JP4746116B2 - Conductive powder, conductive material containing the same, and method for producing conductive particles - Google Patents

Conductive powder, conductive material containing the same, and method for producing conductive particles Download PDF

Info

Publication number
JP4746116B2
JP4746116B2 JP2009220045A JP2009220045A JP4746116B2 JP 4746116 B2 JP4746116 B2 JP 4746116B2 JP 2009220045 A JP2009220045 A JP 2009220045A JP 2009220045 A JP2009220045 A JP 2009220045A JP 4746116 B2 JP4746116 B2 JP 4746116B2
Authority
JP
Japan
Prior art keywords
nickel
particles
conductive
protrusion
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009220045A
Other languages
Japanese (ja)
Other versions
JP2010118334A (en
Inventor
寛人 松浦
雅明 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2009220045A priority Critical patent/JP4746116B2/en
Priority to TW098133952A priority patent/TWI479508B/en
Priority to PCT/JP2009/067707 priority patent/WO2010044388A1/en
Priority to CN200980140898XA priority patent/CN102187405B/en
Priority to KR1020117008427A priority patent/KR101594639B1/en
Publication of JP2010118334A publication Critical patent/JP2010118334A/en
Application granted granted Critical
Publication of JP4746116B2 publication Critical patent/JP4746116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal

Description

本発明は、導電性粉体及びそれを含む導電性材料に関する。また本発明は、導電性粒子の製造方法に関する。   The present invention relates to a conductive powder and a conductive material including the same. The present invention also relates to a method for producing conductive particles.

本出願人は先に、ニッケル又はニッケル合金からなる微小突起を表面に有する導電性無電解めっき粉体を提案した(特許文献1参照)。この粉体における無電解めっき粒子は、その微小突起の作用によって良好な導電性を示すものである。この無電解めっき粒子は、球状芯材の水性スラリーをニッケル塩、還元剤、錯化剤などを含んだ無電解めっき浴に添加する無電解めっき工程(A工程)と、球状芯材の水性スラリーに無電解めっき液の構成成分を少なくとも2液に分離して、それぞれを同時にかつ経時的に添加する無電解めっき工程(B工程)によって製造される。この製造方法においては、A工程において、芯材粒子の表面にニッケルの皮膜が形成されるとともに、突起の生成の起点となる核が形成される。この核がB工程において成長することで突起が形成される。このようにして得られた無電解めっき粒子は例えば、対向する接続回路を導通接着するための導電性接着剤、異方性導電膜、異方性導電接着剤等に好適に用いられる。   The present applicant has previously proposed a conductive electroless plating powder having fine protrusions made of nickel or a nickel alloy on its surface (see Patent Document 1). The electroless plating particles in this powder exhibit good conductivity due to the action of the fine protrusions. The electroless plating particles include an electroless plating step (step A) in which an aqueous slurry of a spherical core material is added to an electroless plating bath containing a nickel salt, a reducing agent, a complexing agent, and the like, and an aqueous slurry of a spherical core material The electroless plating solution is manufactured by an electroless plating step (step B) in which the components of the electroless plating solution are separated into at least two solutions and added simultaneously and with time. In this manufacturing method, in step A, a nickel film is formed on the surface of the core material particles, and nuclei that are the starting points for the formation of protrusions are formed. The nucleus grows in the B process, so that a protrusion is formed. The electroless plated particles thus obtained are suitably used for, for example, conductive adhesives, anisotropic conductive films, anisotropic conductive adhesives and the like for conductively bonding opposing connection circuits.

この技術とは別に、特許文献2には、粒径4μmの芯材粒子の表面に、粒径50nmのニッケル芯物質を付着させ、次いでニッケルの無電解めっきを行うことで、突起部を有する導電性粒子を得る方法が提案されている。しかしこの方法では、芯材粒子とニッケル芯物質との密着性が弱いので、芯材粒子の表面を被覆するニッケル層と突起部との一体性に欠け、導電性粒子に圧力が加わった場合に突起部が破損しやすい。また、粒径4μmの芯材粒子の表面に、これよりも粒径が非常に小さい50nmのニッケル芯物質を均一に付着させることは非常に困難である。ニッケル芯物質が芯材粒子の表面に付着するよりも、ニッケル芯物質どうしが凝集することの方が起こりやすいからである。その結果、ニッケル芯物質どうしが凝集した粒径の大きな凝集粒子が芯材粒子の表面に付着する場合が多く、非常に大きな突起部が形成されやすい。   Apart from this technique, Patent Document 2 discloses a conductive material having a protrusion by attaching a nickel core material having a particle diameter of 50 nm to the surface of a core material particle having a particle diameter of 4 μm and then performing electroless plating of nickel. A method for obtaining a conductive particle has been proposed. However, in this method, since the adhesion between the core material particles and the nickel core material is weak, the nickel layer covering the surface of the core material particles and the protrusions are not integrated, and the pressure is applied to the conductive particles. Protrusions are easily damaged. Further, it is very difficult to uniformly adhere a nickel core material having a particle size of 50 nm, which is much smaller than this, to the surface of the core material particles having a particle size of 4 μm. This is because it is easier for the nickel core materials to agglomerate than the nickel core materials adhere to the surface of the core particles. As a result, aggregated particles having a large particle diameter in which nickel core materials are aggregated often adhere to the surface of the core material particles, and very large protrusions are easily formed.

ところで、近年の電子機器類の一層の小型化に伴い、電子回路の回路幅やピッチはますます小さくなっている。それに伴い、上述の導電性接着剤、異方性導電膜、異方性導電接着剤等に用いられる無電解めっき粉体として、その粒径が小さいものが求められている。しかし粒子の粒径を小さくすると、粒子どうしの凝集が起こりやすくなり、粒径の小さな粒子を用いたにもかかわらず、凝集によって見掛けの粒径(二次粒子径)が大きくなってしまう。また、粒径の小さな粒子を用いた場合には、導電性を高めること(電気抵抗を下げること)が、大きな粒子を用いた場合よりも困難になる。   By the way, with the further miniaturization of electronic devices in recent years, the circuit width and pitch of electronic circuits are becoming increasingly smaller. Accordingly, electroless plating powders used for the above-mentioned conductive adhesives, anisotropic conductive films, anisotropic conductive adhesives, and the like are required to have a small particle size. However, if the particle size of the particles is reduced, the particles tend to aggregate, and the apparent particle size (secondary particle size) increases due to the aggregation even though particles having a small particle size are used. In addition, when particles having a small particle diameter are used, it is more difficult to increase the conductivity (lower the electrical resistance) than when large particles are used.

特開2000−243132号公報JP 2000-243132 A 特開2006−228474号公報JP 2006-228474 A

したがって本発明の目的は、前述した従来技術の導電性粉体よりも、各種の性能が更に向上した導電性粉体を提供することにある。   Accordingly, an object of the present invention is to provide a conductive powder having various performances further improved as compared with the conductive powder of the prior art described above.

前記の目的を達成すべく本発明者らは鋭意検討した結果、従来と同程度の分散性を有し、かつ従来よりも粒径が小さい導電性粒子を用いる場合には、その表面に形成されている突起の形状を従来よりも縦長にすることで、導電性の低下が抑制できることを知見した。   As a result of intensive studies by the present inventors to achieve the above object, when conductive particles having a dispersibility comparable to that of the prior art and having a particle size smaller than that of the prior art are used, they are formed on the surface. It has been found that the lowering of the conductivity can be suppressed by making the shape of the protruding protrusions vertically longer than before.

本発明は前記知見に基づきなされたもので、芯材粒子の表面に、ニッケル又はニッケル合金皮膜が形成された導電性粒子からなる導電性粉体であって、
前記導電性粒子は、前記皮膜の表面から突出し、かつ該皮膜と連続体になっている、アスペクト比が1以上の突起部を多数有し、
アスペクト比が1以上の前記突起部の割合が、全突起部の数に対して40%以上であり、
前記導電性粉体においては、前記導電性粒子のうち、一次粒子が占める重量が、導電性粉体の重量に対して85重量%以上であることを特徴とする導電性粉体を提供するものである。
The present invention was made on the basis of the above knowledge, and is a conductive powder comprising conductive particles in which nickel or a nickel alloy film is formed on the surface of core material particles,
The conductive particles protrude from the surface of the coating and are continuous with the coating, and have a large number of protrusions with an aspect ratio of 1 or more,
The ratio of the protrusions having an aspect ratio of 1 or more is 40% or more with respect to the total number of protrusions,
The conductive powder provides a conductive powder characterized in that the weight of the primary particles among the conductive particles is 85% by weight or more based on the weight of the conductive powder. It is.

また本発明は、分散剤及びニッケルイオンを含む無電解めっき浴と、表面に貴金属が担持された芯材粒子とを混合して、該芯材粒子の表面にニッケル初期薄膜層を形成するに際し、ニッケルイオンの濃度が0.0001〜0.008mol/Lに調整された該無電解めっき浴1リットルに対して、表面積の総和が1〜15m2となるような量の該芯材粒子を用いるA工程と、
A工程において得られた、ニッケル初期薄膜層を有する前記芯材粒子、及び前記分散剤を含む水性スラリーを、該分散剤の分散効果が発現するpH範囲に維持しつつ、該水性スラリーに、1時間当たりのニッケルの析出量が25〜100nmとなる量に相当する量のニッケルイオン及び還元剤を経時的に添加して、該水性スラリー中にニッケルの核粒子を生成させるとともに、生成した核粒子を前記芯材粒子に付着させて、付着した核粒子を起点として該核粒子を成長させ、アスペクト比が1以上の突起を形成するB工程とを具備することを特徴とする導電性粒子の製造方法を提供するものである。
Further, the present invention mixes an electroless plating bath containing a dispersant and nickel ions and core material particles carrying a noble metal on the surface, and forms a nickel initial thin film layer on the surface of the core material particles. A using the core material particles in such an amount that the total surface area is 1 to 15 m 2 with respect to 1 liter of the electroless plating bath whose nickel ion concentration is adjusted to 0.0001 to 0.008 mol / L. Process,
While maintaining the aqueous slurry containing the core particles having the nickel initial thin film layer and the dispersant obtained in the step A in a pH range in which the dispersing effect of the dispersant is expressed, Nickel ions and a reducing agent in an amount corresponding to an amount of nickel deposited per hour of 25 to 100 nm are added over time to generate nickel core particles in the aqueous slurry, and the generated core particles And B process for growing the core particles from the attached core particles as a starting point to form protrusions having an aspect ratio of 1 or more. A method is provided.

本発明の導電性粉体は、それを構成する導電性粒子の粒径が従来よりも小さいにもかかわらず、分散性及び導電性が良好なものである。また本発明の製造方法によれば、そのような導電性粉体を容易に製造することができる。   The conductive powder of the present invention has good dispersibility and conductivity even though the particle size of the conductive particles constituting the conductive powder is smaller than the conventional one. Moreover, according to the manufacturing method of this invention, such electroconductive powder can be manufactured easily.

以下、本発明をその好ましい実施形態に基づき説明する。本発明の導電性粉体は、芯材粒子の表面にニッケル皮膜又はニッケル合金皮膜(以下、これらの皮膜を総称して単に「ニッケル皮膜」という。)が形成されてなるものである。本発明の導電性粉体は、ニッケル皮膜の表面から突出した突起部を多数有している点に特徴の一つを有している。以下、この突起部について説明する。   Hereinafter, the present invention will be described based on preferred embodiments thereof. The conductive powder of the present invention is obtained by forming a nickel film or a nickel alloy film (hereinafter, these films are simply referred to as “nickel film”) on the surface of the core material particles. The conductive powder of the present invention is characterized in that it has a large number of protrusions protruding from the surface of the nickel film. Hereinafter, this protrusion will be described.

導電性粉体の表面に多数の突起部を形成することは、本明細書の背景技術の項で述べたとおり当該技術分野においてよく知られた技術である。このような背景技術に対し、本発明においては突起部として特定の形状のものを採用した点が、従来の導電性粉体と際立って相違している。具体的には、本発明の導電性粉体における突起部は、アスペクト比が1以上であることが特徴である。本明細書におけるアスペクト比とは、突起部の高さHと突起部の基部における突起部の幅Dとの比、すなわちH/Dで定義される値である。この定義から明らかなように、アスペクト比は突起部の細長さの尺度となるものであり、その値が大きいほど突起部が細長い形状をしていることを意味する。   Forming a large number of protrusions on the surface of the conductive powder is a technique well known in the art as described in the background art section of this specification. In contrast to such background art, the present invention is markedly different from conventional conductive powders in that a projection having a specific shape is employed. Specifically, the protrusion in the conductive powder of the present invention is characterized by an aspect ratio of 1 or more. The aspect ratio in the present specification is a value defined by a ratio between the height H of the protrusion and the width D of the protrusion at the base of the protrusion, that is, H / D. As is clear from this definition, the aspect ratio is a measure of the slenderness of the protrusion, and the larger the value, the more the protrusion has an elongated shape.

