JP5421982B2 - Conductive fine particles, anisotropic conductive material, and connection structure - Google Patents

Conductive fine particles, anisotropic conductive material, and connection structure Download PDF

Info

Publication number
JP5421982B2
JP5421982B2 JP2011282043A JP2011282043A JP5421982B2 JP 5421982 B2 JP5421982 B2 JP 5421982B2 JP 2011282043 A JP2011282043 A JP 2011282043A JP 2011282043 A JP2011282043 A JP 2011282043A JP 5421982 B2 JP5421982 B2 JP 5421982B2
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
base resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011282043A
Other languages
Japanese (ja)
Other versions
JP2012109252A (en
Inventor
伸也 上野山
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2011282043A priority Critical patent/JP5421982B2/en
Publication of JP2012109252A publication Critical patent/JP2012109252A/en
Application granted granted Critical
Publication of JP5421982B2 publication Critical patent/JP5421982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、導通不良防止とともに接続抵抗の低減化が可能な導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体に関する。 The present invention relates to conductive fine particles capable of preventing connection failure and reducing connection resistance, an anisotropic conductive material using the conductive fine particles, and a connection structure.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性微粒子としては、従来、粒子径が均一な樹脂粒子等の非導電性微粒子の表面に、導電層として金属メッキ層を形成させた導電性微粒子が用いられている。しかしながら、このような導電性微粒子を用いて回路基板等同士を電気的に接続すると、導電性微粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性微粒子と回路基板等との間の接続抵抗が高くなることがあった。また、回路基板としては、通常、アルミニウム、ニッケル、銅等が用いられているが、これらの表面には絶縁性の酸化物層が形成されていることがあり、導電性微粒子と回路基板等とが接続不良を起こすことがあった。 As the conductive fine particles used for such an anisotropic conductive material, conventionally, conductive fine particles in which a metal plating layer is formed as a conductive layer on the surface of non-conductive fine particles such as resin particles having a uniform particle diameter are used. It is used. However, when the circuit boards are electrically connected using such conductive fine particles, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive fine particles and the circuit board. The connection resistance between the two may increase. In addition, aluminum, nickel, copper or the like is usually used as the circuit board, but an insulating oxide layer may be formed on these surfaces, and the conductive fine particles and the circuit board or the like Sometimes caused poor connections.

このような問題に対し、導電性微粒子と回路基板等との接続抵抗を低減する目的で、表面に突起を有する導電性微粒子や硬質の樹脂微粒子にメッキを施した導電性微粒子が開示されている(例えば、特許文献1、2参照)。これらの導電性微粒子は、導電性微粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等や回路基板等の表面酸化物層を突き破ることで、導電性微粒子表面と回路基板等とを確実に接続させ、導電性微粒子と回路基板等との間の接続抵抗の低減を図っている。 In order to reduce the connection resistance between the conductive fine particles and the circuit board for such problems, conductive fine particles having protrusions on the surface or conductive fine particles obtained by plating hard resin fine particles are disclosed. (For example, refer to Patent Documents 1 and 2). These conductive fine particles break down the surface of the conductive fine particles and the circuit board etc. by breaking through the surface oxide layer of the binder resin or the circuit board etc. existing between the conductive layer on the surface of the conductive fine particles and the circuit board etc. Are reliably connected, and the connection resistance between the conductive fine particles and the circuit board or the like is reduced.

しかしながら、特許文献1に記載されているような突起を有する導電性微粒子は、回路基板等に挟んで導電圧着をすると、圧着による力を基材微粒子が吸収してしまうため、突起が存在してもバインダー樹脂等や回路基板等の表面酸化物層を突き破ることができず、充分な接続抵抗の低減が得られず、また、特許文献2に記載されているような硬質の樹脂微粒子にメッキを施した導電性微粒子は、回路基板等に挟んで圧着して変形させたときの回復率が劣ることから、断線の原因となることがあり、実際には充分な接続抵抗の低減が得られているとは言えなかった。 However, conductive fine particles having protrusions as described in Patent Document 1 have protrusions because the fine particles of the base material absorb the force caused by the pressure bonding when sandwiched between circuit boards and the like. However, the surface oxide layer of the binder resin or the circuit board cannot be broken through, and a sufficient reduction in connection resistance cannot be obtained. Also, the hard resin fine particles as described in Patent Document 2 are plated. The applied conductive fine particles are inferior in the recovery rate when they are sandwiched between a circuit board and the like and deformed by being crimped, which may cause disconnection, and in fact a sufficient reduction in connection resistance is obtained. I couldn't say.

