JPH07197001A - Anisotropically conductive thermosetting adhesive - Google Patents

Anisotropically conductive thermosetting adhesive

Info

Publication number
JPH07197001A
JPH07197001A JP33726093A JP33726093A JPH07197001A JP H07197001 A JPH07197001 A JP H07197001A JP 33726093 A JP33726093 A JP 33726093A JP 33726093 A JP33726093 A JP 33726093A JP H07197001 A JPH07197001 A JP H07197001A
Authority
JP
Japan
Prior art keywords
insulating resin
conductive particles
particles
adhesive
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33726093A
Other languages
Japanese (ja)
Other versions
JP3364695B2 (en
Inventor
Yukio Yamada
幸男 山田
Takashi Ando
尚 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP33726093A priority Critical patent/JP3364695B2/en
Publication of JPH07197001A publication Critical patent/JPH07197001A/en
Application granted granted Critical
Publication of JP3364695B2 publication Critical patent/JP3364695B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PURPOSE:To obtain the subject adhesive which is safe, provides a high connection reliability, and enables an easy restoration of connection between terminals by compounding an insulating resin compsn. mainly comprising an epoxy resin and a curative with conductive particles having an elastic modulus higher than that of the compsn. at the temp. of press bonding. CONSTITUTION:This thermosetting adhesive is prepd. by compounding an insulating resin compsn. mainly comprising an epoxy resin and a curative with conductive particles having an elastic modulus higher than that of the compsn. at the temp. of press bonding. The adhesive is safe, provides a high connection reliability, and enables an easy restoration of connection between terminals. Coating the surfaces of the particles with the compsn. is effective in further improving the reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばTAB(Tap
e Automated Bonding)と液晶ディ
スプレイなど高ファインピッチの接続に用いられる熱硬
化型異方性導電性接着剤、特に再生可能な熱硬化型異方
性導電性接着剤に関する。
BACKGROUND OF THE INVENTION The present invention relates to, for example, TAB (Tap).
(e) Automated Bonding) and a thermosetting anisotropic conductive adhesive used for high-fine-pitch connection such as a liquid crystal display, and particularly to a regenerable thermosetting anisotropic conductive adhesive.

【0002】[0002]

【従来の技術】一般に液晶ディスプレイ装置において
は、例えば図3に示すように、液晶ディスプレイ本体1
1の周辺に導出された端子12に対し、導電粒子13を
含む異方性導電性接着剤14を用いて複数のTAB15
の端子16が電気的に接続されている。この場合、異方
性導電性接着剤14の絶縁性接着剤物質17としては、
熱可塑性のものでは電気的な接続信頼性に欠けることか
ら、最近は主として熱硬化型のものが用いられている。
熱硬化型の異方性導電性接着剤14を用いれば、耐熱性
や耐湿性が向上するが、その反面、新たな問題が発生す
る。すなわち、通常、液晶ディスプレイ本体11とTA
B15とを接続する際には数多くのTAB15を液晶デ
ィスプレイ本体11に圧着するため、位置合わせのずれ
などにより接続不良を生ずる場合がある。このような場
合には液晶ディスプレイ本体11からTAB15を剥離
し、さらに端子部に残存した熱硬化型の異方性導電性接
着剤14を除去して、再度熱硬化型の異方性導電性接着
剤14を用いてその液晶ディスプレイ本体11とTAB
15とを接続する必要がある。
2. Description of the Related Art Generally, in a liquid crystal display device, as shown in FIG.
1. A plurality of TABs 15 are formed by using an anisotropic conductive adhesive 14 containing conductive particles 13 with respect to the terminals 12 led out around 1.
The terminal 16 of is electrically connected. In this case, as the insulating adhesive substance 17 of the anisotropic conductive adhesive 14,
Thermosetting resins are mainly used in recent years because they lack electrical connection reliability.
If the thermosetting anisotropic conductive adhesive 14 is used, heat resistance and moisture resistance are improved, but on the other hand, a new problem occurs. That is, normally, the liquid crystal display body 11 and the TA
When connecting to B15, a large number of TABs 15 are pressure-bonded to the liquid crystal display body 11, so that a connection failure may occur due to misalignment or the like. In such a case, the TAB 15 is peeled off from the liquid crystal display body 11, the thermosetting anisotropic conductive adhesive 14 remaining on the terminals is removed, and the thermosetting anisotropic conductive adhesive is removed again. Liquid crystal display body 11 and TAB using agent 14
It is necessary to connect with 15.

