JP4864195B2 - Coated copper powder - Google Patents

Coated copper powder Download PDF

Info

Publication number
JP4864195B2
JP4864195B2 JP2000260964A JP2000260964A JP4864195B2 JP 4864195 B2 JP4864195 B2 JP 4864195B2 JP 2000260964 A JP2000260964 A JP 2000260964A JP 2000260964 A JP2000260964 A JP 2000260964A JP 4864195 B2 JP4864195 B2 JP 4864195B2
Authority
JP
Japan
Prior art keywords
copper powder
coated copper
nickel alloy
mass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000260964A
Other languages
Japanese (ja)
Other versions
JP2002075057A (en
Inventor
貴彦 坂上
央存 坂上
尚男 林
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000260964A priority Critical patent/JP4864195B2/en
Publication of JP2002075057A publication Critical patent/JP2002075057A/en
Application granted granted Critical
Publication of JP4864195B2 publication Critical patent/JP4864195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は銅粒子の表面上にニッケル合金からなる中間被覆層及び銀からなる表面被覆層を有する被覆銅粒子からなる被覆銅粉に関し、特に、少量の添加で目的の導電性を得ることができ且つ導電性についての耐熱性を有するので、電磁波シールドや導電ペーストに用いるのに適している該被覆銅粉に関する。
【0002】
【従来の技術】
コンピューターをはじめとする電子機器類においては、外部からの電磁波による影響を受けて誤作動が生じる問題がクローズアップされており、それで電磁波シールドを目的としたコンピュータの外装部における導電性向上手段について開発が進んでいる。この外装部の導電性向上の手段としては、電子機器類の軽量化の為に用いられている有機樹脂に導電性物質をフィラーとして添加する方法や、導電性物質を塗料化して外装部に塗布する方法等が一般的である。
【0003】
この導電性物質に求められる重要な特性は当然のことながら導電性が高いことであり、コスト面も考え合わせると導電性物質として金属粉、特に金属超微粉が好ましく、中でも銀超微粉は耐酸化性にも優れている為、汎用されている。しかし、銀は金属粉の中でも高価な物質であるので、更なるコスト低減を目標として代替材料が求められている。
【0004】
この要求にこたえる代替材料は銀の上記の特徴を損なわないものであることが重要であり、そのような代替材料の例として、特公平7−97717号公報に記載の発明である「Cu粒子の核の表面に下から順に、Cu重量に対して、0.01〜0.2%のPdの第1被覆層、1〜10.0%のNiの第2被覆層、0.2〜5.0%のAgの第3被覆層を有する、Ag、Ni被覆Cu粉末からなる電磁波シールドおよび導電ペースト用導電性粉末」があり、該公報には、耐酸化性をNiで出現させ、導電性をAg及びCuで出現させることができると記載されている。
【0005】
一方、電磁波シールド及び導電ペースト用導電性粉末として適したレベルの導電性である為には、少量の添加で目的の導電性を得られることが重要である。
また、電子機器類内の発熱をはじめ、高温環境下で電子機器類が使用されることも考慮した場合、そうした高温環境下においても導電性等が悪影響を受けないこと、即ち導電性についての耐熱性も要求される。
【0006】
しかし、上記の特公平7−97717号公報に記載のAg、Ni被覆Cu粉末は導電性の面では改善されているものの、該公報には「少量の添加で安定した導電性が得られ且つ導電性についての耐熱性にも優れていて、電磁波シールドや導電ペーストに用いるのに適した粉末、さらに該粉末を含む導電ペースト」については何ら開示されておらず、未だ充分な技術とは言い難い。
【0007】
【発明が解決しようとする課題】
上記したように、電磁波シールドや導電ペーストに用いるのに適した導電性粉末においては、少量の添加で安定した導電性が得られ且つ導電性についての耐熱性にも優れていることが重要である。
本発明は、これらの特性を満足し、電磁波シールドや導電ペーストに用いるのに適した被覆銅粉を提供することを課題としている。
【0008】
【課題を解決するための手段】
本発明者等は上記の課題を達成する為に鋭意検討した結果、銅粒子の表面上に特定の合金元素を含有するニッケル合金からなる中間層を有し且つ銀からなる表面被覆層を有する被覆銅粒子からなる被覆銅粉が好ましいことを見いだし、本発明を完成した。
【0009】
即ち、本発明の被覆銅粉は、銅粒子と、該銅粒子を被覆しており且つ合金元素としてリン及びタングステンを含有しているニッケル合金層又は合金元素としてホウ素及びコバルトを含有しているニッケル合金層と、該ニッケル合金層を被覆している銀層とからなる被覆銅粒子であって、ニッケル合金の含有率が全被覆銅粉の0.5〜10質量%であり、リンの含有率がニッケル合金の1〜15質量%であり、タングステンの含有率がニッケル合金の5〜20質量%であり、ホウ素の含有率がニッケル合金の1〜10質量%であり、コバルトの含有率がニッケル合金の5〜25質量%であり、銀の含有率が全被覆銅粉の4〜15質量%であることを特徴とする。
【0010】
【発明の実施の形態】
本発明の被覆銅粉においては、ニッケル合金層中に合金元素としてリン及びタングステンを含有するか、又はホウ素及びコバルトを含有することが重要であり、これらの元素を含有したニッケル合金層が核となる銅粒子表面を緻密に被覆することにより被覆銅粉の導電性についての耐熱性(この被覆銅粉の導電性についての耐熱性を、以下、単に耐熱性と記載する)効果を高めることができる。
【0011】
本発明の被覆銅粉においては、リン又はホウ素の含有率は好ましくはニッケル合金の0.1〜20質量%であり、より好ましくはリンの含有率は1〜15質量%であり、ホウ素の含有率は1〜10質量%である。これらの含有率がニッケル合金の0.1質量%未満の場合には耐熱性向上の効果が少なく、また20質量%を超える場合にはコスト増に見合った効果が得られないのみならず、導電性劣化等の悪影響を生じる傾向がある。
【0012】
また、本発明の被覆銅粉においては、コバルト又はタングステンの含有率は好ましくはニッケル合金の1〜30質量%であり、より好ましくはコバルトの含有率は5〜25質量%であり、タングステンの含有率は5〜20質量%である。これらの含有率がニッケル合金の1質量%未満の場合には耐熱性向上の効果が少なく、また30質量%を超える場合にはコスト増に見合った効果が得られないのみならず、導電性劣化等の悪影響を生じる傾向がある。
【0013】