特開2000−243132号公報JP 2000-243132 A 特開平09−127520号公報JP 09-127520 A

本発明は、上記現状に鑑み、導通不良防止とともに接続抵抗の低減化が可能な導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することを目的とする。 In view of the above-mentioned present situation, the present invention aims to provide conductive fine particles capable of preventing poor conduction and reducing connection resistance, an anisotropic conductive material using the conductive fine particles, and a connection structure. And

本発明は、基材樹脂微粒子と、前記基材樹脂微粒子の表面に形成された無機物からなる硬
質層と、前記硬質層の表面に芯物質を付着させることにより形成された突起を有する導電層とからなる導電性微粒子であって、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3500〜60000N/mm、圧縮変形回復率が10〜100%である導電性微粒子である。
以下に本発明を詳述する。
The present invention includes a base resin fine particle, a hard layer made of an inorganic material formed on the surface of the base resin fine particle, and a conductive layer having a protrusion formed by attaching a core substance to the surface of the hard layer; Conductive elastic fine particles having a compression elastic modulus (10% K value) of 3500 to 60000 N / mm 2 when the particle diameter measured at 20 ° C. is displaced by 10%, and a compression deformation recovery rate of 10 to 100%. It is a certain conductive fine particle.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、回路基板等の電気的接続の際に用いる導電性微粒子として、無機物からなる硬質層と、表面に突起を有する導電層とを有し、一定範囲の10%K値及び圧縮変形回復率を有する導電性微粒子を用いることにより、導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を確実に突き破ることができ、また、回路基板等に挟んで圧着して変形させたときの回復率が高いことから、断線の原因となることがなく、接続抵抗を確実に低減化させることが可能となり、高い信頼性で回路基板等を接続することができるということを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have a hard layer made of an inorganic substance and a conductive layer having protrusions on the surface as conductive fine particles used for electrical connection of a circuit board or the like, and a certain range of 10 By using conductive fine particles having a% K value and compression deformation recovery rate, the binder resin between the conductive layer on the surface of the conductive fine particles and the circuit board, etc., and the surface oxide layer of the circuit board, etc. are reliably broken through. In addition, it has a high recovery rate when it is crimped and deformed by being sandwiched between circuit boards, etc., so that it does not cause disconnection, and connection resistance can be reliably reduced, and high reliability. The inventors have found that a circuit board or the like can be connected with good performance, and have completed the present invention.

本発明の導電性微粒子は、基材樹脂微粒子と、上記基材樹脂微粒子の表面に形成された突起を有する導電層からなる。 The conductive fine particles of the present invention are composed of base resin fine particles and a conductive layer having protrusions formed on the surface of the base resin fine particles.

本発明の導電性微粒子は、20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)の下限が3500N/mm、上限が60000N/mmである。10%K値が3500N/mm未満であると、導電性微粒子を回路基板等の間に挟んで導電圧着した際に、圧着による力を基材樹脂微粒子が吸収してしまうため、導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を突き破ることが困難となり、60000N/mmを超えると、導電性微粒子が硬くなりすぎ、回路基板等の間に挟んで圧着した際に、回路基板等が破損してしまうことがある。好ましい下限は7000N/mm、好ましい上限は30000N/mmである。 The conductive fine particles of the present invention have a lower limit of 3500 N / mm 2 and an upper limit of 60000 N / mm 2 when the particle diameter measured at 20 ° C. is displaced by 10%. When the 10% K value is less than 3500 N / mm 2 , the conductive resin fine particles absorb the force due to the pressure bonding when the conductive fine particles are sandwiched between the circuit boards and the like, so that the conductive fine particles It becomes difficult to break through the binder resin between the surface conductive layer and the circuit board, etc., or the surface oxide layer of the circuit board, etc. If it exceeds 60000 N / mm 2 , the conductive fine particles become too hard and the circuit board etc. The circuit board or the like may be damaged when it is sandwiched and crimped. A preferred lower limit is 7000 N / mm 2 and a preferred upper limit is 30000 N / mm 2 .

本発明の導電性微粒子は、20℃で測定した圧縮変形回復率の下限が10%、上限が100%である。圧縮変形回復率が10%未満であると、導電性微粒子の弾力性が低下し、電極間の接続に用いたときに、導電性微粒子と回路基板との間にギャップを生じ、接続信頼性が低下する。好ましい下限は20%、好ましい上限は95%である。 The conductive fine particles of the present invention have a lower limit of the compression deformation recovery rate measured at 20 ° C. of 10% and an upper limit of 100%. When the compression deformation recovery rate is less than 10%, the elasticity of the conductive fine particles is lowered, and when used for connection between the electrodes, a gap is formed between the conductive fine particles and the circuit board, and connection reliability is improved. descend. A preferred lower limit is 20% and a preferred upper limit is 95%.