突起部を有する従来の導電性粉体における該突起部のアスペクト比は、本明細書の背景技術の項で述べた特許文献1を始めとして、本発明者らの知る限り、これを1以上とすることは容易でない。従来の導電性粉体における突起部は、言わばずんぐりとした形状を有している(例えば後述する図2参照)。これに対して、本発明の導電性粉体における突起部は、例えば後述する図1に示されるように、粒子の表面から概ね放射状に延びる細長い突起である。本発明者らが突起部のアスペクト比について検討したところ、この値を1以上とすることで、すなわち突起部の形状を従来よりも細長くすることで、導電性が非常に高くなることが判明した。この理由は、本発明の導電性粉体を用いて電極の導通をとる場合、電極の表面には薄い酸化皮膜が自然に形成されていたり、あるいは意図的に電極の酸化皮膜を形成したりする場合があるところ、突起部のアスペクト比が大きいと、この酸化皮膜を容易に突き破ることができるためであると考えられる。また、導電性粉体を用いて異方導電フィルムを形成した場合には、突起部のアスペクト比が大きいと、樹脂排除性が高くなるので、導電性が高くなると考えられる。この理由にかんがみ、突起部のアスペクト比は、この値が過度に大きいと突起部が破損することも考えられるので、アスペクト比の好ましい範囲は1.0〜4.0、であり、更に好ましくは1.0〜3.5であり、一層好ましくは1.0〜3.0である。このようなアスペクト比の大きな突起部を有する導電性粒子は、例えば後述する方法によって製造することができる。   The aspect ratio of the protrusions in the conventional conductive powder having the protrusions is 1 or more as long as the present inventors know, including Patent Document 1 described in the background art section of this specification. It is not easy to do. The protrusions in the conventional conductive powder have a so-called stubby shape (see, for example, FIG. 2 described later). In contrast, the protrusions in the conductive powder of the present invention are elongated protrusions that extend substantially radially from the surface of the particle, as shown in FIG. The present inventors examined the aspect ratio of the protrusion, and it was found that by setting this value to 1 or more, that is, by making the shape of the protrusion more slender than before, the conductivity becomes very high. . The reason for this is that when conducting the electrode using the conductive powder of the present invention, a thin oxide film is naturally formed on the surface of the electrode, or an oxide film of the electrode is intentionally formed. In some cases, it is considered that this oxide film can be easily broken if the aspect ratio of the protrusion is large. Moreover, when an anisotropic conductive film is formed using conductive powder, if the aspect ratio of the protrusions is large, the resin exclusion property becomes high, so that the conductivity is considered to be high. In view of this, the aspect ratio of the protrusion is considered to be that if this value is excessively large, the protrusion may be damaged. Therefore, the preferred range of the aspect ratio is 1.0 to 4.0, more preferably It is 1.0-3.5, More preferably, it is 1.0-3.0. Such conductive particles having protrusions with a large aspect ratio can be produced by, for example, a method described later.

導電性粉体における個々の粒子に着目した場合、個々の粒子が有している突起部のアスペクト比がすべて上述した範囲を満たしていることが理想的であるが、本発明者らが検討したところ、アスペクト比が上述した範囲を満たす突起部の割合が、全突起部の数に対して40%以上、好ましくは45%以上、更に好ましくは50%以上であれば、十分な導電性が得られることが判明した。   When focusing on the individual particles in the conductive powder, it is ideal that the aspect ratios of the protrusions of the individual particles all satisfy the above-mentioned range. However, sufficient conductivity can be obtained when the ratio of the protrusions satisfying the above-mentioned range of the aspect ratio is 40% or more, preferably 45% or more, more preferably 50% or more with respect to the total number of protrusions. Turned out to be.

上述のアスペクト比の測定方法は次のとおりである。電子顕微鏡によって導電性粉体における個々の粒子を拡大観察する。1つの粒子について少なくとも1個の突起部について、その基部の長さD及び高さHを測定する。この場合、観察像において粒子の中央に存在する突起部よりも、むしろ粒子の周縁に存在する突起部を測定対象とすることが、寸法の正確な測定の点から重要である。このような測定を少なくとも20個の異なる粒子を対象として行う。このようにして得られた複数のアスペクト比のデータを算術平均し、その値をアスペクト比とする。なお、後述する図1に示されるように、突起部の横断面は異方性が小さい形状(例えばほぼ円形)をしているので、粒子の観察角度によって突起部の基部の長さDの値が変わってしまう懸念は小さい。   The above aspect ratio measurement method is as follows. The individual particles in the conductive powder are magnified and observed with an electron microscope. The length D and height H of the base are measured for at least one protrusion for each particle. In this case, it is important from the viewpoint of accurate measurement of dimensions that the projections present at the periphery of the particles are measured rather than the projections present at the center of the particles in the observed image. Such a measurement is performed on at least 20 different particles. The data of a plurality of aspect ratios thus obtained are arithmetically averaged, and the value is used as the aspect ratio. As shown in FIG. 1 to be described later, since the cross section of the protrusion has a shape with small anisotropy (for example, substantially circular), the value of the length D of the base of the protrusion depends on the observation angle of the particles. There is little concern that will change.

突起部のアスペクト比は上述のとおりであるところ、該突起部の基部の長さDそれ自体及び突起部の高さHそれ自体は、基部の長さDについては0.05〜0.5μm、特に0.1〜0.4μmであることが好ましく、高さHについては0.05〜0.5μm、特に0.1〜0.4μmであることが好ましい。突起部の基部の長さD及び突起部の高さHがこの範囲内であると、導電性が更に一層向上する。   The aspect ratio of the protrusion is as described above, and the base length D of the protrusion and the height H of the protrusion itself are 0.05 to 0.5 μm for the base length D, In particular, the thickness is preferably 0.1 to 0.4 μm, and the height H is preferably 0.05 to 0.5 μm, particularly preferably 0.1 to 0.4 μm. When the length D of the base of the protrusion and the height H of the protrusion are within this range, the conductivity is further improved.

導電性粉体の個々の粒子におけるアスペクト比が1以上である突起の数は、粒子の粒径にもよるが、後述するように、粒子の粒径が3μm以下である場合には、1つの粒子当たり、2〜40個、特に2〜20個であることが、導電性粉体の導電性の一層の向上の点から好ましい。   The number of protrusions having an aspect ratio of 1 or more in the individual particles of the conductive powder depends on the particle size of the particles. However, as will be described later, when the particle size is 3 μm or less, The number per particle is preferably 2 to 40, particularly 2 to 20 from the viewpoint of further improving the conductivity of the conductive powder.

導電性粉体における個々の突起部は、芯材粒子を被覆するニッケル皮膜と連続体になっている。したがって、突起部はニッケル皮膜と同様にニッケル又はニッケル合金から構成されている。ここで言う「連続体」とは、ニッケル皮膜と突起部全体とが同一の材料から構成され、突起部が単一の工程によって形成され、かつニッケル皮膜と突起部との間に、継ぎ目等の一体感を損なうような部位が存在しないことを意味する。したがって、例えば芯材粒子の表面にニッケル皮膜を形成し、その上に突起部形成用のコア粒子を付着させ、該コア粒子を成長の起点として形成された突起部は、突起部が単一の工程によって形成されたものではないので、本発明に言う連続体に含まれない。突起部がニッケル皮膜と連続体になっていることで、突起部の強度が確保されるので、導電性粉体の使用時に圧力が加わっても突起部が破損しづらくなる。その結果、良好な導電性を得ることができる。   The individual protrusions in the conductive powder are continuous with the nickel film covering the core particles. Therefore, the protruding portion is made of nickel or a nickel alloy in the same manner as the nickel coating. The term “continuum” as used herein means that the nickel film and the entire protrusion are made of the same material, the protrusion is formed by a single process, and a seam or the like is formed between the nickel film and the protrusion. It means that there is no part that impairs the sense of unity. Therefore, for example, a nickel film is formed on the surface of the core material particles, core particles for forming the protrusions are adhered thereon, and the protrusions formed using the core particles as a starting point of growth have a single protrusion. Since it is not formed by a process, it is not included in the continuum referred to in the present invention. Since the protrusions are continuous with the nickel film, the strength of the protrusions is ensured, so that the protrusions are not easily damaged even when pressure is applied during use of the conductive powder. As a result, good conductivity can be obtained.

前記のニッケル皮膜の厚みに関しては、これが薄すぎると導電性粉体が十分な導電性を示しにくくなり、逆に厚すぎると芯材粒子の表面から剥離しやすくなる。これらの観点から、ニッケル皮膜の厚み(突起部が存在しない部位における厚み)は0.01〜0.3μmであることが好ましく、0.05〜0.2μmであることが更に好ましい。ニッケル皮膜の厚みは、導電性粉体からニッケルを溶解させ、溶解したニッケルを定量することで求めることができる。なお、この方法によれば、ニッケル皮膜のみでなく、突起部のニッケルも溶解することになるが、ニッケル全体に占める突起部の割合は非常に低いので、突起部のニッケルの量は無視することができる。   Regarding the thickness of the nickel coating, if the thickness is too thin, the conductive powder is difficult to exhibit sufficient conductivity, and conversely if it is too thick, the nickel coating is easily peeled off from the surface of the core particles. From these viewpoints, the thickness of the nickel film (thickness at the site where no protrusion is present) is preferably 0.01 to 0.3 μm, and more preferably 0.05 to 0.2 μm. The thickness of the nickel coating can be determined by dissolving nickel from the conductive powder and quantifying the dissolved nickel. In addition, according to this method, not only the nickel film but also the nickel of the protrusion is dissolved, but since the ratio of the protrusion to the entire nickel is very low, the amount of nickel in the protrusion should be ignored. Can do.

本発明の導電性粉体においては、個々の粒子の形状は球形であることが好ましい。ここで言う粒子の形状とは、突起部を除いた粒子の形状のことである。粒子が球形であることと、突起部を有していることに起因して、本発明の導電性粉体は、その導電性が高いものとなる。   In the conductive powder of the present invention, the shape of each particle is preferably spherical. The particle shape referred to here is the particle shape excluding the protrusions. Due to the spherical shape of the particles and the protrusions, the conductive powder of the present invention has high conductivity.

本発明の導電性粉体においては、個々の粒子の大きさは、導電性粉体の具体的な用途に応じて適切に設定することができる。本発明者らの検討の結果、上述した突起部のアスペクト比との関係で、導電性粒子はその粒径が小さい方が、導電性が向上することが判明した。具体的には、導電性粒子はその粒径が1〜10μm、特に1〜5μm、とりわけ1〜3μmであることが好ましい。なお、導電性粒子の粒径には突起部の高さは含まれない。導電性粒子の粒径は、電子顕微鏡観察によって測定することができる。また、芯材粒子の粒径及びニッケル皮膜の厚みをそれぞれ測定し、それらの値から求めることもできる。   In the conductive powder of the present invention, the size of each particle can be appropriately set according to the specific application of the conductive powder. As a result of the study by the present inventors, it has been found that the conductivity of the conductive particles is smaller when the particle size is smaller in relation to the aspect ratio of the protrusion described above. Specifically, the conductive particles preferably have a particle size of 1 to 10 μm, particularly 1 to 5 μm, particularly 1 to 3 μm. The particle size of the conductive particles does not include the height of the protrusions. The particle size of the conductive particles can be measured by observation with an electron microscope. Moreover, the particle diameter of the core material particles and the thickness of the nickel coating can be measured and obtained from these values.

導電性粒子は、その粒径が小さくなると凝集しやすい傾向にある。凝集が起こると、導電性粒子を用いた異方導電フィルムが短絡を起こしやすいという不都合がある。また、凝集をほぐすために粉砕等の処理を施すと、ニッケル皮膜が剥離して導電性低下の原因となる。この観点から、本発明の導電性粉体においては、個々の粒子の分散性を高めることが重要である。そこで本発明においては、導電性粒子のうち、一次粒子が占める重量が、導電性粉体の重量に対して85重量%以上、好ましくは90重量%以上、更に好ましくは92重量%以上になっている。導電性粒子の分散性を高めるためには、例えば後述する方法に従い導電性粒子を製造すればよい。一次粒子が占める重量は次の方法で測定される。導電性粉体0.1gを100mLの水に入れ超音波ホモジナイザーで1分間分散させる。次いで、コールターカウンター法によって粒度分布を測定する。その結果から、一次粒子の重量割合を算出する。   Conductive particles tend to agglomerate as the particle size decreases. When aggregation occurs, there is an inconvenience that an anisotropic conductive film using conductive particles easily causes a short circuit. Further, when a treatment such as pulverization is performed to loosen the agglomeration, the nickel film is peeled off, which causes a decrease in conductivity. From this viewpoint, it is important to improve the dispersibility of individual particles in the conductive powder of the present invention. Therefore, in the present invention, the weight occupied by the primary particles in the conductive particles is 85% by weight or more, preferably 90% by weight or more, more preferably 92% by weight or more based on the weight of the conductive powder. Yes. In order to improve the dispersibility of the conductive particles, for example, the conductive particles may be produced according to a method described later. The weight occupied by the primary particles is measured by the following method. 0.1 g of conductive powder is placed in 100 mL of water and dispersed with an ultrasonic homogenizer for 1 minute. Next, the particle size distribution is measured by a Coulter counter method. From the result, the weight ratio of the primary particles is calculated.

