JP6681437B2 - Conductive paste - Google Patents

Conductive paste Download PDF

Info

Publication number
JP6681437B2
JP6681437B2 JP2018119745A JP2018119745A JP6681437B2 JP 6681437 B2 JP6681437 B2 JP 6681437B2 JP 2018119745 A JP2018119745 A JP 2018119745A JP 2018119745 A JP2018119745 A JP 2018119745A JP 6681437 B2 JP6681437 B2 JP 6681437B2
Authority
JP
Japan
Prior art keywords
silver
conductive paste
mass
powder
volume resistivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018119745A
Other languages
Japanese (ja)
Other versions
JP2019016592A (en
Inventor
愛子 平田
愛子 平田
徳昭 野上
徳昭 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to CN201880044252.0A priority Critical patent/CN110809806B/en
Priority to PCT/JP2018/024270 priority patent/WO2019009146A1/en
Priority to KR1020207002705A priority patent/KR102560073B1/en
Priority to US16/626,667 priority patent/US11270810B2/en
Priority to TW107122785A priority patent/TWI714867B/en
Publication of JP2019016592A publication Critical patent/JP2019016592A/en
Application granted granted Critical
Publication of JP6681437B2 publication Critical patent/JP6681437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Description

本発明は、導電性ペーストに関し、特に、導電性の金属粉末として銀被覆銅粉と銀粉を使用する導電性ペーストに関する。   The present invention relates to a conductive paste, and more particularly to a conductive paste using silver-coated copper powder and silver powder as a conductive metal powder.

従来、印刷法などにより電子部品の電極や配線を形成するために、銀粉や銅粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電性ペーストが使用されている。   Conventionally, a conductive paste prepared by blending a solvent, a resin, a dispersant and the like with a conductive metal powder such as silver powder or copper powder has been used to form electrodes and wiring of electronic parts by a printing method or the like. There is.

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。一方、銅粉は、体積抵抗率が低く、良好な導電性物質であるが、酸化され易いため、銀粉に比べて保存安定性(信頼性)に劣っている。   However, silver powder has a very small volume resistivity and is a good conductive substance, but since it is a powder of a noble metal, the cost is high. On the other hand, copper powder has a low volume resistivity and is a good conductive substance, but it is inferior in storage stability (reliability) to silver powder because it is easily oxidized.

これらの問題を解消するために、導電性ペーストに使用する金属粉末として、銅粉の表面を銀で被覆した銀被覆銅粉が提案されている(例えば、特許文献1〜2参照)。また、銀粉と銀被覆銅粉を導電性ペーストに使用する金属粉末として使用することも提案されている(例えば、特許文献3参照)。   In order to solve these problems, silver-coated copper powder in which the surface of copper powder is coated with silver has been proposed as the metal powder used in the conductive paste (see, for example, Patent Documents 1 and 2). It has also been proposed to use silver powder and silver-coated copper powder as the metal powder used in the conductive paste (see, for example, Patent Document 3).

近年、太陽電池のバスバー電極などの導電膜を形成するための導電性ペーストとして、銀粉を用いた導電性ペーストに代えて、銀粉よりも安価な銀被覆銅粉を用いた導電性ペーストを使用することが試みられており、銀粉と銀被覆銅粉を用いた導電性ペーストを使用することも検討されている。   In recent years, as a conductive paste for forming a conductive film such as a bus bar electrode of a solar cell, a conductive paste using silver-coated copper powder, which is cheaper than silver powder, is used instead of the conductive paste using silver powder. However, the use of a conductive paste using silver powder and silver-coated copper powder has also been considered.

一般的な結晶シリコン型太陽電池では、銀粉を用いた焼成型の導電性ペーストを大気雰囲気下において800℃程度の高温で焼成することにより電極を形成しているが、銅粉や銀被覆銅粉を用いた導電性ペーストを使用すると、大気雰囲気下においてこのような高温で焼成する際に、銅粉や銀被覆銅粉が酸化してしまうため、不活性雰囲気下で焼成するなどの特殊な技術が必要となり、コストが高くなる。   In a general crystalline silicon solar cell, an electrode is formed by firing a firing type conductive paste using silver powder at a high temperature of about 800 ° C. in an air atmosphere. However, copper powder or silver-coated copper powder is used. If you use a conductive paste that uses copper, copper powder or silver-coated copper powder will oxidize when fired at such high temperatures in the atmosphere, so special techniques such as firing in an inert atmosphere Is required, and the cost is high.

一方、HIT(単結晶系ハイブリッド型)太陽電池などでは、一般に銀粉を用いた樹脂硬化型の導電性ペーストを大気雰囲気下において200℃程度に加熱して硬化させることにより電極を形成しており、大気雰囲気下においてこのような低い温度で加熱しても、銅粉や銀被覆銅粉は酸化に耐え得るため、銀被覆銅粉を用いた樹脂硬化型の導電性ペーストや、銀粉と銀被覆銅粉を用いた樹脂硬化型の導電性ペーストを使用することが可能になる。   On the other hand, in a HIT (single crystal hybrid type) solar cell or the like, an electrode is generally formed by heating a resin-curable conductive paste using silver powder to about 200 ° C. in an air atmosphere to cure it. Even if heated at such a low temperature in the air atmosphere, copper powder or silver-coated copper powder can withstand oxidation. Therefore, resin-curable conductive paste using silver-coated copper powder or silver powder and silver-coated copper powder can be used. It is possible to use a resin-curable conductive paste that uses powder.

特開2010−174311号公報(段落番号0003)JP, 2010-174311, A (paragraph number 0003) 特開2010−077495号公報(段落番号0006)JP, 2010-077495, A (paragraph number 0006) 特開平11−92739号公報(段落番号0008)JP-A-11-92739 (paragraph number 0008)

しかし、上記のような銀粉と銀被覆銅粉を使用してビスフェノールA型エポキシ樹脂などの樹脂を混練して得られた従来の樹脂型の導電性ペーストより形成したバスバー電極をはんだ付けによりタブ線と接続すると、はんだ付けの温度(380℃程度)で導電性ペーストの樹脂が分解して、バスバー電極の抵抗が高くなって、太陽電池の変換効率が低下する場合があることがわかった。   However, a bus bar electrode formed from a conventional resin-type conductive paste obtained by kneading a resin such as a bisphenol A type epoxy resin using the silver powder and the silver-coated copper powder as described above is soldered to a tab wire. It was found that when the connection was made, the resin of the conductive paste was decomposed at the soldering temperature (about 380 ° C.), the resistance of the bus bar electrode increased, and the conversion efficiency of the solar cell decreased.

したがって、本発明は、このような従来の問題点に鑑み、銀粉と銀被覆銅粉を用いた樹脂型の導電性ペーストにより形成した導電膜を380℃程度のはんだ付けの温度に加熱しても、導電膜の体積抵抗率の上昇を防止することができる、導電性ペーストを提供することを目的とする。   Therefore, in view of such a conventional problem, the present invention can heat a conductive film formed of a resin-type conductive paste using silver powder and silver-coated copper powder to a soldering temperature of about 380 ° C. An object of the present invention is to provide a conductive paste capable of preventing the increase in volume resistivity of the conductive film.

本発明者らは、上記課題を解決するために鋭意研究した結果、銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉と、ナフタレン骨格を有するエポキシ樹脂とを含む導電性ペーストにより導電膜を作製すれば、導電膜を380℃程度のはんだ付けの温度に加熱しても、導電膜の体積抵抗率の上昇を防止することができることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, the present inventors have conducted a conductive paste containing silver-coated copper powder in which the surface of copper powder is coated with a silver layer, silver powder, and an epoxy resin having a naphthalene skeleton. It was found that the conductive film produced by the method can prevent the increase of the volume resistivity of the conductive film even if the conductive film is heated to a soldering temperature of about 380 ° C., and the present invention has been completed. .

すなわち、本発明による導電性ペーストは、銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉と、ナフタレン骨格を有するエポキシ樹脂とを含むことを特徴とする。   That is, the conductive paste according to the present invention is characterized by containing silver-coated copper powder in which the surface of copper powder is coated with a silver layer, silver powder, and an epoxy resin having a naphthalene skeleton.

