JP3436327B2 - Conductive electroless plating powder - Google Patents

Conductive electroless plating powder

Info

Publication number
JP3436327B2
JP3436327B2 JP14130095A JP14130095A JP3436327B2 JP 3436327 B2 JP3436327 B2 JP 3436327B2 JP 14130095 A JP14130095 A JP 14130095A JP 14130095 A JP14130095 A JP 14130095A JP 3436327 B2 JP3436327 B2 JP 3436327B2
Authority
JP
Japan
Prior art keywords
electroless plating
powder
plating
conductive
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14130095A
Other languages
Japanese (ja)
Other versions
JPH08311655A (en
Inventor
淳一 竹下
成史 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Nippon Shokubai Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, Nippon Shokubai Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP14130095A priority Critical patent/JP3436327B2/en
Publication of JPH08311655A publication Critical patent/JPH08311655A/en
Application granted granted Critical
Publication of JP3436327B2 publication Critical patent/JP3436327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、各種のマトリックス材
料に配合した際に優れた分散性ならびに高導電性能を付
与することができる無電解めっき粉体、特にプラスチッ
ク材料に複合化して電子機器類の微小部位を電気的接続
する目的に好適な導電性無電解めっき粉体に関する。 【0002】 【従来の技術】導電性を付与したプラスチック材料は、
電子機器やその部品の静電防止、電波吸収あるいは電磁
波シールド等の部材として広く使用されている。プラス
チック材料に導電性を付与する方法としては、従来から
マトリックス樹脂成分に微粉状の導電性フィラーを分散
複合化する手段が主要な技術とされており、無電解めっ
き粉体を導電性フィラーとすることも公知である(特開
昭59−182961号公報、特開昭60−181294公報、特開平1
−242782公報等)。また、基材にベンゾグアナミン系樹
脂を用いて金属めっきを施した導電性充填剤(特開昭57
−49632 号公報)やスチレン系樹脂を基材として金属め
っきを施した導電性充填剤(特開昭60−12603 号公報)
なども提案されている。 【0003】しかしながら、従来技術により得られる導
電性めっき粉末は、無電解めっき工程中に基材粒子同士
が凝集化し、金属めっき層の膜厚が増すに従って凝集が
大きく強固となって分散性を損ねる難点がある。導電性
粉末の分散性はプラスチック材料に混合した際の導電性
能に大きな影響を与えるため、めっき粉末にあってはこ
の分散性の後退現象が解消されない限り再現性のある高
導電性能を期待することができない。 【0004】 【発明が解決しようとする課題】近時、液晶ディスプレ
ーパネルの電極と駆動用LSIチップの回路基板への接
続、その他微小ピッチの電極端子間の接続など電子機器
類の微小部位を電気的接続するための導電材料と対して
導電性を付与したプラスチック材料が使用されている
が、これらの用途目的には特に高度かつ再現性の良好な
導電性能が要求されており、より分散性が改善された導
電性フィラーの開発が待たれている。 【0005】導電性無電解めっき粉体の分散性を高める
には、粒径範囲を調整することが有効であるため、篩分
けや粉砕処理によって一定の粒子性状に整えることも行
われている。しかし、高精度の分級処理を施しても製造
過程で生成した凝集体を完全に除去することは困難であ
り、また粉砕処理を行うと粒子表面の金属被膜が破壊し
て導電性能の低下を招く。したがって、優れた導電性能
を発揮する無電解めっき粉体を得るためには、めっき基
材となる樹脂粉末の粒子性状を吟味して良好な分散性お
よび密着性を確保する必要がある。 【0006】本発明者らは、かかる観点からめっき基材
となる樹脂粉末の粒子性状について多角的に検討を進め
た結果、基材として実質的に球状で、特定範囲の粒子性
状を備える樹脂を選択し、この表面に無電解めっき法に
より金属被覆を施すと、極めて密着性に優れためっき被
膜が形成されるうえ、対象マトリックス成分に対する分
散性が効果的に改善されて常に高度の導電性能が付与さ
れる事実を解明した。 【0007】本発明は上記の知見に基づいて開発された
もので、その目的とするところは、マトリックス成分に
対して常に優れた分散性ならびに高導電性能を付与する
ことができる高品位の導電性無電解めっき粉末を提供す
ることにある。 【0008】 【課題を解決するための手段】上記の目的を達成するた
めの本発明による導電性無電解めっき粉体は、実質的に
球状粒子であって、平均粒子径が1〜30μm の範囲に
あり、平均粒子径±20%範囲の粒分比率が90%以上
を占め、かつ平均粒子径±20%範囲を外れた粒分のう
ち微細側の粒分比率が%以下の粒子性状を備えるベン
ゾグアナミン系樹脂粉末を基材とし、該基材表面に、触
媒化処理を施した基材粒子を錯化処理する工程を含む
電解めっき法により、膜厚10〜200nmの金属被膜
を形成してなることを構成上の特徴とする。 【0009】本発明において、無電解めっき基材として
使用する樹脂の種類には格別の制約はない。使用可能な
樹脂類としては、例えばポリエチレン、ポリ塩化ビニ
ル、ポリプロピレン、ポリスチレン、ポリイソブチレン
等のポリオレフィン、スチレン−アクリロニトリルコポ
リマー、アクリロニトリル−ブタジエン−スチレンター
ポリマー等のオレフィンコポリマー、ポリアクリレー
ト、ポリメチルメタクリレート、ポリアクリルアミド等
のアクリル酸誘導体、ポリ酢酸ビニル、ポリビニルアル
コール等のポリビニル化合物、ポリアセタール、ポリエ
チレングリコール、ポリプロピレングリコール、エポキ
シ樹脂等のエーテルポリマー、ベンゾグアナミン、尿
素、チオ尿素、メラミン、アセトグアナミン、ジシアン
アミド、アニリン等のアミノ化合物とホルムアルデヒ
ド、パラホルムアルデヒド、アセトアルデヒド、グリオ
キザールのようなアルデヒド類とからなるアミノ系樹
脂、ポリウレタン、ポリエステル、含弗素樹脂、ニトリ
ル系樹脂などを挙げることができる。しかし、これらの
中では例えばベンゾグアナミン・ホルムアルデヒド樹脂
またはベンゾグアナミン・メラミン・ホルムアルデヒド
樹脂などのベンゾグアナミン系樹脂、もしくはポリスチ
レン樹脂に代表されるスチレン系樹脂が好適に用いられ
る。 【0010】このうちベンゾグアナミン系樹脂は、特公
昭46−9420号公報、特公昭52−27679号公
報、特開昭52−16594号公報または特開昭52−
51493号公報に開示されている方法によって製造す