先に述べたとおり、導電性粒子におけるニッケル皮膜及び突起部は同一の材料から構成されている。具体的には、金属ニッケル又はニッケル合金から構成されている。ニッケル合金には、例えばニッケル−リン合金が含まれる。ニッケル−リン合金は、後述する導電性粉体の製造において、ニッケルの還元剤として次亜リン酸ナトリウムを用いた場合に生じる合金である。   As described above, the nickel coating and the protrusions on the conductive particles are made of the same material. Specifically, it is composed of metallic nickel or a nickel alloy. The nickel alloy includes, for example, a nickel-phosphorus alloy. The nickel-phosphorus alloy is an alloy produced when sodium hypophosphite is used as a nickel reducing agent in the production of conductive powder described later.

本発明の導電性粉体においては、個々の粒子はその表面がニッケル若しくはニッケル合金からなるか、又はニッケル若しくはニッケル合金の表面が貴金属で被覆されていてもよい。貴金属としては導電性の高い金属である金又はパラジウム、とりわけ金を用いることが好ましい。この被覆によって、導電性粉体の導電性を一層高めることが可能になる。貴金属による被覆の厚さは一般に0.001〜0.5μm程度である。この厚さは、貴金属イオンの添加量や化学分析から算出することができる。   In the conductive powder of the present invention, the surface of each particle may be made of nickel or a nickel alloy, or the surface of nickel or a nickel alloy may be coated with a noble metal. As the noble metal, it is preferable to use gold or palladium, particularly gold, which is a highly conductive metal. This coating makes it possible to further increase the conductivity of the conductive powder. The thickness of the noble metal coating is generally about 0.001 to 0.5 μm. This thickness can be calculated from the amount of precious metal ions added and chemical analysis.

次に、本発明の導電性粉体の好適な製造方法について説明する。本製造方法は、(1)芯材粒子の表面にニッケル初期薄膜層を形成するA工程と、(2)A工程で得られた粒子を原料として用い、目的とする導電性粒子を形成するB工程の2工程に大別される。以下、それぞれの工程について説明する。   Next, the suitable manufacturing method of the electroconductive powder of this invention is demonstrated. In this production method, (1) A step of forming a nickel initial thin film layer on the surface of the core material particles, and (2) B forming the target conductive particles using the particles obtained in step A as raw materials. It is roughly divided into two processes. Hereinafter, each process will be described.

A工程においては、分散剤及びニッケルイオンを含む無電解めっき浴と、表面に貴金属が担持された芯材粒子とを混合して、芯材粒子の表面にニッケル初期薄膜層を形成する。芯材粒子の種類に特に制限はなく、有機物及び無機物のいずれもが用いられる。後述する無電解めっき法を考慮すると、芯材粒子は水に分散可能なものであることが好ましい。したがって芯材粒子は、好ましくは水に実質的に不溶性のものであり、更に好ましくは酸やアルカリに対しても溶解又は変質しないものである。水に分散可能とは、攪拌等の通常の分散手段によって、ニッケル皮膜が芯材粒子の表面に形成し得る程度に、水中に実質的に分散した懸濁体を形成し得ることを言う。   In step A, an electroless plating bath containing a dispersant and nickel ions is mixed with core material particles having a noble metal supported on the surface to form a nickel initial thin film layer on the surface of the core material particles. There is no restriction | limiting in particular in the kind of core material particle, Both organic substance and an inorganic substance are used. Considering the electroless plating method described later, the core material particles are preferably dispersible in water. Accordingly, the core particles are preferably substantially insoluble in water, and more preferably not dissolved or denatured in acid or alkali. "Dispersible in water" means that a suspension substantially dispersed in water can be formed to such an extent that a nickel film can be formed on the surface of the core particles by a normal dispersing means such as stirring.

芯材粒子の形状は目的とする導電性粒子の形状に大きく影響する。先に述べたとおり、芯材粒子の表面を被覆するニッケル皮膜の厚みは薄いものなので、芯材粒子の形状がほとんどそのまま導電性粒子の形状に反映される。導電性粒子が球形であることが好ましいことは先に述べたとおりであるので、芯材粒子の形状も球形であることが好ましい。   The shape of the core particles greatly affects the shape of the target conductive particles. As described above, since the thickness of the nickel film covering the surface of the core material particles is thin, the shape of the core material particles is almost directly reflected in the shape of the conductive particles. Since it is preferable that the conductive particles have a spherical shape as described above, the shape of the core particles is also preferably a spherical shape.

芯材粒子が球形である場合、芯材粒子の粒径は目的とする導電性粒子の粒径に大きく影響する。先に述べたとおり、芯材粒子の表面を被覆するニッケル皮膜の厚みは薄いものなので、芯材粒子の粒径がほとんど導電性粒子の粒径に反映される。この観点から、芯材粒子の粒径は、目的とする導電性粒子の粒径と同程度とすることができる。具体的には1〜10μm、特に1〜5μm、とりわけ1〜3μmであることが好ましい。芯材粒子の粒径は、導電性粒子の粒径と同様の方法で測定することができる。   When the core material particles are spherical, the particle size of the core material particles greatly affects the particle size of the target conductive particles. As described above, since the thickness of the nickel film covering the surface of the core particle is thin, the particle diameter of the core particle is almost reflected in the particle diameter of the conductive particles. From this viewpoint, the particle diameter of the core particles can be set to be approximately the same as the particle diameter of the target conductive particles. Specifically, it is preferably 1 to 10 μm, particularly 1 to 5 μm, and particularly preferably 1 to 3 μm. The particle diameter of the core particles can be measured by the same method as that of the conductive particles.

前述の方法によって測定された芯材粉体の粒度分布には幅がある。一般に、粉体の粒度分布の幅は、下記式(1)で示される変動係数により表わされる。
変動係数(%)=(標準偏差/平均粒径)×100 (1)
この変動係数が大きいことは分布に幅があることを示し、一方、変動係数が小さいことは粒度分布がシャープであることを示す。本発明では、芯材粒子として、この変動係数が30%以下、特に20%以下、とりわけ10%以下のものを使用することが好ましい。この理由は、本発明の導電性粒子を異方導電フィルム中の導電粒子として用いた場合に、接続に有効な寄与割合が高くなるという利点があるからである。
There is a range in the particle size distribution of the core powder measured by the method described above. Generally, the width of the particle size distribution of the powder is represented by a coefficient of variation represented by the following formula (1).
Coefficient of variation (%) = (standard deviation / average particle diameter) × 100 (1)
A large coefficient of variation indicates that the distribution is wide, while a small coefficient of variation indicates that the particle size distribution is sharp. In the present invention, it is preferable to use the core particles having a coefficient of variation of 30% or less, particularly 20% or less, particularly 10% or less. This is because, when the conductive particles of the present invention are used as the conductive particles in the anisotropic conductive film, there is an advantage that the effective contribution ratio for connection is increased.

芯材粉体の具体例としては、無機物として、金属(合金も含む)、ガラス、セラミックス、シリカ、カーボン、金属又は非金属の酸化物(含水物も含む)、アルミノ珪酸塩を含む金属珪酸塩、金属炭化物、金属窒化物、金属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化物、金属酸塩、金属ハロゲン化物及び炭素などが挙げられる。有機物としては、天然繊維、天然樹脂、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリブテン、ポリアミド、ポリアクリル酸エステル、ポリアクリロニトリル、ポリアセタール、アイオノマー、ポリエステルなどの熱可塑性樹脂、アルキッド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ベンゾグアナミン樹脂、メラミン樹脂、キシレン樹脂、シリコーン樹脂、エポキシ樹脂又はジアリルフタレート樹脂などが挙げられる。これらは単独でも使用でき又は2種以上の混合物として使用してもよい。   Specific examples of the core powder include metal (including alloys), glass, ceramics, silica, carbon, metal or non-metal oxides (including hydrates), and metal silicates including aluminosilicates as inorganic substances. Metal carbide, metal nitride, metal carbonate, metal sulfate, metal phosphate, metal sulfide, metal acid salt, metal halide and carbon. Organic materials include natural fibers, natural resins, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylate, polyacrylonitrile, polyacetal, ionomer, polyester, and other thermoplastic resins, alkyd resins, phenol resins, urea Examples thereof include resins, melamine resins, benzoguanamine resins, melamine resins, xylene resins, silicone resins, epoxy resins, and diallyl phthalate resins. These may be used alone or in a mixture of two or more.

また、芯材粒子のその他の物性は、特に制限されるものではないが、芯材粒子が樹脂粒子である場合は、下記の式(2)で定義されるKの値が、20℃において10kgf/mm2〜10000kgf/mm2の範囲であり、かつ10%圧縮変形後の回復率が20℃において1%〜100%の範囲であることが好ましい。これらの物性値を満足することで、電極どうしを圧着するときに電極を傷つけることなく、電極と十分に接触させることができるからである。 The other physical properties of the core particles are not particularly limited, but when the core particles are resin particles, the value of K defined by the following formula (2) is 10 kgf at 20 ° C. / Mm 2 to 10000 kgf / mm 2 , and the recovery rate after 10% compression deformation is preferably in the range of 1% to 100% at 20 ° C. This is because, by satisfying these physical property values, the electrodes can be sufficiently brought into contact with each other without being damaged when the electrodes are crimped together.

K値(kgf/mm2)=(3/√2)×F×S-3/2×R-1/2・・・(2)
式(2)で示されるF及びSは、微小圧縮試験機MCTM−500((株)島津製作所製)で測定したときの、それぞれ該微球体の10%圧縮変形における荷重値(kgf)及び圧縮変位(mm)であり、Rは該微球体の半径(mm)である。
K value (kgf / mm 2 ) = (3 / √2) × F × S −3/2 × R −1/2 (2)
F and S represented by the formula (2) are the load value (kgf) and compression in 10% compression deformation of the microsphere, respectively, when measured with a micro compression tester MCTM-500 (manufactured by Shimadzu Corporation). Displacement (mm), and R is the radius (mm) of the microsphere.

芯材粒子は、その表面が貴金属イオンの捕捉能を有するか、又は貴金属イオンの捕捉能を有するように表面改質されることが好ましい。貴金属イオンは、パラジウムや銀のイオンであることが好ましい。貴金属イオンの捕捉能を有するとは、貴金属イオンをキレート又は塩として捕捉し得ることを言う。例えば芯材粒子の表面に、アミノ基、イミノ基、アミド基、イミド基、シアノ基、水酸基、ニトリル基、カルボキシル基などが存在する場合には、該芯材粒子の表面は貴金属イオンの捕捉能を有する。貴金属イオンの捕捉能を有するように表面改質する場合には、例えば特開昭61−64882号公報記載の方法を用いることができる。   It is preferable that the surface of the core particle is modified so that the surface thereof has a precious metal ion capturing ability or a precious metal ion capturing ability. The noble metal ions are preferably palladium or silver ions. Having a noble metal ion scavenging ability means that the noble metal ion can be captured as a chelate or salt. For example, when an amino group, an imino group, an amide group, an imide group, a cyano group, a hydroxyl group, a nitrile group, a carboxyl group, or the like is present on the surface of the core particle, the surface of the core particle is capable of capturing noble metal ions. Have In the case of modifying the surface so as to have the ability to trap noble metal ions, for example, a method described in JP-A-61-64882 can be used.

このような芯材粒子を用い、その表面に貴金属を担持させる。具体的には、芯材粒子を塩化パラジウムや硝酸銀のような貴金属塩の希薄な酸性水溶液に分散させる。これによって貴金属イオンを粒子の表面に捕捉させる。貴金属塩の濃度は粒子の表面積1m2当り1×10-7〜1×10-2モルの範囲で充分である。貴金属イオンが捕捉された芯材粒子は系から分離され水洗される。引き続き、芯材粒子を水に懸濁させ、これに還元剤を加えて貴金属イオンの還元処理を行う。これによって芯材粒子の表面に貴金属を坦持させる。還元剤としては、例えば次亜りん酸ナトリウム、水酸化ほう素ナトリウム、水素化ほう素カリウム、ジメチルアミンボラン、ヒドラジン、ホルマリン等が用いられる。 Using such core material particles, a noble metal is supported on the surface. Specifically, the core material particles are dispersed in a dilute acidic aqueous solution of a noble metal salt such as palladium chloride or silver nitrate. This traps noble metal ions on the surface of the particles. The concentration of the noble metal salt is sufficiently in the range of 1 × 10 −7 to 1 × 10 −2 mol per 1 m 2 of the particle surface area. The core particles in which the noble metal ions are captured are separated from the system and washed with water. Subsequently, the core material particles are suspended in water, and a reducing agent is added to the suspension so that noble metal ions are reduced. As a result, the noble metal is supported on the surface of the core particles. Examples of the reducing agent include sodium hypophosphite, sodium boron hydroxide, potassium borohydride, dimethylamine borane, hydrazine, formalin and the like.