上記10%K値は、微小圧縮試験機(PCT−200、島津製作所社製)を用いて一辺が50μmの四角柱の平滑端面で、上記導電性微粒子を圧縮速度2.646mN/秒、最大試験荷重98mNで圧縮することにより測定することができる。 The above 10% K value is a smooth end surface of a square column with a side of 50 μm using a micro compression tester (PCT-200, manufactured by Shimadzu Corporation), and the conductive fine particles are compressed at a speed of 2.646 mN / sec. It can be measured by compressing with a load of 98 mN.

上記10%K値は、下記式により求めることができる。
K=(3/√2)・F・S−3/2・R−1/2
F:導電性微粒子の10%圧縮変形における荷重値(N)
S:導電性微粒子の10%圧縮変形における圧縮変位(mm)
R:導電性微粒子の半径(mm)
The 10% K value can be obtained by the following equation.
K = (3 / √2) · F · S -3/2 · R -1/2
F: Load value at 10% compression deformation of conductive fine particles (N)
S: Compression displacement (mm) in 10% compression deformation of conductive fine particles
R: Radius of conductive fine particles (mm)

上記圧縮変形回復率とは、上記微小圧縮試験機にて導電性微粒子を反転荷重値9.8mNまで圧縮した後、逆に荷重を減らしていくときの、荷重値と圧縮変位との関係を測定して得られる値であり、荷重を除く際の終点を原点荷重値0.98mN、負荷及び除負荷における圧縮速度0.2842mN/秒として測定され、反転の点までの変位(L1)と反転の点から原点荷重値を取る点までの変位(L2)との比(L2/L1)を百分率にて表した値である。 The compression deformation recovery rate is a measurement of the relationship between the load value and the compression displacement when the conductive fine particles are compressed to the reversal load value of 9.8 mN and then the load is reduced. The end point when removing the load is measured as an origin load value of 0.98 mN, a compression rate of 0.2842 mN / sec at loading and unloading, displacement (L1) up to the reversal point and reversal of the reversal It is a value expressed as a percentage of the ratio (L2 / L1) to the displacement (L2) from the point to the point where the origin load value is taken.

上記基材樹脂微粒子としては特に限定されないが、例えば、テトラメチロールメタンテトラアクリレートとアクリロニトリル、トリメチロールプロパントリアクリレートとアクリロニトリル、トリメチロールプロパントリアクリレートとメタクリロニトリル、スチレンとジビニルベンゼン、ジビニルベンゼンとトリメチロールプロパントリアクリレート、ジビニルベンゼンとアクリロニトリル等の組み合わせによるモノマー成分を用いて、常法に従って重合して得られる共重合体や、ジビニルベンゼン系樹脂等が挙げられる。 The base resin fine particles are not particularly limited. For example, tetramethylolmethane tetraacrylate and acrylonitrile, trimethylolpropane triacrylate and acrylonitrile, trimethylolpropane triacrylate and methacrylonitrile, styrene and divinylbenzene, divinylbenzene and trimethylol. Examples thereof include a copolymer obtained by polymerizing in accordance with a conventional method using a monomer component such as propane triacrylate, divinylbenzene and acrylonitrile, and a divinylbenzene resin.

上記基材樹脂微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は20μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、20μmを超えると、異方性導電材料として回路基板等に用いられる範囲を超えることがある。
なお、上記基材樹脂微粒子の平均粒子径は、無作為に選んだ50個の基材樹脂微粒子について粒子径を測定し、これらを算術平均したものとする。
Although it does not specifically limit as an average particle diameter of the said base resin fine particle, A preferable minimum is 1 micrometer and a preferable upper limit is 20 micrometers. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 20 μm, it may exceed the range used for circuit boards and the like as anisotropic conductive materials. is there.
In addition, the average particle diameter of the said base resin fine particle shall measure a particle diameter about 50 base resin fine particles selected at random, and shall mean these arithmetically.

本発明の導電性微粒子を導電圧着した際に、突起が基材樹脂微粒子に食い込む場合には、上記基材樹脂微粒子は、表面に無機物からなる硬質層を有する。上記基材樹脂微粒子が表面に無機物からなる硬質層を有することで、突起が基材樹脂微粒子に食い込むのを防ぐことができるため、本発明の導電性微粒子を回路基板等の間に挟んで導電圧着した際に、導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を確実に突き破ることが可能となる。
上記無機物としては特に限定されず、例えば、シロキサンや、ニッケル等の金属が挙げられる。
When the conductive fine particles of the present invention are subjected to conductive pressure bonding, when the protrusions bite into the base resin fine particles, the base resin fine particles have a hard layer made of an inorganic material on the surface. Since the base resin fine particles have a hard layer made of an inorganic material on the surface, it is possible to prevent the protrusions from biting into the base resin fine particles, so that the conductive fine particles of the present invention are sandwiched between circuit boards and the like. When the pressure bonding is performed, it is possible to surely break through the binder resin or the like between the conductive layer on the surface of the conductive fine particles and the circuit board or the surface oxide layer of the circuit board or the like.
It does not specifically limit as said inorganic substance, For example, metals, such as siloxane and nickel, are mentioned.