ることができる。具体的には、ベンゾグアナミンもしく
はベンゾグアナミンとメラミンとからなる混合物を例え
ばホルマリンに添加してpHを5〜10に調整し、50
〜100℃の温度で反応生成物が疎水化するまで反応さ
せ、反応終了後に適当な保護コロイド溶液を反応生成物
100重量部に対して1〜30重量部の量比で撹拌下に
加えて乳化させ、次いで重合触媒の存在下に50〜10
0℃の温度で乳化状態で重合硬化させる方法により微細
かつ実質的に球状の粒子として得ることができる。 【0011】一方、スチレン系樹脂はスチレンを主体と
する重合体であるが、スチレンと少量の多官能性単量体
との共重合による架橋重合体であってもよい。スチレン
と共重合可能な単量体としては、アクリル酸エステル、
メタクリル酸エステル、不飽和カルボン酸、アクリロニ
トリル、プタジエンなどが挙げられる。共重合して架橋
重合体を形成する多官能性単量体は、例えばジビニベン
ゼン、多価アルコールのジまたはトリ(メタ)アクリル
酸エステルなどである。これらの単量体、ラジカル重合
開始剤および懸濁安定剤を添加した混合液を加熱下で撹
拌することにより微細で実質的に球状のスチレン系樹脂
粉末を得ることができる。 【0012】上記の樹脂基材は、粒子形状として実質的
に球状の粉末が用いられる。実質的に球状とは、完全な
球形のほか、楕円形のような球形に近い形状を含むこと
を意味し、好ましくはワーデルの球形度として0.5〜
1.0の範囲にある球状形態を呈する粉末が対象とな
る。ワーデルの球形度とは、粒子の球形度を(粒子の投
影面積に等しい円の直径)/(粒子の投影像に外接する
最小円の直径)で測定される指数で、この指数が1.0
に近似するほど真球体に近い粒子であることを示す。こ
の球形度が0.5未満では粉末形状が鋭利な突片を呈す
ることが多く、めっき被膜の密着性を損ねたり分散性を
減退させる原因となる。 【0013】樹脂基材の粒子性状としては、平均粒子径
が1〜30μm の範囲にあり、平均粒子径±20%範囲
の粒分容積比率が70%以上を占め、かつ平均粒子径±
20%範囲を外れた粒分のうち微細側の粒分容積比率が
10%以下のものが選択使用される。 【0014】平均粒子径を1〜30μm の範囲に限定す
る理由は、平均粒子径が1μm 未満の超微細粒子を得る
ことは実質的に困難であり、また30μm を越えると比
表面積が低下して導電性能を減退させるからである。よ
り好ましい平均粒子径の範囲は、5〜10μm である。
この平均粒子径に対し±20%の粒子径範囲における粒
分容積比率が70%を下回ると粒度分布がブロード化し
て均一な分散性を損ね、また平均粒子径±20%範囲を
外れた粒分のうち微細側の粒分容積比率が10%を越え
ると微細粒子が増加して無電解めっき工程中での凝集が
生じ易くなり、結果的にめっき層を密着性や分散性を低
下させる要因となる。より好ましい粒度分布は、平均粒
子径±20%範囲の粒分容積比率が90%以上で、平均
粒子径±20%範囲を外れた粒分のうち微細側の粒分容
積比率が1%以下である。 【0015】上記の粒子性状を備える樹脂基材には、表
面に無電解メッキ法による金属被膜が形成される。被覆
する金属は、無電解めっき操作が可能な導電性金属、例
えばAu、Ag、Co、Cu、Ni、Pd、Pt、Sn
などが対象となり、これら金属は合金であってもよく、
2種以上の複層被覆であってもよい。しかし、本発明の
目的には、金属被膜がNi被膜またはNi−Au複層被
膜であることが好ましい。Ni被膜は基材樹脂粒子と強
固に密着して耐剥離性の良好な無電解めっき層を形成す
ることができるうえ、その上面にAuを複層形成するよ
うな場合に上層のめっき被膜層との強固な結合性を確保
する中間層として有効に機能する有利性がある。また、
Ni−Au複層被膜にすると、単独被膜に比べて導電性
能を一層向上させることができる。形成する無電解めっ
き層の好ましい膜厚は、単層被膜では10〜200nm、
複層被膜では10〜300nmの範囲であるが、これに制
限されるものではない。 【0016】本発明に係る導電性無電解めっき粉体は、
実質的に球状で特定の粒子性状を備える樹脂粉末を基材
とし、該基材の表面にパラジウムイオンを捕捉させたの
ち、これを還元してパラジウムを基材面に担持させる触
媒化処理工程と、触媒化処理を施した基材の水性スラリ
ーに錯化剤を添加して十分に分散させ、ついで金属無電
解めっき液を少なくとも2液に分別添加して金属被膜を
形成する無電解めっき工程を施すことによって製造する
ことができる。また、複層被膜を形成するには、前記の
工程で金属被膜を形成した基材を対象に他の金属無電解
めっきを施し、初期金属めっき層の上面に他の金属被膜
を被膜する方法が採られている。 【0017】無電解めっき法の具体的手段は、次のよう
に行われる。まず、基材となる基材樹脂粒子の表面に触
媒捕捉能を付与する改質処理を行う。触媒捕捉能とは、
触媒化処理工程において基材表面がパラジウムイオンを
キレートまたは塩として捕捉しうる機能であり、改質化
は特開昭61−64882号公報記載の方法、すなわち
アミノ基置換オルガノシラン系カップリング剤やアミン
系硬化剤により硬化するエポキシ系樹脂を用いて行うこ
とができる。 【0018】触媒化処理工程は、改質化により触媒捕捉
能を付与した基材を塩化パラジウムの希薄な酸性水溶液
に十分に分散させて表面上にパラジウムイオンを捕捉さ
せ、ついで捕捉させたパラジウムイオンを還元処理して
基材粒子の表面にパラジウムを担持させる方法で行われ
る。この際、塩化パラジウム水溶液の濃度は、0.05
〜1g/l の範囲とし、還元剤には次亜リン酸ナトリウ
ム、水酸化ほう素ナトリウム、水素化ほう素カリウム、
ジメチルアミンボラン、ヒドラジンまたはホルマリンな
どが用いられる。還元剤の添加量は基材の粒径により異
なるが、概ね水溶液に対して0.01〜10g/l g/l の
範囲が適当である。 【0019】無電解めっき工程は、第1段として触媒化
処理を施した基材粒子を水に十分均一に分散し、分散濃
度が2〜500g/l 、好ましくは5〜300g/l の水性
スラリーを調製する。分散操作には、通常撹拌、高速撹
拌あるいはコロイドミルまたはホモジナイザーのような
剪断分散装置を用いて行うことができる。ついで水性ス
ラリーに錯化剤を添加して十分に分散させる。錯化剤と
しては、例えばクエン酸、ヒドロキシ酢酸、酒石酸、リ
ンゴ酸、乳酸、グルコン酸またはそのアルカリ金属塩や
アンモニウム塩などのカルボン酸(塩)、グリシンなど
のアミノ酸、エチレンジアミン、アルキルアミンなどの
アミン酸、その他のアンモニウム、EDTA、ピロリン
酸(塩)など、金属イオンに対し錯化作用のある化合物
の少なくとも1種が用いられる。錯化剤は通常水溶液の
状態で添加されるが、その濃度は1〜100g/l 、好ま
しくは5〜50g/l の範囲に設定する。この段階での好
ましい水性スラリーのpHは、4〜14の範囲である。 【0020】このようにして調製した水性スラリーに、
無電解めっき液として金属塩、次亜リン酸ナトリウムお
よび水酸化ナトリウムの各水溶液を、少なくとも2液に
してそれぞれ個別かつ同時に分別添加することにより無
電解めっき反応を行う。水性スラリーに無電解めっき液
を添加すると速やかにめっき反応が始まるが、その添加
量を調整することにより形成される金属被膜を所望の膜
厚に制御することができる。無電解めっき液の添加終了
後、水素ガスの発生が完全に認められなくなってから暫
く液温を保持しながら撹拌を継続して反応を完結させ
る。 【0021】上記の工程により金属被膜が濃密で連続的
薄膜として形成されるが、さらにその表面に他の金属め
っき処理を施すことにより、一層導電性能に優れる複層
被膜を形成することができる。例えばAu被膜の形成に
おいては、EDTA−4Na、クエン酸−2Naのよう