【0003】[0003]

【発明が解決しようとする課題】このため、従来より以
下のような種々の方法による再度の接続(再生)が行な
われているが、いずれも種々の問題を有している。
For this reason, reconnection (reproduction) has been conventionally performed by the following various methods, but each of them has various problems.

【0004】まず、第一の方法として、溶剤を用いて液
晶ディスプレイ本体11に残存した異方性導電性接着剤
14を除去する方法がある。この場合、溶剤としてはア
セトン、トルエン、リグロイン、エポキシ剥離溶剤(太
陽化工社製 サンエコンG430等)、塩素系溶剤界面
活性剤等がある。しかし、これらは何れも低粘度であ
り、再生を必要としないTAB15にも浸透して接続信
頼性を低下させてしまう。また、有機溶剤を使用するた
めに特殊な排気装置を取りつける必要があるなどの欠点
がある。
The first method is to remove the anisotropic conductive adhesive 14 remaining on the liquid crystal display body 11 using a solvent. In this case, examples of the solvent include acetone, toluene, ligroin, an epoxy stripping solvent (San-Econ G430 manufactured by Taiyo Kako Co., Ltd.), and a chlorine-based solvent surfactant. However, all of them have low viscosities, and penetrate into the TAB 15 which does not need to be regenerated, thus lowering the connection reliability. Further, there is a defect that a special exhaust device needs to be attached because the organic solvent is used.

【0005】第二の方法として、剥離ペーストを用いて
液晶ディスプレイ本体11に残存した異方性導電性接着
剤14を除去する方法がある。すなわち、剥離ペースト
としてテトラヒドロフラン(THF)/メタノールの混
合溶媒中にフエノキシ樹脂を混入したものを用い、フエ
ノキシ樹脂の成膜性を利用し残存物を溶かして除去する
方法である。この方法の場合、溶剤の浸透を防ぐ点では
効果があるが、10〜15分放置しておく必要があるた
めに時間がかかってしまう。
A second method is to remove the anisotropic conductive adhesive 14 remaining on the liquid crystal display body 11 by using a peeling paste. That is, this is a method in which a mixture of a phenoxy resin in a mixed solvent of tetrahydrofuran (THF) / methanol is used as a peeling paste, and the residue is dissolved and removed by utilizing the film forming property of the phenoxy resin. This method is effective in preventing the penetration of the solvent, but it takes time because it needs to be left for 10 to 15 minutes.

【0006】第三の方法として、図4に示すように、導
電粒子19にNi等の硬い粒子を用いた熱硬化型の異方
性導電性接着剤20を用い、液晶ディスプレイ本体11
に残存した異方性導電性接着剤14の上から再度圧着す
る方法がある。この方法は簡便に行なうことができる
が、再生専用の異方性導電性接着剤20を使用すること
になるため、2種類の異方性導電性接着剤14,20を
用意しなければならず、在庫の面で煩雑になる。また使
用頻度の面でライフ等に問題がある。また2〜3回再圧
着すると液晶ディスプレイ本体11に残存した異方性導
電性接着剤14,20の導電粒子13,19が増えて図
5に示すようにショートする危険がある。
As a third method, as shown in FIG. 4, a thermosetting anisotropic conductive adhesive 20 in which hard particles such as Ni are used as the conductive particles 19 is used, and the liquid crystal display main body 11 is used.
There is a method of pressing again from above the anisotropic conductive adhesive 14 remaining. This method can be performed easily, but since the anisotropic conductive adhesive 20 for reproduction only is used, two types of anisotropic conductive adhesives 14 and 20 must be prepared. , It becomes complicated in terms of inventory. Moreover, there is a problem in life in terms of frequency of use. Further, if the re-compression bonding is performed two or three times, the conductive particles 13, 19 of the anisotropic conductive adhesives 14, 20 remaining on the liquid crystal display body 11 increase and there is a risk of short-circuiting as shown in FIG.