また、本発明の被覆銅粉においては、ニッケル合金層が銅粒子の表面と銀からなる表面被覆層との中間に存在しているので、銀粉よりも安価であり、被覆銅粉の導電性を損なうこともない。本発明の被覆銅粉においては、ニッケル合金層を構成するニッケル合金の含有率は好ましくは全被覆銅粉の0.1〜15質量%であり、より好ましくは0.5〜15質量%であり、最も好ましくは0.5〜10質量%である。このニッケル合金の含有率が全被覆銅粉の0.1質量%未満の場合には耐熱性向上の効果が少なく、また15質量%を超える場合にはコスト増に見合った効果が得られないのみならず、導電性を劣化させるおそれがある。
【0014】
本発明の被覆銅粉においては、銀被覆層が被覆銅粉の最表面に存在しているので導電性に優れている。銀の含有率は好ましくは全被覆銅粉の2〜20質量%であり、より好ましくは3〜15質量%であり、最も好ましくは4〜10質量%である。この銀の含有率が2質量%未満の場合には目的とする導電性が得られず、また20質量%を超える場合にはコスト増に見合った効果が得られない。
【0015】
また、本発明の被覆銅粉においては、タップ密度は好ましくは4g/cm3 以下であり、より好ましくは3.5g/cm3 以下であり、最も好ましくは3g/cm3 以下である。このタップ密度を4g/cm3 以下にすることにより、導電ペーストを調製した時に被覆銅粉の粒子同士が適度にからみあうようになるので、電磁波シールド及び導電ペースト用導電性粉末として適したレベルの導電性を実現することができる。
【0016】
また、本発明の被覆銅粉においては、核となる銅粒子として球形や多面体形状等の粒状品を含め、いかなる形状のものを用いても構わないが、非球形状、特に樹枝状、それを加工したフレーク状の銅粉、具体的には電解銅粉や機械的処理を加えたフレーク状銅粉でタップ密度が4g/cm3 以下のものを用いることが好ましい。この理由は、通常、導電ペースト中への導電性粉末の充填性は高い方が好ましいと考えられるが、要求される導電性のレベルがさほど高くない場合は、粒子同士のからみが適度にある方が良いからである。
【0017】
次に、本発明の被覆銅粉の好ましい製造方法の一例について述べる。タップ密度が4g/cm3 以下の銅粉、好ましくは非球形でタップ密度が4g/cm3 以下の電解銅粉を水中に分散させてスラリーとする。また、リン及びタングステンのイオン源を添加するか、又はホウ素及びコバルトのイオン源を添加した無電解ニッケル合金メッキ液を調製する。このスラリーと無電解ニッケル合金メッキ液とを混合して無電解メッキ処理を実施し、合金元素としてリン及びタングステンを含有するか、又はホウ素及びコバルトを含有するニッケル合金層を銅粒子の表面に形成する。その後、アンモニア性硝酸銀溶液中でロッシェル塩等を用いて銀被覆処理を実施することにより本発明の被覆銅粉を製造する。
【0018】
前記した特公平7−97717号公報に記載の製造方法においては、「Cu粉末にPdを被着した後、Ni水溶液に懸濁させ、これにヒドラジン等の還元剤を加えることでNiがCu粉の表面に析出する」方法を採用しているが、かかる製造方法では、還元力の強い還元剤を用いている為、銅粉粒子表面上に析出する金属ニッケルの分布にバラツキが生じ、金属ニッケル被覆の緻密性が失われ、その結果、生地銅粉の酸化防止の点でも問題があるのみならず、金属ニッケル単独であるために導電性についての耐熱性の向上の点でも限界がある。
【0019】
従って、市販の無電解ニッケルメッキ液、具体的にはニボロンM(ワールドメタル社製)、Ni426(メルテックス社製)等にリン及びタングステンのイオン源を添加するか、又はホウ素及びコバルトのイオン源を添加して無電解ニッケル合金メッキ液を調製し、一方、銅粉を水中に分散させて銅粉スラリーを調製し、この無電解ニッケル合金メッキ液と銅粉スラリーとを混合し、30〜120分間攪拌して銅粒子の表面に緻密なニッケル合金被覆を形成させれば良い。
【0020】
上記無電解ニッケルメッキ液に添加するリンイオン源として、リン酸、リン酸アンモニウム、リン酸水素アンモニウム、リン酸水素ナトリウム、リン酸カリウム、リン酸ナトリウム、次亜リン酸カルシウム等を用いることができ、またホウ素イオン源としてオルトホウ酸、四ホウ酸ナトリウム、メタホウ酸ナトリウム、ペルオキソホウ酸ナトリウム、四ホウ酸カリウム、メタホウ酸カリウム、四ホウ酸アンモニウム、メタホウ酸アンモニウム等を用いることができる。
【0021】
また、上記無電解ニッケルメッキ液に添加するコバルトイオン源として、塩化コバルト、硫酸コバルト、硝酸コバルト、臭化コバルト、ヨウ化コバルト等を用いることができ、またタングステンイオン源として、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム等を用いることができる。
【0022】
【実施例】
以下に実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1
電解銅粉(比表面積0.2m2 /g、SEM写真から見た平均粒子径100ミクロン、タップ密度2.5g/cm3 )1000gを水8.5L中に分散させてスラリーを調製した。また、メタホウ酸ナトリウム・四水和物3gをニッケルメッキ液(ワールドメタル社製、ニボロンM)6Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーと無電解ニッケル合金メッキ液とを混合し、10分間攪拌した。その後、温度を40℃まで上げ、30分間攪拌して銅粒子の表面にホウ素含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0023】
このようにして得られたホウ素含有ニッケル合金被覆銅粉を、水9L中にEDTA32gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液200mL(硝酸銀36gをアンモニア水溶液44mLに溶解させ、水を加えて200mLとした水溶液)を添加し、30分間攪拌を行い、更にロッシェル塩28gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、下記の諸特性を下記の方法に従って評価した。それらの結果を第1表に示す。
【0024】
(1)銀、ニッケル、リン、ホウ素、コバルト及びタングステンの含有率(質量%)
試料を酸に溶解させ、ICP法により含有率を測定した。
(2)タップ密度(g/cm3
試料200gを用いてパウダーテスターPT−E型(ホソカワミクロン製)により測定した。
(3)粉体抵抗率(×10-4Ω・cm)
試料20gをプレス圧力500kgfで圧縮し、ロレスタAP及びロレスタPD−41型(何れも三菱化学製)により測定した。
【0025】
(4)耐熱性
大気雰囲気中、156℃の加熱炉中に試料を80時間保持した。上記(3)の測定法により得られた耐熱試験前の抵抗率と耐熱試験後の抵抗率より抵抗変化倍率を下記の式で求め、導電性についての耐熱性の評価とした。
抵抗変化倍率(倍)
={耐熱試験後抵抗率(Ω・cm)/耐熱試験前抵抗率(Ω・cm)}
【0026】
(5)導電ペーストによる塗膜の表面抵抗率(×10-2Ω/□)
試料60質量部に、アクリルラッカーであるアクリック2000GL(関西ペイント社製)を40質量部加えてホモジナイザーにて混練してペースト化し、この導電ペーストをフィルム上に塗布し、70℃で20分乾燥させ、導電性膜を形成した。この塗膜の表面抵抗率をロレスタAPにより測定した。
【0027】
実施例2
実施例1で用いた電解銅粉1000gを水8.5L中に分散させてスラリーを調製した。また、メタホウ酸ナトリウム・四水和物4gをニッケルメッキ液(ワールドメタル社製、ニボロンM)6Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーと無電解ニッケル合金メッキ液とを混合し、10分間攪拌した。その後、温度を40℃まで上げ、30分間攪拌して銅粒子の表面にホウ素含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0028】