な錯化剤およびシアン化金カリウムに水酸化ナトリウム
水溶液でpHを弱酸性領域に調整した加温無電解めっき
液に、前記めっき粉末を撹拌しながら添加して分散懸濁
液としたのち、シアン化金カリウム、EDTA−4Na
およびクエン酸−2Naの混合水溶液と、水素化ほう素
カリウム、水酸化ナトリウムの混合水溶液を別個に添加
してめっき反応させる操作によって行われる。以下、同
様に常法により後処理することにより製品として回収す
る。 【0022】このようにして無電解めっき法により金属
被覆が施された導電性無電解めっき粉体は、被覆金属層
が緻密で連続性の薄膜として形成されているため、その
粒子性状は基材樹脂粒子に比べて僅かに粒径が大きくな
る程度で、粒度分布等に実質的に相違をもたらすことは
ない。 【0023】 【作用】本発明は、導電性金属を無電解めっきする基材
となる樹脂粉末として、粒子形態が実質的に球状を呈
し、平均粒子径が1〜30μm の範囲にあり、平均粒子
径±20%範囲の粒分容積比率が70%以上を占め、か
つ平均粒子径±20%範囲を外れた粒分のうち微細側の
粒分容積比率が10%以下の粒子性状を備えるものを選
択使用した点に主要な特徴がある。 【0024】このうち、実質的に球状の粒子形態は優れ
た流動性があり、個々の粒子相互が凝集化する現象を防
止するとともに均一なめっき層を形成するために有効に
機能する。平均粒子径1〜30μm の範囲は、比表面積
が大きな微細粒子として無電解めっき粉体をマトリック
スに分散複合させた際に導電性能を高めるために寄与す
る。平均粒子径±20%範囲の粒分容積比率が70%以
上を占め、かつ平均粒子径±20%範囲を外れた粒分の
うち微細側の粒分容積比率が10%以下の限定は、粒度
分布がシャープで凝集化を促進する微細粒分が相対的に
少ない粒子性状であり、無電解めっき金属の密着性を高
めると同時にめっき粉体の分散性を著しく改善する作用
を営む。このような作用が相俟って、マトリックス材料
に対して常に分散性よく配合でき、かつ高導電性能の付
与ができる無電解めっき粉体を提供することが可能とな
る。 【0025】 【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。 【0026】実施例1〜5、比較例1〜4 (1) 基材樹脂粉末;基材として、ワーデルの球形度が
0.5以上の実質的に球状の粉末であって、表1に示す
粒子性状のベンゾグアナミン・ホルムアルデヒド樹脂
(BA)、ベンゾグアナミン・メラミン・ホルムアルデ
ヒド樹脂(BMA)およびポリスチレン樹脂(PS)を
用いた。 【0027】 【表1】 〔表注〕BA;ベンゾグアナミン・ホルムアルデヒド樹脂、BMA;ベンゾグア ナミン・メラミン・ホルムアルデヒド樹脂、PS;ポリスチレン樹脂。 【0028】(2) Ni無電解めっき処理;表1の各基材
樹脂粉末10g を、コンディショナー液〔シプレイ
製、”クリーナーコンディショナー231”〕40ml/l
水溶液200mlに撹拌しながら投入し、引き続き5分間
撹拌処理して表面改質を行った。水溶液を濾過し、1回
リパルブ水洗した基材樹脂粉末を常温の1g/l 塩化第一
錫水溶液200mlに5分間浸漬し、濾過・洗浄して増感
処理を施した。ついで、0.1ml/l塩化パラジウム水溶
液および0.1ml/lの塩酸からなる触媒化液200mlに
撹拌しながら投入し、引き続き5分間撹拌処理してパラ
ジウムイオンを捕捉させた。水溶液を濾過し、1回リパ
イブ水洗した基材粉体を、常温の1g/l 次亜リン酸ナト
リウム水溶液に5分間浸漬して還元処理を施し、基材表
面にパラジウムを担持させた。基材を65℃の温度に加
温した表2に示す各錯化剤水溶液に撹拌しながら添加
し、十分に撹拌分散させて水性スラリーを調製したの
ち、表3に示すNi無電解めっき液をa液とb液に分け
て各々80mlを5ml/分の添加速度で撹拌しながら同時
に添加した。 【0029】 【表2】 【0030】 【表3】 【0031】Ni無電解めっき液の全量を添加後、水素
の発泡が停止するまで65℃の温度を保持しながら撹拌
を継続した。ついで、めっき液を濾過し、濾過物を3回
リパルブ洗浄したのち、真空乾燥機で100℃で乾燥し
てNi被膜を有する粉末を得た。めっき反応後の濾液は
いずれも無色透明であり、供しためっき液は完全にめっ
き反応に消費されたことが認められた。得られたNi無
電解めっき粒子につき、電子顕微鏡で観察したところ、
凝集粒子が殆ど存在しない独立した粒子であって、いず
れも微細なNi金属粒子による均質で平滑な被覆層を呈
する実質的に球状粒子であり、めっき被膜が濃密で連続
的被膜として形成されていることが確認された。 【0032】(3) Au無電解めっき処理;上記の工程で
得られたNi無電解めっき粒子10.0gを、EDTA
−4Na(10g/l) 、クエン酸−2Na(10g/l) およびシ
アン化金カリウム(3.0g/l 、Auとして2.1g/l)からな
る組成で水酸化ナトリウム水溶液によりpH6に調整し
た液温60℃の無電解めっき液(A液)に撹拌しながら
添加し、10分間Auめっき処理を施した。ついで、シ
アン化金カリウム(10g/l、Auとして6.8g/l) 、EDT
A−4Na(10g/l) およびクエン酸−2Na(10g/l) の
混合水溶液(B液)と、水素化ほう素カリウム(30g/l)
、水酸化ナトリウム(60g/l) の混合水溶液(C液)を
送液ポンプを通して個別かつ同時に20分間で添加し
た。この際のA液量、B液量およびC液量は、表4に示
す量比に設定した。 【0033】 【表4】 【0034】引き続き、液を濾過し、濾過物を3回リパ
ルブ洗浄した後、熱風乾燥機で100℃の温度で乾燥し
てNi被膜上にAu無電解めっき被覆処理を施し、基材
面にNi−Auの複層被膜を形成した。図1は実施例2
により得られたNi−Auの複層被膜による導電性無電
解めっき粉体(平均粒径;4.84μm)の粒子構造を示した
電子顕微鏡写真(倍率;約330 倍) であり、図2は比較
例4により得られたNi−Auの複層被膜による導電性
無電解めっき粉体(平均粒径; 9.8μm)の粒子構造を示
した電子顕微鏡写真(倍率;約330 倍) である。 【0035】(3) 物性評価;このようにして得られた導
電性無電解めっき粉体の平均粒径、Ni無電解めっき処
理後のNi被膜の膜厚および導電性、分散性、耐剥離
性、Ni−Au複層被膜の膜厚および導電性、分散性、
耐剥離性をそれぞれ測定評価し、その結果を表5および
表6に示した。なお、各物性評価は次の方法によって行
った。 【0036】めっき粉体の平均粒子径の測定;コール
ターカウンター法およびレーザー回析法により測定し
た。 めっき膜厚の算出;めっき膜厚は下式により算出し
た。 但し、r は基材粒子の半径 (μm)、t はめっき膜厚 (μ
m)、d1はめっき膜の比重、d2は基材粒子の比重である。 導電性の測定;めっき粉末1.5g を垂直に立てた内
径10mmの樹脂製円筒内に入れ、5kgの荷重をかけた状
態で上下電極間の電気抵抗を測定する方法で行った。 【0037】分散性の測定;めっき粉末0.1g を1
00mlのビーカーに入れ、トルエン50mlを加え、ミク
ロスパーテルでかき混ぜながら、1分間超音波洗浄機
〔本多電子(株)製、28kHz,100W)で処理する。処理し
たスラリーを、ミクロスパーテルで取り出し、スライド
ガラス上に直径1cmとなる程度に広げる。スライドガラ
スを金属顕微鏡(オリンパス製、500倍)の台にセッ
トし、透過光を照射してから1分後の様子を撮影する。
評価方法は、上記方法で撮影した写真20視野で平均粒
子径の縦・横方向で5倍以上の大きさでめっき粒子が凝
集している数を計測し、下記の基準で評価判定する。 5個以下…◎、 5〜10個…○、 10個以上…× 【0038】密着性の測定;めっき粉末2.2g、ジ