【0007】第四の方法として、液晶ディスプレイ本体
11に残存した異方性導電性接着剤14を機械的に削り
とって新しい異方性導電性接着剤14を圧着する方法が
ある。しかし、これは接続パターンを傷つけ易いし、剥
離カスが発生して異物となり不良が発生する。このよう
に上記いずれの方法も一長一短があり、安全で接続信頼
性が高く、簡単に再生できる方法が望まれている。
As a fourth method, there is a method in which the anisotropic conductive adhesive 14 remaining on the liquid crystal display body 11 is mechanically shaved and a new anisotropic conductive adhesive 14 is pressure bonded. However, this easily damages the connection pattern, and peeling debris is generated to become a foreign substance, causing a defect. As described above, each of the above methods has advantages and disadvantages, and there is a demand for a method that is safe, has high connection reliability, and can be easily reproduced.

【0008】本発明は従来例のかかる点に鑑みてなされ
たもので、その目的とするところは、安全で接続信頼性
が高く、簡単に再生を行うことができる熱硬化型異方性
導電性接着剤を提供することにある。
The present invention has been made in view of the above points of the prior art, and an object thereof is to provide a thermosetting anisotropic conductive material which is safe, has high connection reliability, and can be easily reproduced. It is to provide an adhesive.

【0009】[0009]

【課題を解決するための手段】本発明は、エポキシ樹
脂、硬化剤を主成分とする絶縁性樹脂とこの絶縁性樹脂
中に導電粒子を含んでなる熱硬化型異方性接着剤におい
て、圧着温度における弾性率がこの絶縁性樹脂より高い
導電粒子を含むことを特徴とするものである。この場
合、導電粒子の表面に絶縁性樹脂を被覆することも効果
的である。
The present invention is a thermosetting anisotropic adhesive comprising an epoxy resin, an insulating resin containing a curing agent as a main component, and conductive particles in the insulating resin. It is characterized in that it contains conductive particles whose elastic modulus at temperature is higher than that of the insulating resin. In this case, it is also effective to coat the surface of the conductive particles with an insulating resin.

【0010】[0010]

【作用】かかる構成を有する本発明にあっては、圧着温
度における弾性率が絶縁性樹脂より高い導電粒子を含む
ことから、熱圧着時において絶縁性樹脂が軟化する場合
でも導電粒子は変形しない。従って、接着剥離後に再び
本発明を用いて端子間の熱圧着(再生)を行えば、端子
間に残っている絶縁性樹脂が導電粒子によって押しのけ
られ、その結果、端子間の接続が確実に行われる。この
場合、導電粒子の表面に絶縁性樹脂を被覆すれば、再生
をくり返して導電粒子が増加した場合であっても、導電
粒子間のショートが起こりにくく、隣接する端子間のシ
ョートが防止される。
In the present invention having such a constitution, since the conductive particles having a higher elastic modulus at the pressure bonding temperature than the insulating resin are contained, the conductive particles are not deformed even when the insulating resin is softened during thermocompression bonding. Therefore, if thermocompression bonding (regeneration) is performed again between the terminals using the present invention after peeling the adhesive, the insulating resin remaining between the terminals is pushed away by the conductive particles, and as a result, the connection between the terminals is surely performed. Be seen. In this case, if the surface of the conductive particles is coated with an insulating resin, short-circuiting between the conductive particles is unlikely to occur even when the number of conductive particles increases due to repeated regeneration, and a short-circuit between adjacent terminals is prevented. .

【0011】[0011]

【実施例】以下、本発明に係る熱硬化型異方性導電性接
着剤を具体的な実施例を参照して説明する。
EXAMPLES The thermosetting anisotropic conductive adhesive according to the present invention will be described below with reference to specific examples.

【0012】熱硬化型異方性導電性接着剤1の作成 まず、以下の組成からなるバインダーとしての絶縁性樹
脂2を調製した。 エポキシ樹脂 エピコート1009 (油化シェルエポキシ社製) 100重量部 硬化剤 HX3941HP(旭化成社製) 170重量部 トルエン 80重量部
Preparation of Thermosetting Anisotropic Conductive Adhesive 1 First, an insulating resin 2 as a binder having the following composition was prepared. Epoxy resin Epicoat 1009 (made by Yuka Shell Epoxy Co., Ltd.) 100 parts by weight Curing agent HX3941HP (made by Asahi Kasei) 170 parts by weight Toluene 80 parts by weight

【0013】かかる絶縁性樹脂2の170℃における弾
性率は、2×108 dyn/cm2であった。この場
合、弾性率の測定は、オリエンテック社製のレオ・バイ
ブロンDDV−01FPを用い、周波数60Hz、昇温
スピード3℃/分の条件で測定した。
The elastic modulus of the insulating resin 2 at 170 ° C. was 2 × 10 8 dyn / cm 2 . In this case, the elastic modulus was measured by using Rheo Vibron DDV-01FP manufactured by Orientec Co., Ltd. under the conditions of a frequency of 60 Hz and a temperature rising speed of 3 ° C./min.