このようにして得られたホウ素含有ニッケル合金被覆銅粉を、水9LにEDTA80gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液500mL(硝酸銀86gをアンモニア水溶液110mLに溶解させ、水を加えて500mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩70gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0029】
実施例3
実施例1で用いた電解銅粉1000gを水8.5L中に分散させてスラリーを調製した。また、メタホウ酸ナトリウム・四水和物4gをニッケルメッキ液(ワールドメタル社製、ニボロンM)6Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーと無電解ニッケル合金メッキ液とを混合し、10分間攪拌した。その後、温度を40℃まで上げ、30分間攪拌して銅粒子の表面にホウ素含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0030】
このようにして得られたホウ素含有ニッケル合金被覆銅粉を、水9LにEDTA160gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0031】
実施例4
実施例1で用いた電解銅粉1000gを水8.5L中に分散させてスラリーを調製した。また、メタホウ酸ナトリウム・四水和物4g及び硫酸コバルト・七水和物18gをニッケルメッキ液(ワールドメタル社製、ニボロンM)6Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーと無電解ニッケル合金メッキ液とを混合し、10分間攪拌した。その後、温度を40℃まで上げ、30分間攪拌して銅粒子の表面にホウ素及びコバルト含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0032】
このようにして得られたホウ素及びコバルト含有ニッケル合金被覆銅粉を、水9LにEDTA32gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液200mL(硝酸銀36gをアンモニア水溶液44mLに溶解させ、水を加えて200mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩28gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0033】
実施例5
実施例1で用いた電解銅粉1000gを水10L中に分散させてスラリーを調製した。また、次亜リン酸カルシウム5gをニッケルメッキ液(メルテックス社製、Niー426)6.5Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーにアクチベーター液(メルテックス社製、アクチベーター352)5mLを添加し、5分間攪拌した後、無電解ニッケル合金メッキ液と混合し、10分間攪拌した。その後、温度を70℃まで上げ、30分間攪拌して銅粒子の表面にリン含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0034】
このようにして得られたリン含有ニッケル合金被覆銅粉を、水9LにEDTA80gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液500mL(硝酸銀86gをアンモニア水溶液110mLに溶解させ、水を加えて500mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩70gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0035】
実施例6
実施例1で用いた電解銅粉1000gを水10L中に分散させてスラリーを調製した。また、次亜リン酸カルシウム4gをニッケルメッキ液(メルテックス社製、Niー426)6.5Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーにアクチベーター液(メルテックス社製、アクチベーター352)5mLを添加し、5分間攪拌した後、無電解ニッケル合金メッキ液と混合し、10分間攪拌した。その後、温度を70℃まで上げ、30分間攪拌して銅粒子の表面にリン含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0036】
このようにして得られたリン含有ニッケル合金被覆銅粉を、水9LにEDTA160gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0037】
実施例7
実施例1で用いた電解銅粉1000gを水10L中に分散させてスラリーを調製した。また、次亜リン酸カルシウム4g及びタングステン酸ナトリウム10gをニッケルメッキ液(メルテックス社製、Niー426)6.5Lに添加し、溶解させて無電解ニッケル合金メッキ液を調製した。このスラリーにアクチベーター液(メルテックス社製、アクチベーター352)5mLを添加し、5分間攪拌した後、無電解ニッケル合金メッキ液と混合し、10分間攪拌した。その後、温度を70℃まで上げ、30分間攪拌して銅粒子の表面にリン及びタングステン含有ニッケル合金被覆を形成させた。その後、常法に従ってろ過し、洗浄を行った。
【0038】
このようにして得られたリン及びタングステン含有ニッケル合金被覆銅粉を、水9LにEDTA160gを溶解させた溶液中に分散させ、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0039】
比較例1
実施例1で用いた電解銅粉1000gを、水9LにEDTA160gを溶解させた溶液中に分散させてスラリーを調製し、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って銀被覆銅粉を得た。
この銀被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0040】
比較例2
アトマイズ銅粉(比表面積0.12m2 /g、SEM写真から見た平均粒子径30ミクロン、タップ密度4.5g/cm3 )1000gを、水9LにEDTA160gを溶解させた溶液中に分散させてスラリーを調製し、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って銀被覆銅粉を得た。
この銀被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0041】
比較例3
実施例1で用いた電解銅粉1000gを塩化パラジウム水溶液(パラジウムとして0.3g/Lの濃度)2L中に浸漬して銅粒子の表面にパラジウムを被着させた。その後、硫酸ニッケル水溶液(ニッケルとして2g/Lの濃度)6L中に懸濁させ、60℃に保ちながらヒドラジン・1水和物10gを加えてパラジウム被覆銅粒子の表面にニッケルを析出させた。ろ別したパラジウム・ニッケル被覆銅粉を、水9LにEDTA160gを溶解させた溶液中に分散させてスラリーとし、そのスラリーに硝酸銀溶液1000mL(硝酸銀180gをアンモニア水溶液220mLに溶解させ、水を加えて1000mLとした水溶液)を添加し、30分間攪拌を行い、ロッシェル塩140gを添加し、30分間攪拌を行い、その後、常法に従って水洗し、乾燥を行って被覆銅粉を得た。
この被覆銅粉について、実施例1と同様に諸特性を評価した。それらの結果を第1表に示す。
【0042】
【表1】