上記硬質層の厚さとしては特に限定されないが、好ましい下限は5nm、好ましい上限は500nmである。5nm未満であると、突起が基材樹脂微粒子に食い込むことがあり、硬質層としての充分な性能を発揮できないことがあり、500nmを超えると、メッキが剥がれやすくなる。 Although it does not specifically limit as thickness of the said hard layer, A preferable minimum is 5 nm and a preferable upper limit is 500 nm. When the thickness is less than 5 nm, the protrusions may bite into the base resin fine particles, and the sufficient performance as the hard layer may not be exhibited. When the thickness exceeds 500 nm, the plating is easily peeled off.

上記突起の形態としては特に限定されず、本発明の導電性微粒子を回路基板等の間に挟んで導電圧着したときに、導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を突き破る程度の硬さを有するものであれば特に限定されず、例えば、金属、金属の酸化物、黒鉛等の導電性非金属、ポリアセチレン等の導電性ポリマー等の導電性物質を芯物質とする突起が挙げられる。なかでも、導電性に優れることから金属が好適に用いられる。 The form of the protrusion is not particularly limited, and the binder resin between the conductive layer on the surface of the conductive fine particles and the circuit board when the conductive fine particles of the present invention are sandwiched between the circuit boards and the like. In particular, it is not limited as long as it has a hardness enough to break through the surface oxide layer of a circuit board or the like, for example, a metal, a metal oxide, a conductive nonmetal such as graphite, a conductive polymer such as polyacetylene, etc. And a protrusion having a conductive substance as a core substance. Of these, metals are preferably used because of their excellent conductivity.

上記金属としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等の金属;錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、銀、金等が好ましい。 The metal is not particularly limited. For example, a metal such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium; Examples of the alloy include two or more kinds of metals such as a tin-lead alloy, a tin-copper alloy, a tin-silver alloy, and a tin-lead-silver alloy. Of these, nickel, copper, silver, gold and the like are preferable.

上記突起の平均高さとしては特に限定されないが、好ましい下限は基材樹脂微粒子の粒子直径の0.5%、好ましい上限は基材樹脂微粒子の粒子直径の25%である。0.5%未満であると、充分に導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を突き破れないことがあり、25%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。より好ましい下限は基材樹脂微粒子の粒子直径の10%、より好ましい上限は基材樹脂微粒子の粒子直径の17%である。
なお、突起の平均高さは、無作為に選んだ50個の導電層上にある凸部の高さを測定し、それを算術平均して突起の平均高さとする。このとき、突起を付与した効果が得られるものとして、導電層上の10nm以上の凸部のものを突起として選ぶものとした。
The average height of the protrusions is not particularly limited, but a preferable lower limit is 0.5% of the particle diameter of the base resin fine particles, and a preferable upper limit is 25% of the particle diameter of the base resin fine particles. If it is less than 0.5%, it may not be able to penetrate the binder resin between the conductive layer on the surface of the conductive fine particles and the circuit board or the surface oxide layer of the circuit board. Then, the protrusion may dig deeply into the circuit board or the like and damage the circuit board or the like. A more preferable lower limit is 10% of the particle diameter of the base resin fine particles, and a more preferable upper limit is 17% of the particle diameter of the base resin fine particles.
Note that the average height of the protrusions is obtained by measuring the heights of the protrusions on 50 conductive layers selected at random, and calculating the average height of the protrusions to obtain the average height of the protrusions. At this time, a projection having a projection of 10 nm or more on the conductive layer was selected as the projection as an effect of providing the projection.

上記導電層を構成する金属としては特に限定されず、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、カドミウム等の金属;錫−鉛合金、錫−銅合金、錫−銀合金、錫−鉛−銀合金等の2種類以上の金属で構成される合金等が挙げられる。なかでも、ニッケル、銅、金等が好ましい。 The metal constituting the conductive layer is not particularly limited, for example, gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, Metals such as cadmium; alloys composed of two or more metals such as tin-lead alloy, tin-copper alloy, tin-silver alloy, tin-lead-silver alloy, and the like can be given. Of these, nickel, copper, gold and the like are preferable.

上記導電層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。10nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、基材樹脂微粒子と導電層との熱膨張率の差から、上記導電層が剥離しやすくなることがある。
また、上記導電層には、リンやホウ素等の非金属成分が含有されていてもよい。
なお、上記導電層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
Although it does not specifically limit as thickness of the said conductive layer, A preferable minimum is 10 nm and a preferable upper limit is 500 nm. If the thickness is less than 10 nm, desired conductivity may not be obtained. If the thickness exceeds 500 nm, the conductive layer may be easily peeled off due to the difference in thermal expansion coefficient between the base resin fine particles and the conductive layer. .
The conductive layer may contain a nonmetallic component such as phosphorus or boron.
Note that the thickness of the conductive layer is a thickness obtained by measuring ten randomly selected particles and arithmetically averaging them.