ルコニアビーズ90g を100mlのマヨネーズビンに入
れ、ホールピペットでトルエン10mlを加える。撹拌機
(スリーワンモーター)で10分間400rpm で10分
間撹拌する。終了後、ピペットで試料溶液を吸い上げ、
スライド上に直径約1cmになるように広げる。トルエン
が蒸発してから、分散剤を1滴たらし、スパチラで均一
に広げる。金属顕微鏡で観察し、5視野透過撮影(50
0倍)し、最もめっき層剥離の激しい視野を観察し、そ
の剥離数から下記の判定基準で評価する。 2個以下…◎、 2〜10個…○、 10個以上…× 【0039】比較例5 比較例1で作製した無電解めっき粉体を、アルミナボー
ルを入れたボールミル中で基材粒子とほぼ同等の粒子分
布を示すまで乾式粉砕を行い、粉体の性状を測定評価
し、表5および表6に併載した。 【0040】 【表5】【0041】 【表6】 【0042】表5および表6の結果から、実施例による
導電性無電解めっき粉体は本発明の要件を外れる比較例
に比べて導電性、分散性、密着性ともに優れており、特
に分散性が著しく改善されていることが認められる。 【0043】実施例6 (1) Ag無電解めっき処理;表1に示した実施例1と同
一のベンゾグアナミン・ホルムアルデヒド樹脂粉末を基
材とし、この樹脂粉末10g をコンディショナー液〔シ
プレイ製、”クリーナーコンディショナー231”〕4
0ml/l水溶液200mlに撹拌しながら投入し、引き続き
5分間撹拌処理して表面改質を行った。水溶液を濾過
し、1回リパルプ水洗した基材粉末を常温の1g/l 塩化
第一錫水溶液200mlに5分間浸漬し、濾過・洗浄して
増感処理を施した。次いで、0.1ml/l塩化パラジウム
水溶液および0.1ml/lの塩酸からなる触媒化液200
mlに撹拌しながら投入し、引き続き5分間撹拌処理して
パラジウムイオンを捕捉させた。水溶液を濾過し、1回
リパルブ水洗した基材粉末を、常温の1g/l 次亜リン酸
ナトリウム水溶液に5分間浸漬して還元処理を施し、基
材表面にパラジウムを担持させた。次いで、水酸化ナト
リウムおよびシアン化ナトリウム各4g/l を含む液を8
0℃に加温した液中に分散させ、実施例1と同様にして
表7に示すAg無電解めっき液をa液とb液に分けて各
々80mlを5ml/分の添加速度で撹拌しながら同時に添
加した。 【0044】 【表7】 【0045】Ag無電解めっき液の全量を添加したの
ち、水素の発泡が停止するまで65℃の温度を保持しな
がら撹拌を継続した。ついで、めっき液を濾過し、濾過
物を3回リパルプ洗浄し、真空乾燥機で100℃で乾燥
してAg被膜を有する粉末を得た。めっき反応後の濾液
はいずれも無色透明であり、供しためっき液は完全にめ
っき反応に消費されたことが認められた。得られたAg
無電解めっき粒子につき、電子顕微鏡で観察したとこ
ろ、いずれも微細なAg金属粒子による均質で平滑な被
覆層を呈する球状粒子であり、めっき被膜が濃密で実質
的に連続被膜として形成されていることが確認された。 【0046】(2) Au無電解めっき処理;上記(1) の工
程で得られたAg無電解銀めっき処理粉体に対し、実施
例1と同一操作で無電解Auめっき処理を行った。 【0047】このようにして得られたAg−Au複層被
膜を有する導電性無電解めっき粉体を実施例1と同様に
して各種の物性を評価し、その結果を表8に示した。 【0048】実施例7 基材樹脂粉末を実施例2と同一のベンゾグアナミン・ホ
ルムアルデヒド樹脂に代え、その他は実施例6と同一の
操作によりAg−Au複層被膜を有する導電性無電解め
っき粉体を作製した。この導電性無電解めっき粉体を実
施例1と同様にして各種の物性を評価し、その結果を表
8に併載した。 【0049】比較例6 基材として、平均粒子径9.6μm 、平均粒子径±20
%範囲の粒分容積比率が44.7%、平均粒子径±20
%範囲を外れた粒分のうち微細側の粒分容積比率が2
5.6%の実質的に球状のベンゾグアナミン・メラミン
・ホルムアルデヒド樹脂粉末を用い、実施例6と同一の
操作によりAg−Au複層被膜を有する導電性無電解め
っき粉体を作製した。この導電性無電解めっき粉体を実
施例1と同様にして各種の物性を評価し、その結果を表
8に併載した。 【0050】 【表8】 【0051】 【発明の効果】以上のとおり、本発明によれば基材とし
て実質的に球状であって、粒度分布がシャープな特定範
囲の微粒子樹脂粉末を用いて表面に無電解金属めっき層
を被覆することにより、緻密で連続的なめっき層が密着
性よく被着し、かつ複合マトリックス材料に対する分散
性に優れる導電性無電解めっき粉体を提供することが可
能となる。したがって、例えば液晶ディスプレーパネル
用の精密導電材のような高度の導電性能が要求される用
途に極めて有用である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroless plating powder capable of imparting excellent dispersibility and high conductivity when blended in various matrix materials. In particular, the present invention relates to a conductive electroless plating powder suitable for the purpose of electrically connecting minute parts of electronic devices by being composited with a plastic material. [0002] Plastic materials provided with conductivity are:
It is widely used as a member for preventing static electricity, absorbing radio waves or shielding electromagnetic waves of electronic devices and components thereof. As a method for imparting conductivity to plastic materials, means for dispersing and complexing a fine powdered conductive filler in a matrix resin component has been conventionally used as a main technique, and an electroless plating powder is used as a conductive filler. It is also known (Japanese Unexamined Patent Publication Nos. 59-188291, 60-181294, and
-242782 gazette). In addition, a conductive filler in which a base material is plated with a metal using a benzoguanamine-based resin (Japanese Patent Laid-Open No.
-49632) and a conductive filler obtained by plating a metal with a styrenic resin as a base material (Japanese Patent Laid-Open No. 60-12603).