Figure 0004864195
【0043】
第1表のデータからも分かる通り、合金元素としてリン及びタングステンを含有するか、又はホウ素及びコバルトを含有する本発明の被覆銅粉は、その他の被覆銅粉に較べて導電性、特に耐熱試験後の導電性に優れているのみならず、抵抗変化倍率が小さく、耐熱性が向上している。
【0044】
【発明の効果】
本発明のニッケル合金中間被覆層及び銀表面被覆層を有する被覆銅粒子からなる被覆銅粉は、少量の添加で安定した導電性が得られ且つ耐熱性にも優れているので、電磁波シールドや導電ペーストに用いるのに適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coated copper powder composed of coated copper particles having an intermediate coating layer composed of a nickel alloy and a surface coating layer composed of silver on the surface of the copper particles, and in particular, the desired conductivity can be obtained with a small amount of addition. And since it has heat resistance about electroconductivity, it is related with this coating | coated copper powder suitable for using for an electromagnetic wave shield or an electrically conductive paste.
[0002]
[Prior art]
In electronic devices such as computers, the problem of malfunction caused by the influence of external electromagnetic waves has been highlighted, and we have developed a means to improve conductivity in the exterior of computers for the purpose of electromagnetic shielding. Is progressing. As a means for improving the conductivity of the exterior part, a method of adding a conductive substance as a filler to an organic resin used for reducing the weight of electronic devices, or coating a conductive substance into a coating part is applied. The method of doing is common.
[0003]
Of course, the important characteristic required for this conductive material is that it is highly conductive. Considering the cost, metal powder, especially metal ultrafine powder is preferable as the conductive material, and silver ultrafine powder is particularly resistant to oxidation. Because of its excellent properties, it is widely used. However, since silver is an expensive substance among metal powders, an alternative material is required for further cost reduction.
[0004]
It is important that an alternative material that meets this requirement does not impair the above-mentioned characteristics of silver. As an example of such an alternative material, the invention described in Japanese Patent Publication No. 7-97717 “Cu particles In order from the bottom on the surface of the core, the first coating layer of 0.01 to 0.2% Pd, the second coating layer of Ni of 1 to 10.0%, and 0.2 to 5. Electromagnetic wave shield made of Ag, Ni-coated Cu powder and conductive powder for conductive paste having a third coating layer of 0% Ag ”, and in this publication, oxidation resistance appears in Ni, and conductivity is improved. It is described that it can appear in Ag and Cu.
[0005]
On the other hand, in order to achieve a level of conductivity suitable as an electromagnetic shielding and conductive powder for conductive paste, it is important that the desired conductivity can be obtained with a small amount of addition.
In consideration of heat generation in electronic devices and the use of electronic devices in high-temperature environments, conductivity and the like are not adversely affected in such high-temperature environments. Sex is also required.
[0006]
However, although the Ag and Ni-coated Cu powder described in the above Japanese Patent Publication No. 7-97717 is improved in terms of conductivity, the publication states that “stable conductivity can be obtained with a small amount of addition and conductivity. The powder is also excellent in heat resistance, and is not disclosed at all for a powder suitable for use in electromagnetic wave shields and conductive pastes, and further, a conductive paste containing the powders.
[0007]
[Problems to be solved by the invention]
As described above, in a conductive powder suitable for use in electromagnetic wave shields and conductive pastes, it is important that stable conductivity is obtained with a small amount of addition and that the heat resistance of the conductivity is excellent. .
An object of the present invention is to provide a coated copper powder that satisfies these characteristics and is suitable for use in an electromagnetic wave shield or a conductive paste.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have an intermediate layer made of a nickel alloy containing a specific alloy element on the surface of the copper particles and a surface coating layer made of silver. The present inventors have found that a coated copper powder made of copper particles is preferable and completed the present invention.
[0009]
That is, the coated copper powder of the present invention comprises a copper particle and a nickel alloy layer covering the copper particle and containing phosphorus and tungsten as alloy elements or nickel containing boron and cobalt as alloy elements. an alloy layer, a coated copper particles made of silver layer covering the nickel alloy layer is 0.5 to 10 mass% of the content of the nickel alloy full-coated copper powder, the phosphorus content Is 1 to 15 mass% of the nickel alloy, the tungsten content is 5 to 20 mass% of the nickel alloy, the boron content is 1 to 10 mass% of the nickel alloy, and the cobalt content is nickel. It is 5 to 25% by mass of the alloy, and the silver content is 4 to 15% by mass of the total coated copper powder.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the coated copper powder of the present invention, it is important that the nickel alloy layer contains phosphorus and tungsten as alloy elements, or contains boron and cobalt , and the nickel alloy layer containing these elements is the core. By densely coating the surface of the resulting copper particles, the effect of heat resistance on the conductivity of the coated copper powder (the heat resistance regarding the conductivity of the coated copper powder is hereinafter simply referred to as heat resistance) can be enhanced. .
[0011]
In-coated copper powder of the present invention, including Yuritsu of Li down or boron is 0.1 to 20 mass% preferably nickel alloy, more preferably from 1 to 15 wt% and the content of phosphorus, The content rate of boron is 1-10 mass%. When the content is less than 0.1% by mass of the nickel alloy, the effect of improving the heat resistance is small, and when it exceeds 20% by mass, the effect corresponding to the increase in cost is not obtained, There is a tendency to cause adverse effects such as sex deterioration.
[0012]
In the coated copper powder of the present invention, the content of co Baltic or tungsten is from 1 to 30% by weight of preferably a nickel alloy, more preferably the content of cobalt is 5 to 25 wt%, The content of tungsten is 5 to 20% by mass. When the content is less than 1% by mass of the nickel alloy, the effect of improving the heat resistance is small, and when it exceeds 30% by mass, not only an effect commensurate with the increase in cost is obtained, but also the conductivity deterioration. It tends to cause adverse effects such as.
[0013]
In the coated copper powder of the present invention, since the nickel alloy layer exists between the surface of the copper particles and the surface coating layer made of silver, it is cheaper than the silver powder and the conductivity of the coated copper powder is reduced. There is no loss. In the coated copper powder of the present invention, the content of the nickel alloy constituting the nickel alloy layer is preferably 0.1 to 15% by mass, more preferably 0.5 to 15% by mass of the total coated copper powder. Most preferably, it is 0.5 to 10% by mass. When the content of this nickel alloy is less than 0.1% by mass of the total coated copper powder, the effect of improving heat resistance is small, and when it exceeds 15% by mass, the effect corresponding to the increase in cost cannot be obtained. In addition, the conductivity may be deteriorated.
[0014]
In the coated copper powder of this invention, since the silver coating layer exists in the outermost surface of the coated copper powder, it is excellent in electroconductivity. The silver content is preferably 2 to 20% by mass of the total coated copper powder, more preferably 3 to 15% by mass, and most preferably 4 to 10% by mass. When the silver content is less than 2% by mass, the intended conductivity cannot be obtained, and when it exceeds 20% by mass, an effect commensurate with the cost increase cannot be obtained.
[0015]