【0014】次に、この絶縁性樹脂2中に以下の各導電
粒子3を混入して厚み25μmのフィルムを形成した。
Next, the following conductive particles 3 were mixed into this insulating resin 2 to form a film having a thickness of 25 μm.

【0015】 A:平均粒径7μmのNi粒子(実施例4) 54重量部 B:下記*の方法によりAの粒子にアクリル/スチレン樹脂を0.1〜0.2 μm被覆した粒子(実施例1) 54重量部 C:平均粒径5μmのシリカにNi/Auめっきを施した粒子(実施例5) 14重量部 D:Cの粒子に下記*の方法によりアクリル/スチレン樹脂を0.1〜0.2 μm被覆した粒子(実施例2) 14重量部 E:平均粒径5μmのベンゾグアナミン樹脂にNi/Auめっきを施した粒子 (日本化学社製 ブライト 20GNRY4.6EH 実施例6) 14重量部 F:下記*の方法によりEの粒子にアクリル/スチレン樹脂を0.1〜0.2 μm被覆した粒子(実施例3) 14重量部 G:平均粒径5μmの架橋ポリスチレンにNi/Auめっきを施した粒子(比 較例1) 14重量部 H:下記*の方法によりGの粒子に架橋ポリスチレン樹脂を0.1〜0.2μ m被覆した粒子(比較例2) 14重量部A: Ni particles having an average particle size of 7 μm (Example 4) 54 parts by weight B: Particles obtained by coating the particles of A with an acrylic / styrene resin in an amount of 0.1 to 0.2 μm by the method of the following * (Example) 1) 54 parts by weight C: Particles obtained by plating Ni / Au on silica having an average particle size of 5 μm (Example 5) 14 parts by weight D: C particles having an acrylic / styrene resin content of 0.1 to 0.1 by the method described below. Particles coated with 0.2 μm (Example 2) 14 parts by weight E: Particles obtained by applying Ni / Au plating to a benzoguanamine resin having an average particle size of 5 μm (Nippon Kagaku Co., Ltd. Bright 20GNRY4.6EH Example 6) 14 parts by weight F : Particles obtained by coating the particles of E with acrylic / styrene resin in an amount of 0.1 to 0.2 μm by the method described below (Example 3) 14 parts by weight G: Ni / Au plating on crosslinked polystyrene having an average particle size of 5 μm Particles (Comparative Example 1) 14 parts by weight H: Particles obtained by coating the particles of G with a crosslinked polystyrene resin in an amount of 0.1 to 0.2 μm by the following method * (Comparative Example 2) 14 parts by weight

【0016】*:ハイブリタイゼーションシステム(奈
良機械社製)を用いてアクリル/スチレン樹脂を導電粒
子3に5:100の割合で混合し、回転数16200r
pmで10分間処理した。
*: Acrylic / styrene resin was mixed with conductive particles 3 at a ratio of 5: 100 using a hybridization system (manufactured by Nara Machinery Co., Ltd.), and the rotation speed was 16200 r.
It was treated with pm for 10 minutes.

【0017】尚、上記各導電粒子3の170℃における
弾性率は次の通りであった。この場合、弾性率の測定は
上記絶縁性樹脂2と同様の条件で行った。 A,B:2×1012dyn/cm2 C,D:6×1011dyn/cm2 E,F:4×108 dyn/cm2 G,H:9×107 dyn/cm2
The elastic moduli of the above conductive particles 3 at 170 ° C. were as follows. In this case, the elastic modulus was measured under the same conditions as the insulating resin 2. A, B: 2 × 10 12 dyn / cm 2 C, D: 6 × 10 11 dyn / cm 2 E, F: 4 × 10 8 dyn / cm 2 G, H: 9 × 10 7 dyn / cm 2

【0018】TAB4の作成 次に、厚み75μmのポリイミドフィルム5(宇部興産
社製 ユーピレックス)上に厚み35μmの銅箔を接着
剤で貼り付け、50μmの導体幅でピッチが100μm
となるようにエッチングし、これにより得られた130
ピンの端子6に半田めっきを施してTAB4を作成し
た。
Preparation of TAB 4 Next, a copper foil having a thickness of 35 μm is attached to a polyimide film 5 having a thickness of 75 μm (Upilex manufactured by Ube Industries, Ltd.) with an adhesive, and a conductor width of 50 μm and a pitch of 100 μm.
To obtain 130
Solder plating was applied to the terminal 6 of the pin to prepare the TAB 4.