貴金属イオンを芯材粒子の表面に捕捉させる前に、錫イオンを粒子の表面に吸着させる感受性化処理を施してもよい。錫イオンを粒子の表面に吸着させるには、例えば表面改質処理された芯材粒子を塩化第一錫の水溶液に投入し所定時間撹拌すればよい。   Before capturing the noble metal ions on the surface of the core material particles, a sensitization treatment for adsorbing the tin ions on the surface of the particles may be performed. In order to adsorb the tin ions on the surface of the particles, for example, the surface-treated core material particles may be put into an aqueous solution of stannous chloride and stirred for a predetermined time.

このようにして前処理が施された芯材粒子を、分散剤及びニッケルイオンを含む無電解めっき浴と混合する。無電解めっき浴は水を媒体とする溶液であり、それに含まれる分散剤としては、例えば非イオン界面活性剤、両性イオン界面活性剤及び水溶性高分子が挙げられる。非イオン界面活性剤としては、ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテルなどのポリオキシアルキレンエーテル系の界面活性剤を用いることができる。両性イオン界面活性剤としては、アルキルジメチル酢酸ベタイン、アルキルジメチルカルボキシメチル酢酸ベタイン、アルキルジメチルアミノ酢酸ベタインなどのベタイン系の界面活性剤を用いることができる。水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリジノン、ヒドロキシエチルセルロースなどを用いることができる。分散剤の使用量は、その種類にもよるが、一般に、液体(無電解めっき浴)の体積に対して0.5〜30g/Lである。特に分散剤の使用量が液体(無電解めっき浴)の体積に対して1〜10g/Lの範囲であると、ニッケル皮膜の密着性が向上する観点から好ましい。   The core material particles pretreated in this way are mixed with an electroless plating bath containing a dispersant and nickel ions. The electroless plating bath is a solution using water as a medium, and examples of the dispersant contained therein include nonionic surfactants, zwitterionic surfactants, and water-soluble polymers. As the nonionic surfactant, polyoxyalkylene ether surfactants such as polyethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and the like can be used. As the zwitterionic surfactant, a betaine surfactant such as alkyldimethylacetic acid betaine, alkyldimethylcarboxymethylacetic acid betaine, and alkyldimethylaminoacetic acid betaine can be used. As the water-soluble polymer, polyvinyl alcohol, polyvinyl pyrrolidinone, hydroxyethyl cellulose and the like can be used. The amount of the dispersant used is generally 0.5 to 30 g / L based on the volume of the liquid (electroless plating bath) although it depends on the type. In particular, the amount of the dispersant used is preferably in the range of 1 to 10 g / L with respect to the volume of the liquid (electroless plating bath) from the viewpoint of improving the adhesion of the nickel film.

無電解めっき浴に含まれるニッケルイオンは、そのニッケル源として水溶性ニッケル塩が用いられる。水溶性ニッケル塩としては、硫酸ニッケルや塩化ニッケルを用いることができるが、これに限定されるものではない。無電解めっき浴に含まれるニッケルイオンの濃度は0.0001〜0.008モル/リットル、特に0.0001〜0.005モル/リットルであることが好ましい。   For nickel ions contained in the electroless plating bath, a water-soluble nickel salt is used as the nickel source. As the water-soluble nickel salt, nickel sulfate or nickel chloride can be used, but is not limited thereto. The concentration of nickel ions contained in the electroless plating bath is preferably 0.0001 to 0.008 mol / liter, particularly preferably 0.0001 to 0.005 mol / liter.

無電解めっき浴には、上述の成分の他に還元剤を含有させることができる。還元剤としては、先に述べた貴金属イオンの還元に用いられているものと同様のものを用いることができる。無電解めっき浴における還元剤の濃度は4×10-4〜2.0モル/リットル、特に2.0×10-3〜0.2モル/リットルであることが好ましい。 In addition to the above components, the electroless plating bath can contain a reducing agent. As the reducing agent, those similar to those used for the reduction of the noble metal ions described above can be used. The concentration of the reducing agent in the electroless plating bath is preferably 4 × 10 −4 to 2.0 mol / liter, particularly 2.0 × 10 −3 to 0.2 mol / liter.

無電解めっき浴には、更に錯化剤を含有させておいてもよい。錯化剤を含有させることで、めっき液の分解が抑制されるという有利な効果が奏される。錯化剤としては、有機カルボン酸又はその塩、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リンゴ酸、乳酸若しくはグルコン酸又はそのアルカリ金属塩やアンモニウム塩が挙げられる。これらの錯化剤は1種又は2種類以上用いることができる。無電解めっき浴における錯化剤の濃度は、0.005〜6モル/リットル、特に0.01〜3モル/リットルであることが好ましい。   The electroless plating bath may further contain a complexing agent. By containing the complexing agent, an advantageous effect that the decomposition of the plating solution is suppressed is exhibited. Examples of the complexing agent include organic carboxylic acids or salts thereof such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid or gluconic acid, or alkali metal salts or ammonium salts thereof. These complexing agents can be used alone or in combination of two or more. The concentration of the complexing agent in the electroless plating bath is preferably 0.005 to 6 mol / liter, particularly preferably 0.01 to 3 mol / liter.

前処理が施された芯材粒子と無電解めっき浴とを混合する方法に特に制限はない。例えば無電解めっき浴を、ニッケルイオンの還元が可能な温度に加熱しておき、その状態下に、前処理が施された芯材粒子を無電解めっき浴中に投入することができる。この操作によって、ニッケルイオンが還元し、還元によって生じたニッケルが芯材粒子の表面に初期薄膜層を形成する。初期薄膜層は、その厚みが0.1〜10nm、特に0.1〜5nmとなるように形成されることが好ましい。この時点では、突起部はまだ形成されていない。   There is no particular limitation on the method of mixing the pretreated core material particles and the electroless plating bath. For example, the electroless plating bath can be heated to a temperature at which nickel ions can be reduced, and the pretreated core material particles can be put into the electroless plating bath under this state. By this operation, nickel ions are reduced, and nickel produced by the reduction forms an initial thin film layer on the surface of the core material particles. The initial thin film layer is preferably formed to have a thickness of 0.1 to 10 nm, particularly 0.1 to 5 nm. At this point, the protrusion has not yet been formed.

A工程において重要な点は、無電解めっき浴中に含まれるニッケルイオンの量と、投入する芯材粒子の量との関係である。具体的には、ニッケルイオンの濃度が0.0001〜0.008モル/リットル、好ましくは0.0001〜0.005モル/リットルに調整された無電解めっき浴1リットルに対して、表面積の総和が1〜15m2、特に2〜8m2となるような量の芯材粒子を用いる。これによって、上述の厚みを有する初期薄膜層を容易に形成することができる。また、ニッケルイオンの量と芯材粒子の量との関係を上述のとおりにすることで、初期薄膜層が形成された芯材粒子どうしの凝集を効果的に防止することができる。このことは、芯材粒子の粒径が小さい場合、例えば粒径が3μm以下である場合に特に有効である。 An important point in the step A is the relationship between the amount of nickel ions contained in the electroless plating bath and the amount of core material particles to be introduced. Specifically, the total surface area for 1 liter of electroless plating bath whose nickel ion concentration is adjusted to 0.0001 to 0.008 mol / liter, preferably 0.0001 to 0.005 mol / liter. Is used in an amount of 1 to 15 m 2 , particularly 2 to 8 m 2 . Thereby, the initial thin film layer having the above-described thickness can be easily formed. In addition, by making the relationship between the amount of nickel ions and the amount of core material particles as described above, aggregation of the core material particles on which the initial thin film layer is formed can be effectively prevented. This is particularly effective when the particle diameter of the core material particles is small, for example, when the particle diameter is 3 μm or less.

ニッケルイオンの還元が完了したら、次いでB工程を行う。B工程は、A工程の引き続きで行い、A工程で得られたニッケル初期薄膜層を有する芯材粒子を液体から分離する等の操作は行わない。したがって、ニッケル初期薄膜層を有する芯材粒子を含む水性スラリー中には、A工程において添加した分散剤が残存している。B工程においては、A工程で得られたニッケル初期薄膜層を有する芯材粒子、及びA工程で用いた分散剤を含む水性スラリーに、ニッケルイオン及び還元剤を経時的に添加する。「経時的に添加」とは、ニッケルイオン及び還元剤を一括して添加することを除外する趣旨であり、ある一定の時間にわたってニッケルイオン及び還元剤を連続的に又は断続的に添加することを意図している。この場合、ニッケルイオン及び還元剤の添加のタイミングは完全に一致していてもよく、あるいはニッケルイオンの添加が先行し、還元剤の添加がそれに続いてもよい。その逆でもよい。更に、添加の終点においては、ニッケルイオンの添加の終了が先行し、還元剤の添加の終了がそれに続いてもよい。その逆でもよい。   When the reduction of nickel ions is completed, the process B is then performed. The B process is performed after the A process, and the operation such as separation of the core particles having the nickel initial thin film layer obtained in the A process from the liquid is not performed. Therefore, the dispersant added in the step A remains in the aqueous slurry containing the core particles having the nickel initial thin film layer. In step B, nickel ions and a reducing agent are added over time to the aqueous slurry containing the core material particles having the nickel initial thin film layer obtained in step A and the dispersant used in step A. “Adding over time” is intended to exclude adding nickel ions and a reducing agent all at once, and adding nickel ions and a reducing agent continuously or intermittently over a certain period of time. Intended. In this case, the timing of adding the nickel ions and the reducing agent may be completely the same, or the addition of nickel ions may precede and the addition of the reducing agent may follow. The reverse is also possible. Further, at the end point of addition, the end of the addition of nickel ions may precede, and the end of the addition of the reducing agent may follow. The reverse is also possible.

B工程で用いるニッケルイオンのニッケル源としては、A工程で用いたニッケル源と同様のものを用いることができる。還元剤についても同様である。   As the nickel source of nickel ions used in the B process, the same nickel source as used in the A process can be used. The same applies to the reducing agent.

B工程においては、ニッケルイオンの還元によって、先ず液中に微小なニッケルの核粒子を生成させ、その核粒子をA工程で得られたニッケル初期薄膜層を有する芯材粒子の表面に付着させ、付着した核粒子を起点としてこれを成長させて、突起部を形成する。この方法を採用することで、粒子どうしの凝集を効果的に防止することができ、かつアスペクト比が1以上の突起部を容易に形成することができる。これに対して、本明細書の背景技術の項で述べた特許文献1においては、先ず芯材粒子の表面にニッケルの皮膜を形成するとともに、突起の生成の起点となる核を形成し(第1工程)、次いでこの核を次工程において成長させることで突起を形成している(第2工程)。この方法では、第1工程におけるニッケルイオンの濃度を比較的高くする必要があるので、そのことに起因して粒子の凝集が起こりやすくなってしまう。また、アスペクト比の高い突起部を形成することが困難である。   In step B, by reducing nickel ions, first, fine nickel core particles are generated in the liquid, and the core particles are attached to the surface of the core material particles having the nickel initial thin film layer obtained in step A. This is grown from the adhering core particles as a starting point to form a protrusion. By adopting this method, aggregation of particles can be effectively prevented, and a projection having an aspect ratio of 1 or more can be easily formed. On the other hand, in Patent Document 1 described in the background art section of the present specification, first, a nickel film is formed on the surface of the core material particles, and a nucleus that is a starting point of the formation of the protrusion is formed (No. 1). Then, the projection is formed by growing the nucleus in the next step (second step). In this method, since the concentration of nickel ions in the first step needs to be relatively high, particle aggregation tends to occur due to this. In addition, it is difficult to form a protrusion with a high aspect ratio.

B工程におけるニッケルイオンの還元においては、水性スラリーを、A工程で添加した分散剤(この分散剤はB工程においても残存している)の分散効果が発現するpH範囲に維持することが重要である。これによって、粒子どうしの凝集を効果的に防止することができる。pHの調整には、水性スラリーのpHを監視しながら各種鉱酸等の酸又は水酸化ナトリウム等のアルカリを水性スラリーに添加すればよい。pHの調整範囲は、使用する分散剤に応じて適切な値を採用すればよい。分散剤として例えば非イオン界面活性剤を用いる場合には、水性スラリーのpHを5〜10の範囲に維持することが好ましい。分散剤として両性イオン界面活性剤を用いる場合には、水性スラリーのpHを5〜8の範囲に維持することが好ましい。分散剤として水溶性高分子を用いる場合にも、水性スラリーのpHを5〜8の範囲に維持することが好ましい。   In the reduction of nickel ions in step B, it is important to maintain the aqueous slurry in a pH range in which the dispersing effect of the dispersant added in step A (this dispersant remains in step B) is exhibited. is there. Thereby, aggregation of particles can be effectively prevented. To adjust the pH, an acid such as various mineral acids or an alkali such as sodium hydroxide may be added to the aqueous slurry while monitoring the pH of the aqueous slurry. The pH adjustment range may be an appropriate value depending on the dispersant used. For example, when a nonionic surfactant is used as the dispersant, it is preferable to maintain the pH of the aqueous slurry in the range of 5 to 10. When using a zwitterionic surfactant as the dispersant, it is preferable to maintain the pH of the aqueous slurry in the range of 5-8. Even when a water-soluble polymer is used as the dispersant, it is preferable to maintain the pH of the aqueous slurry in the range of 5 to 8.

