synthetic resin fine particles as the core material of the conductive fine particles, it is possible to obtain conductive fine particles which do not cause poor conduction and are excellent in stability over time. it can.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 5/16 H01B 5/16 // C08L 33:06 C08L 33:06 Fターム(参考) 4F070 AA30 AC06 AE06 AE27 DB03 DC02 DC12 DC13 4J011 AA08 JB08 JB14 JB26 5G301 DA02 DA05 DA10 DA42 5G307 AA02 HA02 HB03 HC01 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01B 5/16 H01B 5/16 // C08L 33:06 C08L 33:06 F term (reference) 4F070 AA30 AC06 AE06 AE27 DB03 DC02 DC12 DC13 4J011 AA08 JB08 JB14 JB26 5G301 DA02 DA05 DA10 DA42 5G307 AA02 HA02 HB03 HC01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導電性微粒子の芯材として用いる合成樹
脂微粒子であって、 前記合成樹脂微粒子が0.98〜98N/mmの初期
弾性率(M10)及び25%以下の圧砕強度低下率(1
65℃・1時間熱処理前後)を有することを特徴とする
合成樹脂微粒子。
1. A synthetic resin fine particle used as a core material for conductive fine particles, wherein the synthetic resin fine particle has an initial elastic modulus (M 10 ) of 0.98 to 98 N / mm 2 and a crushing strength reduction rate of 25% or less. (1
Synthetic resin fine particles having a heat treatment of 65 ° C. for 1 hour).
【請求項2】 前記合成樹脂微粒子が、1.01〜1.
20g/mLの密度(25℃)を有し、且つ、1〜10
0μmの平均粒径を有する球状粒子であることを特徴と
する請求項1記載の合成樹脂微粒子。
2. The synthetic resin fine particles are 1.01 to 1.
It has a density (25 ° C.) of 20 g / mL, and 1 to 10
The synthetic resin fine particles according to claim 1, which are spherical particles having an average particle diameter of 0 μm.
【請求項3】 前記合成樹脂微粒子が、原料モノマーの
水系ラジカル懸濁重合によって得られており、前記原料
モノマーがアルキレンジオールジアクリレートからなる
ことを特徴とする請求項1又は2記載の合成樹脂微粒
子。
3. The synthetic resin fine particles according to claim 1, wherein the synthetic resin fine particles are obtained by aqueous radical suspension polymerization of a raw material monomer, and the raw material monomer is made of alkylene diol diacrylate. .
【請求項4】 前記合成樹脂微粒子が、原料モノマーの
水系ラジカル懸濁重合によって得られており、前記原料
モノマーが、アルキレンジオールジアクリレートと、ア
ルキレンジオールジアクリレートと共重合可能な極性モ
ノマーとからなり、前記原料モノマー中、前記極性モノ
マーが1〜20重量%含有されていることを特徴とする
請求項1又は2記載の合成樹脂微粒子。
4. The synthetic resin fine particles are obtained by aqueous radical suspension polymerization of a raw material monomer, and the raw material monomer comprises an alkylene diol diacrylate and a polar monomer copolymerizable with the alkylene diol diacrylate. The synthetic resin fine particles according to claim 1 or 2, wherein the raw material monomer contains the polar monomer in an amount of 1 to 20% by weight.
【請求項5】 前記合成樹脂微粒子が、原料モノマーの
水系ラジカル懸濁重合によって得られており、前記原料
モノマーが、アルキレンジオールジアクリレート80〜
20重量%と残部のアルキルアクリレート20〜80重
量%とを含有していることを特徴とする請求項1又は2
記載の合成樹脂微粒子。
5. The synthetic resin fine particles are obtained by aqueous radical suspension polymerization of a raw material monomer, and the raw material monomer is an alkylene diol diacrylate 80 to
20% by weight and the balance of 20 to 80% by weight of alkyl acrylate are contained.
The synthetic resin fine particles described.
【請求項6】 前記原料モノマーがアルキレンジオール
ジアクリレート及びアルキルアクリレートと共重合可能
な極性モノマーを1〜20重量%含有していることを特
徴とする請求項5記載の合成樹脂微粒子。
6. The synthetic resin fine particles according to claim 5, wherein the raw material monomer contains 1 to 20% by weight of a polar monomer copolymerizable with alkylene diol diacrylate and alkyl acrylate.
【請求項7】 合成樹脂微粒子の表面に導電層が形成さ
れている導電性微粒子であって、 前記合成樹脂微粒子が請求項1〜6のいずれか一項記載
の合成樹脂微粒子であることを特徴とする導電性微粒
子。
7. A conductive fine particle having a conductive layer formed on the surface of the synthetic resin fine particle, wherein the synthetic resin fine particle is the synthetic resin fine particle according to any one of claims 1 to 6. Conductive fine particles to be.
【請求項8】 バインダー樹脂中に導電性微粒子を含む
異方導電性材料組成物であって、 前記導電性微粒子が請求項7記載の導電性微粒子である
ことを特徴とする異方導電性材料組成物。
8. An anisotropic conductive material composition comprising conductive fine particles in a binder resin, wherein the conductive fine particles are the conductive fine particles according to claim 7. Composition.
JP2001233365A 2001-08-01 2001-08-01 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition Expired - Fee Related JP4642286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001233365A JP4642286B2 (en) 2001-08-01 2001-08-01 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001233365A JP4642286B2 (en) 2001-08-01 2001-08-01 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition

Publications (2)

Publication Number Publication Date
JP2003045230A true JP2003045230A (en) 2003-02-14
JP4642286B2 JP4642286B2 (en) 2011-03-02

Family

ID=19065148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001233365A Expired - Fee Related JP4642286B2 (en) 2001-08-01 2001-08-01 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition

Country Status (1)

Country Link
JP (1) JP4642286B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055058A1 (en) * 2002-12-17 2004-07-01 Sony Chemicals Corp. Process for producing resin particle and process for producing anisotropically conductive adhesive
JP2005023274A (en) * 2003-07-03 2005-01-27 Osaka Prefecture Polymer minute particle having metal film on particle surface and method for producing the same
JP2008091131A (en) * 2006-09-29 2008-04-17 Nisshinbo Ind Inc Conductive particle and its manufacturing method
WO2009119788A1 (en) * 2008-03-27 2009-10-01 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material, and connection structure
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP2010159328A (en) * 2009-01-07 2010-07-22 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material, and connecting structure
JP2010195992A (en) * 2009-02-26 2010-09-09 Nippon Shokubai Co Ltd Polymer fine particle, method for producing the same, and conductive fine particle and anisotropic conductive material
JP2010238419A (en) * 2009-03-30 2010-10-21 Kyoto Univ Conductive particles and manufacturing method therefor
JP2013075993A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Thermoresponsive resin particle and method for production thereof
WO2014112475A1 (en) * 2013-01-21 2014-07-24 東レ株式会社 Conductive fine particles
JP5584468B2 (en) * 2008-07-31 2014-09-03 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277105A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Conductive fine pellet
JPH02225508A (en) * 1989-02-27 1990-09-07 Kyowa Gas Chem Ind Co Ltd Acrylic polymer particle, its production and molding composition containing same
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH07197001A (en) * 1993-12-28 1995-08-01 Sony Chem Corp Anisotropically conductive thermosetting adhesive
JPH08501587A (en) * 1992-09-18 1996-02-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polymer microspheres for low friction surfaces
JPH08188760A (en) * 1995-01-10 1996-07-23 Sony Chem Corp Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JPH08225625A (en) * 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd Elastic microparticle, its production, and elastic conductive microparticle
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
JPH1073829A (en) * 1996-07-25 1998-03-17 Rohm & Haas Co Liquid crystal display containing spacer and its production
JPH10259253A (en) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd Metal-coated particle and conductive material
JPH11111047A (en) * 1997-10-07 1999-04-23 Hayakawa Rubber Co Ltd Metal-coated particulate and conductive material including the same
JP2000297122A (en) * 1998-09-14 2000-10-24 Rohm & Haas Co Polymer particle
JP2000319309A (en) * 1999-05-06 2000-11-21 Sekisui Chem Co Ltd Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP2001283637A (en) * 2000-03-31 2001-10-12 Sony Chem Corp Anisotropic conductive bonding material and its connecting method
JP2001332136A (en) * 2000-03-15 2001-11-30 Sony Chem Corp Anisotropic conductive connecting material