本発明の導電性微粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 The conductive fine particles of the present invention preferably further have a gold layer formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が導電層を侵食し、基材樹脂微粒子と導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If it is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer, and the connection resistance value may be high. If it exceeds 100 nm, the gold layer erodes the conductive layer, and the base resin fine particles The adhesion between the conductive layer and the conductive layer may be deteriorated.

本発明の導電性微粒子を製造する方法としては特に限定されないが、例えば、まず、基材樹脂微粒子の表面に触媒付与を行い、基材樹脂微粒子の表面に芯物質を付着させ、後述する無電解メッキにより導電層を形成する方法;基材樹脂微粒子の表面を、無電解メッキにより導電層を形成した後、芯物質を付着させ、更に無電解メッキにより導電層を形成する方法;上述の方法において無電解メッキの代わりにスパッタリングにより導電層を形成する方法等が挙げられる。 The method for producing the conductive fine particles of the present invention is not particularly limited. For example, first, a catalyst is applied to the surface of the base resin fine particles, and a core substance is attached to the surface of the base resin fine particles, so A method of forming a conductive layer by plating; a method of forming a conductive layer on the surface of the base resin fine particles by electroless plating, and then attaching a core substance; and further forming a conductive layer by electroless plating; Examples include a method of forming a conductive layer by sputtering instead of electroless plating.

上記芯物質を付着させる方法としては特に限定されず、例えば、基材樹脂微粒子の分散液中に、芯物質となる導電性物質を添加し、基材樹脂微粒子の表面上に芯物質を、例えば、ファンデルワールス力により集積させ付着させる方法;基材樹脂微粒子を入れた容器に、芯物質となる導電性物質を添加し、容器の回転等による機械的な作用により基材樹脂微粒子の表面上に芯物質を付着させる方法等が挙げられる。なかでも、付着させる芯物質の量を制御し易いことから、分散液中の基材樹脂微粒子の表面上に芯物質を集積させ付着させる方法が好適に用いられる。 The method for attaching the core substance is not particularly limited. For example, a conductive substance that becomes the core substance is added to the dispersion of the base resin fine particles, and the core substance is formed on the surface of the base resin fine particles. , A method of accumulating and adhering by van der Waals force; adding a conductive material as a core material to a container containing base resin fine particles, and on the surface of the base resin fine particles by mechanical action such as rotation of the container And a method of attaching a core substance to the substrate. Among these, since the amount of the core substance to be attached is easily controlled, a method of accumulating and attaching the core substance on the surface of the base resin fine particles in the dispersion is preferably used.

上記無電解メッキ法とは、基材樹脂微粒子の表面に触媒付与を行い、導電層となる金属、及び、メッキ安定剤を含有する金属メッキ液中で、触媒付与された上記基材樹脂微粒子の表面に無電解メッキ法により導電層を形成させる方法である。 The electroless plating method is to apply a catalyst to the surface of the base resin fine particles, and in the metal plating solution containing a metal that becomes a conductive layer and a plating stabilizer, the base resin fine particles provided with a catalyst are added. In this method, a conductive layer is formed on the surface by electroless plating.

上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材樹脂微粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
Examples of the method for applying the catalyst include, for example, acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution on base resin fine particles etched with an alkali solution, and palladium dichloride (PdCl 2 ). The method etc. which perform the electroless-plating pre-processing process of activating in a solution are mentioned.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明の導電性微粒子及び/又は本発明の異方性導電材料を用いてなる接続構造体もまた、本発明の1つである。 A connection structure using the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention is also one aspect of the present invention.

本発明の接続構造体は、一対の回路基板間に、本発明の導電性微粒子及び/又は本発明の異方性導電材料を充填することにより、一対の回路基板間を接続させたものである。
本発明の接続構造体は、本発明の導電性微粒子及び/又は本発明の異方性導電材料を用いてなるものであることから、接続不良や変形を生じることがない。
The connection structure of the present invention is a structure in which a pair of circuit boards are connected by filling the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention between a pair of circuit boards. .
Since the connection structure of the present invention is formed using the conductive fine particles of the present invention and / or the anisotropic conductive material of the present invention, there is no connection failure or deformation.