【0019】液晶ディスプレイ本体7 一方、液晶ディスプレイ用として、50μmの導体幅で
ピッチが100μmのITOパターン8を形成したガラ
ス9を用意した。
Liquid Crystal Display Main Body 7 On the other hand, for a liquid crystal display, a glass 9 having an ITO pattern 8 having a conductor width of 50 μm and a pitch of 100 μm was prepared.

【0020】接続 そして、上述の実施例及び比較例のフィルムを用い、温
度170℃、圧力40Kgf/cm2 、時間20秒の条
件で図2Aに示すように上記ガラス9とTAB4とを熱
圧着により接続してサンプルを作成し、その初期特性及
びエージング特性を測定した。
Connection Using the films of the above-mentioned Examples and Comparative Examples, the glass 9 and the TAB 4 were subjected to thermocompression bonding under the conditions of a temperature of 170 ° C., a pressure of 40 Kgf / cm 2 and a time of 20 seconds as shown in FIG. 2A. A sample was prepared by connecting and the initial characteristics and aging characteristics were measured.

【0021】再生 さらに、上述の熱圧着した状態のサンプルを用い、ガラ
ス9側から130〜140℃の熱を加えながらTAB4
を引き剥がした後(図2B参照)、同じ異方性導電性接
着剤1を用い上述の条件で再度新しいTAB4を熱圧着
し(図2C参照)、再生後の初期導通抵抗及びエージン
グ後の導通抵抗を測定した。そして、この工程をくり返
した。これらの測定結果を表1に示す。
Regeneration Furthermore, using the sample in the above thermocompression bonded state, TAB4 was applied while applying heat of 130 to 140 ° C. from the glass 9 side.
After peeling off (see FIG. 2B), a new TAB4 was thermocompression-bonded again using the same anisotropic conductive adhesive 1 under the above-mentioned conditions (see FIG. 2C), and the initial conduction resistance after reproduction and the conduction after aging were conducted. The resistance was measured. And this process was repeated. The results of these measurements are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から理解されるように、圧着温度(1
70℃)における導電粒子3の弾性率がバインダーの絶
縁性樹脂2より高い実施例1〜3のものは、再生後の導
通特性が良好であった。これは、図1Aに示すように、
再生圧着時に導通粒子3a,3bが変形せず、絶縁性樹
脂2がこれによって押しのけられ端子6及びITOパタ
ーン8間の接続が確実に行なわれるからである。また、
導電粒子3が絶縁性樹脂により被覆されていることか
ら、再生3回後においても隣接する端子間にショートは
生じなかった。
As can be seen from Table 1, the crimping temperature (1
In Examples 1 to 3 in which the elastic modulus of the conductive particles 3 at 70 ° C.) is higher than that of the insulating resin 2 as the binder, the conduction characteristics after regeneration were good. This is as shown in FIG.
This is because the conductive particles 3a and 3b are not deformed at the time of reproducing and pressure bonding, and the insulating resin 2 is pushed away by this and the connection between the terminal 6 and the ITO pattern 8 is surely made. Also,
Since the conductive particles 3 were covered with the insulating resin, a short circuit did not occur between the adjacent terminals even after 3 times of reproduction.

【0024】一方、上記圧着温度における導電粒子3の
弾性率がバインダーの絶縁性樹脂2より高く、かつ絶縁
性皮膜を施していない実施例4〜6の場合、再生後の導
通抵抗が良好で、再生1,2回後において隣接する端子
間にショートが生じなかった。しかし、再生3回後にお
いて隣接する端子間にショートが生じた。
On the other hand, in Examples 4 to 6 in which the elastic modulus of the conductive particles 3 at the above-mentioned pressure bonding temperature is higher than that of the insulating resin 2 of the binder and the insulating film is not applied, the conduction resistance after regeneration is good, A short circuit did not occur between the adjacent terminals after the first and second reproduction. However, a short circuit occurred between the adjacent terminals after three times of reproduction.