B工程におけるニッケルイオンの還元においては、水性スラリーに添加するニッケルイオンの量及び還元剤の量も重要である。これによって、アスペクト比の高い突起部を首尾よく形成することが可能となる。具体的な条件としては、水性スラリーに、1時間当たりのニッケルの析出量が25〜100nm、好ましくは40〜60nmとなる量に相当する量のニッケルイオン及び還元剤を経時的に添加する。このような添加の条件を採用することで、ニッケルの析出が、初期薄膜層よりも核粒子において優先的に生じるようになり、アスペクト比の高い突起部が容易に形成される。   In the reduction of nickel ions in step B, the amount of nickel ions and the amount of reducing agent added to the aqueous slurry are also important. As a result, it is possible to successfully form a projection having a high aspect ratio. As specific conditions, nickel ions and a reducing agent in an amount corresponding to the amount of precipitation of nickel per hour of 25 to 100 nm, preferably 40 to 60 nm are added to the aqueous slurry over time. By adopting such an addition condition, nickel precipitates preferentially occur in the core particles rather than the initial thin film layer, and a protrusion having a high aspect ratio is easily formed.

ニッケルイオン及び還元剤の添加においては、水性スラリーを所定温度に加熱して、還元剤によるニッケルイオンの還元が円滑に進行するようにしてもよい。ニッケルイオン及び還元剤の添加においては、水性スラリーを攪拌しておき、還元したニッケルの付着が均一に生じるようにしてもよい。   In the addition of nickel ions and a reducing agent, the aqueous slurry may be heated to a predetermined temperature so that the reduction of nickel ions by the reducing agent proceeds smoothly. In the addition of nickel ions and a reducing agent, the aqueous slurry may be stirred so that the reduced nickel adheres uniformly.

このようにして目的とする導電性粒子が得られる。この導電性粒子は、必要に応じ、更に後処理に付すことができる。後処理としては、無電解金めっき工程あるいは無電解パラジウムめっき工程が挙げられる。この工程に付すことによって、導電性粒子の表面に金めっき層あるいはパラジウムめっき層が形成される。金めっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、導電性粒子の水性懸濁体に、エチレンジアミン四酢酸四ナトリウム、クエン酸二ナトリウム及びシアン化金カリウムを含み、水酸化ナトリウムでpHが調整された無電解めっき液を添加することで、金めっき層を形成することができる。   In this way, desired conductive particles are obtained. The conductive particles can be further subjected to post-treatment as necessary. Examples of the post-treatment include an electroless gold plating step or an electroless palladium plating step. By applying this step, a gold plating layer or a palladium plating layer is formed on the surface of the conductive particles. The gold plating layer can be formed according to a conventionally known electroless plating method. For example, by adding an electroless plating solution containing tetrasodium ethylenediaminetetraacetate, disodium citrate, and potassium gold cyanide and adjusted to pH with sodium hydroxide to an aqueous suspension of conductive particles, A plating layer can be formed.

また、パラジウムめっき層の形成は、従来公知の無電解めっき法に従い行うことができる。例えば、導電性粒子の水性懸濁液に、塩化パラジウム等の水溶性パラジウム化合物;次亜リン酸、亜リン酸、ギ酸、酢酸、ヒドラジン、水素化ホウ素、アミンボラン化合物、又はこれらの塩等の還元剤;及び錯化剤等を含有する常用の無電解パラジウムめっき液を加え、更に必要に応じて分散剤、安定剤、pH緩衝剤を加える。そして、塩酸や硫酸等の酸あるいは水酸化ナトリウム等の塩基でpHを調整しつつ、還元型無電解めっきを行い、パラジウムめっき層を形成することができる。別法として、導電性粒子の水性懸濁液に、テトラアンミンパラジウム塩等のパラジウムイオン源、錯化剤及び必要により分散剤を添加し、パラジウムイオンとニッケルイオンとの置換反応を利用して、置換型無電解めっきを行い、パラジウムめっき層を形成してもよい。   Moreover, formation of a palladium plating layer can be performed in accordance with a conventionally well-known electroless plating method. For example, reduction of water-soluble palladium compounds such as palladium chloride; hypophosphorous acid, phosphorous acid, formic acid, acetic acid, hydrazine, borohydride, amine borane compounds, or salts thereof into an aqueous suspension of conductive particles A conventional electroless palladium plating solution containing an agent; and a complexing agent, and a dispersant, a stabilizer, and a pH buffering agent are added as necessary. Then, while adjusting the pH with an acid such as hydrochloric acid or sulfuric acid or a base such as sodium hydroxide, reduction type electroless plating can be performed to form a palladium plating layer. Alternatively, a palladium ion source such as tetraamminepalladium salt, a complexing agent and, if necessary, a dispersing agent are added to an aqueous suspension of conductive particles, and substitution is performed using a substitution reaction between palladium ions and nickel ions. A palladium electroplating layer may be formed by performing mold electroless plating.

なお、前記のパラジウムめっき層は、リンを実質的に含有しないか、あるいは含有量が3重量%以下に低減したものであることが、導電性及び電気信頼性に優れる点で好ましい。このようなめっき層を形成するためには、例えば置換型無電解めっきを行うか、又は還元型無電解めっきを行う場合には、リン非含有の還元剤(例えばギ酸)を用いればよい。   In addition, it is preferable that the palladium plating layer does not substantially contain phosphorus or has a content reduced to 3% by weight or less from the viewpoint of excellent conductivity and electrical reliability. In order to form such a plating layer, for example, when substitutional electroless plating is performed or when reducing electroless plating is performed, a phosphorus-free reducing agent (for example, formic acid) may be used.

還元型無電解めっき又は置換型無電解めっきで用いる分散剤としては、前述のA工程で例示した分散剤と同じものを用いることができる。また、常用の無電解パラジウムめっき液としては、例えば、小島化学薬品株式会社、日本カニゼン株式会社、中央化学産業株式会社等から入手可能な市販品を使用してもよい。   As the dispersant used in the reduction-type electroless plating or the displacement-type electroless plating, the same dispersants as those exemplified in the aforementioned step A can be used. Moreover, as a common electroless palladium plating solution, you may use the commercial item available from Kojima Chemical Co., Ltd., Nippon Kanisen Co., Ltd., Chuo Chemical Industrial Co., Ltd., etc., for example.

別の後処理として、導電性粒子をボールミル等のメディアミルを用いた粉砕工程に付すこともできる。この粉砕工程に付すことによって、上述したニッケルイオンの還元条件と相まって、導電性粉体の重量に対する一次粒子が占める重量を、更に容易に上述した範囲内に設定することができる。   As another post-treatment, the conductive particles can be subjected to a pulverization step using a media mill such as a ball mill. By subjecting to this pulverization step, the weight occupied by the primary particles with respect to the weight of the conductive powder can be more easily set within the above-mentioned range in combination with the above-mentioned nickel ion reduction conditions.

このようにして得られた本発明の導電性粒子は、例えば異方導電フィルム(ACF)やヒートシールコネクタ(HSC)、液晶ディスプレーパネルの電極を駆動用LSIチップの回路基板へ接続するための導電材料などとして好適に使用される。特に、本発明の導電性粉体は、導電性接着剤の導電性フィラーとして好適に用いられる。   The conductive particles of the present invention thus obtained are, for example, conductive for connecting the electrodes of anisotropic conductive film (ACF), heat seal connector (HSC), and liquid crystal display panel to the circuit board of the driving LSI chip. It is suitably used as a material. In particular, the conductive powder of the present invention is suitably used as a conductive filler of a conductive adhesive.

前記の導電性接着剤は、導電性基材が形成された2枚の基板間に配置され、加熱加圧によって前記導電性基材を接着して導通する異方導電性接着剤として好ましく用いられる。この異方導電性接着剤は、本発明の導電性粒子と接着剤樹脂とを含む。接着剤樹脂としては、絶縁性で、かつ接着剤樹脂として用いられているものであれば、特に制限なく使用できる。熱可塑性樹脂及び熱硬化性のいずれであってもよく、加熱によって接着性能が発現するものが好ましい。そのような接着剤樹脂には、例えば熱可塑性タイプ、熱硬化性タイプ、紫外線硬化タイプ等がある。また、熱可塑性タイプと熱硬化性タイプとの中間的な性質を示す、いわゆる半熱硬化性タイプ、熱硬化性タイプと紫外線硬化タイプとの複合タイプ等がある。これらの接着剤樹脂は被着対象である回路基板等の表面特性や使用形態に合わせて適宜選択できる。特に、熱硬化性樹脂を含んで構成される接着剤樹脂が、接着後の材料的強度に優れる点から好ましい。   The conductive adhesive is preferably used as an anisotropic conductive adhesive that is disposed between two substrates on which a conductive base material is formed, and adheres and conducts the conductive base material by heating and pressing. . This anisotropic conductive adhesive contains the conductive particles of the present invention and an adhesive resin. Any adhesive resin can be used without particular limitation as long as it is insulative and used as an adhesive resin. Either a thermoplastic resin or a thermosetting resin may be used, and those that exhibit adhesive performance by heating are preferred. Examples of such an adhesive resin include a thermoplastic type, a thermosetting type, and an ultraviolet curing type. In addition, there are so-called semi-thermosetting types that exhibit intermediate properties between thermoplastic types and thermosetting types, combined types of thermosetting types and ultraviolet curing types, and the like. These adhesive resins can be appropriately selected according to the surface characteristics and usage pattern of the circuit board or the like to be attached. In particular, an adhesive resin including a thermosetting resin is preferable from the viewpoint of excellent material strength after bonding.

接着剤樹脂としては、具体的には、エチレン−酢酸ビニル共重合体、カルボキシル変性エチレン−酢酸ビニル共重合体、エチレン−イソブチルアクリレート共重合体、ポリアミド、ポリイミド、ポリエステル、ポリビニルエーテル、ポリビニルブチラール、ポリウレタン、SBSブロック共重合体、カルボキシル変性SBS共重合体、SIS共重合体、SEBS共重合体、マレイン酸変性SEBS共重合体、ポリブタジエンゴム、クロロプレンゴム、カルボキシル変性クロロプレンゴム、スチレン−ブタジエンゴム、イソブチレン−イソプレン共重合体、アクリロニトリル−ブタジエンゴム(以下、NBRと表す。)、カルボキシル変性NBR、アミン変性NBR、エポキシ樹脂、エポキシエステル樹脂、アクリル樹脂、フェノール樹脂又はシリコーン樹脂などから選ばれる1種又は2種以上の組み合わせにより得られるものを主剤として調製されたものが挙げられる。これらのうち、熱可塑性樹脂としては、スチレン−ブタジエンゴムやSEBSなどがリワーク性に優れるので好ましい。熱硬化性樹脂としては、エポキシ樹脂が好ましい。これらのうち接着力が高く、耐熱性、電気絶縁性に優れ、しかも溶融粘度が低く、低圧力で接続が可能であるという利点から、エポキシ樹脂が最も好ましい。   Specific examples of the adhesive resin include ethylene-vinyl acetate copolymer, carboxyl-modified ethylene-vinyl acetate copolymer, ethylene-isobutyl acrylate copolymer, polyamide, polyimide, polyester, polyvinyl ether, polyvinyl butyral, and polyurethane. , SBS block copolymer, carboxyl-modified SBS copolymer, SIS copolymer, SEBS copolymer, maleic acid-modified SEBS copolymer, polybutadiene rubber, chloroprene rubber, carboxyl-modified chloroprene rubber, styrene-butadiene rubber, isobutylene- Isoprene copolymer, acrylonitrile-butadiene rubber (hereinafter referred to as NBR), carboxyl-modified NBR, amine-modified NBR, epoxy resin, epoxy ester resin, acrylic resin, phenol resin or Those obtained by one or more combinations selected from such recone resins those prepared as main agent. Of these, as the thermoplastic resin, styrene-butadiene rubber, SEBS, and the like are preferable because of their excellent reworkability. As the thermosetting resin, an epoxy resin is preferable. Of these, epoxy resins are most preferred because of their advantages of high adhesive strength, excellent heat resistance and electrical insulation, low melt viscosity, and connection at low pressure.