この導電性ペーストは、ジカルボン酸を含むのが好ましい。このジカルボン酸は、銀粉に被着しているのが好ましい。また、ジカルボン酸は、示性式がHOOC−(CH−COOH(n=1〜8)のジカルボン酸であるのが好ましく、この示性式中のnが4〜7であるのがさらに好ましい。また、導電性ペースト中のジカルボン酸の量は、銀層と銀粉の銀に対して0.01〜0.25質量%であるのが好ましく、導電性ペーストに対して0.1質量%以下であるのが好ましい。 The conductive paste preferably contains dicarboxylic acid. This dicarboxylic acid is preferably attached to silver powder. Further, the dicarboxylic acid is preferably a dicarboxylic acid rational formula is HOOC- (CH 2) n -COOH ( n = 1~8), n in this rational formula is in the range of 4-7 More preferable. Further, the amount of dicarboxylic acid in the conductive paste is preferably 0.01 to 0.25 mass% with respect to the silver of the silver layer and silver powder, and 0.1 mass% or less with respect to the conductive paste. Preferably.

また、導電性ペーストは、溶剤を含むのが好ましく、硬化剤を含むのが好ましい。また、銀被覆銅粉の平均粒径は1〜20μmであるのが好ましく、銀粉の平均粒径は0.1〜3μmであるのが好ましい。導電性ペースト中の銀被覆銅粉の量が40〜94質量%、銀粉の量が4〜58質量%であるのが好ましく、銀被覆銅粉と銀粉の総量が75〜98質量であるのが好ましい。さらに、銀被覆銅粉に対する銀層の量が5質量%以上であるのが好ましい。   In addition, the conductive paste preferably contains a solvent, and preferably contains a curing agent. The silver-coated copper powder preferably has an average particle size of 1 to 20 μm, and the silver powder preferably has an average particle size of 0.1 to 3 μm. The amount of silver-coated copper powder in the conductive paste is preferably 40 to 94% by mass, the amount of silver powder is preferably 4 to 58% by mass, and the total amount of silver-coated copper powder and silver powder is 75 to 98% by mass. preferable. Further, the amount of the silver layer with respect to the silver-coated copper powder is preferably 5% by mass or more.

なお、本明細書中において、「平均粒径」とは、レーザー回折式粒度分布装置により測定した体積基準の累積50%粒子径(D50径)をいう。 In the present specification, the “average particle diameter” means a volume-based cumulative 50% particle diameter (D 50 diameter) measured by a laser diffraction type particle size distribution device.

本発明によれば、銀粉と銀被覆銅粉を用いた樹脂型の導電性ペーストにより形成した導電膜を380℃程度のはんだ付けの温度に加熱しても、導電膜の体積抵抗率の上昇を防止することができる、導電性ペーストを提供することができる。   According to the present invention, even if a conductive film formed of a resin-type conductive paste using silver powder and silver-coated copper powder is heated to a soldering temperature of about 380 ° C., the volume resistivity of the conductive film is increased. A conductive paste that can be prevented can be provided.

本発明による導電性ペーストの実施の形態は、銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉と、ナフタレン骨格を有するエポキシ樹脂とを含んでいる。   An embodiment of the conductive paste according to the present invention includes silver-coated copper powder in which the surface of copper powder is coated with a silver layer, silver powder, and an epoxy resin having a naphthalene skeleton.

この導電性ペーストに含まれるナフタレン骨格を有する樹脂として、化1に示すようなナフタレン骨格を有するエポキシ樹脂(例えば、大日本インキ化学工業株式会社製のHP4710)を使用することができる。このナフタレン骨格を有するエポキシ樹脂の含有量は、導電性ペーストに対して1〜20質量%であるのが好ましく、3〜10質量%であるのがさらに好ましい。このナフタレン骨格を有するエポキシ樹脂の含有量が少な過ぎると、銀被覆銅粉の表面を熱による酸化から保護する働きが不十分になる。一方、多過ぎると、導電性ペーストにより太陽電池のバスバー電極形状に印刷する際の印刷性や、バスバー電極をタブ線にはんだ付けする際のはんだの接着強度が悪化するとともに、導電性ペーストにより作製した太陽電池のバスバー電極の抵抗が上昇する。なお、ナフタレン骨格を有するエポキシ樹脂であるか否かは、ガスクロマトグラフ質量分析計(GC−MS)またはC13−NMRによって同定することができる。   As the resin having a naphthalene skeleton contained in this conductive paste, an epoxy resin having a naphthalene skeleton as shown in Chemical formula 1 (for example, HP4710 manufactured by Dainippon Ink and Chemicals, Inc.) can be used. The content of the epoxy resin having the naphthalene skeleton is preferably 1 to 20% by mass, and more preferably 3 to 10% by mass with respect to the conductive paste. If the content of the epoxy resin having the naphthalene skeleton is too small, the function of protecting the surface of the silver-coated copper powder from oxidation due to heat becomes insufficient. On the other hand, if too much, the printability when printing on the bus bar electrode shape of the solar cell by the conductive paste, and the adhesive strength of the solder when soldering the bus bar electrode to the tab wire deteriorates, and it is made by the conductive paste. The resistance of the bus bar electrode of the solar cell is increased. Whether or not the epoxy resin has a naphthalene skeleton can be identified by a gas chromatograph mass spectrometer (GC-MS) or C13-NMR.

Figure 0006681437
Figure 0006681437

上記の導電性ペーストは、アジピン酸、アゼライン酸、フタル酸などのジカルボン酸を含むのが好ましい。このジカルボン酸は、銀粉に被着しているのが好ましい。また、ジカルボン酸は、示性式がHOOC−(CH−COOH(n=1〜8)のジカルボン酸であるのが好ましく、アジピン酸、アゼライン酸などの示性式中のnが4〜7のジカルボン酸であるのがさらに好ましい。また、導電性ペースト中のジカルボン酸の量は、銀層と銀粉の銀に対して好ましくは0.25質量%以下(さらに好ましくは0.01〜0.25質量%)であり、導電性ペーストに対して好ましくは0.1質量%以下である。なお、導電性ペースト中のジカルボン酸の定性および定量は、例えば、ジカルボン酸を塩酸で溶出し、このジカルボン酸が溶出された塩酸溶液にメタノール(またはエステル化する薬剤)を添加してジカルボン酸をメチル化(またはエステル化)し、このメチル化(またはエステル化)したジカルボン酸を有機溶媒に抽出して、ガスクロマトグラフ質量分析計(GC−MS)によって行うことができる。 The conductive paste preferably contains a dicarboxylic acid such as adipic acid, azelaic acid or phthalic acid. This dicarboxylic acid is preferably attached to silver powder. Further, the dicarboxylic acid is preferably rational formula is a dicarboxylic acid of HOOC- (CH 2) n -COOH ( n = 1~8), adipic acid, n in rational formula of azelaic acid 4 More preferably, it is a dicarboxylic acid of ~ 7. The amount of dicarboxylic acid in the conductive paste is preferably 0.25% by mass or less (more preferably 0.01 to 0.25% by mass) based on the silver of the silver layer and the silver powder. On the other hand, it is preferably 0.1% by mass or less. The qualitative and quantitative determination of the dicarboxylic acid in the conductive paste is performed, for example, by eluting the dicarboxylic acid with hydrochloric acid and adding methanol (or an esterifying agent) to the hydrochloric acid solution in which the dicarboxylic acid is eluted to form the dicarboxylic acid. It can be methylated (or esterified), and this methylated (or esterified) dicarboxylic acid can be extracted into an organic solvent, and can be carried out by a gas chromatograph mass spectrometer (GC-MS).

導電性ペーストは、溶剤を含むのが好ましく、この溶剤は、導電性ペーストの使用目的に応じて適宜選択することができる。例えば、ブチルカルビトールアセテート(BCA)、ブチルカルビトール(BC)、エチルカルビトールアセテート(ECA)、エチルカルビトール(EC)、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、エチルカルビトール、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート(テキサノール)などから、1種以上の溶媒を選択して使用することができる。この溶剤の含有量は、導電性ペーストに対して0〜20質量%であるのが好ましく、0〜10質量%であるのがさらに好ましい。   The conductive paste preferably contains a solvent, and this solvent can be appropriately selected according to the purpose of use of the conductive paste. For example, butyl carbitol acetate (BCA), butyl carbitol (BC), ethyl carbitol acetate (ECA), ethyl carbitol (EC), toluene, methyl ethyl ketone, methyl isobutyl ketone, tetradecane, tetralin, propyl alcohol, isopropyl alcohol, One or more solvents can be selected and used from dihydroterpineol, dihydroterpineol acetate, ethyl carbitol, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (texanol) and the like. The content of this solvent is preferably 0 to 20 mass% with respect to the conductive paste, and more preferably 0 to 10 mass%.

導電性ペーストは、硬化剤を含むのが好ましく、この硬化剤としてイミダゾールおよび三フッ化ホウ素アミン系硬化剤の少なくとも一方を使用するのが好ましい。この硬化剤の含有量は、エポキシ樹脂に対して0.1〜10質量%であるのが好ましく、0.2〜6質量%であるのがさらに好ましい。   The conductive paste preferably contains a curing agent, and it is preferable to use at least one of imidazole and boron trifluoride amine type curing agent as the curing agent. The content of this curing agent is preferably 0.1 to 10% by mass, and more preferably 0.2 to 6% by mass, based on the epoxy resin.

また、導電性ペーストは、界面活性剤、分散剤、レオロジー調整剤、シランカップリング剤、イオン捕集材などの他の成分を含んでもよい。   Further, the conductive paste may contain other components such as a surfactant, a dispersant, a rheology modifier, a silane coupling agent, and an ion scavenger.

導電性ペーストでは、銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉を導体として使用する。銀層により被覆された銅粉(銀被覆銅粉)の形状は、略球状でも、フレーク状でもよい。銀被覆銅粉の平均粒径は、1〜20μmであるのが好ましく、銀粉の平均粒径は0.1〜3μmであるのが好ましい。導電性ペースト中の銀被覆銅粉の量が40〜94質量%、銀粉の量が4〜58質量%であるのが好ましく、銀被覆銅粉と銀粉の総量が75〜98質量であるのが好ましい。   In the conductive paste, silver-coated copper powder in which the surface of copper powder is coated with a silver layer and silver powder are used as conductors. The shape of the copper powder (silver-coated copper powder) coated with the silver layer may be substantially spherical or flake-shaped. The silver-coated copper powder preferably has an average particle size of 1 to 20 μm, and the silver powder preferably has an average particle size of 0.1 to 3 μm. The amount of silver-coated copper powder in the conductive paste is preferably 40 to 94% by mass, the amount of silver powder is preferably 4 to 58% by mass, and the total amount of silver-coated copper powder and silver powder is 75 to 98% by mass. preferable.

銀被覆銅粉の銀層は、銀または銀化合物からなる層であるのが好ましく、90質量%以上の銀からなる層であるのがさらに好ましい。銀被覆銅粉に対する銀の量は、5質量%以上であるのが好ましく、7〜50質量%であるのがさらに好ましく、8〜40質量%であるのがさらに好ましく、9〜20質量%であるのが最も好ましい。銀の量が5質量%未満では、銀被覆銅粉の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。   The silver layer of the silver-coated copper powder is preferably a layer made of silver or a silver compound, and more preferably 90% by mass or more of silver. The amount of silver based on the silver-coated copper powder is preferably 5% by mass or more, more preferably 7 to 50% by mass, further preferably 8 to 40% by mass, and 9 to 20% by mass. Most preferably. When the amount of silver is less than 5% by mass, the conductivity of the silver-coated copper powder is adversely affected, which is not preferable. On the other hand, if it exceeds 50% by mass, the cost increases due to an increase in the amount of silver used, which is not preferable.

銀被覆銅粉を製造するために使用する銅粉は、湿式還元法、電解法、気相法などにより製造してもよいが、銅を溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さい銅粉を得ることができるので、銅粉を導電性ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。   The copper powder used to produce the silver-coated copper powder may be produced by a wet reduction method, an electrolysis method, a vapor phase method, or the like, while melting the copper at a melting temperature or higher and dropping it from the lower part of the tundish. It is preferably produced by a so-called atomizing method (such as a gas atomizing method or a water atomizing method) in which high-pressure gas or high-pressure water is collided and rapidly solidified to obtain fine powder. In particular, spraying high-pressure water, when produced by a so-called water atomization method, it is possible to obtain a copper powder having a small particle size, so when the copper powder is used in a conductive paste, the conductivity of the particles increases due to an increase in contact points between the particles. It is possible to improve.

銅粉を銀層で被覆する方法として、銅と銀の置換反応を利用した置換法や、還元剤を用いる還元法により、銅粉の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中に銅粉と銀または銀化合物を含む溶液を攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法や、溶媒中に銅粉および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながら銅粉の表面に銀または銀化合物を析出させる方法などを使用することができる。   As a method of coating the copper powder with a silver layer, it is possible to use a substitution method utilizing a substitution reaction of copper and silver, or a method of depositing silver or a silver compound on the surface of the copper powder by a reduction method using a reducing agent. It is possible to, for example, a method of precipitating silver or a silver compound on the surface of copper powder while stirring a solution containing copper powder and silver or a silver compound in a solvent, or a solution containing copper powder and an organic substance in a solvent and a solvent. A method of mixing silver or a solution containing a silver compound and an organic substance and precipitating silver or a silver compound on the surface of the copper powder while stirring can be used.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。   As this solvent, water, an organic solvent, or a mixed solvent thereof can be used. When using a solvent in which water and an organic solvent are mixed, it is necessary to use an organic solvent that becomes a liquid at room temperature (20 to 30 ° C.), but the mixing ratio of water and the organic solvent depends on the organic solvent used. It can be adjusted appropriately. As water used as a solvent, distilled water, ion-exchanged water, industrial water or the like can be used if there is no risk of impurities being mixed in.

銀層の原料として、銀イオンを溶液中に存在させる必要があるため、水や多くの有機溶媒に対して高い溶解度を有する硝酸銀を使用するのが好ましい。また、銅粉を銀層で被覆する反応(銀被覆反応)をできるだけ均一に行うために、固体の硝酸銀ではなく、硝酸銀を溶媒(水、有機溶媒またはこれらを混合した溶媒)に溶解した硝酸銀溶液を使用するのが好ましい。なお、使用する硝酸銀溶液の量、硝酸銀溶液中の硝酸銀の濃度および有機溶媒の量は、目的とする銀層の量に応じて決定することができる。   Since silver ions must be present in the solution as a raw material for the silver layer, it is preferable to use silver nitrate, which has high solubility in water and many organic solvents. Further, in order to carry out the reaction of coating the copper powder with the silver layer (silver coating reaction) as uniformly as possible, not a solid silver nitrate but a silver nitrate solution prepared by dissolving silver nitrate in a solvent (water, an organic solvent or a mixture thereof). Is preferably used. The amount of silver nitrate solution, the concentration of silver nitrate in the silver nitrate solution and the amount of organic solvent used can be determined according to the intended amount of the silver layer.

銀層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属銅との置換反応により副生成する銅イオンなどが再析出しないように、銅イオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆銅粉のコアとなる銅粉は主構成要素として銅を含んでいるので、銅との錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。   A chelating agent may be added to the solution in order to form the silver layer more uniformly. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to copper ions and the like so that copper ions and the like that are by-produced by the substitution reaction of silver ions and metallic copper do not reprecipitate. . In particular, since the copper powder serving as the core of the silver-coated copper powder contains copper as a main constituent element, it is preferable to select the chelating agent in consideration of the complex stability constant with copper. Specifically, as the chelating agent, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine and salts thereof can be used.

銀被覆反応を安定かつ安全に行うために、溶液中にpH緩衝剤を添加してもよい。このpH緩衝剤として、炭酸アンモニウム、炭酸水素アンモニウム、アンモニア水、炭酸水素ナトリウムなどを使用することができる。   A pH buffer may be added to the solution in order to carry out the silver coating reaction stably and safely. As this pH buffer, ammonium carbonate, ammonium hydrogen carbonate, aqueous ammonia, sodium hydrogen carbonate or the like can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中に銅粉を入れて攪拌し、銅粉が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは10〜40℃、さらに好ましくは15〜35℃の範囲で設定する。また、反応時間は、銀または銀化合物の量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。   During the silver coating reaction, before adding the silver salt, the copper powder is put in the solution and stirred, and the solution containing the silver salt is added while the copper powder is sufficiently dispersed in the solution. Is preferred. The reaction temperature in this silver coating reaction is not required to be the temperature at which the reaction solution solidifies or evaporates, but is preferably set in the range of 10 to 40 ° C, more preferably 15 to 35 ° C. The reaction time varies depending on the amount of silver or a silver compound and the reaction temperature, but can be set in the range of 1 minute to 5 hours.

以下、本発明による導電性ペーストの実施例について詳細に説明する。   Hereinafter, examples of the conductive paste according to the present invention will be described in detail.

[実施例1]
アトマイズ法により製造された市販の銅粉(日本アトマイズ加工株式会社製のアトマイズ銅粉SF−Cu 5μm)を用意し、この(銀被覆前の)銅粉の粒度分布を求めたところ、銅粉の体積基準の累積10%粒子径(D10)は2.26μm、累積50%粒子径(D50)は5.20μm、累積90%粒子径(D90)は9.32μmであった。なお、銅粉の粒度分布は、レーザー回折式粒度分布装置(日機装株式会社製のマイクロトラック粒度分布測定装置MT−3300)により測定して、体積基準の累積10%粒子径(D10)、累積50%粒子径(D50)、累積90%粒子径(D90)を求めた。
[Example 1]
Commercially available copper powder manufactured by the atomization method (atomized copper powder SF-Cu 5 μm, manufactured by Japan Atomization Co., Ltd.) was prepared, and the particle size distribution of this copper powder (before silver coating) was determined. The volume-based cumulative 10% particle diameter (D 10 ) was 2.26 μm, the cumulative 50% particle diameter (D 50 ) was 5.20 μm, and the cumulative 90% particle diameter (D 90 ) was 9.32 μm. The particle size distribution of the copper powder is measured by a laser diffraction type particle size distribution device (Microtrac particle size distribution measuring device MT-3300 manufactured by Nikkiso Co., Ltd.), and the volume-based cumulative 10% particle size (D 10 ) is cumulative. The 50% particle size (D 50 ) and the cumulative 90% particle size (D 90 ) were determined.

また、炭酸アンモニウム2.6kgを純水450kgに溶解した溶液(溶液1)と、EDTA−4Na(43%)319kgと炭酸アンモニウム76kgを純水284kgに溶解した溶液に、銀16.904kgを含む硝酸銀水溶液92kgを加えて得られた溶液(溶液2)を用意した。   Further, a solution of 2.6 kg of ammonium carbonate dissolved in 450 kg of pure water (solution 1), a solution of 319 kg of EDTA-4Na (43%) and 76 kg of ammonium carbonate dissolved in 284 kg of pure water, and silver nitrate containing 16.904 kg of silver nitrate were added. A solution (solution 2) obtained by adding 92 kg of an aqueous solution was prepared.

次に、窒素雰囲気下において、上記の銅粉100kgを溶液1に加えて、攪拌しながら35℃まで昇温させた。この銅粉が分散した溶液に溶液2を加えて30分間攪拌した後、ろ過し、水洗し、乾燥して、銀により被覆された銅粉(銀被覆銅粉)を得た。なお、水洗は、ろ過により得られた固形分に純水をかけて、水洗後の液の電位が0.5mS/m以下になるまで行った。   Next, in a nitrogen atmosphere, 100 kg of the above copper powder was added to the solution 1, and the temperature was raised to 35 ° C. with stirring. Solution 2 was added to the solution in which the copper powder was dispersed, and the mixture was stirred for 30 minutes, filtered, washed with water, and dried to obtain a copper powder coated with silver (silver-coated copper powder). The washing with water was carried out by pouring pure water on the solid content obtained by filtration until the potential of the liquid after washing became 0.5 mS / m or less.

このようにして得られた銀被覆銅粉5.0gを、比重1.38の硝酸水溶液を体積比1:1になるように純水で薄めた硝酸水溶液40mLに溶かし、ヒーターで煮沸して銀被覆銅粉を完全に溶解した後、この水溶液に、比重1.18の塩酸水溶液を体積比1:1になるように純水で薄めた塩酸水溶液に少量ずつ添加して塩化銀を析出させ、沈殿が生じなくなるまで塩酸水溶液の添加を続けて、得られた塩化銀から重量法によりAgの含有量を求めたところ、銀被覆銅粉中のAg含有量は10.14質量%であった。   5.0 g of the silver-coated copper powder thus obtained was dissolved in 40 mL of an aqueous nitric acid solution having a specific gravity of 1.38 diluted with pure water to a volume ratio of 1: 1 and boiled with a heater to produce silver. After completely dissolving the coated copper powder, a hydrochloric acid aqueous solution having a specific gravity of 1.18 was diluted little by little with pure water to a volume ratio of 1: 1 to this aqueous solution to gradually add silver chloride, The aqueous solution of hydrochloric acid was continuously added until precipitation stopped, and the content of Ag was determined from the obtained silver chloride by a gravimetric method. As a result, the content of Ag in the silver-coated copper powder was 10.14 mass%.

また、この銀被覆銅粉0.1gをイソプロピルアルコール40mLに加えて、超音波ホモジナイザー(チップ先端直径20mm)により2分間分散させた後、銀被覆銅粉の粒度分布をレーザー回折・散乱式粒子径分布測定装置(マイクロトラック・ベル株式会社製のマイクロトラックMT−3300 EXII)により測定した。その結果、銀被覆銅粉の体積基準の累積10%粒子径(D10)は2.5μm、累積50%粒子径(D50)は5.2μm、累積90%粒子径(D90)は10.1μmであった。 Further, 0.1 g of this silver-coated copper powder was added to 40 mL of isopropyl alcohol and dispersed for 2 minutes with an ultrasonic homogenizer (tip tip diameter 20 mm), and then the particle size distribution of the silver-coated copper powder was measured by laser diffraction / scattering particle size. It was measured by a distribution measuring device (Microtrac MT-3300 EXII manufactured by Microtrac Bell Co., Ltd.). As a result, the volume-based cumulative 10% particle diameter (D 10 ) of the silver-coated copper powder was 2.5 μm, the cumulative 50% particle diameter (D 50 ) was 5.2 μm, and the cumulative 90% particle diameter (D 90 ) was 10. It was 0.1 μm.

また、この銀被覆銅粉のBET比表面積をBET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用してBET1点法により測定した。その結果、銀被覆銅粉のBET比表面積は0.31m/gであった。 The BET specific surface area of this silver-coated copper powder was measured by the BET one-point method using a BET specific surface area measuring device (4Sorb US manufactured by Yuasa Ionics Co., Ltd.). As a result, the BET specific surface area of the silver-coated copper powder was 0.31 m 2 / g.

また、得られた銀被覆銅粉79.0重量部と、平均一次粒子径1μmの銀粉(DOWAエレクトロニクス株式会社製のAg−2−1C)8.8重量部と、化1に示すナフタレン骨格を有するエポキシ樹脂(大日本インキ化学工業株式会社製のHP4710)6.5重量部と、溶剤としてブチルカルビトールアセテート(和光純薬工業株式会社製)5.3重量部と、硬化剤としてイミダゾール(四国化成工業株式会社製の2E4MZ)0.3重量部と、分散剤としてオレイン酸(和光純薬工業株式会社製)0.1重量部とを、自公転式真空攪拌脱泡装置(株式会社シンキー社製のあわとり練太郎)により混合(予備混練)した後、3本ロール(オットハーマン社製のEXAKT80S)により混練することにより、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを得た。   In addition, 79.0 parts by weight of the obtained silver-coated copper powder, 8.8 parts by weight of silver powder having an average primary particle diameter of 1 μm (Ag-2-1C manufactured by DOWA Electronics Co., Ltd.), and the naphthalene skeleton shown in Chemical formula 1 were used. 6.5 parts by weight of an epoxy resin (HP4710 manufactured by Dainippon Ink and Chemicals, Inc.), 5.3 parts by weight of butyl carbitol acetate (manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent, and imidazole (Shikoku Kasei Kogyo Co., Ltd. 2E4MZ) 0.3 parts by weight and oleic acid (manufactured by Wako Pure Chemical Industries Co., Ltd.) 0.1 part by weight as a dispersant. Manufactured by Awatori Kentaro, and then kneaded by three rolls (EXAKT80S manufactured by Otto Harman Co., Ltd.) (silver-coated copper powder and silver powder in total). Was obtained 7.8 mass% inclusive) conductive paste.

次に、スクリーン印刷機(マイクロテック株式会社製のMT−320T)によりスキージ圧0.18MPaでアルミナ基板上に導電性ペーストを幅500μmで長さ37.5mmのライン状に印刷した後、大気循環式乾燥機により150℃で10分間加熱した後に200℃で30分間加熱して乾燥させるとともに硬化させて、導電膜を形成した。このようにして形成した導電膜について、マイクロスコープ(株式会社キーエンス製のデジタルマイクロスコープVHK−5000)を使用して線幅を測定し、表面粗さ計(株式会社小坂研究所製のSE−30D)を使用して平均厚さを測定するとともに、デジタルマルチメーター(アドバンテスト株式会社製のデジタルマルチメーターR6551)を使用して、ライン状の導電膜の両端に端子を当てて導電膜の抵抗を測定し、体積抵抗率(初期の体積抵抗率)を算出したところ、85μΩ・cmであった。また、導電膜上にはんだ付けの際の熱と同程度の熱が加わるように380℃のはんだごてを導電膜に当てて10mm/秒の速度で移動させ、この加熱後の導電膜の抵抗を測定し、体積抵抗率(加熱後の体積抵抗率)を算出したところ、91μΩ・cmであり、初期の体積抵抗率に対する加熱後の体積抵抗率の変化率は107%であった。   Next, a conductive paste was printed in a line shape with a width of 500 μm and a length of 37.5 mm on an alumina substrate with a squeegee pressure of 0.18 MPa using a screen printing machine (MT-320T manufactured by Microtec Co., Ltd.), and then air circulation. After being heated at 150 ° C. for 10 minutes by a dryer, it was heated at 200 ° C. for 30 minutes to be dried and cured to form a conductive film. With respect to the conductive film thus formed, the line width was measured using a microscope (Digital Microscope VHK-5000 manufactured by Keyence Corporation), and a surface roughness meter (SE-30D manufactured by Kosaka Laboratory Ltd.) was measured. ) Is used to measure the average thickness, and a digital multimeter (Digital Multimeter R6551 manufactured by Advantest Corporation) is used to measure the resistance of the conductive film by applying terminals to both ends of the line-shaped conductive film. Then, the volume resistivity (initial volume resistivity) was calculated and found to be 85 μΩ · cm. In addition, the soldering iron at 380 ° C. is applied to the conductive film so that the same amount of heat as that at the time of soldering is applied to the conductive film, and the conductive film is moved at a speed of 10 mm / sec. Was measured and the volume resistivity (volume resistivity after heating) was calculated to be 91 μΩ · cm, and the rate of change of the volume resistivity after heating with respect to the initial volume resistivity was 107%.

[実施例2]
実施例1と同様の銀粉50gを電動コーヒーミル(メリタジャパン株式会社製のセレクトグラインドMJ−518)に入れて10秒間解砕した後、アジピン酸をエタノールに溶解して得られた10質量%のアジピン酸エタノール溶液0.35gを加えて20秒間解砕して、アジピン酸が被着した銀粉を作製した。このアジピン酸が被着した銀粉を使用して、導電性ペースト中に0.006質量%(銀に対して0.07質量%)のアジピン酸が含まれるようにした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 2]
50 g of the same silver powder as in Example 1 was put in an electric coffee mill (Select Grind MJ-518 manufactured by Melita Japan Co., Ltd.) and crushed for 10 seconds, and then 10% by mass of adipic acid dissolved in ethanol was obtained. 0.35 g of ethanol solution of adipic acid was added and crushed for 20 seconds to prepare silver powder coated with adipic acid. Example 1 was repeated except that the conductive paste contained 0.006% by mass (0.07% by mass of silver) of adipic acid by using the silver powder coated with adipic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は79μΩ・cm、加熱後の体積抵抗率は86μΩ・cmであり、体積抵抗率の変化率は108%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 79 μΩ · cm, the volume resistivity after heating was 86 μΩ · cm, and the rate of change in volume resistivity was 108%.

[実施例3]
混合(予備混練)前に0.006質量%のアジピン酸(銀に対して0.07質量%のアジピン酸)を添加した以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 3]
By the same method as in Example 1 except that 0.006% by mass of adipic acid (0.07% by mass of adipic acid relative to silver) was added before mixing (preliminary kneading) (with silver-coated copper powder). A conductive paste containing silver powder in total of 87.8 mass% was prepared.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は81μΩ・cm、加熱後の体積抵抗率は87μΩ・cmであり、体積抵抗率の変化率は108%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 81 μΩ · cm, the volume resistivity after heating was 87 μΩ · cm, and the change rate of the volume resistivity was 108%.

[実施例4]
アジピン酸に代えてアゼライン酸を使用して得られた10質量%のアゼライン酸エタノール溶液0.35gを加えた以外は、実施例2と同様の方法により、アゼライン酸が被着した銀粉を作製した。このアゼライン酸が被着した銀粉を使用して、導電性ペースト中に0.006質量%(銀に対して0.07質量%)のアゼライン酸が含まれるようにした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 4]
Silver powder coated with azelaic acid was produced in the same manner as in Example 2 except that 0.35 g of a 10 mass% ethanolic azelaic acid solution obtained by using azelaic acid instead of adipic acid was added. . Example 1 except that the conductive paste contained 0.006% by mass (0.07% by mass with respect to silver) of azelaic acid using the silver powder coated with azelaic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は71μΩ・cm、加熱後の体積抵抗率は79μΩ・cmであり、体積抵抗率の変化率は110%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 71 μΩ · cm, the volume resistivity after heating was 79 μΩ · cm, and the rate of change in volume resistivity was 110%.

[実施例5]
アジピン酸に代えてフタル酸を使用して得られた10質量%のフタル酸エタノール溶液0.35gを加えた以外は、実施例2と同様の方法により、フタル酸が被着した銀粉を作製した。このフタル酸が被着した銀粉を使用して、導電性ペースト中に0.006質量%(銀に対して0.07質量%)のフタル酸が含まれるようにした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 5]
A silver powder coated with phthalic acid was produced in the same manner as in Example 2 except that 0.35 g of a 10 mass% ethanolic phthalate solution obtained by using phthalic acid instead of adipic acid was added. . This example was the same as Example 1 except that the conductive paste contained 0.006% by mass (0.07% by mass with respect to silver) of phthalic acid using the silver powder coated with phthalic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は95μΩ・cm、加熱後の体積抵抗率は98μΩ・cmであり、体積抵抗率の変化率は103%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 95 μΩ · cm, the volume resistivity after heating was 98 μΩ · cm, and the rate of change in volume resistivity was 103%.

[実施例6]
アジピン酸に代えて無水フタル酸を使用して得られた10質量%の無水フタル酸エタノール溶液0.35gを加えた以外は、実施例2と同様の方法により、無水フタル酸が被着した銀粉を作製した。この無水フタル酸が被着した銀粉を使用して、導電性ペースト中に0.006質量%(銀に対して0.07質量%)の無水フタル酸が含まれるようにした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 6]
Silver powder coated with phthalic anhydride was prepared in the same manner as in Example 2 except that 0.35 g of a 10% by mass ethanolic phthalic acid ethanol solution obtained by using phthalic anhydride instead of adipic acid was added. Was produced. Examples except that 0.006% by mass (0.07% by mass relative to silver) of phthalic anhydride was contained in the conductive paste by using this silver powder coated with phthalic anhydride A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method as in 1.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は87μΩ・cm、加熱後の体積抵抗率は92μΩ・cmであり、体積抵抗率の変化率は106%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 87 μΩ · cm, the volume resistivity after heating was 92 μΩ · cm, and the volume resistivity change rate was 106%.

[実施例7]
銀被覆銅粉および銀粉の量をそれぞれ43.9重量部とした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 7]
A conductive paste (containing 87.8 mass% of silver-coated copper powder and silver powder in total) was prepared in the same manner as in Example 1, except that the amounts of silver-coated copper powder and silver powder were each set to 43.9 parts by weight. It was made.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は56μΩ・cm、加熱後の体積抵抗率は55μΩ・cmであり、体積抵抗率の変化率は99%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 56 μΩ · cm, the volume resistivity after heating was 55 μΩ · cm, and the change rate of the volume resistivity was 99%.

[実施例8]
アジピン酸エタノール溶液の量を0.21gとした以外は、実施例2と同様の方法により、アジピン酸が被着した銀粉を作製した。このアジピン酸が被着した銀粉を使用して、導電性ペースト中に0.018質量%(銀に対して0.04質量%)のアジピン酸が含まれるようにした以外は、実施例7と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 8]
A silver powder coated with adipic acid was produced in the same manner as in Example 2 except that the amount of the adipic acid ethanol solution was 0.21 g. Example 7 except that the conductive paste contained 0.018% by mass (0.04% by mass with respect to silver) of adipic acid by using the silver powder coated with adipic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は36μΩ・cm、加熱後の体積抵抗率は36μΩ・cmであり、体積抵抗率の変化率は100%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 36 μΩ · cm, the volume resistivity after heating was 36 μΩ · cm, and the rate of change in volume resistivity was 100%.

[実施例9]
アジピン酸エタノール溶液の量を0.35gとした以外は、実施例2と同様の方法により、アジピン酸が被着した銀粉を作製した。このアジピン酸が被着した銀粉を使用して、導電性ペースト中に0.031質量%(銀に対して0.07質量%)のアジピン酸が含まれるようにした以外は、実施例7と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 9]
A silver powder coated with adipic acid was produced in the same manner as in Example 2 except that the amount of the adipic acid ethanol solution was 0.35 g. Example 7 was repeated except that the conductive paste contained 0.031% by mass (0.07% by mass of silver) of adipic acid by using the silver powder coated with adipic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は37μΩ・cm、加熱後の体積抵抗率は38μΩ・cmであり、体積抵抗率の変化率は103%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 37 μΩ · cm, the volume resistivity after heating was 38 μΩ · cm, and the rate of change in volume resistivity was 103%.

[実施例10]
アジピン酸エタノール溶液の量を0.49gとした以外は、実施例2と同様の方法により、アジピン酸が被着した銀粉を作製した。このアジピン酸が被着した銀粉を使用して、導電性ペースト中に0.043質量%(銀に対して0.10質量%)のアジピン酸が含まれるようにした以外は、実施例7と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 10]
A silver powder coated with adipic acid was produced in the same manner as in Example 2 except that the amount of the adipic acid ethanol solution was 0.49 g. Example 7 was repeated except that the conductive paste contained 0.043% by mass (0.10% by mass with respect to silver) of adipic acid by using the silver powder coated with the adipic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は41μΩ・cm、加熱後の体積抵抗率は42μΩ・cmであり、体積抵抗率の変化率は103%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 41 μΩ · cm, the volume resistivity after heating was 42 μΩ · cm, and the volume resistivity change rate was 103%.

[実施例11]
アジピン酸エタノール溶液の量を0.63gとした以外は、実施例2と同様の方法により、アジピン酸が被着した銀粉を作製した。このアジピン酸が被着した銀粉を使用して、導電性ペースト中に0.055質量%(銀に対して0.13質量%)のアジピン酸が含まれるようにした以外は、実施例7と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Example 11]
A silver powder coated with adipic acid was produced in the same manner as in Example 2 except that the amount of the ethanol solution of adipic acid was changed to 0.63 g. This example was the same as Example 7 except that the conductive paste contained adipic acid in an amount of 0.055% by mass (0.13% by mass with respect to silver) using the silver powder coated with adipic acid. A conductive paste (containing 87.8% by mass of silver-coated copper powder and silver powder in total) was produced by the same method.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は43μΩ・cm、加熱後の体積抵抗率は45μΩ・cmであり、体積抵抗率の変化率は105%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 43 μΩ · cm, the volume resistivity after heating was 45 μΩ · cm, and the volume resistivity change rate was 105%.

[比較例1]
導電性ペースト1中のナフタレン骨格を有するエポキシ樹脂に代えて化2に示すビスフェノールF型エポキシ樹脂(株式会社ADEKA製のEP4901E)を使用し、銀被覆銅粉の量を79.9重量部とし、銀粉の量を8.9重量部とした以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で88.8質量%含む)導電性ペーストを作製した。
[Comparative Example 1]
In place of the epoxy resin having a naphthalene skeleton in the conductive paste 1, a bisphenol F type epoxy resin (EP4901E manufactured by ADEKA Co., Ltd.) shown in Chemical formula 2 was used, and the amount of silver-coated copper powder was 79.9 parts by weight. A conductive paste (containing 88.8% by mass of silver-coated copper powder and silver powder in total) was prepared by the same method as in Example 1 except that the amount of silver powder was 8.9 parts by weight.

Figure 0006681437
Figure 0006681437

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は68μΩ・cm、加熱後の体積抵抗率は142μΩ・cmであり、体積抵抗率の変化率は210%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 68 μΩ · cm, the volume resistivity after heating was 142 μΩ · cm, and the volume resistivity change rate was 210%.

[比較例2]
ナフタレン骨格を有するエポキシ樹脂に代えて、化2に示すビスフェノールF型エポキシ樹脂(株式会社ADEKA製のEP4901E)を使用し、銀被覆銅粉の量を79.9重量部とし、銀粉の量を8.9重量部とした以外は、実施例2と同様の方法により、(銀被覆銅粉と銀粉を合計で88.8質量%含む)導電性ペーストを作製した。
[Comparative Example 2]
Instead of the epoxy resin having a naphthalene skeleton, a bisphenol F type epoxy resin shown in Chemical formula 2 (EP4901E manufactured by ADEKA Co., Ltd.) is used, the amount of silver-coated copper powder is 79.9 parts by weight, and the amount of silver powder is 8 A conductive paste (containing a total of 88.8% by mass of silver-coated copper powder and silver powder) was prepared by the same method as in Example 2 except that the amount was 1.9 parts by weight.

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は49μΩ・cm、加熱後の体積抵抗率は103μΩ・cmであり、体積抵抗率の変化率は211%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 49 μΩ · cm, the volume resistivity after heating was 103 μΩ · cm, and the change rate of the volume resistivity was 211%.

[比較例3]
ナフタレン骨格を有するエポキシ樹脂に代えて、化3に示すビスフェノールA型エポキシ樹脂(三菱化学株式会社製のJER828)を使用した以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Comparative Example 3]
By the same method as in Example 1 except that the bisphenol A type epoxy resin (JER828 manufactured by Mitsubishi Chemical Corporation) shown in Chemical formula 3 was used instead of the epoxy resin having a naphthalene skeleton (silver-coated copper powder and silver powder Of 87.8 mass% in total) was prepared.

Figure 0006681437
Figure 0006681437

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は235μΩ・cm、加熱後の体積抵抗率は510μΩ・cmであり、体積抵抗率の変化率は217%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 235 μΩ · cm, the volume resistivity after heating was 510 μΩ · cm, and the volume resistivity change rate was 217%.