本発明の導電性微粒子は、回路基板等の間に挟んで導電圧着をする際に、表面に突起を有する導電層を有し、一定範囲の10%K値及び圧縮変形回復率を有する導電性微粒子を用いることにより、導電性微粒子表面の導電層と回路基板等との間のバインダー樹脂等や回路基板等の表面酸化物層を突き破ることができるため、接続抵抗を確実に低減化させることが可能となり、高い信頼性で回路基板等を接続することができる。
本発明によれば、導通不良防止とともに接続抵抗の低減化が可能な導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することができる。
The conductive fine particles of the present invention have a conductive layer having protrusions on the surface when conducting pressure bonding by sandwiching between circuit boards and the like, and have a 10% K value and compression deformation recovery rate within a certain range. By using fine particles, it is possible to break through the binder resin, etc. between the conductive layer on the surface of the conductive fine particles and the circuit board, and the surface oxide layer of the circuit board, etc., so that the connection resistance can be reliably reduced. It becomes possible, and a circuit board etc. can be connected with high reliability.
According to the present invention, it is possible to provide conductive fine particles capable of preventing connection failure and reducing connection resistance, an anisotropic conductive material using the conductive fine particles, and a connection structure.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

参考例1
(1)基材樹脂微粒子の作製
テトラメチロールメタンテトラアクリレート80重量部及びアクリロニトリル20重量部を含有するモノマー溶液に、重合触媒としてベンゾイルパーオキサイド1.5重量部を添加して溶解させた。このモノマー溶液を、700mLの3重量%ポリビニルアルコール水溶液に添加し、攪拌して懸濁させた。
次いで、このモノマー懸濁液を85℃に加熱することにより、重合反応を開始させ、そして反応が完結するまで10時間、この状態を保持した。得られた固形分を濾過し、熱水で洗浄してポリビニルアルコールを除去した後、分級を行うことにより、基材樹脂微粒子を得た。
( Reference Example 1 )
(1) Preparation of base resin fine particles 1.5 parts by weight of benzoyl peroxide as a polymerization catalyst was added and dissolved in a monomer solution containing 80 parts by weight of tetramethylolmethane tetraacrylate and 20 parts by weight of acrylonitrile. This monomer solution was added to 700 mL of a 3 wt% polyvinyl alcohol aqueous solution and suspended by stirring.
The monomer suspension was then heated to 85 ° C. to initiate the polymerization reaction and was held for 10 hours until the reaction was complete. The obtained solid content was filtered, washed with hot water to remove polyvinyl alcohol, and then classified to obtain base resin particles.

(2)突起の形成
基材樹脂微粒子10gに、5%水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液におけるセンシタイジングを行った。その後、二塩化パラジウム溶液におけるアクチベイチングからなる無電解メッキ前処理を施し、濾過洗浄後、粒子表面にパラジウムを付着させた基材樹脂微粒子を得た。
得られた基材樹脂微粒子を脱イオン水300mLで攪拌により3分間分散させた後、その水溶液に金属ニッケルスラリー(平均粒子径200nm)1gを3分間かけて添加し、芯物質を付着させた基材樹脂微粒子を得た。
得られた基材樹脂微粒子を更に水1200mLで希釈し、メッキ安定剤4mlを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを一定速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を行った。
次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを一定速度で定量ポンプを通して添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を行った。
次いで、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥してニッケルメッキされた導電性微粒子を得た。
その後、更に、置換メッキ法により表面に金メッキを施し、表面に突起を有する導電層を有する導電性微粒子を得た。
(2) Formation of protrusions 10 g of the base resin fine particles were subjected to alkali degreasing with a 5% aqueous sodium hydroxide solution, acid neutralization, and sensitizing in a tin dichloride solution. Thereafter, an electroless plating pretreatment consisting of activation in a palladium dichloride solution was performed, and after filtering and washing, base resin fine particles having palladium adhered to the particle surfaces were obtained.
The obtained base resin fine particles were dispersed with 300 mL of deionized water by stirring for 3 minutes, and then 1 g of metallic nickel slurry (average particle size 200 nm) was added to the aqueous solution over 3 minutes to attach the core substance. Material resin fine particles were obtained.
The obtained base resin fine particles were further diluted with 1200 mL of water, and after adding 4 mL of plating stabilizer, nickel sulfate 450 g / L, sodium hypophosphite 150 g / L, sodium citrate 116 g / L, plating stability 120 mL of a mixed solution of 6 mL of the agent was added through a metering pump at a constant rate. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was performed.
Next, 650 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 35 mL plating stabilizer was added through a metering pump at a constant rate. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was performed.
Next, the plating solution was filtered, and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain nickel-plated conductive fine particles.
Thereafter, the surface was further plated with gold by a displacement plating method to obtain conductive fine particles having a conductive layer having protrusions on the surface.

参考例2
モノマー溶液として、トリメチロールプロパントリアクリレート80重量部及びアクリロニトリル20重量部を用いたこと以外は、参考例1と同様の方法により、基材樹脂微粒子及び導電性微粒子を作製した。
( Reference Example 2 )
Substrate resin fine particles and conductive fine particles were produced in the same manner as in Reference Example 1 except that 80 parts by weight of trimethylolpropane triacrylate and 20 parts by weight of acrylonitrile were used as the monomer solution.