In the coated copper powder of the present invention, the tap density is preferably 4 g / cm 3 or less, more preferably 3.5 g / cm 3 or less, and most preferably 3 g / cm 3 or less. By setting the tap density to 4 g / cm 3 or less, the coated copper powder particles are appropriately entangled with each other when the conductive paste is prepared. Can be realized.
[0016]
In addition, in the coated copper powder of the present invention, any shape may be used as the core copper particles including granular products such as spherical and polyhedral shapes, but non-spherical shapes, particularly dendritic shapes, It is preferable to use processed flaky copper powder, specifically, electrolytic copper powder or flaky copper powder subjected to mechanical treatment and having a tap density of 4 g / cm 3 or less. The reason for this is that it is generally considered that a higher filling property of the conductive powder in the conductive paste is preferable, but if the required level of conductivity is not so high, the particles are moderately entangled. Because it is good.
[0017]
Next, an example of a preferable method for producing the coated copper powder of the present invention will be described. A copper powder having a tap density of 4 g / cm 3 or less, preferably a non-spherical copper powder having a tap density of 4 g / cm 3 or less, is dispersed in water to form a slurry. Further, it is preferred to add an ion source of phosphorus and tungsten, or to prepare an electroless nickel alloy plating solution added with ion-source of boric Moto及beauty co Baltic. The slurry and the electroless nickel alloy plating solution by mixing implement an electroless plating process, or containing phosphorus及beauty tungsten as an alloying element, or a copper nickel alloy layer containing boric iodine and cobalt Form on the surface of the particles. Then, the covering copper powder of this invention is manufactured by implementing silver coating processing using Rochelle salt etc. in an ammoniacal silver nitrate solution.
[0018]
In the manufacturing method described in the above-mentioned Japanese Patent Publication No. 7-97717, “After depositing Pd on Cu powder, it is suspended in an Ni aqueous solution, and Ni is added to Cu powder by adding a reducing agent such as hydrazine to this. However, in this manufacturing method, since a reducing agent having a strong reducing power is used, the distribution of metallic nickel deposited on the surface of the copper powder particles varies, and the metallic nickel The denseness of the coating is lost, and as a result, there is a problem not only in terms of preventing the oxidation of the dough copper powder, but also there is a limit in terms of improving the heat resistance with respect to conductivity because it is made of metallic nickel alone.
[0019]
Thus, commercially available electroless nickel plating solution, specifically Niboron M (manufactured by World Metal Corporation) for, Ni - 426 or the addition of phosphorus and ion source tungsten (Meltex Co., Ltd.), or boric-containingbeauty co added Baltic ion-source of an electroless nickel alloy plating solution prepared, whereas, the copper powder was dispersed in water to prepare a copper powder slurry, the electroless nickel alloy plating solution and copper powder The slurry may be mixed and stirred for 30 to 120 minutes to form a dense nickel alloy coating on the surface of the copper particles.
[0020]
As a phosphorus ion source to be added to the electroless nickel plating solution, phosphoric acid, ammonium phosphate, ammonium hydrogen phosphate, sodium hydrogen phosphate, potassium phosphate, sodium phosphate, calcium hypophosphite, etc. can be used. As an ion source, orthoboric acid, sodium tetraborate, sodium metaborate, sodium peroxoborate, potassium tetraborate, potassium metaborate, ammonium tetraborate, ammonium metaborate and the like can be used.
[0021]
Also, cobalt chloride, cobalt sulfate, cobalt nitrate, cobalt bromide, cobalt iodide, etc. can be used as the cobalt ion source added to the electroless nickel plating solution, and sodium tungstate, tungsten, etc. can be used as the tungsten ion source. Potassium acid, ammonium tungstate, and the like can be used.
[0022]
【Example】
The present invention will be specifically described below based on examples and comparative examples.
Example 1
A slurry was prepared by dispersing 1000 g of electrolytic copper powder (specific surface area 0.2 m 2 / g, average particle diameter 100 microns as seen from SEM photograph, tap density 2.5 g / cm 3 ) in 8.5 L of water. Moreover, 3 g of sodium metaborate tetrahydrate was added to 6 L of nickel plating solution (Niboron M, manufactured by World Metal Co.) and dissolved to prepare an electroless nickel alloy plating solution. This slurry and the electroless nickel alloy plating solution were mixed and stirred for 10 minutes. Thereafter, the temperature was raised to 40 ° C. and stirred for 30 minutes to form a boron-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0023]
The boron-containing nickel alloy-coated copper powder thus obtained is dispersed in a solution in which 32 g of EDTA is dissolved in 9 L of water, and 200 mL of silver nitrate solution (36 g of silver nitrate is dissolved in 44 mL of aqueous ammonia solution) in the slurry. In addition, 200 mL of an aqueous solution) was added, and the mixture was stirred for 30 minutes. Further, 28 g of Rochelle salt was added, and the mixture was stirred for 30 minutes.
About this coating | coated copper powder, the following various characteristics were evaluated in accordance with the following method. The results are shown in Table 1.
[0024]
(1) Silver, nickel, phosphorus, boron, cobalt and tungsten content (mass%)
The sample was dissolved in acid and the content was measured by ICP method.
(2) Tap density (g / cm 3 )
Measurement was performed with a powder tester PT-E type (manufactured by Hosokawa Micron Corporation) using 200 g of a sample.
(3) Powder resistivity (× 10 -4 Ω · cm)
A 20 g sample was compressed at a press pressure of 500 kgf and measured with a Loresta AP and Loresta PD-41 type (both manufactured by Mitsubishi Chemical).
[0025]
(4) The sample was kept in a heating furnace at 156 ° C. for 80 hours in a heat-resistant air atmosphere. From the resistivity before the heat resistance test and the resistivity after the heat resistance test obtained by the measurement method of (3) above, the resistance change magnification was obtained by the following formula, and the heat resistance of the conductivity was evaluated.
Resistance change magnification (times)
= {Resistivity after heat test (Ω · cm) / Resistivity before heat test (Ω · cm)}
[0026]
(5) Surface resistivity of coating film with conductive paste (× 10 -2 Ω / □)
Acrylic lacquer, Acrylic 2000GL (manufactured by Kansai Paint Co., Ltd.), 40 parts by mass, is added to 60 parts by mass of the sample, kneaded with a homogenizer to form a paste. To form a conductive film. The surface resistivity of this coating film was measured by Loresta AP.
[0027]
Example 2
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 8.5 L of water. Further, 4 g of sodium metaborate tetrahydrate was added to 6 L of a nickel plating solution (Niboron M, manufactured by World Metal Co.) and dissolved to prepare an electroless nickel alloy plating solution. This slurry and the electroless nickel alloy plating solution were mixed and stirred for 10 minutes. Thereafter, the temperature was raised to 40 ° C. and stirred for 30 minutes to form a boron-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0028]
The thus obtained boron-containing nickel alloy-coated copper powder is dispersed in a solution of 80 g of EDTA dissolved in 9 L of water, and 500 mL of silver nitrate solution (86 g of silver nitrate is dissolved in 110 mL of aqueous ammonia solution) and water is added to the slurry. The resulting mixture was stirred for 30 minutes, added with 70 g of Rochelle salt, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0029]
Example 3
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 8.5 L of water. Further, 4 g of sodium metaborate tetrahydrate was added to 6 L of a nickel plating solution (Niboron M, manufactured by World Metal Co.) and dissolved to prepare an electroless nickel alloy plating solution. This slurry and the electroless nickel alloy plating solution were mixed and stirred for 10 minutes. Thereafter, the temperature was raised to 40 ° C. and stirred for 30 minutes to form a boron-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0030]