前記のエポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する多価エポキシ樹脂であれば、一般に用いられているエポキシ樹脂が使用可能である。具体的なものとしては、フェノールノボラック、クレゾールノボラック等のノボラック樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールAD、レゾルシン、ビスヒドロキシジフェニルエーテル等の多価フェノール類、エチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ポリプロピレングリコール等の多価アルコール類、エチレンジアミン、トリエチレンテトラミン、アニリン等のポリアミノ化合物、アジピン酸、フタル酸、イソフタル酸等の多価カルボキシ化合物等とエピクロルヒドリン又は2−メチルエピクロルヒドリンを反応させて得られるグリシジル型のエポキシ樹脂が例示される。また、ジシクロペンタジエンエポキサイド、ブタジエンダイマージエポキサイド等の脂肪族及び脂環族エポキシ樹脂等が挙げられる。これらは単独で又は2種以上混合して使用することができる。   As the epoxy resin, a generally used epoxy resin can be used as long as it is a polyvalent epoxy resin having two or more epoxy groups in one molecule. Specific examples include novolak resins such as phenol novolak and cresol novolak, polyhydric phenols such as bisphenol A, bisphenol F, bisphenol AD, resorcin, and bishydroxydiphenyl ether, ethylene glycol, neopentyl glycol, glycerin, and trimethylolpropane. Obtained by reacting polychlorohydric alcohols such as polypropylene glycol, polyamino compounds such as ethylenediamine, triethylenetetramine, and aniline, polycarboxyl compounds such as adipic acid, phthalic acid, and isophthalic acid with epichlorohydrin or 2-methylepichlorohydrin. A glycidyl type epoxy resin is exemplified. Moreover, aliphatic and alicyclic epoxy resins such as dicyclopentadiene epoxide and butadiene dimer epoxide are listed. These can be used alone or in admixture of two or more.

なお、上述した各種の接着樹脂は、不純物イオン(NaやCl等)や加水分解性塩素などが低減された高純度品を用いることが、イオンマイグレーションの防止の観点から好ましい。   In addition, it is preferable from the viewpoint of prevention of ion migration that the various adhesive resins described above use high-purity products in which impurity ions (such as Na and Cl) and hydrolyzable chlorine are reduced.

異方導電性接着剤における本発明の導電性粒子の使用量は、接着剤樹脂成分100重量部に対し通常0.1〜30重量部、好ましくは0.5〜25重量部、より好ましくは1〜20重量部である。導電性粒子の使用量がこの範囲内にあることにより、接続抵抗や溶融粘度が高くなることが抑制され、接続信頼性を向上させ、接続の異方性を十分に確保することができる。   The amount of the conductive particles of the present invention used in the anisotropic conductive adhesive is usually 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, more preferably 1 to 100 parts by weight of the adhesive resin component. ~ 20 parts by weight. When the amount of the conductive particles used is within this range, an increase in connection resistance and melt viscosity is suppressed, connection reliability is improved, and connection anisotropy can be sufficiently secured.

前記の異方導電性接着剤には、上述した導電性粒子及び接着剤樹脂の他に、当該技術分野において、公知の添加剤を配合することができ、その配合量も当該技術分野において公知の範囲内とすることができる。他の添加剤としては、例えば粘着付与剤、反応性助剤、エポキシ樹脂硬化剤、金属酸化物、光開始剤、増感剤、硬化剤、加硫剤、劣化防止剤、耐熱添加剤、熱伝導向上剤、軟化剤、着色剤、各種カップリング剤又は金属不活性剤などを例示することができる。   In addition to the above-described conductive particles and adhesive resin, the anisotropic conductive adhesive can be blended with known additives in the technical field, and the blending amount is also known in the technical field. Can be within range. Other additives include, for example, tackifiers, reactive auxiliaries, epoxy resin curing agents, metal oxides, photoinitiators, sensitizers, curing agents, vulcanizing agents, deterioration inhibitors, heat resistant additives, heat Examples thereof include a conductivity improver, a softener, a colorant, various coupling agents, or a metal deactivator.

粘着付与剤としては、例えばロジン、ロジン誘導体、テルペン樹脂、テルペンフェノール樹脂、石油樹脂、クマロン−インデン樹脂、スチレン系樹脂、イソプレン系樹脂、アルキルフェノール樹脂、キシレン樹脂などが挙げられる。反応性助剤すなわち架橋剤としては、例えばポリオール、イソシアネート類、メラミン樹脂、尿素樹脂、ウトロピン類、アミン類、酸無水物、過酸化物などが挙げられる。エポキシ樹脂硬化剤としては、1分子中に2個以上の活性水素を有するものであれば特に制限なく使用できる。具体的なものとしては、例えばジエチレントリアミン、トリエチレンテトラミン、メタフェニレンジアミン、ジシアンジアミド、ポリアミドアミン等のポリアミノ化合物;無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸等の有機酸無水物;フェノールノボラック、クレゾールノボラック等のノボラック樹脂等が挙げられる。これらは単独で又は2種以上混合して使用することができる。また、用途や必要に応じて潜在性硬化剤を用いてもよい。使用できる潜在性硬化剤としては、例えば、イミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等及びこれらの変性物が挙げられる。これらは単独で又は2種以上の混合体として使用できる。   Examples of the tackifier include rosin, rosin derivatives, terpene resins, terpene phenol resins, petroleum resins, coumarone-indene resins, styrene resins, isoprene resins, alkylphenol resins, xylene resins and the like. Examples of the reactive assistant, that is, the crosslinking agent include polyols, isocyanates, melamine resins, urea resins, utropines, amines, acid anhydrides and peroxides. As an epoxy resin hardening | curing agent, if it has two or more active hydrogens in 1 molecule, it can be especially used without a restriction | limiting. Specific examples include polyamino compounds such as diethylenetriamine, triethylenetetramine, metaphenylenediamine, dicyandiamide, and polyamideamine; organic acid anhydrides such as phthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride. Products: novolak resins such as phenol novolac and cresol novolak. These can be used alone or in admixture of two or more. Moreover, you may use a latent hardening | curing agent as needed and a use. Examples of latent curing agents that can be used include imidazole series, hydrazide series, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and the like and modified products thereof. These can be used alone or as a mixture of two or more.

前記の異方導電性接着剤は、通常、当業者間において広く使用されている製造装置を用い、本発明の導電性粒子及び接着剤樹脂並びに必要に応じ硬化剤や各種添加剤を配合し、接着剤樹脂が熱硬化性樹脂の場合は有機溶媒中で混合することにより、熱可塑性樹脂の場合は接着剤樹脂の軟化点以上の温度で、具体的には好ましくは約50〜130℃程度、更に好ましくは約60〜110℃程度で溶融混練することにより製造される。このようにして得られた異方導電性接着剤は、塗布してもよいし、フィルム状にして適用してもよい。   The anisotropic conductive adhesive is usually prepared by using a manufacturing apparatus widely used among those skilled in the art, and blends the conductive particles and adhesive resin of the present invention and, if necessary, curing agents and various additives, In the case where the adhesive resin is a thermosetting resin, by mixing in an organic solvent, in the case of a thermoplastic resin, at a temperature equal to or higher than the softening point of the adhesive resin, specifically preferably about 50 to 130 ° C, More preferably, it is produced by melt-kneading at about 60 to 110 ° C. The anisotropic conductive adhesive thus obtained may be applied or applied in the form of a film.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1ないし4〕
(1)A工程
表1に示す粒径を有し、真比重が1.1の球状スチレン−シリカ複合樹脂〔(株)日本触媒製、商品名ソリオスター〕を芯材粒子として用いた。その40gを、400mLのコンディショナー水溶液(ローム・アンド・ハース電子材料製の「クリーナーコンディショナー231」)に攪拌しながら投入した。コンディショナー水溶液の濃度は40ml/Lであった。引き続き、液温60℃で超音波を与えながら30分間攪拌して芯材粒子の表面改質及び分散処理を行った。水溶液をろ過し、一回リパルプ水洗した芯材粒子を200mLのスラリーにした。このスラリーへ塩化第一錫水溶液200mlを投入した。この水溶液の濃度は5×10-3mol/Lであった。常温で5分攪拌し、錫イオンを芯材粒子の表面に吸着させる感受性化処理を行った。引き続き水溶液をろ過し、1回リパルプ水洗した。次いで芯材粒子を400mlのスラリーにし、60℃に維持した。超音波を併用してスラリーを攪拌しながら、0.11mol/Lの塩化パラジウム水溶液2mLを添加した。そのままの攪拌状態を5分間維持させ、芯材粒子の表面にパラジウムイオンを捕捉させる活性化処理を行った。
[Examples 1 to 4]
(1) Process A Spherical styrene-silica composite resin (trade name: Soliostar, manufactured by Nippon Shokubai Co., Ltd.) having a particle size shown in Table 1 and a true specific gravity of 1.1 was used as the core material particles. 40 g of the solution was added to 400 mL of an aqueous conditioner solution (“Cleaner Conditioner 231” manufactured by Rohm and Haas Electronic Materials) with stirring. The concentration of the conditioner aqueous solution was 40 ml / L. Subsequently, the core material particles were surface-modified and dispersed by stirring for 30 minutes while applying ultrasonic waves at a liquid temperature of 60 ° C. The aqueous solution was filtered, and the core particles washed once with repulp water were made into 200 mL of slurry. 200 ml of stannous chloride aqueous solution was added to this slurry. The concentration of this aqueous solution was 5 × 10 −3 mol / L. The mixture was stirred at room temperature for 5 minutes to carry out a sensitization treatment for adsorbing tin ions on the surface of the core material particles. Subsequently, the aqueous solution was filtered and washed once with repulp water. The core particles were then made into 400 ml slurry and maintained at 60 ° C. While stirring the slurry using ultrasonic waves, 2 mL of a 0.11 mol / L palladium chloride aqueous solution was added. The state of stirring as it was was maintained for 5 minutes, and an activation treatment for capturing palladium ions on the surface of the core particles was performed.

次いで、20g/Lの酒石酸ナトリウム、5.4g/Lの次亜リン酸ナトリウム、表1に示す濃度の硫酸ニッケル六水和物、同表に示す種類及び濃度の分散剤を溶解した水溶液からなる無電解めっき浴3リットルを70℃に昇温し、この無電解めっき浴に、パラジウムを担持した芯材粒子を同表に示す量で投入し、A工程を開始した。なお、表1に示す分散剤の具体的な内容は表2に示すとおりである。5分間攪拌し水素の発泡が停止するのを確認し、A工程を完了させた。   Next, 20 g / L sodium tartrate, 5.4 g / L sodium hypophosphite, nickel sulfate hexahydrate having the concentrations shown in Table 1, and an aqueous solution in which the dispersants having the types and concentrations shown in the table were dissolved. The temperature of 3 liters of the electroless plating bath was raised to 70 ° C., and core particles carrying palladium were added to the electroless plating bath in the amount shown in the table, and the process A was started. The specific contents of the dispersant shown in Table 1 are as shown in Table 2. After stirring for 5 minutes, it was confirmed that hydrogen bubbling stopped and Step A was completed.

(2)B工程
224g/L硫酸ニッケル水溶液と、210g/Lの次亜リン酸ナトリウム及び80g/Lの水酸化ナトリウムを含む混合水溶液とをそれぞれ300mL用い、これらをA工程で得られた芯材粒子のスラリーに、定量ポンプによって連続的に分別添加し、無電解めっきB工程を開始した。添加速度はいずれも2.5mL/分とした。本工程の具体的な条件を表3に示す。液を全量添加した後、70℃の温度を保持しながら5分攪拌を継続した。次いで液をろ過し、ろ過物を3回洗浄した後、100℃の真空乾燥機で乾燥してニッケル−リン合金皮膜を有する導電性粒子を得た。実施例3において得られた導電性粒子の走査型電子顕微鏡(SEM)像を図1に示した。同図から明らかなように、導電性粒子におけるニッケル皮膜と突起部とは連続体になっている。
(2) Step B Using a 224 g / L nickel sulfate aqueous solution and a mixed aqueous solution containing 210 g / L sodium hypophosphite and 80 g / L sodium hydroxide, 300 mL each, and using these in step A, the core material obtained The particle slurry was continuously fractionated and added by a metering pump, and the electroless plating B process was started. The addition rate was 2.5 mL / min. Specific conditions of this step are shown in Table 3. After all the liquid was added, stirring was continued for 5 minutes while maintaining the temperature at 70 ° C. Next, the liquid was filtered, and the filtrate was washed three times, and then dried with a vacuum dryer at 100 ° C. to obtain conductive particles having a nickel-phosphorus alloy film. A scanning electron microscope (SEM) image of the conductive particles obtained in Example 3 is shown in FIG. As is clear from the figure, the nickel coating and the protrusions on the conductive particles are continuous.