参考例3
モノマー溶液として、トリメチロールプロパントリアクリレート85重量部及びメタクリロニトリル15重量部を用いたこと以外は、参考例1と同様の方法により、基材樹脂微粒子及び導電性微粒子を作製した。
( Reference Example 3 )
Substrate resin fine particles and conductive fine particles were produced in the same manner as in Reference Example 1 except that 85 parts by weight of trimethylolpropane triacrylate and 15 parts by weight of methacrylonitrile were used as the monomer solution.

参考例4
ジビニルベンゼンの重合反応により作製したこと以外は、参考例1と同様の方法により、基材樹脂微粒子及び導電性微粒子を作製した。
( Reference Example 4 )
Substrate resin fine particles and conductive fine particles were produced in the same manner as in Reference Example 1 except that they were produced by polymerization reaction of divinylbenzene.

実施例1
参考例1と同様の方法により樹脂微粒子を作製した。
得られた樹脂微粒子の表面を無電解メッキ処理により膜厚300nmのニッケルで被覆することにより基材樹脂微粒子を作製した。
得られた基材樹脂微粒子を用いたこと以外は、参考例1と同様の方法により、導電性微粒子を作製した。
( Example 1 )
Resin fine particles were prepared in the same manner as in Reference Example 1 .
The surface of the obtained resin fine particles was coated with nickel having a film thickness of 300 nm by electroless plating to produce base resin fine particles.
Conductive fine particles were produced in the same manner as in Reference Example 1 except that the obtained base resin fine particles were used.

(比較例1)
ポリスチレンからなる粒径5μmの基材樹脂微粒子を用いたこと以外は、参考例1と同様の方法により、導電性微粒子を作製した。
(Comparative Example 1)
Conductive fine particles were produced in the same manner as in Reference Example 1 except that base resin fine particles having a particle diameter of 5 μm made of polystyrene were used.

<評価>
実施例1、参考例1〜4及び比較例1で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed on the conductive fine particles obtained in Example 1, Reference Examples 1 to 4 and Comparative Example 1. The results are shown in Table 1.

(1)10%K値の測定
微小圧縮試験機(PCT−200、島津製作所社製)を用いて一辺が50μmの四角柱の平滑端面で、基材樹脂微粒子を圧縮速度2.646mN/秒、最大試験荷重98mNで圧縮することにより10%K値を測定した。
なお、測定は20℃の条件下で行った。
(1) Measurement of 10% K value Using a micro compression tester (PCT-200, manufactured by Shimadzu Corp.), the base resin fine particles are compressed at a compression speed of 2.646 mN / sec on a smooth end surface of a square column with a side of 50 μm. A 10% K value was measured by compression with a maximum test load of 98 mN.
The measurement was performed under the condition of 20 ° C.

(2)圧縮変形回復率の測定
微小圧縮試験機(PCT−200、島津製作所社製)にて基材樹脂微粒子を反転荷重値9.8mNまで圧縮した後、逆に荷重を減らし、荷重を除く際の終点を原点荷重値0.98mN、負荷及び除負荷における圧縮速度0.2842mN/秒とし、反転の点までの変位(L1)と反転の点から原点荷重値を取る点までの変位(L2)との比(L2/L1)に100を乗じることにより圧縮変形回復率を求めた。
(2) Measurement of compression deformation recovery rate After compressing the base resin fine particles to a reverse load value of 9.8 mN with a micro compression tester (PCT-200, manufactured by Shimadzu Corporation), the load is reduced and the load is removed. In this case, the origin load value is 0.98 mN, the compression speed is 0.2842 mN / sec at loading and unloading, the displacement from the reversal point (L1) and the displacement from the reversal point to the point where the origin load value is taken (L2) ) And the ratio (L2 / L1) to 100 was multiplied by 100 to obtain the compression deformation recovery rate.

(3)接続抵抗値の測定
得られた導電性微粒子を用いて以下の方法により異方性導電材料を作製し、電極間の接続抵抗値の測定を行った。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、ITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、10N、100℃の圧着条件で熱圧着した後、電極間の接続抵抗値を測定した。
また、作製した試験片に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の接続抵抗値を測定した。
(3) Measurement of connection resistance value An anisotropic conductive material was produced by the following method using the obtained conductive fine particles, and the connection resistance value between the electrodes was measured.
100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin are sufficiently mixed using a planetary stirrer. Then, it was applied on the release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Subsequently, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. After adding fine particles and mixing well using a planetary stirrer, it is coated on a release film so that the thickness after drying is 7 μm, and toluene is evaporated to form an adhesive film containing conductive fine particles Got. In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. After affixing this to approximately the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement, a glass substrate having an ITO electrode is obtained. After aligning the electrodes so that they overlap each other, they were bonded together.
The bonded portion of this glass substrate was thermocompression bonded under pressure bonding conditions of 10N and 100 ° C., and then the connection resistance value between the electrodes was measured.
In addition, a reliability test (held at 80 ° C. in a high-temperature and high-humidity environment of 95% RH for 1000 hours) was performed on the prepared test piece, and then the connection resistance value between the electrodes was measured.