【0025】また、上記圧着温度における導電粒子3の
弾性率がバインダーの絶縁性樹脂2より低い比較例1の
場合、再生後の導通抵抗が悪化した。これは、例えば図
1Bに示すように、圧着工程において絶縁性樹脂2が軟
化する際に導電粒子3c,3dも変形し、ITOパター
ン8上の絶縁性樹脂3を押しのけられないからである。
また、比較例1の場合、導電粒子3に絶縁性皮膜を施し
ていないため、再生3回後に隣接する端子間のショート
が発生した。
Further, in the case of Comparative Example 1 in which the elastic modulus of the conductive particles 3 at the above-mentioned pressure bonding temperature is lower than that of the insulating resin 2 as the binder, the conduction resistance after reproduction deteriorated. This is because, for example, as shown in FIG. 1B, when the insulating resin 2 is softened in the pressure bonding step, the conductive particles 3c and 3d are also deformed, and the insulating resin 3 on the ITO pattern 8 cannot be pushed away.
Further, in the case of Comparative Example 1, since the conductive particles 3 were not coated with an insulating film, a short circuit occurred between adjacent terminals after three times of reproduction.

【0026】さらに、上記圧着温度における導電粒子3
の弾性率がバインダーの絶縁性樹脂2より低く、かつ絶
縁性皮膜を施した比較例2の場合、再生3回後における
隣接する端子間のショートは生じなかったが、比較例1
と同様の理由により再生後の導通抵抗が上昇した。
Further, the conductive particles 3 at the above-mentioned pressure bonding temperature
In the case of Comparative Example 2 in which the elastic modulus of is lower than that of the insulating resin 2 as the binder and the insulating film is applied, a short circuit between adjacent terminals did not occur after 3 times of regeneration, but Comparative Example 1
For the same reason as above, the conduction resistance after regeneration increased.

【0027】尚、本発明は上述の実施例に限られること
なく、種々の変更を行うことができる。例えば絶縁性樹
脂及び導通粒子として種々のものを用いることができ
る。また、最初の圧着と再生時の圧着に際し別の異方性
導電性接着剤を用いることもできる。ただし、再生時に
用いる異方性導電性接着剤の導電粒子の圧着温度におけ
る弾性率が、最初の異方性導電性接着剤の絶縁性樹脂の
圧着温度における弾性率より大きくなければならないこ
とはもちろんである。
The present invention is not limited to the above-mentioned embodiment, but various modifications can be made. For example, various materials can be used as the insulating resin and the conductive particles. In addition, different anisotropic conductive adhesives can be used for the initial pressure bonding and the pressure bonding during reproduction. However, it is of course necessary that the elastic modulus at the crimping temperature of the conductive particles of the anisotropic conductive adhesive used at the time of regeneration must be higher than the elastic modulus at the crimping temperature of the insulating resin of the first anisotropic conductive adhesive. Is.

【0028】[0028]

【発明の効果】以上述べたように本発明によれば、圧着
温度における弾性率が絶縁性樹脂より高い導電粒子を含
むようにしたことから、安全で接続信頼性が高く、かつ
簡単に端子間接続の再生を行うことができる。この場
合、導電粒子の表面に絶縁性樹脂を被覆することによ
り、より一層接続信頼性を高めることができる。
As described above, according to the present invention, since conductive particles having a higher elastic modulus at the crimping temperature than that of the insulating resin are contained, the connection between the terminals can be performed easily and with high reliability. Connection playback can be performed. In this case, the connection reliability can be further improved by coating the surface of the conductive particles with an insulating resin.

【0029】しかも、本発明によれば、端子上に残った
異方性導電性接着剤を取り除く必要がないことから、再
生工程を短縮できる。また、接着時と同じ異方性導電性
接着剤を用いて再生を行うことができるため、異方性導
電性接着剤の間違い等を防ぐことができる。さらに、本
発明によれば、他の部分への悪影響を与えることなく再
生を行いうるものである。
Moreover, according to the present invention, it is not necessary to remove the anisotropic conductive adhesive remaining on the terminals, so that the recycling process can be shortened. Further, since the same anisotropic conductive adhesive as that used for the adhesion can be used for the reproduction, it is possible to prevent the anisotropic conductive adhesive from being mistaken. Furthermore, according to the present invention, reproduction can be performed without adversely affecting other parts.