The thus obtained boron-containing nickel alloy-coated copper powder is dispersed in a solution of 160 g of EDTA in 9 L of water, and 1000 mL of silver nitrate solution (180 g of silver nitrate is dissolved in 220 mL of aqueous ammonia solution) is added to the slurry. The resulting solution was stirred for 30 minutes, added with 140 g of Rochelle salt, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0031]
Example 4
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 8.5 L of water. Further, 4 g of sodium metaborate tetrahydrate and 18 g of cobalt sulfate heptahydrate were added to 6 L of nickel plating solution (World Metal Co., Niboron M) and dissolved to prepare an electroless nickel alloy plating solution. . This slurry and the electroless nickel alloy plating solution were mixed and stirred for 10 minutes. Thereafter, the temperature was raised to 40 ° C. and stirred for 30 minutes to form a boron and cobalt-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0032]
The thus obtained boron and cobalt-containing nickel alloy-coated copper powder was dispersed in a solution of 32 g of EDTA in 9 L of water, and 200 mL of a silver nitrate solution (36 g of silver nitrate was dissolved in 44 mL of an aqueous ammonia solution) Was added, and the mixture was stirred for 30 minutes, 28 g of Rochelle salt was added, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0033]
Example 5
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 10 L of water. Further, 5 g of calcium hypophosphite was added to 6.5 L of a nickel plating solution (Ni-426, manufactured by Meltex Co.), and dissolved to prepare an electroless nickel alloy plating solution. To this slurry, 5 mL of an activator solution (Meltex, Activator 352) was added, stirred for 5 minutes, mixed with an electroless nickel alloy plating solution, and stirred for 10 minutes. Thereafter, the temperature was raised to 70 ° C. and stirred for 30 minutes to form a phosphorus-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0034]
The phosphorus-containing nickel alloy-coated copper powder thus obtained is dispersed in a solution of 80 g of EDTA dissolved in 9 L of water, and 500 mL of silver nitrate solution (86 g of silver nitrate is dissolved in 110 mL of aqueous ammonia solution) and water is added to the slurry. The resulting mixture was stirred for 30 minutes, added with 70 g of Rochelle salt, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0035]
Example 6
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 10 L of water. Further, 4 g of calcium hypophosphite was added to 6.5 L of a nickel plating solution (Ni-426, manufactured by Meltex Co.), and dissolved to prepare an electroless nickel alloy plating solution. To this slurry, 5 mL of an activator solution (Meltex, Activator 352) was added, stirred for 5 minutes, mixed with an electroless nickel alloy plating solution, and stirred for 10 minutes. Thereafter, the temperature was raised to 70 ° C. and stirred for 30 minutes to form a phosphorus-containing nickel alloy coating on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0036]
The phosphorus-containing nickel alloy-coated copper powder thus obtained was dispersed in a solution of 160 g of EDTA dissolved in 9 L of water, 1000 mL of a silver nitrate solution (180 g of silver nitrate was dissolved in 220 mL of an aqueous ammonia solution, and water was added to the slurry. The resulting solution was stirred for 30 minutes, added with 140 g of Rochelle salt, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0037]
Example 7
A slurry was prepared by dispersing 1000 g of the electrolytic copper powder used in Example 1 in 10 L of water. Moreover, 4 g of calcium hypophosphite and 10 g of sodium tungstate were added to 6.5 L of nickel plating solution (Meltex, Ni-426) and dissolved to prepare an electroless nickel alloy plating solution. To this slurry, 5 mL of an activator solution (Meltex, Activator 352) was added, stirred for 5 minutes, mixed with an electroless nickel alloy plating solution, and stirred for 10 minutes. Thereafter, the temperature was raised to 70 ° C. and stirred for 30 minutes to form a nickel alloy coating containing phosphorus and tungsten on the surface of the copper particles. Then, it filtered and wash | cleaned according to the conventional method.
[0038]
The thus obtained phosphorus and tungsten-containing nickel alloy-coated copper powder was dispersed in a solution of 160 g of EDTA in 9 L of water, and 1000 mL of silver nitrate solution (180 g of silver nitrate was dissolved in 220 mL of aqueous ammonia solution) Was added, and the mixture was stirred for 30 minutes, 140 g of Rochelle salt was added, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0039]
Comparative Example 1
1000 g of the electrolytic copper powder used in Example 1 was dispersed in a solution of 160 g of EDTA dissolved in 9 L of water to prepare a slurry. In this slurry, 1000 mL of silver nitrate solution (180 g of silver nitrate was dissolved in 220 mL of aqueous ammonia solution and water was added. In addition, an aqueous solution (1000 mL) was added and stirred for 30 minutes, 140 g of Rochelle salt was added, stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain silver-coated copper powder.
Various characteristics of this silver-coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0040]
Comparative Example 2
1000 g of atomized copper powder (specific surface area 0.12 m 2 / g, average particle size 30 micron as seen from SEM photograph, tap density 4.5 g / cm 3 ) was dispersed in a solution of 160 g of EDTA in 9 L of water. A slurry is prepared, and 1000 mL of a silver nitrate solution (an aqueous solution in which 180 g of silver nitrate is dissolved in 220 mL of an aqueous ammonia solution and added to water to 1000 mL) is added to the slurry, stirred for 30 minutes, and 140 g of Rochelle salt is added for 30 minutes. Stirring was then performed, followed by washing with water according to a conventional method and drying to obtain a silver-coated copper powder.
Various characteristics of this silver-coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0041]
Comparative Example 3
1000 g of the electrolytic copper powder used in Example 1 was immersed in 2 L of an aqueous palladium chloride solution (concentration of 0.3 g / L as palladium) to deposit palladium on the surfaces of the copper particles. Thereafter, the suspension was suspended in 6 L of an aqueous nickel sulfate solution (concentration of 2 g / L as nickel), and 10 g of hydrazine monohydrate was added while maintaining the temperature at 60 ° C. to precipitate nickel on the surface of the palladium-coated copper particles. The palladium / nickel-coated copper powder separated by filtration is dispersed in a solution of 160 g of EDTA in 9 L of water to form a slurry, and 1000 mL of a silver nitrate solution (180 g of silver nitrate is dissolved in 220 mL of an aqueous ammonia solution and 1000 mL of water is added to the slurry. Was added and the mixture was stirred for 30 minutes, 140 g of Rochelle salt was added, the mixture was stirred for 30 minutes, then washed with water and dried according to a conventional method to obtain coated copper powder.
Various characteristics of this coated copper powder were evaluated in the same manner as in Example 1. The results are shown in Table 1.
[0042]
[Table 1]
Figure 0004864195
[0043]
As it can be seen from the data in Table 1, or containing phosphorus and tungsten as an alloying element, or coated copper powder of the present invention containing boric iodine and cobalt, the conductive compared to other coated copper powder Especially, not only is it excellent in conductivity after the heat test, but also the resistance change magnification is small and the heat resistance is improved.
[0044]
【Effect of the invention】
The coated copper powder comprising the coated copper particles having the nickel alloy intermediate coating layer and the silver surface coating layer of the present invention provides stable conductivity with a small amount of addition and is excellent in heat resistance. Suitable for use in pastes.