Etc. have also been proposed. However, in the conductive plating powder obtained by the conventional technique, the base particles agglomerate during the electroless plating step, and as the thickness of the metal plating layer increases, the agglomeration becomes large and strong, and the dispersibility is impaired. There are difficulties. Since the dispersibility of the conductive powder has a significant effect on the conductive performance when mixed with plastic materials, plating powder should expect reproducible high conductive performance as long as this dispersive phenomenon is not eliminated. Can not. [0004] Recently, a minute part of electronic equipment such as a connection between an electrode of a liquid crystal display panel and a circuit board of a driving LSI chip and a connection between electrode terminals of a fine pitch have been developed. Plastic materials with conductivity added to conductive materials for electrical connection are used, but for these purposes, particularly high and reproducible conductive performance is required, and more dispersibility is required. Development of improved conductive fillers is awaited. Since it is effective to adjust the particle size range in order to enhance the dispersibility of the electroless electroless plating powder, it has been practiced to adjust the particle size to a certain level by sieving or grinding. However, it is difficult to completely remove the agglomerates generated in the manufacturing process even if a high-precision classification treatment is performed, and if the pulverization treatment is performed, the metal coating on the particle surface is destroyed, and the conductive performance is reduced. . Therefore, in order to obtain an electroless plating powder exhibiting excellent conductive performance, it is necessary to ensure good dispersibility and adhesion by examining the particle properties of the resin powder as a plating base material. The inventors of the present invention have conducted various studies on the particle properties of the resin powder serving as the plating base material from this viewpoint. As a result, a resin having a substantially spherical shape and a specific range of particle properties was used as the base material. If selected, and this surface is coated with metal by electroless plating, a plating film with excellent adhesion will be formed, and the dispersibility of the target matrix component will be effectively improved, and a high level of conductive performance will always be obtained. Clarified the facts to be granted. [0007] The present invention has been developed based on the above-mentioned findings, and it is an object of the present invention to provide a high-quality conductive material capable of always providing excellent dispersibility and high conductive performance to a matrix component. An object of the present invention is to provide an electroless plating powder. The electroless electroless plating powder according to the present invention for achieving the above object is substantially spherical particles, and has an average particle diameter of 1 to 30 μm. In the above, the particle ratio in the range of the average particle diameter of ± 20% occupies 90 % or more, and the particle ratio of the fine side of the particles out of the range of the average particle diameter ± 20% is 1 % or less. Ben prepared
Zoguanamine-based resin powder is used as a base material, and the surface of the base material is touched.
The configuration is characterized in that a metal film having a thickness of 10 to 200 nm is formed by an electroless plating method including a step of complexing the base material particles subjected to the solvation treatment . In the present invention, there is no particular restriction on the type of resin used as the electroless plating substrate. Examples of usable resins include polyolefins such as polyethylene, polyvinyl chloride, polypropylene, polystyrene and polyisobutylene, olefin copolymers such as styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene terpolymer, polyacrylate, polymethyl methacrylate, and polyolefin. Acrylic acid derivative such as acrylamide, polyvinyl acetate, polyvinyl compound such as polyvinyl alcohol, polyacetal, polyethylene glycol, polypropylene glycol, ether polymer such as epoxy resin, benzoguanamine, urea, thiourea, melamine, acetoguanamine, dicyanamide, aniline, etc. Amino compounds and like formaldehyde, paraformaldehyde, acetaldehyde, glyoxal Amino resin consisting of aldehyde, polyurethane, polyester, fluorine-containing resin, and nitrile resin. However, among these, a benzoguanamine resin such as a benzoguanamine-formaldehyde resin or a benzoguanamine-melamine-formaldehyde resin, or a styrene resin represented by a polystyrene resin is preferably used. Of these, benzoguanamine resins are disclosed in JP-B-46-9420, JP-B-52-27679, JP-A-52-16594 or JP-A-52-16594.
It can be produced by the method disclosed in JP-A-51493. Specifically, benzoguanamine or a mixture of benzoguanamine and melamine is added to, for example, formalin to adjust the pH to 5 to 10,
The reaction is carried out at a temperature of ~ 100 ° C until the reaction product becomes hydrophobic, and after the reaction is completed, an appropriate protective colloid solution is added under stirring at a ratio of 1 to 30 parts by weight to 100 parts by weight of the reaction product to emulsify. And then 50 to 10 in the presence of a polymerization catalyst.
Fine and substantially spherical particles can be obtained by a method of polymerizing and curing in an emulsified state at a temperature of 0 ° C. On the other hand, the styrene resin is a polymer mainly composed of styrene, but may be a crosslinked polymer obtained by copolymerizing styrene with a small amount of a polyfunctional monomer. As monomers copolymerizable with styrene, acrylic acid esters,
Examples include methacrylic acid esters, unsaturated carboxylic acids, acrylonitrile, and butadiene. The polyfunctional monomer that forms a crosslinked polymer by copolymerization is, for example, divinylbenzene, a di- or tri (meth) acrylate of a polyhydric alcohol, or the like. By stirring the mixture containing these monomers, the radical polymerization initiator and the suspension stabilizer under heating, a fine and substantially spherical styrene resin powder can be obtained. As the resin substrate, a powder having a substantially spherical particle shape is used. The term “substantially spherical” means that in addition to a perfect spherical shape, a shape close to a spherical shape such as an elliptical shape is included.
Powders exhibiting a spherical morphology in the range of 1.0 are of interest. The Wardel sphericity is an index obtained by measuring the sphericity of a particle by (diameter of a circle equal to the projected area of the particle) / (diameter of the smallest circle circumscribing the projected image of the particle).
Indicates that the particle is closer to a sphere as it approaches. If the sphericity is less than 0.5, the shape of the powder often exhibits sharp protruding pieces, which causes the adhesion of the plating film to be impaired or the dispersibility to be reduced. The particle properties of the resin base material are such that the average particle diameter is in the range of 1 to 30 μm, the average particle diameter is within ± 20%, the particle volume ratio occupies 70% or more, and the average particle diameter is ± 30%.
Of the particles out of the 20% range, those having a particle volume ratio on the fine side of 10% or less are selectively used. The reason for limiting the average particle diameter to the range of 1 to 30 μm is that it is substantially difficult to obtain ultrafine particles having an average particle diameter of less than 1 μm, and if it exceeds 30 μm, the specific surface area decreases. This is because the conductive performance is reduced. A more preferable range of the average particle size is 5 to 10 μm.
If the particle volume ratio in the particle diameter range of ± 20% with respect to the average particle diameter is less than 70%, the particle size distribution becomes broad, impairs uniform dispersibility, and the particle diameter out of the average particle diameter ± 20% range. When the particle volume ratio on the fine side exceeds 10%, the number of fine particles increases and aggregation in the electroless plating step easily occurs, and as a result, factors that lower the adhesion and dispersibility of the plating layer are considered. Become. More preferred particle size distribution is such that the particle volume ratio in the average particle diameter ± 20% range is 90% or more, and the particle volume ratio on the fine side is 1% or less among the particles outside the average particle diameter ± 20% range. is there. A metal film is formed on the surface of the resin substrate having the above-mentioned particle properties by electroless plating. The metal to be coated is a conductive metal capable of performing an electroless plating operation, for example, Au, Ag, Co, Cu, Ni, Pd, Pt, and Sn.
And the like, and these metals may be alloys,
Two or more multi-layer coatings may be used. However, for the purposes of the present invention, it is preferred that the metal coating is a Ni coating or a Ni-Au multilayer coating. The Ni coating can firmly adhere to the base resin particles to form an electroless plating layer having good peeling resistance, and when an Au multilayer is formed on the upper surface thereof, the Ni coating can be used as an upper plating coating layer. Has the advantage of effectively functioning as an intermediate layer that secures strong bonding properties. Also,
When the Ni—Au multilayer film is used, the conductive performance can be further improved as compared with a single film. The preferred thickness of the electroless plating layer to be formed is 10 to 200 nm for a single-layer film,
In the case of a multilayer coating, the thickness is in the range of 10 to 300 nm, but is not limited thereto. The conductive electroless plating powder according to the present invention comprises:
A base material is a resin powder having specific particle properties in a substantially spherical form, and after capturing palladium ions on the surface of the base material, a catalytic treatment step of reducing this and supporting palladium on the base material surface, An electroless plating step of adding a complexing agent to the aqueous slurry of the catalyzed substrate and dispersing it sufficiently, and then separately adding at least two metal electroless plating solutions to form a metal film. It can be manufactured by applying. Further, in order to form a multi-layer coating, a method in which another metal electroless plating is performed on the substrate on which the metal coating is formed in the above-described step, and another metal coating is coated on the upper surface of the initial metal plating layer. Has been adopted. The specific means of the electroless plating method is performed as follows. First, a modification treatment for imparting a catalyst capturing ability to the surface of the base resin particles serving as the base is performed. What is catalyst capture ability?