【図面の簡単な説明】[Brief description of drawings]

【図1】A 本発明の実施例1〜3の作用を示す断面説
明図である。 B 本発明の比較例4,5の作用を示す説明図である。
FIG. 1A is an explanatory cross-sectional view showing the action of Examples 1 to 3 of the present invention. B is an explanatory view showing the action of Comparative Examples 4 and 5 of the present invention.

【図2】本発明を用いた再生方法の一例を示す断面図で
ある。
FIG. 2 is a sectional view showing an example of a reproducing method using the present invention.

【図3】A 液晶ディスプレイ本体とTABとの接続方
法を示す概略斜視図である。 B 液晶ディスプレイ本体とTABとの接続方法を示す
断面図である。
FIG. 3 is a schematic perspective view showing a method of connecting the A liquid crystal display main body and the TAB. B is a cross-sectional view showing a method of connecting the liquid crystal display body and the TAB.

【図4】従来の再生方法を示す断面図である。FIG. 4 is a sectional view showing a conventional reproducing method.

【図5】従来の再生方法においてショートが発生した状
態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a short circuit has occurred in the conventional reproducing method.

【符号の説明】[Explanation of symbols]

1 異方性導電性接着剤 2 絶縁性樹脂 3(3a,3b) 導電粒子 4 TAB 5 ポリイミドフィルム 6 端子 7 液晶ディスプレイ本体 8 ITOパターン 9 ガラス 1 Anisotropic Conductive Adhesive 2 Insulating Resin 3 (3a, 3b) Conductive Particles 4 TAB 5 Polyimide Film 6 Terminal 7 Liquid Crystal Display Main Body 8 ITO Pattern 9 Glass

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エポキシ樹脂、硬化剤を主成分とする絶
縁性樹脂と該絶縁性樹脂中に導電粒子を含んでなる熱硬
化型異方性接着剤において、 圧着温度における弾性率が上記絶縁性樹脂より高い導電
粒子を含むことを特徴とする熱硬化型異方性導電性接着
剤。
1. A thermosetting anisotropic adhesive comprising an epoxy resin, an insulating resin containing a curing agent as a main component, and conductive particles contained in the insulating resin, wherein the elastic modulus at the pressure bonding temperature is the above-mentioned insulating property. A thermosetting anisotropic conductive adhesive containing conductive particles higher than a resin.
【請求項2】 導電粒子の表面に絶縁性樹脂を被覆して
なることを特徴とする請求項1記載の熱硬化型異方性導
電性接着剤。
2. The thermosetting anisotropic conductive adhesive according to claim 1, wherein the surface of the conductive particles is coated with an insulating resin.
JP33726093A 1993-12-28 1993-12-28 Circuit connection regeneration method Expired - Lifetime JP3364695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33726093A JP3364695B2 (en) 1993-12-28 1993-12-28 Circuit connection regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33726093A JP3364695B2 (en) 1993-12-28 1993-12-28 Circuit connection regeneration method

Publications (2)

Publication Number Publication Date
JPH07197001A true JPH07197001A (en) 1995-08-01
JP3364695B2 JP3364695B2 (en) 2003-01-08

Family

ID=18306953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33726093A Expired - Lifetime JP3364695B2 (en) 1993-12-28 1993-12-28 Circuit connection regeneration method

Country Status (1)