Claims (6)

銅粒子と、該銅粒子を被覆しており且つ合金元素としてリン及びタングステンを含有しているニッケル合金層と、該ニッケル合金層を被覆している銀層とからなる被覆銅粒子であって、ニッケル合金の含有率が全被覆銅粉の0.5〜10質量%であり、リンの含有率がニッケル合金の1〜15質量%であり、タングステンの含有率がニッケル合金の5〜20質量%であり、銀の含有率が全被覆銅粉の4〜15質量%であることを特徴とする被覆銅粉。And copper particles, a coated copper particles made of a nickel alloy layer containing phosphorus and tungsten and an alloy element which covers the copper particles, silver layer covering the nickel alloy layer, The nickel alloy content is 0.5 to 10% by mass of the total coated copper powder, the phosphorus content is 1 to 15% by mass of the nickel alloy, and the tungsten content is 5 to 20% by mass of the nickel alloy. A coated copper powder, wherein the silver content is 4 to 15% by mass of the total coated copper powder. 銅粒子と、該銅粒子を被覆しており且つ合金元素としてホウ素及びコバルトを含有しているニッケル合金層と、該ニッケル合金層を被覆している銀層とからなる被覆銅粒子であって、ニッケル合金の含有率が全被覆銅粉の0.5〜10質量%であり、ホウ素の含有率がニッケル合金の1〜10質量%であり、コバルトの含有率がニッケル合金の5〜25質量%であり、銀の含有率が全被覆銅粉の4〜15質量%であることを特徴とする被覆銅粉。And copper particles, a coated copper particles made of a nickel alloy layer containing boron and cobalt as and alloying elements are coated with copper particles, silver layer covering the nickel alloy layer, The nickel alloy content is 0.5 to 10% by mass of the total coated copper powder, the boron content is 1 to 10% by mass of the nickel alloy, and the cobalt content is 5 to 25% by mass of the nickel alloy. A coated copper powder, wherein the silver content is 4 to 15% by mass of the total coated copper powder. タップ密度が4g/cm3 以下であることを特徴とする請求項1又は2に記載の被覆銅粉。The coated copper powder according to claim 1 or 2, wherein the tap density is 4 g / cm 3 or less. 核となる銅粒子が非球形状であることを特徴とする請求項1〜3の何れかに記載の被覆銅粉。The coated copper powder according to claim 1, wherein the core copper particles are non-spherical. 請求項1〜4の何れかに記載の被覆銅粉からなることを特徴とする電磁波シールド用導電性被覆銅粉。Conductive coated copper powder for electromagnetic wave shielding, comprising the coated copper powder according to any one of claims 1 to 4. 請求項1〜4の何れかに記載の被覆銅粉からなることを特徴とする導電ペースト用導電性被覆銅粉。A conductive coated copper powder for a conductive paste, comprising the coated copper powder according to claim 1.
JP2000260964A 2000-08-30 2000-08-30 Coated copper powder Expired - Lifetime JP4864195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260964A JP4864195B2 (en) 2000-08-30 2000-08-30 Coated copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260964A JP4864195B2 (en) 2000-08-30 2000-08-30 Coated copper powder