Figure 0005421982
Figure 0005421982

本発明によれば、導通不良防止とともに接続抵抗の低減化が可能な導電性微粒子、該導電性微粒子を用いてなる異方性導電材料、及び、接続構造体を提供することができる。 According to the present invention, it is possible to provide conductive fine particles capable of preventing connection failure and reducing connection resistance, an anisotropic conductive material using the conductive fine particles, and a connection structure.

Claims (5)

基材樹脂微粒子と、前記基材樹脂微粒子の表面に形成された無機物からなる硬質層と、
前記硬質層の表面に芯物質を付着させることにより形成された突起を有する導電層とからなる導電性微粒子であって、
20℃で測定した粒子直径が10%変位したときの圧縮弾性率(10%K値)が3500〜60000N/mm、圧縮変形回復率が10〜100%である
ことを特徴とする導電性微粒子。
Base resin fine particles, a hard layer made of an inorganic material formed on the surface of the base resin fine particles,
Conductive fine particles comprising a conductive layer having protrusions formed by attaching a core substance to the surface of the hard layer,
Conductive fine particles characterized by having a compressive elastic modulus (10% K value) of 3500 to 60000 N / mm 2 and a compressive deformation recovery rate of 10 to 100% when the particle diameter measured at 20 ° C. is displaced by 10% .
芯物質は、金属からなることを特徴とする請求項1記載の導電性微粒子。 The conductive fine particles according to claim 1, wherein the core substance is made of a metal. 硬質層の厚さが5〜500nmであることを特徴とする請求項1又は2記載の導電性微粒子。 The conductive fine particles according to claim 1 or 2, wherein the hard layer has a thickness of 5 to 500 nm. 請求項1、2又は3記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive fine particles according to claim 1, 2 or 3 are dispersed in a resin binder. 請求項1、2若しくは3記載の導電性微粒子及び/又は請求項4記載の異方性導電材料を用いてなることを特徴とする接続構造体。 A connection structure comprising the conductive fine particles according to claim 1, 2 or 3, and / or the anisotropic conductive material according to claim 4.
JP2011282043A 2011-12-22 2011-12-22 Conductive fine particles, anisotropic conductive material, and connection structure Active JP5421982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282043A JP5421982B2 (en) 2011-12-22 2011-12-22 Conductive fine particles, anisotropic conductive material, and connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282043A JP5421982B2 (en) 2011-12-22 2011-12-22 Conductive fine particles, anisotropic conductive material, and connection structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005221027A Division JP4950451B2 (en) 2005-07-29 2005-07-29 Conductive fine particles, anisotropic conductive material, and connection structure

Publications (2)

Publication Number Publication Date
JP2012109252A JP2012109252A (en) 2012-06-07
JP5421982B2 true JP5421982B2 (en) 2014-02-19

Family

ID=46494596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282043A Active JP5421982B2 (en) 2011-12-22 2011-12-22 Conductive fine particles, anisotropic conductive material, and connection structure

Country Status (1)

Country Link
JP (1) JP5421982B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541333A (en) * 2012-12-06 2015-04-22 积水化学工业株式会社 Conductive material, connection structure and method for producing connection structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP4088137B2 (en) * 2002-11-13 2008-05-21 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP4387175B2 (en) * 2003-07-07 2009-12-16 積水化学工業株式会社 Coated conductive particles, anisotropic conductive material, and conductive connection structure
JP4313664B2 (en) * 2003-12-11 2009-08-12 積水化学工業株式会社 Protruding conductive particles, coated conductive particles, and anisotropic conductive material

Also Published As

Publication number Publication date
JP2012109252A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
TWI502608B (en) Conducting particle, anisotropic conductive film, and connected structure, and method of connecting
KR100719802B1 (en) Highly reliable conductive particles for anisotropic conductive interconnection
TWI511166B (en) Conductive particles, conductive materials and connecting structures
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP2022132316A (en) conductive material
JP6212366B2 (en) Conductive particles, conductive materials, and connection structures
JP2011040189A (en) Conductive particle, anisotropic conductive material, and connection structure
JP4593302B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP2010033911A (en) Conductive particle and conductive material
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4642286B2 (en) Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP5421982B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP5010417B2 (en) Conductive particles and anisotropic conductive material using the same
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131122

R151 Written notification of patent or utility model registration

Ref document number: 5421982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151