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277105A (en) * 1985-05-31 1986-12-08 積水フアインケミカル株式会社 Conductive fine pellet
JPH02225508A (en) * 1989-02-27 1990-09-07 Kyowa Gas Chem Ind Co Ltd Acrylic polymer particle, its production and molding composition containing same
JPH0536306A (en) * 1991-07-26 1993-02-12 Sekisui Fine Chem Kk Conductive fine-grain, electrode connection structural body and manufacture thereof
JPH08501587A (en) * 1992-09-18 1996-02-20 ミネソタ マイニング アンド マニュファクチャリング カンパニー Polymer microspheres for low friction surfaces
JPH07197001A (en) * 1993-12-28 1995-08-01 Sony Chem Corp Anisotropically conductive thermosetting adhesive
JPH08225625A (en) * 1994-10-28 1996-09-03 Sekisui Finechem Co Ltd Elastic microparticle, its production, and elastic conductive microparticle
JPH08188760A (en) * 1995-01-10 1996-07-23 Sony Chem Corp Anisotropic electroconductive adhesive and anisotropic electroconductive adhesive sheet using the same
JPH08319467A (en) * 1995-05-25 1996-12-03 Soken Chem & Eng Co Ltd Conductive particle and anisotropically conductive adhesive
JPH1073829A (en) * 1996-07-25 1998-03-17 Rohm & Haas Co Liquid crystal display containing spacer and its production
JPH10259253A (en) * 1997-03-21 1998-09-29 Hayakawa Rubber Co Ltd Metal-coated particle and conductive material
JPH11111047A (en) * 1997-10-07 1999-04-23 Hayakawa Rubber Co Ltd Metal-coated particulate and conductive material including the same
JP2000297122A (en) * 1998-09-14 2000-10-24 Rohm & Haas Co Polymer particle
JP2000319309A (en) * 1999-05-06 2000-11-21 Sekisui Chem Co Ltd Polymer fine particle and its production, spacer for liquid crystal display element, electroconductive fine particle
JP2001332136A (en) * 2000-03-15 2001-11-30 Sony Chem Corp Anisotropic conductive connecting material
JP2001283637A (en) * 2000-03-31 2001-10-12 Sony Chem Corp Anisotropic conductive bonding material and its connecting method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004055058A1 (en) * 2002-12-17 2004-07-01 Sony Chemicals Corp. Process for producing resin particle and process for producing anisotropically conductive adhesive
JP4662699B2 (en) * 2003-07-03 2011-03-30 大阪府 Polymer fine particles having metal film and method for producing the same
JP2005023274A (en) * 2003-07-03 2005-01-27 Osaka Prefecture Polymer minute particle having metal film on particle surface and method for producing the same
JP2008091131A (en) * 2006-09-29 2008-04-17 Nisshinbo Ind Inc Conductive particle and its manufacturing method
US9093196B2 (en) 2006-09-29 2015-07-28 Nisshinbo Holdings, Inc. Conductive particles and method of preparing the same
TWI420539B (en) * 2006-09-29 2013-12-21 Nippon Chemical Ind Conductive particles and method of preparing the same
WO2009119788A1 (en) * 2008-03-27 2009-10-01 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material, and connection structure
JP4669905B2 (en) * 2008-03-27 2011-04-13 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP5584468B2 (en) * 2008-07-31 2014-09-03 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP2010159328A (en) * 2009-01-07 2010-07-22 Sekisui Chem Co Ltd Conductive particle, anisotropic conductive material, and connecting structure
JP2010195992A (en) * 2009-02-26 2010-09-09 Nippon Shokubai Co Ltd Polymer fine particle, method for producing the same, and conductive fine particle and anisotropic conductive material
JP2010238419A (en) * 2009-03-30 2010-10-21 Kyoto Univ Conductive particles and manufacturing method therefor
JP2013075993A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Thermoresponsive resin particle and method for production thereof
WO2014112475A1 (en) * 2013-01-21 2014-07-24 東レ株式会社 Conductive fine particles
CN104937674A (en) * 2013-01-21 2015-09-23 东丽株式会社 Conductive fine particles
JPWO2014112475A1 (en) * 2013-01-21 2017-01-19 東レ株式会社 Conductive fine particles

Also Published As

Publication number Publication date
JP4642286B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR100650284B1 (en) Polymer Particles and Conductive Particles Having Enhanced Conducting Properties and an Anisotropic Conductive Packaging Materials Containing the Same
KR100719802B1 (en) Highly reliable conductive particles for anisotropic conductive interconnection
US8129023B2 (en) Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
TWI502608B (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
KR100710103B1 (en) Coated conductive particle, coated conductive particle manufacturing method, anisotropic conductive material, and conductive connection structure
JP2003045230A (en) Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP4088137B2 (en) Conductive fine particles and anisotropic conductive materials
JPH11209714A (en) Anisotropically electroconductive adhesive
KR100667376B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
JP4662748B2 (en) Conductive fine particles and anisotropic conductive materials
JPH09185069A (en) Fine spherical body and liquid crystal display element
KR100722152B1 (en) Monodisperse Polymer Particles and Conductive Particles for Anisotropic Conductive Packaging Applications
JP2005327509A (en) Conductive fine particle and anisotropic conductive material
JP2009087877A (en) Conductive particle and anisotropic conductive material using this
KR100667375B1 (en) Polymer Particles for Anisotropic Conductive Packaging Materials, Conductive Particles and an Anisotropic Conductive Packaging Materials Containing the Same
JP2001214149A (en) Anisotropic electrically conductive adhesive
JP5421982B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
KR101284027B1 (en) Conductive particles for touch screen panel, and conductive materials including the same
JP4203301B2 (en) Anisotropic conductive film
JP2737723B2 (en) Circuit connection structure
JPH09102661A (en) Conductive connection between electrodes and conductive fine grain
TW201905142A (en) Conductive particles, method for producing conductive particles, conductive material, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees