JP6577316B2 - Copper powder for conductive paste and method for producing the same - Google Patents

Copper powder for conductive paste and method for producing the same Download PDF

Info

Publication number
JP6577316B2
JP6577316B2 JP2015192624A JP2015192624A JP6577316B2 JP 6577316 B2 JP6577316 B2 JP 6577316B2 JP 2015192624 A JP2015192624 A JP 2015192624A JP 2015192624 A JP2015192624 A JP 2015192624A JP 6577316 B2 JP6577316 B2 JP 6577316B2
Authority
JP
Japan
Prior art keywords
silver
powder
copper powder
mixed powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015192624A
Other languages
Japanese (ja)
Other versions
JP2017066476A (en
Inventor
優樹 金城
優樹 金城
井上 健一
健一 井上
昭雄 杉山
昭雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2015192624A priority Critical patent/JP6577316B2/en
Publication of JP2017066476A publication Critical patent/JP2017066476A/en
Application granted granted Critical
Publication of JP6577316B2 publication Critical patent/JP6577316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、導電性ペースト用銅粉およびその製造方法に関し、特に、電子部品の電極や配線を形成する導電膜を形成する導電性ペーストに使用する銅粉およびその製造方法に関する。   The present invention relates to a copper powder for conductive paste and a method for manufacturing the same, and more particularly to a copper powder used for a conductive paste for forming a conductive film for forming an electrode or wiring of an electronic component and a method for manufacturing the same.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電性ペーストが使用されている。   Conventionally, in order to form electrodes and wiring of electronic parts by printing methods, etc., conductive paste prepared by blending solvent, resin, dispersant, etc. with conductive metal powder such as silver powder and copper powder has been used. Yes.

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, although silver powder has a very small volume resistivity and is a good conductive material, it is a noble metal powder, and thus costs are high. On the other hand, copper powder has a low volume resistivity and is a good conductive material. However, since it is easily oxidized, it has poor storage stability (reliability) compared to silver powder.

これらの問題を解消するために、導電性ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉が提案されている(例えば、特許文献1〜4参照)。   In order to solve these problems, silver-coated copper powder in which the surface of the copper powder is coated with silver has been proposed as the metal powder used for the conductive paste (see, for example, Patent Documents 1 to 4).

また、電子部品の電極や配線を形成する導電膜は、無線通信用のICタグ用アンテナを形成する導電膜のように、使用環境により繰り返し折り曲げられることが多い場合に、繰り返し折り曲げられても、導電膜の電気抵抗の上昇が少ないことが望まれる。   In addition, the conductive film that forms the electrode and wiring of the electronic component is often repeatedly bent depending on the use environment, such as the conductive film that forms the antenna for an IC tag for wireless communication. It is desired that the electrical resistance of the conductive film is little increased.

特開2010−174311号公報(段落番号0003)JP 2010-174411 A (paragraph number 0003) 特開2010−077495号公報(段落番号0006)JP 2010-077745 (paragraph number 0006) 特開2012−153967号公報(段落番号0010)JP 2012-153967 A (paragraph number 0010) 特開2015−71818号公報(段落番号0008)Japanese Patent Laying-Open No. 2015-71818 (paragraph number 0008)

しかし、従来の銀被覆銅粉では、導電膜の形成に使用した場合に、導電膜の電気抵抗が高くなったり、初期の電気抵抗が低くても、導電膜が繰り返し折り曲げられると、導電膜の電気抵抗の上昇が大きくなるという問題があった。   However, when the conventional silver-coated copper powder is used for forming a conductive film, the conductive film is repeatedly bent even if the electrical resistance of the conductive film is high or the initial electrical resistance is low. There was a problem that the electrical resistance increased greatly.

したがって、本発明は、このような従来の問題点に鑑み、導電膜の形成に使用した場合に、導電膜の電気抵抗が低く、繰り返し折り曲げられても、導電膜の電気抵抗の上昇が少ない、導電性ペースト用銅粉およびその製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention has a low electrical resistance of the conductive film when used for the formation of the conductive film, and even when it is repeatedly bent, the electrical resistance of the conductive film is small. It aims at providing the copper powder for electrically conductive paste, and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、樹枝状銅粉が銀含有層で被覆された樹枝状銀被覆銅粉と、フレーク状銅粉が銀含有層で被覆されたフレーク状銀被覆銅粉とを混合することにより、導電膜の形成に使用した場合に、導電膜の電気抵抗が低く、繰り返し折り曲げられても、導電膜の電気抵抗の上昇が少ない、導電性ペースト用銅粉を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that dendritic silver-coated copper powder coated with a dendritic copper powder and a flaky copper powder coated with a silver-containing layer. When mixed with flaky silver-coated copper powder, the conductive paste has a low electrical resistance when it is used to form a conductive film, and the electrical resistance of the conductive film does not increase even when it is repeatedly bent. The present inventors have found that copper powder for manufacturing can be produced and have completed the present invention.

すなわち、本発明による導電性ペースト用銅粉は、樹枝状銅粉が銀含有層で被覆された樹枝状銀被覆銅粉と、フレーク状銅粉が銀含有層で被覆されたフレーク状銀被覆銅粉との混合粉からなることを特徴とする。   That is, the copper powder for conductive paste according to the present invention includes a dendritic silver-coated copper powder in which a dendritic copper powder is coated with a silver-containing layer, and a flaky silver-coated copper in which a flaky copper powder is coated with a silver-containing layer. It consists of powder mixed with powder.

この導電性ペースト用銅粉において、樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の質量比が5:95〜85:15であるのが好ましい。また、銀含有層の被覆量が混合粉に対して1〜20質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。また、混合粉のレーザー回折式粒度分布装置により測定した体積基準の累積50%粒子径(D50)が3〜20μmであるのが好ましく、BET比表面積が0.1〜3m/gであるのが好ましく、タップ密度が0.5〜5g/ccであるのが好ましい。 In the copper powder for conductive paste, the mass ratio of the dendritic silver-coated copper powder and the flaky silver-coated copper powder is preferably 5:95 to 85:15. Moreover, it is preferable that the coating amount of a silver content layer is 1-20 mass% with respect to mixed powder, and it is preferable that a silver content layer is a layer which consists of silver or a silver compound. Moreover, it is preferable that the volume-based cumulative 50% particle diameter (D 50 ) measured by a laser diffraction particle size distribution device of the mixed powder is 3 to 20 μm, and the BET specific surface area is 0.1 to 3 m 2 / g. The tap density is preferably 0.5 to 5 g / cc.

また、本発明による導電性ペースト用銅粉の製造方法は、樹枝状銅粉とフレーク状銅粉が分散した銅粉分散液に銀イオン含有溶液を添加して、樹枝状銅粉とフレーク状銅粉の表面を銀含有層で被覆することにより、樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の混合粉を製造することを特徴とする。   In addition, the method for producing copper powder for conductive paste according to the present invention includes adding a silver ion-containing solution to a copper powder dispersion in which dendritic copper powder and flaky copper powder are dispersed, and dendritic copper powder and flaky copper. A powder mixture of dendritic silver-coated copper powder and flaky silver-coated copper powder is produced by coating the surface of the powder with a silver-containing layer.

この導電性ペースト用銅粉の製造方法において、銀イオン含有溶液が銀錯塩溶液であるのが好ましい。また、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の質量比が5:95〜85:15であるのが好ましい。また、銀含有層の被覆量が混合粉に対して1〜20質量%であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。   In the method for producing copper powder for conductive paste, the silver ion-containing solution is preferably a silver complex salt solution. Moreover, it is preferable that the mass ratio of the dendritic copper powder and the flaky copper powder in the copper powder dispersion is 5:95 to 85:15. Moreover, it is preferable that the coating amount of a silver content layer is 1-20 mass% with respect to mixed powder, and it is preferable that a silver content layer is a layer which consists of silver or a silver compound.

本発明によれば、導電膜の形成に使用した場合に、導電膜の電気抵抗が低く、繰り返し折り曲げられても、導電膜の電気抵抗の上昇が少ない、導電性ペースト用銅粉を製造することができる。   According to the present invention, when used for forming a conductive film, a copper powder for conductive paste is produced which has a low electrical resistance of the conductive film and does not increase in electrical resistance of the conductive film even when it is repeatedly bent. Can do.

本発明による導電性ペースト用銅粉に使用する樹枝状銅粉の走査型電子顕微鏡(SEM)写真(5000倍)である。It is a scanning electron microscope (SEM) photograph (5000 times) of the dendritic copper powder used for the copper powder for electrically conductive pastes by this invention. 本発明による導電性ペースト用銅粉に使用するフレーク状銅粉のSEM写真(5000倍)である。It is a SEM photograph (5000 times) of the flaky copper powder used for the copper powder for electrically conductive pastes by this invention. 実施例1の銀被覆銅混合粉のSEM写真(5000倍)である。It is a SEM photograph (5000 times) of the silver covering copper mixed powder of Example 1. 実施例2の銀被覆銅混合粉のSEM写真(5000倍)である。It is a SEM photograph (5000 times) of the silver covering copper mixed powder of Example 2. 実施例3の銀被覆銅混合粉のSEM写真(5000倍)である。It is a SEM photograph (5000 times) of the silver covering copper mixed powder of Example 3.

本発明による導電性ペースト用銅粉の実施の形態は、樹枝状銅粉が銀含有層で被覆された樹枝状銀被覆銅粉と、フレーク状銅粉が銀含有層で被覆されたフレーク状銀被覆銅粉との混合粉からなる。このように樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の混合粉を導電性ペーストに使用すると、銀被覆銅粉の粒子間の接点数を増加させることができ、優れた導電性を有する導電膜を形成することができる。   Embodiments of the copper powder for conductive paste according to the present invention include dendritic silver-coated copper powder in which dendritic copper powder is coated with a silver-containing layer, and flaky silver in which flaky copper powder is coated with a silver-containing layer. It consists of mixed powder with coated copper powder. Thus, when the mixed powder of dendritic silver-coated copper powder and flaky silver-coated copper powder is used in the conductive paste, the number of contacts between the particles of the silver-coated copper powder can be increased, and it has excellent conductivity. A conductive film can be formed.

この導電性ペースト用銅粉において、樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の質量比は、5:95〜85:15であるのが好ましく、10:90〜80:20であるのがさらに好ましい。銀含有層は、銀または銀化合物からなる層であるのが好ましく、銀含有層の被覆量は、混合粉に対して1〜20質量%であるのが好ましく、2〜15質量%であるのがさらに好ましい。混合粉の(ヘロス法によって)レーザー回折式粒度分布装置により測定した体積基準の累積50%粒子径(D50)は、3〜20μmであるのが好ましく、5〜15μmであるのがさらに好ましい。混合粉のBET比表面積は、0.1〜3m/gであるのが好ましく、0.3〜1m/gであるのがさらに好ましい。混合粉のタップ密度は、0.5〜5g/ccであるのが好ましく、1〜3g/ccであるのがさらに好ましい。 In this copper powder for conductive paste, the mass ratio of the dendritic silver-coated copper powder and the flaky silver-coated copper powder is preferably 5:95 to 85:15, and is 10:90 to 80:20. Is more preferable. The silver-containing layer is preferably a layer made of silver or a silver compound, and the coating amount of the silver-containing layer is preferably 1 to 20% by mass, and 2 to 15% by mass with respect to the mixed powder. Is more preferable. The volume-based cumulative 50% particle diameter (D 50 ) measured by a laser diffraction particle size distribution device (by the Helos method) of the mixed powder is preferably 3 to 20 μm, and more preferably 5 to 15 μm. BET specific surface area of the mixed powder is preferably from 0.1~3m 2 / g, and even more preferably 0.3~1m 2 / g. The tap density of the mixed powder is preferably 0.5 to 5 g / cc, more preferably 1 to 3 g / cc.

また、本発明による導電性ペースト用銅粉の製造方法の実施の形態では、(図1に示すような)樹枝状銅粉(デンドライト状銅粉)と(図2に示すような)フレーク状銅粉が分散した銅粉分散液に銀イオン含有溶液を添加して、樹枝状銅粉とフレーク状銅粉の表面を銀含有層で被覆することにより、樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の混合粉を製造する。   Moreover, in embodiment of the manufacturing method of the copper powder for electrically conductive pastes by this invention, dendritic copper powder (as shown in FIG. 1) (dendritic copper powder) and flake-like copper (as shown in FIG. 2) By adding a silver ion-containing solution to the copper powder dispersion in which the powder is dispersed and coating the surface of the dendritic copper powder and flaky copper powder with a silver-containing layer, the dendritic silver-coated copper powder and flaky silver coating A mixed powder of copper powder is produced.

樹枝状銅粉とフレーク状銅粉は、それぞれ比表面積が異なるため、別々に銀含有層で被覆して銀被覆銅粉を作製すると、比表面積が大きい銅粉では銀含有層が薄くなり、比表面積が小さい銅粉では銀含有層が厚くなって、それぞれ銀含有層の厚さが異なり易く、銀含有層で被覆した後の樹枝状銀被覆銅粉とフレーク状銀被覆銅粉を混合すると、それぞれの厚さが異なり、導電膜の形成に使用した場合に、導電性にばらつきが生じ易くなる。また、乾燥した樹枝状銅粉とフレーク状銅粉を混合すると、一部の銅粉にエネルギーが集中して、樹枝状銅粉とフレーク状銅粉の形状が破壊され易くなる。そのため、本発明による導電性ペースト用銅粉の製造方法の実施の形態では、樹枝状銅粉とフレーク状銅粉が分散した銅粉分散液に銀イオン含有溶液を添加して、樹枝状銅粉とフレーク状銅粉の表面を銀含有層で被覆することにより、銀含有層の厚さのばらつきを生じ難くするとともに、樹枝状銅粉とフレーク状銅粉の形状を維持したまま、樹枝状銅粉とフレーク状銅粉の表面を銀含有層で被覆することができるようにしている。   Since the dendritic copper powder and the flaky copper powder have different specific surface areas, when the silver-coated copper powder is prepared by separately coating with a silver-containing layer, the silver-containing layer becomes thin in the copper powder having a large specific surface area. In copper powder with a small surface area, the silver-containing layer becomes thick, the thickness of each silver-containing layer is easily different, and when the dendritic silver-coated copper powder and flaky silver-coated copper powder after coating with the silver-containing layer are mixed, Each thickness is different, and when used to form a conductive film, the conductivity tends to vary. Moreover, when the dried dendritic copper powder and the flaky copper powder are mixed, energy concentrates on a part of the copper powder, and the shapes of the dendritic copper powder and the flaky copper powder are easily destroyed. Therefore, in the embodiment of the method for producing copper powder for conductive paste according to the present invention, a silver ion-containing solution is added to a copper powder dispersion in which dendritic copper powder and flaky copper powder are dispersed, and dendritic copper powder is added. And coating the surface of the flaky copper powder with a silver-containing layer makes it difficult for the thickness of the silver-containing layer to vary, and maintains the shape of the dendritic copper powder and the flaky copper powder while maintaining the shape of the dendritic copper powder. The surface of the powder and the flaky copper powder can be covered with a silver-containing layer.

この導電性ペースト用銅粉の製造方法において、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の質量比は、5:95〜85:15であるのが好ましく、10:90〜80:20であるのがさらに好ましい。銀含有層は、銀または銀化合物からなる層であるのが好ましく、銀含有層の被覆量は、混合粉に対して1〜20質量%であるのが好ましく、2〜15質量%であるのがさらに好ましい。   In this method for producing copper powder for conductive paste, the mass ratio of dendritic copper powder and flaky copper powder in the copper powder dispersion is preferably 5:95 to 85:15, and 10:90 to 80. : 20 is more preferable. The silver-containing layer is preferably a layer made of silver or a silver compound, and the coating amount of the silver-containing layer is preferably 1 to 20% by mass, and 2 to 15% by mass with respect to the mixed powder. Is more preferable.

樹枝状銅粉とフレーク状銅粉の表面を銀含有層(銀または銀化合物からなる被覆層)で被覆する方法として、銅と銀の置換反応を利用した置換法や、還元剤を用いる還元法により、銅粉の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅粉と銀または銀化合物を含む溶液を攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法や、溶媒中に銅粉および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法などを使用することができる。   As a method of coating the surface of dendritic copper powder and flaky copper powder with a silver-containing layer (a coating layer made of silver or a silver compound), a substitution method using a copper-silver substitution reaction or a reduction method using a reducing agent Can be used to deposit silver or a silver compound on the surface of the copper powder, for example, silver or silver compound on the surface of the copper powder while stirring a solution containing the copper powder and the silver or silver compound in a solvent. Or a method of precipitating silver or a silver compound on the surface of a copper powder while mixing and stirring a solution containing silver or a silver compound and an organic substance in a solvent. Etc. can be used.

銅粉分散液と銀イオン含有溶液の溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As a solvent for the copper powder dispersion and the silver ion-containing solution, water, an organic solvent, or a solvent obtained by mixing these can be used. When using a mixed solvent of water and organic solvent, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.). The mixing ratio of water and organic solvent depends on the organic solvent used. It can be adjusted appropriately. In addition, as water used as a solvent, distilled water, ion-exchanged water, industrial water, or the like can be used as long as there is no fear that impurities are mixed therein.

銀含有層(銀または銀化合物からなる被覆層)の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銀被覆反応をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀含有層(銀または銀化合物からなる被覆層)の量に応じて決定することができる。   As a raw material for a silver-containing layer (a coating layer made of silver or a silver compound), it is preferable to use silver nitrate having high solubility in water and many organic solvents because silver ions need to be present in the solution. . In order to perform the silver coating reaction as uniformly as possible, it is preferable to use a silver nitrate solution in which silver nitrate is dissolved in a solvent (water, an organic solvent or a mixed solvent thereof) instead of solid silver nitrate. The amount of the silver nitrate solution to be used, the concentration of silver nitrate in the silver nitrate solution, and the amount of the organic solvent can be determined according to the amount of the target silver-containing layer (a coating layer made of silver or a silver compound).

銀含有層(銀または銀化合物からなる被覆層)をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅粉のコアとして銅粉を使用しているので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   In order to form a silver-containing layer (a coating layer made of silver or a silver compound) more uniformly, a chelating agent may be added to the solution. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions or the like so that copper ions or the like by-produced by substitution reaction between silver ions and metallic copper do not reprecipitate. . In particular, since copper powder is used as the core of the silver-coated copper powder, it is preferable to select a chelating agent while paying attention to the complex stability constant with copper. Specifically, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine, and salts thereof can be used as the chelating agent.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   In order to perform the silver coating reaction stably and safely, a pH buffer may be added to the solution. As this pH buffering agent, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate, or the like can be used.

銀被覆反応の際には、銀イオン含有溶液を添加する前に溶液中に樹枝状銅粉とフレーク状銅粉を入れて攪拌し、樹枝状銅粉とフレーク状銅粉が溶液中に十分に分散している状態で、銀イオン含有溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10〜80℃、さらに好ましくは15〜75℃、最も好ましくは20〜70℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   During the silver coating reaction, before adding the silver ion-containing solution, the dendritic copper powder and the flaky copper powder are put in the solution and stirred, and the dendritic copper powder and the flaky copper powder are sufficiently in the solution. It is preferable to add a silver ion-containing solution in a dispersed state. The reaction temperature in the silver coating reaction may be a temperature at which the reaction solution is solidified or evaporated, but is preferably in the range of 10 to 80 ° C, more preferably 15 to 75 ° C, and most preferably 20 to 70 ° C. Set. Moreover, although reaction time changes with the coating amount of silver or a silver compound, and reaction temperature, it can set in the range of 1 minute-5 hours.

以下、本発明による導電性ペースト用銅粉およびその製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the copper powder for electrically conductive paste by this invention and its manufacturing method is described in detail.

[実施例1]
樹枝状銅粉として電解銅粉(JX日鉱日石金属株式会社製の♯52−C)306.5gと、工業用アルコール(日本アルコール販売株式会社製のソルミックスAP−7)177.6gと、直径1.6mmのSUSボール1858.1gをサンドグラインダ(容量1L)に投入し、攪拌羽根の回転数652rpmで120分間撹拌して得られたスラリーからSUSボールを分離した後、ろ過して得られたウェットケーキを70℃で真空乾燥し、目開き32μmの篩を通して、フレーク化(扁平化処理)した銅粉(フレーク状銅粉)を得た。
[Example 1]
Electrolytic copper powder (# 52-C manufactured by JX Nippon Mining & Metals Co., Ltd.) 306.5 g as dendritic copper powder, 177.6 g of industrial alcohol (Solmix AP-7 manufactured by Nippon Alcohol Sales Co., Ltd.), 1858.1 g of SUS balls with a diameter of 1.6 mm were put into a sand grinder (capacity 1 L), and the SUS balls were separated from the slurry obtained by stirring for 120 minutes at a stirring blade speed of 652 rpm, and then filtered. The wet cake was vacuum-dried at 70 ° C. and passed through a sieve having an opening of 32 μm to obtain a flaky (flattened) copper powder (flaked copper powder).

また、炭酸アンモニウム157.5gとエチレンジアミン四酢酸二ナトリウム塩(EDTA・2H・2Na・2HO)315.0gを純水1254.6gに溶解した溶液を液温25℃に調整し、この溶液に銀33.3gを含有する硝酸銀水溶液を混合した銀錯塩溶液を用意した。また、炭酸アンモニウム142.8gとエチレンジアミン四酢酸二ナトリウム塩(EDTA・2H・2Na・2HO)142.8gを純水1662.0gに溶解した溶液に、樹枝状銅粉として電解銅粉(GGP Metalpowder AG社製のCu CH−L5 UF−d50=10μm)240.0gと上記のフレーク状銅粉60.0gを加えて攪拌した銅粉分散液を用意した。 A solution prepared by dissolving 157.5 g of ammonium carbonate and 315.0 g of ethylenediaminetetraacetic acid disodium salt (EDTA · 2H · 2Na · 2H 2 O) in 1254.6 g of pure water was adjusted to a liquid temperature of 25 ° C. A silver complex solution mixed with an aqueous silver nitrate solution containing 33.3 g of silver was prepared. In addition, electrolytic copper powder (GGP) was used as a dendritic copper powder in a solution obtained by dissolving 142.8 g of ammonium carbonate and 142.8 g of ethylenediaminetetraacetic acid disodium salt (EDTA · 2H · 2Na · 2H 2 O) in 1662.0 g of pure water. A copper powder dispersion was prepared by adding 240.0 g of Cu CH-L5 UF-d50 (10 μm) manufactured by Metalpowder AG and 60.0 g of the above flaky copper powder.

次に、乾燥した窒素ガス雰囲気中において、上記の銅粉分散液を液温25℃に調整し、この銅粉分散液に上記の銀錯塩溶液を添加して30分間攪拌しながら保持した後、15質量%のステアリン酸を含むステアリン酸エマルジョン4.9gを添加し、さらに5分間攪拌して樹枝状銅粉とフレーク状銅粉を表面処理した後、ろ過して得られたウェットケーキをイオン交換水で洗浄し、窒素雰囲気中において120℃で乾燥し、目開き32μmの篩を通して、銀により被覆された樹枝状銅粉(銀被覆樹枝状銅粉)と銀により被覆されたフレーク状銅粉(銀被覆フレーク状銅粉)の混合粉(銀被覆銅混合粉)を得た。なお、この銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比は80:20(=240g:60g)である。この銀被覆銅混合粉のSEM写真(5000倍)を図3に示す。   Next, in a dry nitrogen gas atmosphere, the copper powder dispersion is adjusted to a liquid temperature of 25 ° C., and the silver complex salt solution is added to the copper powder dispersion and held for 30 minutes with stirring. 4.9 g of stearic acid emulsion containing 15% by mass of stearic acid was added, and the mixture was further stirred for 5 minutes to surface-treat the dendritic copper powder and flaky copper powder, followed by ion exchange of the wet cake obtained by filtration It was washed with water, dried at 120 ° C. in a nitrogen atmosphere, passed through a sieve having an opening of 32 μm, and dendritic copper powder coated with silver (silver-coated dendritic copper powder) and flaky copper powder coated with silver ( A mixed powder (silver-coated copper mixed powder) of silver-coated flaky copper powder was obtained. In addition, the compounding ratio of the silver-coated dendritic copper powder and the silver-coated flaky copper powder in the silver-coated copper mixed powder is 80:20 (= 240 g: 60 g). An SEM photograph (5,000 times) of this silver-coated copper mixed powder is shown in FIG.

このようにして得られた銀被覆銅混合粉のBET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求めるとともに、銀被覆銅混合粉の耐熱性(高温安定性)を評価した。 The BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, color difference (L * , a * , b * ) of the silver-coated copper mixed powder thus obtained . ) And the heat resistance (high temperature stability) of the silver-coated copper mixed powder was evaluated.

銀被覆銅混合粉のBET比表面積は、BET比表面積測定装置(ユアサイオニクス株式会社製の4ソーブUS)を用いてBET法により求めた。その結果、銀被覆銅混合粉のBET比表面積は0.45m/gであった。 The BET specific surface area of the silver-coated copper mixed powder was determined by the BET method using a BET specific surface area measuring apparatus (4 Sorb US manufactured by Yours IONICS Inc.). As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.45 m 2 / g.

銀被覆銅混合粉のタップ密度は、特開2007−263860号公報に記載された方法と同様に、銀被覆銅混合粉を内径6mmの有底円筒形の容器に充填して銀被覆銅混合粉層を形成し、この銀被覆銅混合粉層に上部から0.16N/mの圧力を加えた後、銀被覆銅混合粉層の高さを測定し、この銀被覆銅混合粉層の高さの測定値と、充填された銀被覆銅混合粉の重量とから、銀被覆銅混合粉の密度を求めて、銀被覆銅混合粉のタップ密度とした。その結果、銀被覆銅混合粉のタップ密度は2.24g/ccであった。 The tap density of the silver-coated copper mixed powder is obtained by filling the silver-coated copper mixed powder into a bottomed cylindrical container having an inner diameter of 6 mm in the same manner as in the method described in JP-A-2007-263860. After forming a layer and applying a pressure of 0.16 N / m 2 to the silver-coated copper mixed powder layer from the top, the height of the silver-coated copper mixed powder layer is measured, and the height of the silver-coated copper mixed powder layer is measured. From the measured value of the thickness and the weight of the filled silver-coated copper mixed powder, the density of the silver-coated copper mixed powder was determined and used as the tap density of the silver-coated copper mixed powder. As a result, the tap density of the silver-coated copper mixed powder was 2.24 g / cc.

銀被覆銅混合粉中の酸素含有量は、酸素・窒素分析装置(LECO社製のTC−436型)により測定した。その結果、銀被覆銅混合粉中の酸素含有量は0.14質量%であった。   The oxygen content in the silver-coated copper mixed powder was measured with an oxygen / nitrogen analyzer (TC-436 type manufactured by LECO). As a result, the oxygen content in the silver-coated copper mixed powder was 0.14% by mass.

銀被覆銅混合粉中の炭素含有量は、炭素・硫黄分析装置(堀場製作所製のEMIA−220V)により測定した。その結果、銀被覆銅混合粉中の炭素含有量は0.23質量%であった。   The carbon content in the silver-coated copper mixed powder was measured by a carbon / sulfur analyzer (EMIA-220V manufactured by Horiba, Ltd.). As a result, the carbon content in the silver-coated copper mixed powder was 0.23% by mass.

銀被覆銅混合粉中の銀含有量(銀被覆量)は、銀被覆銅混合粉を硝酸で溶解した後、塩酸を添加して生成した塩化銀(AgCl)の沈殿を乾燥し、重量を測定することにより求めた。すなわち、銀被覆銅混合粉2gを秤量し、純水で洗い流しながらビーカーに移した後、硝酸10mLを投入し、加熱して溶解し、放冷した後、溶液をろ過して浮遊している有機物成分を除去し、得られたろ液に純水100mLを加え、塩酸6mLを添加して十分に撹拌し、さらに塩酸を添加し、新たな塩化銀が沈殿しなくなるまで塩酸を添加した後、溶液が透明になるまで加熱して熟成させ、その後、(重量W1(g)の)ガラスファイバーフィルタでろ過して回収した塩化銀の沈殿を乾燥機により110℃で3時間乾燥し、放冷した後、ガラスファイバーフィルタとともに塩化銀の重量W2(g)を測定し、Ag(質量%)={(W2−W1)×0.7526×100}/(測定に使用した銀被覆銅混合粉の重量)から求めた。その結果、銀被覆銅混合粉中の銀含有量(銀被覆量)は10.4質量%であった。   The silver content (silver coating amount) in the silver-coated copper mixed powder was measured by drying the silver chloride (AgCl) precipitate generated by adding hydrochloric acid after dissolving the silver-coated copper mixed powder with nitric acid. Was determined by That is, 2 g of silver-coated copper mixed powder was weighed and transferred to a beaker while washing with pure water, then 10 mL of nitric acid was added, dissolved by heating, allowed to cool, then the solution was filtered to float organic matter The components were removed, 100 mL of pure water was added to the obtained filtrate, 6 mL of hydrochloric acid was added and stirred sufficiently, hydrochloric acid was further added, and hydrochloric acid was added until no new silver chloride precipitated. After aging by heating until transparent, the silver chloride precipitate recovered by filtration through a glass fiber filter (with a weight of W1 (g)) was dried at 110 ° C. for 3 hours with a dryer, allowed to cool, The weight W2 (g) of silver chloride is measured together with the glass fiber filter, and from Ag (mass%) = {(W2-W1) × 0.7526 × 100} / (weight of silver-coated copper mixed powder used for measurement) Asked. As a result, the silver content (silver coating amount) in the silver-coated copper mixed powder was 10.4% by mass.

銀被覆銅混合粉の粒度分布として、レーザー回折式粒度分布装置(SYMPATEC社製のヘロス粒度分布測定装置(HELOS&RODOS))により測定した体積基準の累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)、累積99%粒子径(D99)を求めた。その結果、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は2.4μm、累積50%粒子径(D50)は9.2μm、累積90%粒子径(D90)は28.4μm、累積99%粒子径(D99)は54.6μmであった。 As the particle size distribution of the silver-coated copper mixed powder, a volume-based cumulative 10% particle size (D 10 ) and cumulative 50% particle measured by a laser diffraction particle size distribution device (Hellos particle size distribution measuring device (HELOS & RODOS) manufactured by SYMPATEC) The diameter (D 50 ), the cumulative 90% particle diameter (D 90 ), and the cumulative 99% particle diameter (D 99 ) were determined. As a result, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 2.4 μm, the cumulative 50% particle diameter (D 50 ) is 9.2 μm, and the cumulative 90% particle diameter (D 90 ) is The particle size (D 99 ) of 28.4 μm and cumulative 99% was 54.6 μm.

銀被覆銅混合粉の圧粉体抵抗として、銀被覆銅混合粉6.5gを粉体抵抗測定システムの測定容器(三菱化学アナリテック株式会社製のMCP−PD51型)内に詰めた後に加圧を開始して、20kNの荷重がかかった時点の(圧粉体の)体積抵抗率を測定した。その結果、銀被覆銅混合粉の圧粉体の体積抵抗率は22μΩ・cmであった。   As the green compact resistance of the silver-coated copper mixed powder, 6.5 g of the silver-coated copper mixed powder is packed in a measurement container of the powder resistance measurement system (MCP-PD51 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.) and then pressurized. The volume resistivity (of the green compact) at the time when a load of 20 kN was applied was measured. As a result, the volume resistivity of the green compact of the silver-coated copper mixed powder was 22 μΩ · cm.

銀被覆銅混合粉の色差は、測定試料として銀被覆銅混合粉5gを秤量して直径30mmの丸セルに入れ、10回タッピングして表面を平らにし、色差計(日本電色工業株式会社製のSpectro Color Meter SQ2000)によって測定した。その結果、銀被覆銅混合粉の色差L、aおよびbはそれぞれ68.5、9.0および13.1であった。 The color difference of the silver-coated copper mixed powder was measured by weighing 5 g of the silver-coated copper mixed powder as a measurement sample, putting it in a round cell with a diameter of 30 mm, tapping 10 times, and flattening the surface. Spectro Color Meter SQ2000). As a result, the color differences L * , a * and b * of the silver-coated copper mixed powder were 68.5, 9.0 and 13.1, respectively.

銀被覆銅混合粉の高温安定性については、示差熱熱重量同時測定装置(SIIナノテクノロジー株式会社製のEXATERTG/DTA6300型)により、銀被覆銅混合粉を大気中において室温(25℃)から昇温速度5℃/分で300℃まで昇温させて計測された重量と加熱前の銀被覆銅混合粉の重量の差(加熱により増加した重量)の加熱前の銀被覆銅混合粉の重量に対する増加率(%)から、加熱により増加した重量はすべて銀被覆銅混合粉の酸化により増加した重量であるとみなして、銀被覆銅混合粉の大気中における(酸化に対する)高温安定性を評価した。その結果、銀被覆銅混合粉の重量の増加率は2.94%であった。   Regarding the high temperature stability of the silver-coated copper mixed powder, the silver-coated copper mixed powder was raised from room temperature (25 ° C.) in the atmosphere using a differential thermothermal gravimetric simultaneous measurement apparatus (EXATERTTG / DTA6300 manufactured by SII Nanotechnology Co., Ltd.). The difference between the weight measured by heating up to 300 ° C. at a temperature rate of 5 ° C./min and the weight of the silver-coated copper mixed powder before heating (the weight increased by heating) with respect to the weight of the silver-coated copper mixed powder before heating From the rate of increase (%), all the weight increased by heating was regarded as the weight increased by oxidation of the silver-coated copper mixed powder, and the high-temperature stability (against oxidation) of the silver-coated copper mixed powder was evaluated. . As a result, the rate of increase in the weight of the silver-coated copper mixed powder was 2.94%.

また、得られた銀被覆銅混合粉33.3重量部と、ポリエステル樹脂(東洋紡績株式会社製のバイロン200)12重量部と、溶剤としてメチルエチルケトン(和光純薬工業株式会社製)54.7重量部とを混合し、自公転式真空攪拌脱泡ミキサー(株式会社EME製のV−mini300)を使用して1400rpmで60秒間回転させて、混練脱泡することにより導電性ペーストを得た。   Further, 33.3 parts by weight of the obtained silver-coated copper mixed powder, 12 parts by weight of a polyester resin (Byron 200 manufactured by Toyobo Co., Ltd.), and 54.7 parts by weight of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent. The mixture was mixed and rotated at 1400 rpm for 60 seconds using a self-revolving vacuum stirring defoaming mixer (V-mini300 manufactured by EME Co., Ltd.) to obtain a conductive paste by kneading and defoaming.

このようにして得られた導電性ペーストを77.7μmのバーコータによってPETフィルム(東レ株式会社製のS10ルミラー)上に印刷した後、大気循環式乾燥機により100℃で5分間加熱してフィルム上に導電膜を作製した。   The conductive paste thus obtained was printed on a PET film (S10 Lumirror manufactured by Toray Industries, Inc.) with a 77.7 μm bar coater, and then heated at 100 ° C. for 5 minutes with an air circulation dryer. A conductive film was prepared.

このようにして得られた導電膜付きフィルムを金属板上に載せ、その上に離型フィルム、(12.5mm×12.5mmの大きさの)Siチップ、PTEFシートおよび金属板をこの順に載せ、150℃で2MPaの圧力を加えて10分間熱プレスした後、FTEFシート、金属板、Siチップ、離型フィルムおよび金属板を分離して、熱プレスされた導電膜付きフィルムを得た。   The film with the conductive film thus obtained was placed on a metal plate, and a release film, a Si chip (size of 12.5 mm × 12.5 mm), a PTEF sheet, and a metal plate were placed in this order. After applying a pressure of 2 MPa at 150 ° C. and hot pressing for 10 minutes, the FTEF sheet, the metal plate, the Si chip, the release film and the metal plate were separated to obtain a hot pressed film with a conductive film.

この熱プレス後の導電膜付きフィルムを12.5mm×12.5mmの大きさに切り出して、表面抵抗計(株式会社三菱化学アナリテック製のロレスタGP)のPSPプローブを使用して、4探針法により導電膜の表面抵抗を測定したところ、23mΩ/□であった。   This hot-pressed film with a conductive film was cut into a size of 12.5 mm × 12.5 mm, and a 4-probe using a PSP probe of a surface resistance meter (Loresta GP manufactured by Mitsubishi Chemical Analytech Co., Ltd.) When the surface resistance of the conductive film was measured by this method, it was 23 mΩ / □.

また、この熱プレス後の導電膜付きフィルムをその導電膜側を下にして屈曲試験用の固定フィルム(東レ株式会社製のS10ルミラー)にセロハンテープで固定し、屈曲試験用の固定フィルムの一端側に900gの荷重を加え、固定した回転可能な直径20mmの円柱を軸にして、固定フィルムの他端側を引張って導電膜全体を円柱上で屈曲させ、この屈曲を連続して10,000回繰り返す屈曲性試験を行った後に、表面抵抗計(株式会社三菱化学アナリテック製のロレスタGP)のPSPプローブを使用して、測定方向が屈曲軸線と平行になるように4探針法により導電膜の表面抵抗を測定した。その結果、屈曲性試験後の導電膜の表面抵抗は132mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は574%であった。   Further, the film with the conductive film after the hot pressing is fixed with a cellophane tape to a fixed film for bending test (S10 Lumirror made by Toray Industries, Inc.) with the conductive film side down, and one end of the fixed film for bending test. A load of 900 g is applied to the side, and a fixed, rotatable cylinder with a diameter of 20 mm is used as an axis, and the other end side of the fixed film is pulled to bend the entire conductive film on the cylinder, and this bending is continuously 10,000. After conducting a bendability test that is repeated several times, using a PSP probe of a surface resistance meter (Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.), conducting by a four-probe method so that the measurement direction is parallel to the bending axis. The surface resistance of the film was measured. As a result, the surface resistance of the conductive film after the flexibility test was 132 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 574%.

[実施例2]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が70:30になるように、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の量をそれぞれ210.0gおよび90gとした以外は、実施例1と同様の方法により、銀被覆銅混合粉を得た。この銀被覆銅混合粉のSEM写真(5000倍)を図4に示す。
[Example 2]
The amount of dendritic copper powder and flaky copper powder in the copper powder dispersion is adjusted so that the compounding ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder is 70:30. A silver-coated copper mixed powder was obtained in the same manner as in Example 1 except that the amount was 210.0 g and 90 g, respectively. An SEM photograph (5,000 times) of this silver-coated copper mixed powder is shown in FIG.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, Color differences L * , a * , b * ) were determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.45m/g、タップ密度は2.16g/cc、酸素含有量は0.16質量%、炭素含有量は0.24質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は2.9μm、累積50%粒子径(D50)は11.1μm、累積90%粒子径(D90)は31.6μm、累積99%粒子径(D99)は55.9μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は24μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ71.4、7.9および12.4であり、銀被覆銅混合粉の重量の増加率は2.79%であった。また、導電膜の初期の表面抵抗は19mΩ/□、屈曲性試験後の導電膜の表面抵抗は86.1mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は453%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.45 m 2 / g, the tap density was 2.16 g / cc, the oxygen content was 0.16% by mass, the carbon content was 0.24% by mass, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 2.9 μm, the cumulative 50% particle diameter (D 50 ) is 11.1 μm, and the cumulative 90% particle diameter (D 90 ) is 31. The particle size (D 99 ) was 65.9 μm and the cumulative 99% particle diameter (D 99 ) was 55.9 μm. Moreover, the volume resistivity of the green compact of the silver-coated copper mixed powder is 24 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 71.4, 7.9 and 12.4, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.79%. The initial surface resistance of the conductive film was 19 mΩ / □, the surface resistance of the conductive film after the flexibility test was 86.1 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 453%. .

[実施例3]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が50:50になるように、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の量をそれぞれ150.0gとした以外は、実施例1と同様の方法により、銀被覆銅混合粉を得た。この銀被覆銅混合粉のSEM写真(5000倍)を図5に示す。
[Example 3]
The amount of dendritic copper powder and flaky copper powder in the copper powder dispersion is adjusted so that the compounding ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder is 50:50. A silver-coated copper mixed powder was obtained in the same manner as in Example 1 except that the amount was 150.0 g. The SEM photograph (5000 times) of this silver covering copper mixed powder is shown in FIG.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、aおよびb)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, A color difference (L * , a * and b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.47m/g、タップ密度は2.22g/cc、酸素含有量は0.14質量%、炭素含有量は0.23質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は3.4μm、累積50%粒子径(D50)は13.2μm、累積90%粒子径(D90)は34.1μm、累積99%粒子径(D99)は58.1μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は28μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ75.1、6.2および10.9であり、銀被覆銅混合粉の重量の増加率は2.81%であった。また、導電膜の初期の表面抵抗は14mΩ/□、屈曲性試験後の導電膜の表面抵抗は54.4mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は388%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.47 m 2 / g, the tap density was 2.22 g / cc, the oxygen content was 0.14 mass%, the carbon content was 0.23 mass%, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 3.4 μm, the cumulative 50% particle diameter (D 50 ) is 13.2 μm, and the cumulative 90% particle diameter (D 90 ) is 34. 0.1 μm, cumulative 99% particle size (D 99 ) was 58.1 μm. The volume resistivity of the green-coated copper mixed powder compact is 28 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 75.1, 6.2 and 10.9, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.81%. The initial surface resistance of the conductive film was 14 mΩ / □, the surface resistance of the conductive film after the flexibility test was 54.4 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 388%. .

[実施例4]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が30:70になるように、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の量をそれぞれ90.0gおよび210.0gとした以外は、実施例1と同様の方法により、銀被覆銅混合粉を得た。
[Example 4]
The amount of dendritic copper powder and flaky copper powder in the copper powder dispersion is adjusted so that the compounding ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder is 30:70. A silver-coated copper mixed powder was obtained in the same manner as in Example 1 except that the amount was 90.0 g and 210.0 g, respectively.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.44m/g、タップ密度は2.46g/ccで、酸素含有量は0.13質量%、炭素含有量は0.22質量%、銀含有量(銀被覆量)は10.5質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は4.3μm、累積50%粒子径(D50)は14.7μm、累積90%粒子径(D90)は34.0μm、累積99%粒子径(D99)は56.1μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は24μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ79.4、4.7および10.1であり、銀被覆銅混合粉の重量の増加率は2.66%であった。また、導電膜の初期の表面抵抗は9.6mΩ/□、屈曲性試験後の導電膜の表面抵抗は37.5mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は391%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.44 m 2 / g, the tap density was 2.46 g / cc, the oxygen content was 0.13 mass%, the carbon content was 0.22 mass%, The silver content (silver coating amount) was 10.5% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 4.3 μm, the cumulative 50% particle diameter (D 50 ) is 14.7 μm, and the cumulative 90% particle diameter (D 90 ) is 34. The particle size (D 99 ) was 0.01 μm and the cumulative 99% particle size (D 99 ) was 56.1 μm. The volume resistivity of the green-coated copper mixed powder compact is 24 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 79.4, 4.7 and 10.1, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.66%. The initial surface resistance of the conductive film was 9.6 mΩ / □, the surface resistance of the conductive film after the flexibility test was 37.5 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 391%. there were.

[実施例5]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が10:90になるように、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の量をそれぞれ30.0gおよび270.0gとした以外は、実施例3と同様の方法により、銀被覆銅混合粉を得た。
[Example 5]
The amount of dendritic copper powder and flaky copper powder in the copper powder dispersion is adjusted so that the compounding ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder is 10:90. A silver-coated copper mixed powder was obtained in the same manner as in Example 3 except that the amounts were 30.0 g and 270.0 g, respectively.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.33m/g、タップ密度は2.67g/cc、酸素含有量は0.12質量%、炭素含有量は0.20質量%、銀含有量(銀被覆量)は10.2質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は5.8μm、累積50%粒子径(D50)は17.2μm、累積90%粒子径(D90)は38.1μm、累積99%粒子径(D99)は63.0μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は22μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ82.1、4.3および9.8であり、銀被覆銅混合粉の重量の増加率は2.19%であった。また、導電膜の初期の表面抵抗は12mΩ/□、屈曲性試験後の導電膜の表面抵抗は71.7mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は598%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.33 m 2 / g, the tap density was 2.67 g / cc, the oxygen content was 0.12% by mass, the carbon content was 0.20% by mass, silver The content (silver coating amount) was 10.2% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 5.8 μm, the cumulative 50% particle diameter (D 50 ) is 17.2 μm, and the cumulative 90% particle diameter (D 90 ) is 38. 0.1 μm, cumulative 99% particle size (D 99 ) was 63.0 μm. The volume resistivity of the green-coated copper mixed powder compact is 22 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 82.1, 4.3 and 9.8, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.19%. The initial surface resistance of the conductive film was 12 mΩ / □, the surface resistance of the conductive film after the flexibility test was 71.7 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 598%. .

[実施例6]
樹枝状銅粉として電解銅粉(福田金属箔粉工業株式会社製のCE−20)を使用した以外は、実施例2と同様の方法により、銀被覆銅混合粉を得た。
[Example 6]
A silver-coated copper mixed powder was obtained in the same manner as in Example 2 except that electrolytic copper powder (CE-20 manufactured by Fukuda Metal Foil Powder Co., Ltd.) was used as the dendritic copper powder.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定した。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, Color differences (L * , a * , b * ) were determined, heat resistance (high-temperature stability) was evaluated, and a conductive film was prepared and its surface resistance was measured.

その結果、銀被覆銅混合粉のBET比表面積は0.46m/g、タップ密度は2.26g/cc、酸素含有量は0.13質量%、炭素含有量は0.23質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は2.6μm、累積50%粒子径(D50)は11.3μm、累積90%粒子径(D90)は33.2μm、累積99%粒子径(D99)は56.3μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は24μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ70.8、7.5および11.9であり、銀被覆銅混合粉の重量の増加率は2.92%であった。また、導電膜の初期の表面抵抗は20mΩ/□であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.46 m 2 / g, the tap density was 2.26 g / cc, the oxygen content was 0.13 mass%, the carbon content was 0.23 mass%, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 2.6 μm, the cumulative 50% particle diameter (D 50 ) is 11.3 μm, and the cumulative 90% particle diameter (D 90 ) is 33. The particle size (D 99 ) was 26.3 μm and the cumulative 99% particle size (D 99 ) was 56.3 μm. The volume resistivity of the green-coated copper mixed powder compact is 24 μΩ · cm, and the color differences L * , a *, and b * of the silver-coated copper mixed powder are 70.8, 7.5, and 11.9, respectively. The rate of increase in the weight of the silver-coated copper mixed powder was 2.92%. The initial surface resistance of the conductive film was 20 mΩ / □.

[実施例7]
樹枝状銅粉として電解銅粉(福田金属箔粉工業株式会社製のCE−20)を使用した以外は、実施例3と同様の方法により、銀被覆銅混合粉を得た。
[Example 7]
A silver-coated copper mixed powder was obtained in the same manner as in Example 3 except that electrolytic copper powder (CE-20 manufactured by Fukuda Metal Foil Powder Co., Ltd.) was used as the dendritic copper powder.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定した。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, Color differences (L * , a * , b * ) were determined, heat resistance (high-temperature stability) was evaluated, and a conductive film was prepared and its surface resistance was measured.

その結果、銀被覆銅混合粉のBET比表面積は0.42m/g、タップ密度は2.34g/cc、酸素含有量は0.12質量%、炭素含有量は0.22質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は3.4μm、累積50%粒子径(D50)は14.8μm、累積90%粒子径(D90)は36.0μm、累積99%粒子径(D99)は59.0μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は25μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ74.6、5.8および10.7であり、銀被覆銅混合粉の重量の増加率は3.05%であった。また、導電膜の初期の表面抵抗は15mΩ/□であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.42 m 2 / g, the tap density was 2.34 g / cc, the oxygen content was 0.12% by mass, the carbon content was 0.22% by mass, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 3.4 μm, the cumulative 50% particle diameter (D 50 ) is 14.8 μm, and the cumulative 90% particle diameter (D 90 ) is 36. The particle size (D 99 ) of 0.0 μm and cumulative 99% was 59.0 μm. The volume resistivity of the green-coated copper mixed powder compact is 25 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 74.6, 5.8 and 10.7, respectively. The weight increase rate of the silver-coated copper mixed powder was 3.05%. The initial surface resistance of the conductive film was 15 mΩ / □.

[比較例1]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が100:0になるように、銅粉分散液中の樹枝状銅粉の量を300.0gとしてフレーク状銅粉を添加しなかった以外は、実施例1と同様の方法により、銀被覆銅混合粉を得た。
[Comparative Example 1]
Flakes with an amount of dendritic copper powder in the copper powder dispersion of 300.0 g so that the compounding ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder is 100: 0. A silver-coated copper mixed powder was obtained in the same manner as in Example 1 except that the copper powder was not added.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.45m/g、タップ密度は2.29g/cc、酸素含有量は0.13質量%、炭素含有量は0.22質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は1.9μm、累積50%粒子径(D50)は7.0μm、累積90%粒子径(D90)は19.8μm、累積99%粒子径(D99)は42.1μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は19μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ61.9、11.7および16.1であり、銀被覆銅混合粉の重量の増加率は2.65%であった。また、導電膜の初期の表面抵抗は28mΩ/□、屈曲性試験後の導電膜の表面抵抗は88.9mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は318%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.45 m 2 / g, the tap density was 2.29 g / cc, the oxygen content was 0.13 mass%, the carbon content was 0.22 mass%, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 1.9 μm, the cumulative 50% particle diameter (D 50 ) is 7.0 μm, and the cumulative 90% particle diameter (D 90 ) is 19. The particle size (D 99 ) was 82.1 μm and the cumulative 99% particle size (D 99 ) was 42.1 μm. The volume resistivity of the green-coated copper mixed powder compact is 19 μΩ · cm, and the color differences L * , a *, and b * of the silver-coated copper mixed powder are 61.9, 11.7, and 16.1, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.65%. The initial surface resistance of the conductive film was 28 mΩ / □, the surface resistance of the conductive film after the flexibility test was 88.9 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 318%. .

[比較例2]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が95:5になるように、銅粉分散液中の電解銅粉およびフレーク状銅粉の量をそれぞれ285.0gおよび15.0gとした以外は、実施例3と同様の方法により、銀被覆銅混合粉を得た。
[Comparative Example 2]
The amounts of electrolytic copper powder and flaky copper powder in the copper powder dispersion were respectively adjusted so that the blending ratio of silver-coated dendritic copper powder and silver-coated flaky copper powder in the silver-coated copper mixed powder was 95: 5. A silver-coated copper mixed powder was obtained in the same manner as in Example 3 except that the amount was 285.0 g and 15.0 g.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.48m/g、タップ密度は2.15g/cc、酸素含有量は0.13質量%、炭素含有量は0.23質量%、銀含有量(銀被覆量)は10.3質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は2.1μm、累積50%粒子径(D50)は7.6μm、累積90%粒子径(D90)は24.0μm、累積99%粒子径(D99)は50.2μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は14μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ61.6、11.5および14.9であり、銀被覆銅混合粉の重量の増加率は3.05%であった。また、導電膜の初期の表面抵抗は32mΩ/□、屈曲性試験後の導電膜の表面抵抗は118mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は369%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.48 m 2 / g, the tap density was 2.15 g / cc, the oxygen content was 0.13 mass%, the carbon content was 0.23 mass%, silver The content (silver coating amount) was 10.3% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 2.1 μm, the cumulative 50% particle diameter (D 50 ) is 7.6 μm, and the cumulative 90% particle diameter (D 90 ) is 24. The particle diameter (D 99 ) of 0.0 μm and the cumulative 99% was 50.2 μm. The volume resistivity of the green-coated copper mixed powder compact is 14 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 61.6, 11.5 and 14.9, respectively. The weight increase rate of the silver-coated copper mixed powder was 3.05%. The initial surface resistance of the conductive film was 32 mΩ / □, the surface resistance of the conductive film after the flexibility test was 118 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 369%.

[比較例3]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が90:10になるように、銅粉分散液中の電解銅粉およびフレーク状銅粉の量をそれぞれ270.0gおよび30.0gとした以外は、実施例3と同様の方法により、銀被覆銅混合粉を得た。
[Comparative Example 3]
The amounts of the electrolytic copper powder and the flaky copper powder in the copper powder dispersion are respectively adjusted so that the blending ratio of the silver-coated dendritic copper powder and the silver-coated flaky copper powder in the silver-coated copper mixed powder is 90:10. A silver-coated copper mixed powder was obtained in the same manner as in Example 3 except that 270.0 g and 30.0 g were used.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.47m/g、タップ密度は2.23g/cc、酸素含有量は0.14質量%、炭素含有量は0.22質量%、銀含有量(銀被覆量)は10.4質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は2.2μm、累積50%粒子径(D50)は8.2μm、累積90%粒子径(D90)は26.0μm、累積99%粒子径(D99)は54.1μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は19μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ65.5、10.8および14.4であり、銀被覆銅混合粉の重量の増加率は2.98%であった。また、導電膜の初期の表面抵抗は38mΩ/□、屈曲性試験後の導電膜の表面抵抗は116mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は305%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.47 m 2 / g, the tap density was 2.23 g / cc, the oxygen content was 0.14% by mass, the carbon content was 0.22% by mass, silver The content (silver coating amount) was 10.4% by mass. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 2.2 μm, the cumulative 50% particle diameter (D 50 ) is 8.2 μm, and the cumulative 90% particle diameter (D 90 ) is 26. The particle diameter (D 99 ) of 0.0 μm and the cumulative 99% was 54.1 μm. The volume resistivity of the green-coated copper mixed powder compact is 19 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 65.5, 10.8 and 14.4, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.98%. The initial surface resistance of the conductive film was 38 mΩ / □, the surface resistance of the conductive film after the flexibility test was 116 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 305%.

[比較例4]
銀被覆銅混合粉中の銀被覆樹枝状銅粉と銀被覆フレーク状銅粉の配合比が0:100になるように、銅粉分散液中のフレーク状銅粉の量を300.0gとして樹枝状銅粉を添加しなかった以外は、実施例3と同様の方法により、銀被覆銅混合粉を得た。
[Comparative Example 4]
The amount of the flaky copper powder in the copper powder dispersion is 300.0 g so that the blending ratio of the silver-coated dendritic copper powder and the silver-coated flaky copper powder in the silver-coated copper mixed powder is 0: 100. A silver-coated copper mixed powder was obtained in the same manner as in Example 3 except that the copper powder was not added.

このようにして得られた銀被覆銅混合粉について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、銀含有量、粒度分布、圧粉体抵抗、色差(L、a、b)を求め、耐熱性(高温安定性)を評価するとともに、導電膜を作製して、その表面抵抗を測定するとともに、屈曲性試験を行った。 For the silver-coated copper mixed powder thus obtained, the same method as in Example 1, BET specific surface area, tap density, oxygen content, carbon content, silver content, particle size distribution, green compact resistance, The color difference (L * , a * , b * ) was determined, heat resistance (high temperature stability) was evaluated, a conductive film was prepared, its surface resistance was measured, and a flexibility test was performed.

その結果、銀被覆銅混合粉のBET比表面積は0.32m/g、タップ密度は3.16g/cc、銀被覆銅混合粉中の酸素含有量は0.10質量%、炭素含有量は0.17質量%、銀含有量(銀被覆量)は10.3質量%であった。また、銀被覆銅混合粉の体積基準の累積10%粒子径(D10)は6.0μm、累積50%粒子径(D50)は17.1μm、累積90%粒子径(D90)は36.5μm、累積99%粒子径(D99)は59.3μmであった。また、銀被覆銅混合粉の圧粉体の体積抵抗率は20μΩ・cm、銀被覆銅混合粉の色差L、aおよびbはそれぞれ82.3、3.4および8.7であり、銀被覆銅混合粉の重量の増加率は2.12%であった。また、導電膜の初期の表面抵抗は16mΩ/□、屈曲性試験後の導電膜の表面抵抗は144mΩ/□であり、屈曲性試験による導電膜の表面抵抗の変化は713%であった。 As a result, the BET specific surface area of the silver-coated copper mixed powder was 0.32 m 2 / g, the tap density was 3.16 g / cc, the oxygen content in the silver-coated copper mixed powder was 0.10% by mass, and the carbon content was 0.17 mass% and silver content (silver coating amount) were 10.3 mass%. Further, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper mixed powder is 6.0 μm, the cumulative 50% particle diameter (D 50 ) is 17.1 μm, and the cumulative 90% particle diameter (D 90 ) is 36. The cumulative 99% particle diameter (D 99 ) was 59.3 μm. The volume resistivity of the green-coated copper mixed powder compact is 20 μΩ · cm, and the color differences L * , a * and b * of the silver-coated copper mixed powder are 82.3, 3.4 and 8.7, respectively. The weight increase rate of the silver-coated copper mixed powder was 2.12%. The initial surface resistance of the conductive film was 16 mΩ / □, the surface resistance of the conductive film after the flexibility test was 144 mΩ / □, and the change in the surface resistance of the conductive film by the flexibility test was 713%.

これらの実施例および比較例の導電性ペースト用銅粉の製造条件および特性と、その導電性ペーストを使用して作製した導電膜の特性を表1〜表4に示す。   Tables 1 to 4 show the production conditions and characteristics of the copper powder for conductive pastes of these Examples and Comparative Examples, and the characteristics of the conductive films prepared using the conductive paste.

Figure 0006577316
Figure 0006577316

Figure 0006577316
Figure 0006577316

Figure 0006577316
Figure 0006577316

Figure 0006577316
Figure 0006577316

Claims (4)

樹枝状銅粉とフレーク状銅粉が分散した銅粉分散液に銀イオン含有溶液を添加して、樹枝状銅粉とフレーク状銅粉の表面を銀含有層で被覆することにより、樹枝状銀被覆銅粉とフレーク状銀被覆銅粉の混合粉を製造する、導電性ペースト用銅粉の製造方法において、銅粉分散液中の樹枝状銅粉とフレーク状銅粉の質量比が5:95〜85:15であることを特徴とする、導電性ペースト用銅粉の製造方法。 By adding a silver ion-containing solution to a copper powder dispersion in which dendritic copper powder and flaky copper powder are dispersed, the surface of the dendritic copper powder and flaky copper powder is coated with a silver-containing layer, thereby dendritic silver. In the method for producing a copper powder for conductive paste for producing a mixed powder of coated copper powder and flaky silver-coated copper powder, the mass ratio of dendritic copper powder and flaky copper powder in the copper powder dispersion is 5:95. It is -85: 15, The manufacturing method of the copper powder for electrically conductive paste characterized by the above-mentioned. 前記銀イオン含有溶液が銀錯塩溶液であることを特徴とする、請求項に記載の導電性ペースト用銅粉の製造方法。 The method for producing copper powder for conductive paste according to claim 1 , wherein the silver ion-containing solution is a silver complex salt solution. 前記銀含有層の被覆量が前記混合粉に対して1〜20質量%であることを特徴とする、請求項1または2に記載の導電性ペースト用銅粉の製造方法。 The method for producing a copper powder for conductive paste according to claim 1 or 2 , wherein a coating amount of the silver-containing layer is 1 to 20 mass% with respect to the mixed powder. 前記銀含有層が銀または銀化合物からなる層であることを特徴とする、請求項乃至のいずれかに記載の導電性ペースト用銅粉の製造方法The method for producing copper powder for conductive paste according to any one of claims 1 to 3 , wherein the silver-containing layer is a layer made of silver or a silver compound.
JP2015192624A 2015-09-30 2015-09-30 Copper powder for conductive paste and method for producing the same Active JP6577316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192624A JP6577316B2 (en) 2015-09-30 2015-09-30 Copper powder for conductive paste and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192624A JP6577316B2 (en) 2015-09-30 2015-09-30 Copper powder for conductive paste and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019132763A Division JP2019186225A (en) 2019-07-18 2019-07-18 Copper powder for conductive paste and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2017066476A JP2017066476A (en) 2017-04-06
JP6577316B2 true JP6577316B2 (en) 2019-09-18

Family

ID=58492122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192624A Active JP6577316B2 (en) 2015-09-30 2015-09-30 Copper powder for conductive paste and method for producing the same

Country Status (1)

Country Link
JP (1) JP6577316B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834231A (en) * 2019-04-19 2020-10-27 中国科学院深圳先进技术研究院 Copper-based conductive paste and preparation method and application thereof
WO2023188206A1 (en) * 2022-03-30 2023-10-05 東洋インキScホールディングス株式会社 Metal sheet bonding agent, method for manufacturing reinforcement member for printed wiring board, and wiring board and method for manufacturing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832247B2 (en) * 1990-07-24 1998-12-09 三井金属鉱業株式会社 Method for producing silver-coated copper powder
JP4779134B2 (en) * 2001-02-13 2011-09-28 Dowaエレクトロニクス株式会社 Conductive filler for conductive paste and method for producing the same
JP5528857B2 (en) * 2010-03-11 2014-06-25 タツタ電線株式会社 Electromagnetic wave shielding film, flexible substrate using the same, and method for producing the same
JP6166012B2 (en) * 2011-01-28 2017-07-19 三井金属鉱業株式会社 Conductive powder and conductive paste
JP5976382B2 (en) * 2012-04-27 2016-08-23 京セラ株式会社 Die attach paste, manufacturing method thereof, and semiconductor device
JP2015110745A (en) * 2013-11-01 2015-06-18 セメダイン株式会社 Photocurable conductive composition

Also Published As

Publication number Publication date
JP2017066476A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6166012B2 (en) Conductive powder and conductive paste
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
Shang et al. Synthesis of Cu@ Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity
JP5631841B2 (en) Silver coated copper powder
JP2020076155A (en) Silver-coated copper powder and method for producing the same
JP6271231B2 (en) Silver-coated copper powder and conductive paste
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP6167060B2 (en) Flaked copper powder and method for producing the same
JP4666663B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
JP4163987B2 (en) Flaked copper powder, method for producing flaky copper powder and conductive paste
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP5576319B2 (en) Copper particles
TW201338893A (en) Silver powder
JP6541764B2 (en) Silver-coated copper powder and conductive paste, and method for producing them
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
WO2019009146A1 (en) Electrically conductive paste
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP6681437B2 (en) Conductive paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190822

R150 Certificate of patent or registration of utility model

Ref document number: 6577316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250