Country Link
JP (1) JP3364695B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190578B1 (en) 1996-02-08 2001-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Anisotropic conductive composition
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
US6583834B1 (en) * 1997-02-27 2003-06-24 Seiko Epson Corporation Adhesive, liquid crystal device, process for manufacturing liquid crystal device, and electronic equipment
US6632532B1 (en) 1999-11-05 2003-10-14 Sony Chemicals Corp. Particle material anisotropic conductive connection and anisotropic conductive connection material
US6671024B1 (en) 1997-02-27 2003-12-30 Seiko Epson Corporation Connecting structure, liquid crystal device, electronic equipment, and anisotropic conductive adhesive agent and a manufacturing method thereof
US6903463B1 (en) * 1999-09-14 2005-06-07 Sony Chemicals Corporation COG-assembly and connecting material to be used therein
WO2008012886A1 (en) * 2006-07-26 2008-01-31 Panasonic Corporation Structure for connecting circuit boards, method for connecting circuit boards and electronic apparatus
JP2009182365A (en) * 2009-05-21 2009-08-13 Hitachi Chem Co Ltd Manufacturing method of circuit board, and circuit connection material
JP2013509620A (en) * 2009-10-30 2013-03-14 リサーチ フロンティアーズ インコーポレイテッド SPD membrane and light valve laminate with improved bus bar connection
WO2014162394A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Connection structure for electrical component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190578B1 (en) 1996-02-08 2001-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Anisotropic conductive composition
US6671024B1 (en) 1997-02-27 2003-12-30 Seiko Epson Corporation Connecting structure, liquid crystal device, electronic equipment, and anisotropic conductive adhesive agent and a manufacturing method thereof
US6583834B1 (en) * 1997-02-27 2003-06-24 Seiko Epson Corporation Adhesive, liquid crystal device, process for manufacturing liquid crystal device, and electronic equipment
US6903463B1 (en) * 1999-09-14 2005-06-07 Sony Chemicals Corporation COG-assembly and connecting material to be used therein
KR100554925B1 (en) * 1999-11-05 2006-03-03 소니 케미카루 가부시키가이샤 Particle material for anisotropic conductive connection and anisotropic conductive connection material
US6632532B1 (en) 1999-11-05 2003-10-14 Sony Chemicals Corp. Particle material anisotropic conductive connection and anisotropic conductive connection material
JP2003045230A (en) * 2001-08-01 2003-02-14 Hayakawa Rubber Co Ltd Synthetic resin particulate, conductive particulate and anisotropy conductive material composite
JP4642286B2 (en) * 2001-08-01 2011-03-02 早川ゴム株式会社 Synthetic resin fine particles, conductive fine particles, and anisotropic conductive material composition
WO2008012886A1 (en) * 2006-07-26 2008-01-31 Panasonic Corporation Structure for connecting circuit boards, method for connecting circuit boards and electronic apparatus
JP2009182365A (en) * 2009-05-21 2009-08-13 Hitachi Chem Co Ltd Manufacturing method of circuit board, and circuit connection material
JP2013509620A (en) * 2009-10-30 2013-03-14 リサーチ フロンティアーズ インコーポレイテッド SPD membrane and light valve laminate with improved bus bar connection
WO2014162394A1 (en) * 2013-04-01 2014-10-09 パイオニア株式会社 Connection structure for electrical component
JPWO2014162394A1 (en) * 2013-04-01 2017-02-16 パイオニア株式会社 Connection structure for electrical equipment and components
US9705105B2 (en) 2013-04-01 2017-07-11 Pioneer Corporation Connection structure for electrical component

Also Published As

Publication number Publication date
JP3364695B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
KR100559937B1 (en) Method of microelectrode connection and connected srtucture thereby
JP3656768B2 (en) Connection member, electrode connection structure using the connection member, and connection method
JP3477367B2 (en) Anisotropic conductive adhesive film
JP3364695B2 (en) Circuit connection regeneration method
KR20050088946A (en) Adhesives and adhesive films
JPH07157720A (en) Film having anisotropic electrical conductivity
JP3137578B2 (en) Conductive particles for anisotropic conductive adhesive film, method for producing the same, and anisotropic conductive adhesive film
JP4661914B2 (en) Electrode connection method
JP4019328B2 (en) Electrode connection method
JP3219140B2 (en) Electrical and electronic equipment
JPH0620519A (en) Anisotropic conductive bonding agent and anisotropic conductive film separating agent
JP2015135949A (en) Manufacturing method for mounting body, and anisotropic conductive film
JP3060452B2 (en) Anisotropic conductive adhesive film
JPH0773921A (en) Connecting member
JP2000011760A (en) Anisotropic conductive composition and manufacture of anisotropic conductive member using it
JP3129218B2 (en) Fine pitch connector members
KR100251674B1 (en) Connection sheet for interconnecting electrodes facing each other, and electrode connection structure and method using the connection sheet
JP2828851B2 (en) How to repair electronic components
JP2680430B2 (en) Anisotropic conductive film
JPS5953717B2 (en) Method for manufacturing contact terminals for heat seal connectors on printed circuit boards
JP4155470B2 (en) Electrode connection method using connecting members
JP6286473B2 (en) Zygote
JP4020335B2 (en) Heat seal connector
JP2008291161A (en) Method for producing adhesive, and method for connecting electrical component

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091101

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121101

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131101

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term