〔実施例5ないし23〕
表1及び表3に示す条件でA工程及びB工程を行う以外は実施例1と同様にして導電性粒子を得た。ただし、実施例19のB工程においては、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムを含む混合水溶液の添加量をそれぞれ230mLとした。また実施例20のB工程においては、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムを含む混合水溶液の添加量をそれぞれ390mLとした。また実施例21ないし23の硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムを含む混合水溶液の添加量及び滴下速度はそれぞれ150、225、600mL、1.3、1.9、5.0mL/分とした。このようにして、ニッケル−リン合金皮膜を有する導電性粒子を得た。
[Examples 5 to 23]
Conductive particles were obtained in the same manner as in Example 1 except that Step A and Step B were performed under the conditions shown in Tables 1 and 3. However, in B process of Example 19, the addition amount of nickel sulfate aqueous solution and the mixed aqueous solution containing sodium hypophosphite and sodium hydroxide was 230 mL, respectively. Moreover, in B process of Example 20, the addition amount of nickel sulfate aqueous solution and the mixed aqueous solution containing sodium hypophosphite and sodium hydroxide was 390 mL, respectively. Moreover, the addition amount and dropping rate of the aqueous nickel sulfate solution of Examples 21 to 23 and the mixed aqueous solution containing sodium hypophosphite and sodium hydroxide were 150, 225, 600 mL, 1.3, 1.9, and 5.0 mL, respectively. / Min. Thus, conductive particles having a nickel-phosphorus alloy film were obtained.

〔実施例24〕
10g/LのEDTA−4Na、10g/Lのクエン酸―2Na及び2.9g/Lのシアン化金カリウム(Auとして2.0g/L)からなる無電解金めっき液を調製した。この金めっき液2リットルを79℃に加熱し、これを攪拌しながら、実施例2で得られた導電性粒子10gを添加した。これによって粒子の表面に無電解めっき処理を行った。処理時間は20分とした。処理の完了後、液をろ過し、ろ過物を3回リパルプした。次いで110℃の真空乾燥機で乾燥した。このようにして、ニッケル−リン合金皮膜上に金めっき被覆処理を施した。
Example 24
An electroless gold plating solution consisting of 10 g / L EDTA-4Na, 10 g / L citric acid-2Na and 2.9 g / L potassium gold cyanide (2.0 g / L as Au) was prepared. 2 g of this gold plating solution was heated to 79 ° C., and 10 g of conductive particles obtained in Example 2 were added while stirring the solution. Thus, electroless plating treatment was performed on the surface of the particles. The processing time was 20 minutes. After completion of the treatment, the liquid was filtered and the filtrate was repulped three times. Subsequently, it dried with the 110 degreeC vacuum dryer. In this way, a gold plating coating treatment was performed on the nickel-phosphorus alloy film.

〔実施例25ないし27〕
10g/LのEDTA−2Na、10g/Lのクエン酸2Na及び20g/Lのテトラアンミンパラジウム塩酸塩(Pd(NH3)4Cl2)溶液(パラジウムとして2g/L)、カルボキシメチルセルロース(分子量250000、エーテル化度0.9)100ppmからなる無電解パラジウムめっき液を調製した。このパラジウムめっき液0.65リットル(実施例25)、1.3リットル(実施例26)、2.6リットル(実施例27)を70℃に加熱し、これを攪拌しながら、実施例2で得られた導電性粒子10gを添加した。これによって粒子の表面に置換型の無電解めっき処理を行った。処理時間は60分とした。処理の完了後、液をろ過し、ろ過物を3回リパルプした。次いで110℃の真空乾燥機で乾燥した。このようにして、ニッケル−リン合金皮膜上にパラジウムめっき被覆処理を施した。パラジウム皮膜中にリンは含まれていなかった。
[Examples 25 to 27]
10 g / L EDTA-2Na, 10 g / L 2 Na citrate and 20 g / L tetraamminepalladium hydrochloride (Pd (NH 3 ) 4 Cl 2 ) solution (2 g / L as palladium), carboxymethylcellulose (molecular weight 250,000, etherification) Degree 0.9) An electroless palladium plating solution consisting of 100 ppm was prepared. In this example, 0.65 liters (Example 25), 1.3 liters (Example 26 ) and 2.6 liters (Example 27) of this palladium plating solution were heated to 70 ° C. and stirred. 10 g of the obtained conductive particles were added. As a result, a substitutional electroless plating treatment was performed on the surface of the particles. The processing time was 60 minutes. After completion of the treatment, the liquid was filtered and the filtrate was repulped three times. Subsequently, it dried with the 110 degreeC vacuum dryer. In this way, the palladium plating coating treatment was performed on the nickel-phosphorus alloy film. The palladium film contained no phosphorus.

〔比較例1ないし7〕
表1及び表3に示す条件でA工程及びB工程を行う以外は実施例1と同様にして、ニッケル―リン合金皮膜を有する導電性粒子を得た。ただし、比較例3のB工程においては、硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムを含む混合水溶液の添加量をそれぞれ230mLとした。また比較例5ないし6の硫酸ニッケル水溶液と、次亜リン酸ナトリウム及び水酸化ナトリウムを含む混合水溶液の添加量及び滴下速度はそれぞれ38、1200mL、0.3、10.0mL/分とした。比較例1において得られた導電性粒子のSEM像を図2に示した。
[Comparative Examples 1 to 7]
Conductive particles having a nickel-phosphorus alloy film were obtained in the same manner as in Example 1 except that Step A and Step B were performed under the conditions shown in Tables 1 and 3. However, in B process of the comparative example 3, the addition amount of nickel sulfate aqueous solution and the mixed aqueous solution containing sodium hypophosphite and sodium hydroxide was 230 mL, respectively. Moreover, the addition amount and dropping rate of the aqueous nickel sulfate solution of Comparative Examples 5 to 6 and the mixed aqueous solution containing sodium hypophosphite and sodium hydroxide were 38, 1200 mL, 0.3, 10.0 mL / min, respectively. An SEM image of the conductive particles obtained in Comparative Example 1 is shown in FIG.

〔比較例8〕
比較例2で製造した導電性粒子に、実施例24と同様の金めっき被覆処理を施した。
[Comparative Example 8]
The conductive particles produced in Comparative Example 2 were subjected to the same gold plating coating treatment as in Example 24.

〔物性評価〕
実施例及び比較例で得られた導電性粒子の粒径、ニッケル皮膜の厚み、金皮膜の厚み、パラジウム皮膜の厚み、表面状態、ニッケル皮膜の密着性及び導電性をそれぞれ測定・評価した。また、更に金めっきを施したものは、金皮膜の密着性、パラジウムめっきを施したものは、パラジウム皮膜の密着性を評価した。各物性評価は次の方法によって行った。また、突起部のアスペクト比、アスペクト比が1以上である突起部の割合、及び導電性粉体における一次粒子が占める割合、導電性粒子の粒径をそれぞれ上述の方法で測定した。それらの結果を表4及び表5に示す。
〔Evaluation of the physical properties〕
The particle diameter of the conductive particles, the thickness of the nickel coating, the thickness of the gold coating, the thickness of the palladium coating, the surface state, the adhesion of the nickel coating, and the conductivity were measured and evaluated, respectively. Further, the gold plating was evaluated for the gold film, and the palladium plating was evaluated for the palladium film. Each physical property evaluation was performed by the following method. Further, the aspect ratio of the protrusions, the ratio of the protrusions having an aspect ratio of 1 or more, the ratio of the primary particles in the conductive powder, and the particle diameter of the conductive particles were measured by the methods described above. The results are shown in Tables 4 and 5.

〔ニッケル皮膜の厚み〕
導電性粒子を王水に浸漬してニッケル皮膜を溶解し、皮膜成分をICP又は化学分析し、以下の式(1)、(2)からニッケル皮膜の厚みを算出した。
A=[(r+t)3―r3]d1/r32 (1)
A=W/(100−W) (2)
式中、rは芯材粒子の半径(μm)、tはニッケル皮膜の厚み、d1はニッケル皮膜の比重、d2は芯材粒子の比重、Wはニッケル含有率(重量%)である。
[Thickness of nickel coating]
The conductive particles were immersed in aqua regia to dissolve the nickel film, the film components were analyzed by ICP or chemical analysis, and the thickness of the nickel film was calculated from the following formulas (1) and (2).
A = [(r + t) 3 −r 3 ] d 1 / r 3 d 2 (1)
A = W / (100-W) (2)
In the formula, r is the radius (μm) of the core particles, t is the thickness of the nickel coating, d 1 is the specific gravity of the nickel coating, d 2 is the specific gravity of the core particles, and W is the nickel content (% by weight).

〔金皮膜・パラジウム皮膜の厚み〕
導電性粒子を王水に浸漬して、金又はパラジウム皮膜とニッケル皮膜とを溶解し、皮膜成分をICP分析又は化学分析した。そして、以下の(3)及び(4)から金又はパラジウム皮膜の厚みを算出した。
B=[(r+t+u)3−(r+t)3]d3/(r+t)34 (3)
B=X(100−X) (4)
式中、uは金又はパラジウム皮膜の厚み、d3は金又はパラジウム皮膜の比重、d4はNi品の比重、Xは金又はパラジウムの含有率(重量%)である。ここで、Ni品の比重d4は計算式を使用して算出する。比重は以下の(5)の計算式を用いて算出した。
4=100/[(W/d1)+(100−W)/d2] (5)
式中、d1はニッケル皮膜の比重、d2は芯材粒子の比重、Wはニッケル含有率(重量%)である。
[Gold film / palladium film thickness]
The conductive particles were immersed in aqua regia to dissolve the gold or palladium film and the nickel film, and the film components were analyzed by ICP or chemical analysis. And the thickness of the gold | metal | money or palladium membrane | film | coat was computed from the following (3) and (4).
B = [(r + t + u) 3 − (r + t) 3 ] d 3 / (r + t) 3 d 4 (3)
B = X (100-X) (4)
In the formula, u is the thickness of the gold or palladium film, d 3 is the specific gravity of the gold or palladium film, d 4 is the specific gravity of the Ni product, and X is the content (% by weight) of gold or palladium. Here, the specific gravity d 4 of the Ni product is calculated using a calculation formula. The specific gravity was calculated using the following formula (5).
d 4 = 100 / [(W / d 1 ) + (100−W) / d 2 ] (5)
In the formula, d 1 is the specific gravity of the nickel coating, d 2 is the specific gravity of the core particles, and W is the nickel content (% by weight).

〔表面状態〕
SEMを用い、導電性粒子を30000倍に拡大して10視野を観察し、導電性粒子1個が有する突起部の個数の平均値を算出した。10〜100個を○、10以下を△とした。また、ニッケルが異常析出した場合を×とした。異常析出とは、例えばニッケルが芯材粒子の表面に析出せず、液中に単独析出する場合等を言う。
〔Surface condition〕
Using SEM, the conductive particles were magnified 30000 times, 10 fields of view were observed, and the average value of the number of protrusions of one conductive particle was calculated. 10 to 100 pieces were evaluated as ◯, and 10 or less as △. In addition, the case where nickel was abnormally deposited was marked as x. Abnormal precipitation refers to, for example, the case where nickel does not precipitate on the surface of the core material particles but separates in the liquid.

〔皮膜の密着性〕
100mLのビーカーに導電性粒子2g及び直径1mmのジルコニアビーズ90gを入れ、更にトルエンを10mL入れた。攪拌装置で10分攪拌した後、ジルコニアビーズとスラリーを分離し乾燥させた。乾燥後の導電性粒子をSEMを用いて2000倍に拡大して10視野を観察し、攪拌によって生じた剥離片の個数の平均値を算出した。剥離片の個数10個未満を○とし、10〜30個を△、30個超を×とした。
[Coating adhesion]
In a 100 mL beaker, 2 g of conductive particles and 90 g of zirconia beads having a diameter of 1 mm were added, and further 10 mL of toluene was added. After stirring for 10 minutes with a stirrer, the zirconia beads and the slurry were separated and dried. The dried conductive particles were magnified 2000 times using SEM, 10 fields were observed, and the average value of the number of peeled pieces generated by stirring was calculated. The number of peeled pieces of less than 10 was evaluated as ◯, 10-30 as Δ, and more than 30 as X.

〔導電性〕
エポキシ樹脂100部、硬化剤150部、トルエン70部を混合し、絶縁性接着剤を調製した。これに導電性粒子15部を配合してペーストを得た。バーコーターを用い、このペーストをシリコーン処理ポリエステルフィルム上に塗布し乾燥させた。得られた塗工フィルムを用い、全面をアルミニウムで蒸着したガラスと50μmピッチに銅パターンを形成したポリイミドフィルム基板との間の接続を行った。そして電極間の導通抵抗を測定することで、導電性粒子の導電性を評価した。評価は抵抗値2Ω以下を○とし、2〜5Ωを△、5Ω以上を×とした。また、ショート発生の有無も表に併記した。
〔Conductivity〕
100 parts of epoxy resin, 150 parts of curing agent, and 70 parts of toluene were mixed to prepare an insulating adhesive. This was mixed with 15 parts of conductive particles to obtain a paste. This paste was applied onto a silicone-treated polyester film and dried using a bar coater. Using the obtained coated film, connection was made between glass whose surface was vapor-deposited with aluminum and a polyimide film substrate having a copper pattern formed on a 50 μm pitch. And the electroconductivity of electroconductive particle was evaluated by measuring the conduction | electrical_connection resistance between electrodes. In the evaluation, a resistance value of 2Ω or less was evaluated as ◯, 2-5Ω was evaluated as Δ, and 5Ω or more was evaluated as ×. In addition, the presence or absence of short circuit is also shown in the table.