Publications (2)

Publication Number Publication Date
JP2002075057A JP2002075057A (en) 2002-03-15
JP4864195B2 true JP4864195B2 (en) 2012-02-01

Family

ID=18748894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260964A Expired - Lifetime JP4864195B2 (en) 2000-08-30 2000-08-30 Coated copper powder

Country Status (1)

Country Link
JP (1) JP4864195B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085481A1 (en) * 2005-02-09 2006-08-17 Sekisui Chemical Co., Ltd. Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method
JP4942333B2 (en) 2005-11-29 2012-05-30 住友金属鉱山株式会社 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
KR20110034604A (en) * 2008-06-23 2011-04-05 파커-한니핀 코포레이션 Emi shielding materials
CN102260385B (en) * 2010-05-31 2013-07-24 比亚迪股份有限公司 Positive temperature coefficient material and thermistor containing same
US20120061698A1 (en) * 2010-09-10 2012-03-15 Toscano Lenora M Method for Treating Metal Surfaces
CN103650063B (en) * 2011-07-28 2016-01-20 积水化学工业株式会社 Electroconductive particle, electric conducting material and connection structural bodies
KR101941721B1 (en) * 2011-12-21 2019-01-23 세키스이가가쿠 고교가부시키가이샤 Conductive particles, conductive material, and connection structure
CN104170023B (en) 2012-03-06 2016-12-28 东洋油墨Sc控股株式会社 Electrically conductive microparticle and manufacture method, electroconductive resin constituent, conductive sheet and electromagnetic shielding sheet
JP6478308B2 (en) * 2012-11-28 2019-03-06 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
US10056505B2 (en) * 2013-03-15 2018-08-21 Inkron Ltd Multi shell metal particles and uses thereof
FI20135253L (en) * 2013-03-15 2014-09-16 Inkron Ltd Multilayer metal particles and their use
CN106605270B (en) * 2014-08-28 2019-03-08 E.I.内穆尔杜邦公司 Cupric electrocondution slurry and thus manufactured electrode
CN104972111A (en) * 2015-06-27 2015-10-14 铜陵铜基粉体科技有限公司 High-conductivity spherical copper powder and method for manufacturing the same
CN104972109A (en) * 2015-06-27 2015-10-14 铜陵铜基粉体科技有限公司 High-adsorbability spherical copper powder and method for manufacturing the same
CN104972110A (en) * 2015-06-27 2015-10-14 铜陵铜基粉体科技有限公司 Electromagnetic interference resistant spherical copper powder and method for manufacturing the same
CN110629135B (en) * 2019-10-21 2021-07-06 常德力元新材料有限责任公司 Preparation method of nickel-silver alloy material
JPWO2023167302A1 (en) * 2022-03-04 2023-09-07

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229835A (en) * 1975-09-02 1977-03-07 Asahi Glass Co Ltd Improved filler for synthetic resin
JPS5954444A (en) * 1982-09-01 1984-03-29 Nippon Steel Corp Casting mold for continuous casting of iron and steel
JPS60162779A (en) * 1984-02-06 1985-08-24 Nippon Chem Ind Co Ltd:The Silver plated composition and its manufacture
JPH0797717B2 (en) * 1986-02-21 1995-10-18 三菱マテリアル株式会社 Cu powder coated with Ag and Ni
JPS6327567A (en) * 1986-07-18 1988-02-05 Mitsubishi Electric Corp Electrically conductive paste
JPS6456775A (en) * 1987-08-26 1989-03-03 Matsushita Electric Ind Co Ltd Electrically conductive coating
JP3514917B2 (en) * 1996-07-08 2004-04-05 株式会社サトーセン Industrial rolls
JP3832938B2 (en) * 1997-08-12 2006-10-11 日本化学工業株式会社 Electroless silver plating powder and method for producing the same

Also Published As

Publication number Publication date
JP2002075057A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP4864195B2 (en) Coated copper powder
JP5920541B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP4094480B2 (en) Chain metal powder, method for producing the same, and conductivity imparting material using the same
KR20080100365A (en) Process for production of ultrafine silver particles and ultrafine silver particles produced by the process
WO2016185628A1 (en) Silver-coated copper powder, copper paste using same, conductive coating material, conductive sheet, and method for producing silver-coated copper powder
CN103817323A (en) Nickel-coated graphite electric conduction powder used for electric conduction rubber and manufacturing method thereof
JP5576318B2 (en) Copper particles
WO2017061443A1 (en) Sn-COATED COPPER POWDER, CONDUCTIVE PASTE USING SAME, AND PRODUCING METHOD FOR Sn-COATED COPPER POWDER
JP5576319B2 (en) Copper particles
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JPH0688880B2 (en) Metal-coated anhydrous calcium sulfate whisker
JP2001247714A (en) Electrically conductive filler
JP5790900B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP2016060966A (en) Silver coat copper powder and conductive paste using the same, conductive coating and conductive sheet
WO2017057231A1 (en) Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP5858202B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
JP2017071820A (en) Sn-COATED COPPER POWDER AND CONDUCTIVE PASTE USING THE SAME, AND PRODUCTION PROCESS FOR Sn-COATED COPPER POWDER
JP2004323962A (en) Electroless-plated electroconductive powder and manufacturing method therefor
JP2016008333A (en) Copper powder and copper paste using the same
JPH0982323A (en) Nickel hydroxide for battery and alkaline battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4864195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term