In the catalyzing treatment step, the surface of the substrate has a function of capturing palladium ions as a chelate or a salt, and the modification is performed by the method described in JP-A-61-64882, that is, an amino-substituted organosilane-based coupling agent or the like. It can be performed using an epoxy resin that is cured by an amine curing agent. In the catalyzing treatment step, the substrate provided with the catalyst-capturing ability by the reforming is sufficiently dispersed in a dilute acidic aqueous solution of palladium chloride to capture palladium ions on the surface, and then the captured palladium ions. Is carried out by a reduction treatment so that palladium is supported on the surfaces of the base particles. At this time, the concentration of the aqueous palladium chloride solution was 0.05
To 1 g / l, with sodium hypophosphite, sodium borohydride, potassium borohydride,
Dimethylamine borane, hydrazine or formalin is used. The amount of the reducing agent to be added varies depending on the particle size of the base material, but is preferably in the range of 0.01 to 10 g / lg / l with respect to the aqueous solution. In the electroless plating step, as a first step, the base particles subjected to the catalyzing treatment are dispersed sufficiently uniformly in water, and an aqueous slurry having a dispersion concentration of 2 to 500 g / l, preferably 5 to 300 g / l. Is prepared. The dispersing operation can be usually performed by stirring, high-speed stirring, or a shearing dispersing device such as a colloid mill or a homogenizer. Next, a complexing agent is added to the aqueous slurry to sufficiently disperse it. Examples of complexing agents include carboxylic acids (salts) such as citric acid, hydroxyacetic acid, tartaric acid, malic acid, lactic acid, gluconic acid or alkali metal salts and ammonium salts thereof, amino acids such as glycine, and amines such as ethylenediamine and alkylamine. At least one compound having a complexing effect on metal ions, such as an acid, other ammonium, EDTA, and pyrophosphate (salt) is used. The complexing agent is usually added in the form of an aqueous solution, and its concentration is set in the range of 1 to 100 g / l, preferably 5 to 50 g / l. The preferred pH of the aqueous slurry at this stage is in the range of 4-14. The aqueous slurry thus prepared is
The electroless plating reaction is performed by separately and simultaneously adding at least two aqueous solutions of a metal salt, sodium hypophosphite, and sodium hydroxide as the electroless plating solution, respectively. The plating reaction starts immediately when the electroless plating solution is added to the aqueous slurry, but the metal film formed can be controlled to a desired film thickness by adjusting the addition amount. After the completion of the addition of the electroless plating solution, the generation of hydrogen gas is completely stopped, and the stirring is continued while maintaining the solution temperature for a while to complete the reaction. Although the metal film is formed as a dense and continuous thin film by the above-described steps, a multi-layer film having more excellent conductivity can be formed by further performing another metal plating treatment on the surface. For example, in the formation of an Au film, a heating agent and an electroless plating solution in which the pH is adjusted to a weakly acidic region with a complexing agent such as EDTA-4Na and citric acid-2Na and potassium hydroxide cyanide with an aqueous solution of sodium hydroxide are used. After adding the plating powder with stirring to form a dispersion suspension, potassium potassium cyanide, EDTA-4Na
And a mixed aqueous solution of citric acid-2Na and a mixed aqueous solution of potassium borohydride and sodium hydroxide are separately added to perform a plating reaction. Hereinafter, the product is similarly recovered by post-processing by a conventional method. The conductive electroless plating powder coated with metal by the electroless plating method in this manner has a coated metal layer formed as a dense and continuous thin film. The particle size is slightly larger than that of the resin particles, and does not substantially change the particle size distribution or the like. According to the present invention, the resin powder serving as a base material for electroless plating of a conductive metal has a substantially spherical particle form, an average particle diameter in the range of 1 to 30 μm, and an average particle diameter of 1 to 30 μm. Particles having a particle volume ratio in the range of diameter ± 20% occupying 70% or more and having a particle property in which the particle volume ratio on the fine side is 10% or less among the particles outside the average particle diameter ± 20% range. There is a key feature in the selection and use. Among them, the substantially spherical particle form has excellent fluidity, and effectively functions to prevent a phenomenon in which individual particles agglomerate and to form a uniform plating layer. The average particle diameter in the range of 1 to 30 μm contributes to enhancing the conductive performance when the electroless plating powder is dispersed and composited in a matrix as fine particles having a large specific surface area. The particle volume ratio in the range of the average particle diameter of ± 20% occupies 70% or more, and the particle volume ratio on the fine side of the particles out of the range of the average particle diameter ± 20% is 10% or less. It has a particle distribution with a sharp distribution and a relatively small amount of fine particles that promote agglomeration, and has an effect of increasing the adhesion of the electroless plated metal and at the same time remarkably improving the dispersibility of the plating powder. Together with such actions, it is possible to provide an electroless plating powder that can always be blended with a matrix material with good dispersibility and that can impart high conductivity. EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples. Examples 1 to 5 and Comparative Examples 1 to 4 (1) Base resin powder; a substantially spherical powder having a Wardel sphericity of 0.5 or more as a base, as shown in Table 1. A benzoguanamine-formaldehyde resin (BA), a benzoguanamine-melamine-formaldehyde resin (BMA) and a polystyrene resin (PS) having particle properties were used. [Table 1] [Table Note] BA: benzoguanamine / formaldehyde resin, BMA: benzoguanamine / melamine / formaldehyde resin, PS: polystyrene resin. (2) Ni electroless plating treatment: 10 g of each base resin powder shown in Table 1 was added to a conditioner liquid [manufactured by Shipley, "Cleaner Conditioner 231"] at 40 ml / l.
The solution was added to 200 ml of an aqueous solution with stirring, and then the surface was modified by stirring for 5 minutes. The aqueous solution was filtered, and the base resin powder washed once with reparable water was immersed in 200 ml of a 1 g / l stannous chloride aqueous solution at room temperature for 5 minutes, filtered, washed, and sensitized. Then, the mixture was charged with stirring into 200 ml of a catalyzed liquid comprising a 0.1 ml / l aqueous solution of palladium chloride and 0.1 ml / l of hydrochloric acid, followed by stirring for 5 minutes to capture palladium ions. The aqueous solution was filtered, and the substrate powder washed once with water was immersed in a 1 g / l aqueous solution of sodium hypophosphite at room temperature for 5 minutes to perform a reduction treatment, whereby palladium was supported on the surface of the substrate. The base was heated to a temperature of 65 ° C. and added to each of the complexing agent aqueous solutions shown in Table 2 with stirring, and sufficiently stirred and dispersed to prepare an aqueous slurry. Then, the Ni electroless plating solution shown in Table 3 was prepared. 80 ml of each of the liquid a and the liquid b was added simultaneously with stirring at an addition rate of 5 ml / min. [Table 2] [Table 3] After the total amount of the Ni electroless plating solution was added, stirring was continued while maintaining the temperature at 65 ° C. until the bubbling of hydrogen stopped. Then, the plating solution was filtered, and the filtrate was washed three times in a re-pulverized manner, and then dried at 100 ° C. with a vacuum drier to obtain a powder having a Ni film. All the filtrates after the plating reaction were colorless and transparent, and it was confirmed that the provided plating solution was completely consumed in the plating reaction. When the obtained Ni electroless plated particles were observed with an electron microscope,
Independent particles having almost no agglomerated particles, all substantially spherical particles exhibiting a uniform and smooth coating layer of fine Ni metal particles, and the plating film is formed as a dense and continuous film. It was confirmed that. (3) Au electroless plating treatment: 10.0 g of the Ni electroless plating particles obtained in
-4Na (10 g / l), citric acid-2Na (10 g / l) and potassium gold cyanide (3.0 g / l, 2.1 g / l as Au), adjusted to pH 6 with aqueous sodium hydroxide solution It was added to an electroless plating solution (solution A) at 60 ° C. while stirring, and subjected to Au plating for 10 minutes. Then, potassium potassium cyanide (10 g / l, 6.8 g / l as Au), EDT
A-4Na (10 g / l) and citric acid-2Na (10 g / l) mixed aqueous solution (solution B) and potassium borohydride (30 g / l)
Then, a mixed aqueous solution (solution C) of sodium hydroxide (60 g / l) was added separately and simultaneously over 20 minutes through a liquid sending pump. At this time, the liquid A amount, the liquid B amount, and the liquid C amount were set to the ratios shown in Table 4. [Table 4] Subsequently, the solution was filtered, and the filtrate was washed three times with a rebuilt filter, dried at a temperature of 100 ° C. with a hot air drier, and subjected to an Au electroless plating coating process on the Ni film, and the Ni surface was coated with Ni. -A multilayer coating of Au was formed. FIG. 1 shows a second embodiment.