表4及び表5に示す結果から明らかなように、各実施例で得られた導電性粉体(本発明品)は、比較例で得られた導電性粉体に比べ、突起部のアスペクト比が高く、かつ一次粒子の占める割合が高いことが判る。また、各実施例で得られた導電性粉体は、比較例で得られた導電性粉体に比べ、導電性が高く、かつニッケル皮膜の密着性が高いことも判る。   As is clear from the results shown in Tables 4 and 5, the conductive powder obtained in each example (the product of the present invention) has an aspect ratio of protrusions compared to the conductive powder obtained in the comparative example. It can be seen that the ratio of primary particles is high. Moreover, it turns out that the electroconductive powder obtained by each Example has high electroconductivity and the adhesiveness of a nickel membrane | film | coat compared with the electroconductive powder obtained by the comparative example.

実施例3で得られた導電性粒子のSEM像である。4 is a SEM image of conductive particles obtained in Example 3. 比較例1で得られた導電性粒子のSEM像である。3 is a SEM image of conductive particles obtained in Comparative Example 1.

Claims (7)

芯材粒子の表面に、ニッケル又はニッケル合金皮膜が形成された導電性粒子からなる導電性粉体であって、
前記導電性粒子は、前記皮膜の表面から突出し、かつ該皮膜と連続体になっている、アスペクト比が1以上の突起部を多数有し、
アスペクト比は、前記突起部の高さHと前記突起部の基部における前記突起部の幅Dとの比H/Dで定義される値であり、
アスペクト比が1以上の前記突起部の割合が、全突起部の数に対して40%以上であり、
前記導電性粉体においては、前記導電性粒子のうち、一次粒子が占める重量が、導電性粉体の重量に対して85重量%以上であり、
前記一次粒子が占める重量割合は、前記導電性粉体0.1gを100mLの水に入れ超音波ホモジナイザーで1分間分散させ、次いで、コールターカウンター法によって粒度分布を測定し、その結果から算出されたものであることを特徴とする導電性粉体。
Conductive powder composed of conductive particles in which nickel or a nickel alloy film is formed on the surface of the core material particles,
The conductive particles protrude from the surface of the coating and are continuous with the coating, and have a large number of protrusions with an aspect ratio of 1 or more,
The aspect ratio is a value defined by the ratio H / D between the height H of the protrusion and the width D of the protrusion at the base of the protrusion,
The ratio of the protrusions having an aspect ratio of 1 or more is 40% or more with respect to the total number of protrusions,
Wherein in the conductive powder, of the conductive particles, the weight occupied primary particles is state, and are 85 wt% or more based on the weight of the conductive powder,
The weight ratio occupied by the primary particles was calculated from the results obtained by placing 0.1 g of the conductive powder in 100 mL of water and dispersing with an ultrasonic homogenizer for 1 minute, then measuring the particle size distribution by the Coulter counter method. electrically conductive powder, wherein Monodea Rukoto.
前記芯材粒子の平均粒径が1〜3μmである請求項1記載の導電性粉体。   The conductive powder according to claim 1, wherein the core particles have an average particle size of 1 to 3 μm. 前記突起部を含む前記皮膜の表面を金又はパラジウムで被覆した請求項1又は2記載の導電性粉体。   The conductive powder according to claim 1 or 2, wherein the surface of the coating including the protrusion is coated with gold or palladium. 請求項1ないし3のいずれかに記載の導電性粉体と絶縁性樹脂とを含む導電性材料。   A conductive material comprising the conductive powder according to claim 1 and an insulating resin. 分散剤及びニッケルイオンを含む無電解めっき浴と、表面に貴金属が担持された芯材粒子とを混合して、該芯材粒子の表面にニッケル初期薄膜層を形成するに際し、ニッケルイオンの濃度が0.0001〜0.008モル/リットルに調整された該無電解めっき浴1リットルに対して、表面積の総和が1〜15m2となるような量の該芯材粒子を用いるA工程と、
A工程において得られた、ニッケル初期薄膜層を有する前記芯材粒子、及び前記分散剤を含む水性スラリーを、該分散剤の分散効果が発現するpH範囲に維持しつつ、該水性スラリーに、1時間当たりのニッケルの析出量が、ニッケル皮膜の厚みが25〜100nmとなる量に相当する量のニッケルイオン及び還元剤を経時的に添加して、該水性スラリー中にニッケルの核粒子を生成させるとともに、生成した核粒子を前記芯材粒子に付着させて、付着した核粒子を起点として該核粒子を成長させ、アスペクト比が1以上の突起部を形成するB工程とを具備し、
アスペクト比は、前記突起部の高さHと前記突起部の基部における前記突起部の幅Dとの比H/Dで定義される値であり、
前記ニッケル皮膜の厚みは、導電性粒子を王水に浸漬してニッケル皮膜を溶解し、皮膜成分をICP又は化学分析し、以下の式(1)及び(2)から算出されるものであることを特徴とする導電性粒子の製造方法。
A=[(r+t) 3 ―r 3 ]d 1 /r 3 2 (1)
A=W/(100−W) (2)
(式中、rは芯材粒子の半径(μm)、tはニッケル皮膜の厚み、d 1 はニッケル皮膜の比重、d 2 は芯材粒子の比重、Wはニッケル含有率(重量%)である。)
When the electroless plating bath containing a dispersant and nickel ions is mixed with the core material particles having a noble metal supported on the surface, and the nickel initial thin film layer is formed on the surface of the core material particles, the concentration of nickel ions is Step A using the core material particles in such an amount that the total surface area is 1 to 15 m 2 with respect to 1 liter of the electroless plating bath adjusted to 0.0001 to 0.008 mol / liter;
While maintaining the aqueous slurry containing the core particles having the nickel initial thin film layer and the dispersant obtained in the step A in a pH range in which the dispersing effect of the dispersant is expressed, Nickel ions and a reducing agent in an amount corresponding to the amount of nickel deposited per hour corresponding to a nickel film thickness of 25 to 100 nm are added over time to produce nickel core particles in the aqueous slurry. And the B step of attaching the produced core particles to the core material particles, growing the core particles starting from the attached core particles, and forming a protrusion having an aspect ratio of 1 or more ,
The aspect ratio is a value defined by the ratio H / D between the height H of the protrusion and the width D of the protrusion at the base of the protrusion,
The thickness of the nickel coating, the conductive particles are immersed in aqua regia to dissolve the nickel coating, the coating ingredients ICP or chemical analysis, Ru der those calculated from the following equation (1) and (2) The manufacturing method of the electroconductive particle characterized by the above-mentioned.
A = [(r + t) 3 −r 3 ] d 1 / r 3 d 2 (1)
A = W / (100-W) (2)
(Wherein, r is the radius (μm) of the core material particles, t is the thickness of the nickel film, d 1 is the specific gravity of the nickel film, d 2 is the specific gravity of the core material particles, and W is the nickel content (% by weight)). .)
ニッケル初期薄膜層の厚みが0.1〜10nmとなるようにA工程を行う請求項5記載の製造方法。   The manufacturing method of Claim 5 which performs A process so that the thickness of a nickel initial stage thin film layer may be set to 0.1-10 nm. 前記分散剤として、非イオン界面活性剤、両性イオン界面活性剤又は水溶性高分子を用いる請求項5又は6記載の製造方法。   The production method according to claim 5 or 6, wherein a nonionic surfactant, an amphoteric surfactant or a water-soluble polymer is used as the dispersant.
JP2009220045A 2008-10-14 2009-09-25 Conductive powder, conductive material containing the same, and method for producing conductive particles Active JP4746116B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009220045A JP4746116B2 (en) 2008-10-14 2009-09-25 Conductive powder, conductive material containing the same, and method for producing conductive particles
TW098133952A TWI479508B (en) 2008-10-14 2009-10-07 Conductive powder, conductive material containing the conductive powder, and method for producing conductive particles
PCT/JP2009/067707 WO2010044388A1 (en) 2008-10-14 2009-10-13 Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
CN200980140898XA CN102187405B (en) 2008-10-14 2009-10-13 Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
KR1020117008427A KR101594639B1 (en) 2008-10-14 2009-10-13 Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008264725 2008-10-14
JP2008264725 2008-10-14
JP2009220045A JP4746116B2 (en) 2008-10-14 2009-09-25 Conductive powder, conductive material containing the same, and method for producing conductive particles

Publications (2)

Publication Number Publication Date
JP2010118334A JP2010118334A (en) 2010-05-27
JP4746116B2 true JP4746116B2 (en) 2011-08-10

Family

ID=42106551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220045A Active JP4746116B2 (en) 2008-10-14 2009-09-25 Conductive powder, conductive material containing the same, and method for producing conductive particles

Country Status (5)

Country Link
JP (1) JP4746116B2 (en)
KR (1) KR101594639B1 (en)
CN (1) CN102187405B (en)
TW (1) TWI479508B (en)
WO (1) WO2010044388A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5512306B2 (en) * 2010-01-29 2014-06-04 日本化学工業株式会社 Method for producing conductive particles
JP5476221B2 (en) * 2010-06-18 2014-04-23 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5054232B2 (en) 2010-09-30 2012-10-24 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
JP5184612B2 (en) * 2010-11-22 2013-04-17 日本化学工業株式会社 Conductive powder, conductive material containing the same, and method for producing the same
JP5703836B2 (en) * 2011-02-25 2015-04-22 日立化成株式会社 Conductive particles, adhesive composition, circuit connection material, and connection structure
KR101097862B1 (en) * 2011-03-04 2011-12-23 덕산하이메탈(주) Conductive fine particles and method of manufacturing the same
JP5707247B2 (en) * 2011-06-22 2015-04-22 日本化学工業株式会社 Method for producing conductive particles
JP5695510B2 (en) * 2011-06-22 2015-04-08 株式会社日本触媒 Method for producing conductive fine particles
KR101191970B1 (en) 2011-12-09 2012-10-17 한화케미칼 주식회사 Phosphorous-doped nickel nano-particles and process for preparing the same
JP5951977B2 (en) * 2011-12-14 2016-07-13 株式会社日本触媒 Conductive fine particles
JP5952553B2 (en) * 2011-12-14 2016-07-13 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
KR101375298B1 (en) * 2011-12-20 2014-03-19 제일모직주식회사 Conductive microspheres and an anisotropic conductive film comprising the same
JP6333552B2 (en) * 2012-01-19 2018-05-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP5973257B2 (en) * 2012-07-03 2016-08-23 日本化学工業株式会社 Conductive particles and conductive material containing the same
KR101443347B1 (en) * 2013-05-14 2014-10-02 덕산하이메탈(주) Conductive particle and the manufacturing method of the same
JP6352103B2 (en) * 2013-08-12 2018-07-04 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6345075B2 (en) * 2013-10-23 2018-06-20 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
JP6460803B2 (en) * 2014-01-10 2019-01-30 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material, and connection structure
JP6523860B2 (en) * 2014-08-07 2019-06-05 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP6641118B2 (en) * 2014-08-18 2020-02-05 積水化学工業株式会社 Conductive particles, conductive material and connection structure
JP6263228B2 (en) * 2016-06-09 2018-01-17 日本化学工業株式会社 Conductive particles and conductive material containing the same
WO2017222010A1 (en) * 2016-06-22 2017-12-28 積水化学工業株式会社 Connection structure, metal atom-containing particles and bonding composition
CN110157363B (en) * 2019-06-11 2021-04-06 莱芜职业技术学院 Preparation method of conductive powder for electromagnetic shielding conductive adhesive
FR3119172A1 (en) * 2021-01-28 2022-07-29 Swissto12 Sa Stable composition for catalytic silver deposition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378407A (en) * 1992-06-05 1995-01-03 Raychem Corporation Conductive polymer composition
TW277152B (en) * 1994-05-10 1996-06-01 Hitachi Chemical Co Ltd
US6013713A (en) * 1997-11-06 2000-01-11 International Business Machines Corporation Electrode modification using an unzippable polymer paste
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP4674096B2 (en) * 2005-02-15 2011-04-20 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials

Also Published As

Publication number Publication date
TWI479508B (en) 2015-04-01
CN102187405B (en) 2013-01-02
KR101594639B1 (en) 2016-02-16
JP2010118334A (en) 2010-05-27
KR20110069811A (en) 2011-06-23
WO2010044388A1 (en) 2010-04-22
CN102187405A (en) 2011-09-14
TW201021054A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
JP4746116B2 (en) Conductive powder, conductive material containing the same, and method for producing conductive particles
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
JP5512306B2 (en) Method for producing conductive particles
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
JP5941328B2 (en) Conductive particles and conductive material containing the same
JP4728665B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP6089462B2 (en) Conductive particles, manufacturing method thereof, and conductive material including the same
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP5695768B2 (en) Conductive powder and conductive material including the same
WO2021095803A1 (en) Conductive particles, method for manufacturing same, and conductive material containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110303

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4746116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250