FIG. 2 is an electron micrograph (magnification: about 330 times) showing the particle structure of a conductive electroless plating powder (average particle size: 4.84 μm) formed by a multilayer coating of Ni—Au obtained by the method of FIG. 5 is an electron micrograph (magnification: about 330 times) showing the particle structure of a conductive electroless plating powder (average particle size: 9.8 μm) formed by a Ni—Au multilayer film obtained in Example 4. (3) Evaluation of physical properties; average particle size of conductive electroless plating powder obtained in this way, film thickness of Ni film after Ni electroless plating treatment, conductivity, dispersibility, and peeling resistance , Ni—Au multilayer coating film thickness and conductivity, dispersibility,
The peel resistance was measured and evaluated, and the results are shown in Tables 5 and 6. In addition, each physical property evaluation was performed by the following method. Measurement of average particle diameter of plating powder; measured by Coulter counter method and laser diffraction method. Calculation of plating film thickness: The plating film thickness was calculated by the following equation. Where r is the radius of the base particles (μm) and t is the plating film thickness (μm).
m), d 1 is the specific gravity of the plating film, d 2 is the specific gravity of the base particle. Conductivity measurement: A method of measuring the electric resistance between the upper and lower electrodes under a state in which 1.5 g of the plating powder was placed in a vertically-standing resin cylinder having an inner diameter of 10 mm and a load of 5 kg was applied. Measurement of dispersibility: 0.1 g of plating powder was added to 1
Place in a 00 ml beaker, add 50 ml of toluene, and treat with an ultrasonic cleaner (Honda Electronics Co., Ltd., 28 kHz, 100 W) for 1 minute while stirring with a microspatula. The treated slurry is taken out with a microspatula and spread on a slide glass to a diameter of 1 cm. The slide glass is set on a stage of a metal microscope (manufactured by Olympus, 500 times), and a state one minute after irradiation with transmitted light is photographed.
In the evaluation method, the number of agglomerated plating particles in a size of 5 times or more in the vertical and horizontal directions of the average particle diameter in a visual field of 20 photographs taken by the above method is measured, and the evaluation is determined based on the following criteria. 5 or less: ◎, 5 to 10: 、, 10 or more: × Adhesion measurement: 2.2 g of plating powder and 90 g of zirconia beads were placed in a 100 ml mayonnaise bottle, and 10 ml of toluene was added with a whole pipette. . Stir at 400 rpm for 10 minutes with a stirrer (three one motor). After completion, aspirate the sample solution with a pipette,
Spread on a slide to a diameter of about 1 cm. After the toluene evaporates, add a drop of the dispersant and spread it evenly with a spatula. Observation with a metallurgical microscope, 5 field transmission photography (50
0), and observe the field of view where the plating layer is most severely peeled off, and evaluate from the number of peelings according to the following criteria. 2 or less: ◎, 2 to 10: 、, 10 or more: × Comparative Example 5 The electroless plating powder prepared in Comparative Example 1 was substantially mixed with the base particles in a ball mill containing alumina balls. Dry pulverization was performed until an equivalent particle distribution was obtained, and the properties of the powder were measured and evaluated. [Table 5] [Table 6] From the results shown in Tables 5 and 6, the electroless electroless plating powders of the examples are more excellent in conductivity, dispersibility and adhesion than the comparative examples which do not satisfy the requirements of the present invention. Is remarkably improved. Example 6 (1) Ag electroless plating treatment: The same benzoguanamine / formaldehyde resin powder as used in Example 1 shown in Table 1 was used as a base material, and 10 g of this resin powder was used as a conditioner solution [manufactured by Shipley, "Cleaner Conditioner". 231 "] 4
The solution was added to 200 ml of a 0 ml / l aqueous solution with stirring, followed by stirring for 5 minutes for surface modification. The aqueous solution was filtered, and the substrate powder washed once with repulped water was immersed in 200 ml of a 1 g / l aqueous solution of stannous chloride at room temperature for 5 minutes, filtered, washed and sensitized. Next, a catalyzed liquid 200 consisting of 0.1 ml / l aqueous palladium chloride and 0.1 ml / l hydrochloric acid was used.
Then, the mixture was charged into the ml with stirring, and subsequently stirred for 5 minutes to capture palladium ions. The aqueous solution was filtered, and the substrate powder washed once with reparable water was immersed in a 1 g / l aqueous solution of sodium hypophosphite at room temperature for 5 minutes to perform a reduction treatment, whereby palladium was carried on the surface of the substrate. Next, a solution containing 4 g / l each of sodium hydroxide and sodium cyanide was added to 8
Dispersed in a solution heated to 0 ° C., and in the same manner as in Example 1, the Ag electroless plating solution shown in Table 7 was divided into solution a and solution b, and 80 ml of each was stirred at an addition rate of 5 ml / min. Added at the same time. [Table 7] After the total amount of the Ag electroless plating solution was added, stirring was continued while maintaining the temperature at 65 ° C. until hydrogen bubbling stopped. Then, the plating solution was filtered, and the filtrate was washed three times by repulping, and dried at 100 ° C. with a vacuum dryer to obtain a powder having an Ag film. All the filtrates after the plating reaction were colorless and transparent, and it was confirmed that the provided plating solution was completely consumed in the plating reaction. Ag obtained
Observation of the electroless plated particles with an electron microscope shows that each of the particles is a spherical particle exhibiting a uniform and smooth coating layer of fine Ag metal particles, and the plating film is formed as a dense and substantially continuous film. Was confirmed. (2) Au electroless plating treatment: The Ag electroless silver plating powder obtained in the above step (1) was subjected to electroless Au plating treatment in the same manner as in Example 1. The thus obtained conductive electroless plating powder having the Ag-Au multilayer coating was evaluated for various physical properties in the same manner as in Example 1, and the results are shown in Table 8. Example 7 A conductive electroless plating powder having an Ag-Au multilayer coating was obtained by the same operation as in Example 6 except that the base resin powder was changed to the same benzoguanamine / formaldehyde resin as in Example 2. Produced. Various properties of this conductive electroless plating powder were evaluated in the same manner as in Example 1, and the results are shown in Table 8. Comparative Example 6 As a substrate, an average particle diameter was 9.6 μm, and an average particle diameter was ± 20.
% Particle volume ratio in the range of 44.7%, average particle diameter ± 20
% Of the fine particles out of the% range is 2
Using 5.6% of a substantially spherical benzoguanamine / melamine / formaldehyde resin powder, a conductive electroless plating powder having an Ag-Au multilayer coating was produced in the same manner as in Example 6. Various properties of this conductive electroless plating powder were evaluated in the same manner as in Example 1, and the results are shown in Table 8. [Table 8] As described above, according to the present invention, an electroless metal plating layer is formed on the surface by using a particulate resin powder of a specific range which is substantially spherical and has a sharp particle size distribution as a substrate. By coating, it becomes possible to provide a conductive electroless plating powder in which a dense and continuous plating layer is adhered with good adhesion and which has excellent dispersibility in a composite matrix material. Therefore, it is extremely useful for applications requiring high conductive performance, such as precision conductive materials for liquid crystal display panels.

【図面の簡単な説明】 【図1】実施例2により得られたNi−Auの複層被膜
による導電性無電解めっき粉体(平均粒径;4.84μm)の
粒子構造を示した電子顕微鏡写真(倍率;約330 倍) で
ある。 【図2】比較例4により得られたNi−Auの複層被膜
による導電性無電解めっき粉体(平均粒径; 9.8μm)の
粒子構造を示した電子顕微鏡写真(倍率;約330 倍) で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an electron micrograph showing the particle structure of a conductive electroless plating powder (average particle size: 4.84 μm) with a Ni—Au multilayer coating obtained in Example 2. (Magnification: about 330 times). FIG. 2 is an electron micrograph (magnification: about 330 times) showing the particle structure of a conductive electroless plated powder (average particle size: 9.8 μm) obtained by a multilayer coating of Ni—Au obtained in Comparative Example 4. It is.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−33808(JP,A) 特開 平7−118866(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 18/16 C08J 3/12 C23C 18/31 H01B 1/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-33808 (JP, A) JP-A-7-118866 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 18/16 C08J 3/12 C23C 18/31 H01B 1/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 実質的に球状粒子であって、平均粒子径
が1〜30μm の範囲にあり、平均粒子径±20%範囲
の粒分容積比率が90%以上を占め、かつ平均粒子径±
20%範囲を外れた粒分のうち微細側の粒分容積比率が
1%以下の粒子性状を備えるベンゾグアナミン系樹脂粉
末を基材とし、該基材表面に、触媒化処理を施した基材
粒子を錯化処理する工程を含む無電解めっき法により、
膜厚10〜200nmの金属被膜を形成してなることを
特徴とする導電性無電解めっき粉末
(57) [Claims 1] Substantially spherical particles having an average particle diameter in a range of 1 to 30 µm, and a particle volume ratio in an average particle diameter ± 20% range of 90%. Occupy the above and average particle diameter ±
Substrate particles obtained by subjecting a benzoguanamine-based resin powder having a particle property of having a particle volume ratio on the fine side of 1% or less to a base material to the base material surface and subjecting the surface of the base material to catalysis treatment, out of the 20% range By the electroless plating method including the step of complexing
A conductive electroless plating powder comprising a metal film having a thickness of 10 to 200 nm .
JP14130095A 1995-05-16 1995-05-16 Conductive electroless plating powder Expired - Lifetime JP3436327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14130095A JP3436327B2 (en) 1995-05-16 1995-05-16 Conductive electroless plating powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14130095A JP3436327B2 (en) 1995-05-16 1995-05-16 Conductive electroless plating powder

Publications (2)

Publication Number Publication Date
JPH08311655A JPH08311655A (en) 1996-11-26
JP3436327B2 true JP3436327B2 (en) 2003-08-11

Family

ID=15288684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14130095A Expired - Lifetime JP3436327B2 (en) 1995-05-16 1995-05-16 Conductive electroless plating powder

Country Status (1)

Country Link
JP (1) JP3436327B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9822822D0 (en) * 1998-10-19 1998-12-16 Dyno Particles As Particles
JP4662699B2 (en) * 2003-07-03 2011-03-30 大阪府 Polymer fine particles having metal film and method for producing the same
CN1981348A (en) 2004-07-15 2007-06-13 积水化学工业株式会社 Conductive microparticle, process for producing the same, and anisotropic conductive material
EP1768132A1 (en) * 2004-07-15 2007-03-28 Sekisui Chemical Co., Ltd. Conductive microparticle, process for producing the same and anisotropic conductive material
KR100720895B1 (en) 2005-07-05 2007-05-22 제일모직주식회사 Conductive particle having a density-gradient in the complex plating layer and Preparation of the same and Conductive adhesives using the same
TW200729236A (en) * 2005-12-22 2007-08-01 Sekisui Chemical Co Ltd Conductive fine particle and anisotropic conductive material
JP4849930B2 (en) * 2006-03-28 2012-01-11 日本化学工業株式会社 Conductive electroless plating powder and method for producing the same
EP2211354B1 (en) 2007-10-22 2020-12-16 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
US8124232B2 (en) 2007-10-22 2012-02-28 Nippon Chemical Industrial Co., Ltd. Coated conductive powder and conductive adhesive using the same
KR20130057459A (en) 2010-08-20 2013-05-31 미쓰비시 마테리알 가부시키가이샤 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP5583611B2 (en) * 2011-01-27 2014-09-03 株式会社日本触媒 Conductive fine particles
JP6004680B2 (en) * 2012-03-12 2016-10-12 住友ゴム工業株式会社 Rubber composition for tire and tire
KR102383625B1 (en) 2013-12-20 2022-04-05 미쓰비시마테리알덴시카세이가부시키가이샤 Silver-coated conductive particles, conductive paste and conductive film
JP6429228B2 (en) 2014-04-24 2018-11-28 タツタ電線株式会社 Metal-coated resin particles and conductive adhesive using the same
JP6665514B2 (en) 2015-01-28 2020-03-13 三菱マテリアル株式会社 Method for producing silver-coated particles
FR3042305B1 (en) * 2015-10-13 2019-07-26 Arkema France METHOD FOR MANUFACTURING CONDUCTIVE COMPOSITE MATERIAL AND COMPOSITE MATERIAL THUS OBTAINED
JP2019128585A (en) * 2018-01-24 2019-08-01 株式会社リコー Intermediate transfer body and image forming apparatus

Also Published As

Publication number Publication date
JPH08311655A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
JP3436327B2 (en) Conductive electroless plating powder
JP4387175B2 (en) Coated conductive particles, anisotropic conductive material, and conductive connection structure
CN101996696B (en) Conductive fine particles and anisotropic conductive material
JP4920698B2 (en) Conductive particles for anisotropic conductive connection
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4822377B2 (en) particle
WO2000051138A1 (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
KR100732787B1 (en) Method for preparing electroconductive particles with improved dispersion and adherence
JP7280880B2 (en) Conductive particles, conductive materials and connecting structures
JPH03112011A (en) Anisotropic conductive material, anisotropic adhesive, electrically connecting method of the adhesive applied electrode, and electric circuit substrate formed thereby
JP6668075B2 (en) Conductive particles, conductive material and connection structure
JP2009259804A (en) Coated conductive particulate, anisotropic conductive material, and conductive connection structure
JP2020194794A (en) Conductive particle, conductive material, and connection structure
JP2017069191A (en) Conductive particle, conductive material and connection structure
KR20150096704A (en) Method of applying a conductive adhesive
CN102977395B (en) Preparation method of conductive material-made composite microsphere
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
TW201841170A (en) Conductive particles, conductive material, and connection structure
JP2012243582A (en) Conductive fine particle and method for producing the same
JP2019207889A (en) Conductive particles and use thereof
JPH0689069B2 (en) Conductive microsphere
WO2021246523A1 (en) Conductive parti cles, conductive material, and connection structure
JP2022051742A (en) Conductive particle, conductive material and connection structure
JP4739999B2 (en) Method for manufacturing anisotropic conductive material and anisotropic conductive material
JP6397552B2 (en) Conductive fine particles and anisotropic conductive material using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term