[比較例4]
ナフタレン骨格を有するエポキシ樹脂に代えて、化4に示すビフェニル骨格のエポキシ樹脂(日本化薬株式会社製のNC−3000−H)を使用した以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Comparative Example 4]
By the same method as in Example 1 except that an epoxy resin having a biphenyl skeleton shown in Chemical formula 4 (NC-3000-H manufactured by Nippon Kayaku Co., Ltd.) was used instead of the epoxy resin having a naphthalene skeleton, A conductive paste was prepared containing the coated copper powder and the silver powder in total of 87.8 mass%.

Figure 0006681437
Figure 0006681437

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は185μΩ・cm、加熱後の体積抵抗率は866μΩ・cmであり、体積抵抗率の変化率は468%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 185 μΩ · cm, the volume resistivity after heating was 866 μΩ · cm, and the volume resistivity change rate was 468%.

[比較例5]
ナフタレン骨格を有するエポキシ樹脂に代えて、化5に示すシクロペンタジエン骨格のエポキシ樹脂(日本化薬株式会社製のXD−1000)を使用した以外は、実施例1と同様の方法により、(銀被覆銅粉と銀粉を合計で87.8質量%含む)導電性ペーストを作製した。
[Comparative Example 5]
By the same method as in Example 1 except that an epoxy resin having a cyclopentadiene skeleton shown in Chemical formula 5 (XD-1000 manufactured by Nippon Kayaku Co., Ltd.) was used instead of the epoxy resin having a naphthalene skeleton (silver coating A total of 87.8% by mass of copper powder and silver powder was prepared) to prepare a conductive paste.

Figure 0006681437
Figure 0006681437

このようにして得られた導電性ペーストを使用して、実施例1と同様の方法により、導電膜を形成し、初期と加熱後の体積抵抗率を算出し、加熱による体積抵抗率の変化率を求めたところ、初期の体積抵抗率は183μΩ・cm、加熱後の体積抵抗率は275μΩ・cmであり、体積抵抗率の変化率は150%であった。   Using the conductive paste thus obtained, a conductive film was formed by the same method as in Example 1, the volume resistivity after initial heating and after heating was calculated, and the rate of change in volume resistivity due to heating was calculated. The initial volume resistivity was 183 μΩ · cm, the volume resistivity after heating was 275 μΩ · cm, and the volume resistivity change rate was 150%.

これらの実施例および比較例の結果を表1〜表2に示す。   The results of these Examples and Comparative Examples are shown in Tables 1 and 2.

Figure 0006681437
Figure 0006681437

Figure 0006681437
Figure 0006681437

表1〜表2からわかるように、実施例1〜11の導電性ペーストを導電膜の形成に使用すると、比較例1〜5の導電性ペーストを用いた場合と比べて、導電膜をはんだ付けの温度に加熱しても、導電膜の体積抵抗率の上昇を防止することができる。
また、実施例2〜4のようにアジピン酸やアゼライン酸などの示性式がHOOC−(CH−COOH(n=1〜8)のジカルボン酸を含む導電性ペーストを導電膜の形成に使用すると、実施例1のようにジカルボン酸を含まない導電性ペーストを用いた場合や、実施例5〜6のようにフタル酸や無水フタル酸などの示性式がHOOC−(CH−COOH(n=1〜8)ではないジカルボン酸を含む導電性ペーストを用いた場合と比べて、導電膜の加熱後の体積抵抗率を低くすることができる。
As can be seen from Tables 1 and 2, when the conductive pastes of Examples 1 to 11 were used to form the conductive film, the conductive films were soldered more than when the conductive pastes of Comparative Examples 1 to 5 were used. Even if heated to the temperature of 1, the increase in volume resistivity of the conductive film can be prevented.
The formation of the conductive film a conductive paste containing a dicarboxylic acid of rational formula, such as adipic acid or azelaic acid HOOC- (CH 2) n -COOH ( n = 1~8) as in Examples 2-4 When a conductive paste containing no dicarboxylic acid is used as in Example 1 or when a conductive formula such as phthalic acid or phthalic anhydride is used as in Examples 5 to 6, the rational formula is HOOC- (CH 2 ). compared with the case of using a conductive paste containing a dicarboxylic acid is not a n -COOH (n = 1~8), it is possible to lower the volume resistivity after heating of the conductive film.

本発明による導電性ペーストは、回路基板の導体パターン、太陽電池などの基板の電極や回路などの電子部品の作製に利用することができる。例えば、太陽電池のバスバー電極の作製に利用したり、屋根板式セル(Shingled−cell)などとして使用される2つの太陽電池セルを接合する接着剤(接合電極)として利用することができる。   The conductive paste according to the present invention can be used for producing a conductor pattern of a circuit board, electrodes of a substrate such as a solar cell, and electronic parts such as a circuit. For example, it can be used for producing a bus bar electrode of a solar battery, or can be used as an adhesive (bonding electrode) for bonding two solar battery cells used as a roof plate type cell (Shingled-cell).

Claims (15)

銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉と、エポキシ樹脂がナフタレン骨格を有するエポキシ樹脂と、溶剤と、硬化剤と、分散剤とを合計で100質量%含むことを特徴とする、導電性ペースト。 A total of 100 mass% of silver-coated copper powder whose surface is coated with a silver layer, silver powder, an epoxy resin having an epoxy resin having a naphthalene skeleton, a solvent, a curing agent, and a dispersant. Characteristic conductive paste. 銅粉の表面が銀層で被覆された銀被覆銅粉と、銀粉と、エポキシ樹脂がナフタレン骨格を有するエポキシ樹脂と、溶剤と、硬化剤と、分散剤と、ジカルボン酸とを合計で100質量%含むことを特徴とする、導電性ペースト。 A total of 100 mass of the silver-coated copper powder having the surface of the copper powder coated with a silver layer, the silver powder, the epoxy resin having an epoxy resin having a naphthalene skeleton, the solvent, the curing agent, the dispersant, and the dicarboxylic acid. % Of the conductive paste. 前記ジカルボン酸が前記銀粉に被着していることを特徴とする、請求項2に記載の導電性ペースト。 The conductive paste according to claim 2, wherein the dicarboxylic acid is attached to the silver powder. 前記ジカルボン酸が、示性式がHOOC−(CH−COOH(n=1〜8)のジカルボン酸であることを特徴とする、請求項2または3に記載の導電性ペースト。 The dicarboxylic acid is rational formula is HOOC- (CH 2) n -COOH, wherein the (n = 1 to 8) is a dicarboxylic acid, a conductive paste according to claim 2 or 3. 前記示性式中のnが4〜7であることを特徴とする、請求項4に記載の導電性ペースト。 The conductive paste according to claim 4, wherein n in the rational formula is 4 to 7. 前記ジカルボン酸の量が、前記銀層と前記銀粉の銀に対して0.01〜0.25質量%であることを特徴とする、請求項2乃至5のいずれかに記載の導電性ペースト。 The conductive paste according to claim 2, wherein the amount of the dicarboxylic acid is 0.01 to 0.25 mass% with respect to the silver of the silver layer and the silver of the silver powder. 前記ジカルボン酸の量が、前記導電性ペーストに対して0.1質量%以下であることを特徴とする、請求項2乃至5のいずれかに記載の導電性ペースト。 The amount of the said dicarboxylic acid is 0.1 mass% or less with respect to the said conductive paste, The conductive paste in any one of Claim 2 thru | or 5 characterized by the above-mentioned. 前記溶剤が、ブチルカルビトールアセテート(BCA)、ブチルカルビトール(BC)、エチルカルビトールアセテート(ECA)、エチルカルビトール(EC)、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、エチルカルビトール、および2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート(テキサノール)の1種以上であることを特徴とする、請求項1乃至7のいずれかに記載の導電性ペースト。 The solvent is butyl carbitol acetate (BCA), butyl carbitol (BC), ethyl carbitol acetate (ECA), ethyl carbitol (EC), toluene, methyl ethyl ketone, methyl isobutyl ketone, tetradecane, tetralin, propyl alcohol, isopropyl. 4. One or more of alcohol, dihydroterpineol, dihydroterpineol acetate, ethyl carbitol, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (texanol), characterized in that 8. The conductive paste according to any one of 7 to 7. 前記硬化剤が、イミダゾールおよび三フッ化ホウ素アミン系硬化剤の少なくとも一方であることを特徴とする、請求項1乃至8のいずれかに記載の導電性ペースト。 The conductive paste according to claim 1, wherein the curing agent is at least one of imidazole and a boron trifluoride amine-based curing agent. 前記銀被覆銅粉の平均粒径が1〜20μmであり、前記銀粉の平均粒径が0.1〜3μmであることを特徴とする、請求項1乃至9のいずれかに記載の導電性ペースト。 The conductive paste according to claim 1, wherein the silver-coated copper powder has an average particle diameter of 1 to 20 μm, and the silver powder has an average particle diameter of 0.1 to 3 μm. . 前記導電性ペースト中の前記銀被覆銅粉の量が40〜94質量%、前記銀粉の量が4〜58質量%であり、前記銀被覆銅粉と前記銀粉の総量が75〜98質量であることを特徴とする、請求項1乃至10のいずれかに記載の導電性ペースト。 The amount of the silver-coated copper powder in the conductive paste is 40 to 94% by mass, the amount of the silver powder is 4 to 58% by mass, and the total amount of the silver-coated copper powder and the silver powder is 75 to 98 % by mass. The conductive paste according to claim 1, wherein the conductive paste is present. 前記銀被覆銅粉に対する前記銀層の量が5質量%以上であることを特徴とする、請求項1乃至11のいずれかに記載の導電性ペースト。 The amount of the said silver layer with respect to the said silver coating copper powder is 5 mass% or more, The electroconductive paste in any one of Claim 1 thru | or 11 characterized by the above-mentioned. 前記ナフタレン骨格を有するエポキシ樹脂の含有量が導電性ペーストに対して1〜20質量%であることを特徴とする、請求項1乃至12のいずれかに記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 12, wherein the content of the epoxy resin having the naphthalene skeleton is 1 to 20% by mass based on the conductive paste. 前記ナフタレン骨格を有するエポキシ樹脂の含有量が導電性ペーストに対して3〜10質量%であることを特徴とする、請求項1乃至10のいずれかに記載の導電性ペースト。 Characterized in that said content of the epoxy resin having a naphthalene skeleton is 3 to 10 wt% with respect to the conductive paste, the conductive paste according to any one of claims 1 to 10. 前記導電性ペーストをスクリーン印刷機スキージ圧0.18MPaでアルミナ基板上に幅500μmで長さ37.5mmのライン状に印刷した後、大気循環式乾燥機により150℃で10分間加熱した後に200℃で30分間加熱して乾燥させるとともに硬化させて、導電膜を形成し、この導電膜について、マイクロスコープを使用して線幅を測定し、表面粗さ計を使用して平均厚さを測定するとともに、デジタルマルチメーターを使用して、ライン状の導電膜の両端に端子を当てて導電膜の抵抗を測定し、体積抵抗率(初期の体積抵抗率)を算出するとともに、導電膜上に380℃のはんだごてを導電膜に当てて10mm/秒の速度で移動させ、この加熱後の導電膜の抵抗を測定し、体積抵抗率(加熱後の体積抵抗率)を算出したときに、初期の体積抵抗率に対する加熱後の体積抵抗率の変化率が99〜110%であることを特徴とする、請求項1乃至14のいずれかに記載の導電性ペースト。 The conductive paste was printed in a line shape with a width of 500 μm and a length of 37.5 mm on an alumina substrate with a screen printing machine squeegee pressure of 0.18 MPa, and then heated at 150 ° C. for 10 minutes by an atmospheric circulation dryer and then 200 ° C. By heating for 30 minutes to dry and cure, a conductive film is formed. With respect to this conductive film, the line width is measured using a microscope, and the average thickness is measured using a surface roughness meter. At the same time, the resistance of the conductive film is measured by applying terminals to both ends of the linear conductive film using a digital multimeter, and the volume resistivity (initial volume resistivity) is calculated. When applying a soldering iron of ℃ to the conductive film and moving it at a speed of 10 mm / sec, measuring the resistance of the conductive film after heating and calculating the volume resistivity (volume resistivity after heating), Rate of change of the volume resistivity after heating to the volume resistivity of the period is characterized by a 99 to 110%, the conductive paste according to any one of claims 1 to 14.
JP2018119745A 2017-07-03 2018-06-25 Conductive paste Active JP6681437B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880044252.0A CN110809806B (en) 2017-07-03 2018-06-27 Conductive paste
PCT/JP2018/024270 WO2019009146A1 (en) 2017-07-03 2018-06-27 Electrically conductive paste
KR1020207002705A KR102560073B1 (en) 2017-07-03 2018-06-27 conductive paste
US16/626,667 US11270810B2 (en) 2017-07-03 2018-06-27 Electrically conductive paste
TW107122785A TWI714867B (en) 2017-07-03 2018-07-02 Electrically conductive paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017130031 2017-07-03
JP2017130031 2017-07-03

Publications (2)

Publication Number Publication Date
JP2019016592A JP2019016592A (en) 2019-01-31
JP6681437B2 true JP6681437B2 (en) 2020-04-15

Family

ID=65359415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018119745A Active JP6681437B2 (en) 2017-07-03 2018-06-25 Conductive paste

Country Status (4)

Country Link
JP (1) JP6681437B2 (en)
KR (1) KR102560073B1 (en)
CN (1) CN110809806B (en)
TW (1) TWI714867B (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790239A (en) * 1993-09-27 1995-04-04 Sumitomo Bakelite Co Ltd Electrically conductive resin paste
JP3526183B2 (en) * 1997-09-18 2004-05-10 住友ベークライト株式会社 Conductive resin paste and semiconductor device manufactured using the same
KR100719993B1 (en) * 2003-09-26 2007-05-21 히다치 가세고교 가부시끼가이샤 Mixed Conductive Powder and Use Thereof
CN1993774A (en) * 2004-08-03 2007-07-04 日立化成工业株式会社 Conductive paste and electronic component mounting substrate using it
JP5157038B2 (en) * 2004-11-01 2013-03-06 株式会社デンソー Conductive adhesive and electronic device using the same
WO2006129487A1 (en) * 2005-05-30 2006-12-07 Sumitomo Electric Industries, Ltd. Conductive paste and multilayer printed wiring board using same
JP5176824B2 (en) 2008-09-26 2013-04-03 住友金属鉱山株式会社 Silver-coated copper fine particles, dispersion thereof, and production method thereof
JP5394084B2 (en) 2009-01-28 2014-01-22 Jx日鉱日石金属株式会社 Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP2011086397A (en) * 2009-10-13 2011-04-28 Asahi Kasei E-Materials Corp Conductive paste and semiconductor device
JP5762729B2 (en) * 2009-12-10 2015-08-12 Dowaエレクトロニクス株式会社 Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film
US10046418B2 (en) * 2010-03-18 2018-08-14 Furukawa Electric Co., Ltd. Electrically conductive paste, and electrically conducive connection member produced using the paste
CN101887767B (en) * 2010-06-11 2011-08-17 山东大学 Method for preparing conductive paste by taking copper powder with surface coverage silver nanostructures as packing
JP6231977B2 (en) * 2014-12-22 2017-11-15 株式会社ノリタケカンパニーリミテド Heat-curing conductive paste
JP6151742B2 (en) * 2015-06-09 2017-06-21 タツタ電線株式会社 Conductive paste

Also Published As

Publication number Publication date
CN110809806A (en) 2020-02-18
TW201906964A (en) 2019-02-16
JP2019016592A (en) 2019-01-31
TWI714867B (en) 2021-01-01
KR102560073B1 (en) 2023-07-25
CN110809806B (en) 2021-07-06
KR20200026262A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
KR102295909B1 (en) Silver-coated alloy powder, conductive paste, electronic components and electrical devices
JP5297344B2 (en) Heat curable conductive paste composition
JP5838541B2 (en) Silver paste for conductive film formation
JP6318137B2 (en) Conductive paste and conductive film
JP2006049147A (en) Conductive paste
JP2020076155A (en) Silver-coated copper powder and method for producing the same
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP6811080B2 (en) Silver-coated copper powder and its manufacturing method
CN103262173A (en) Conductive paste, conductive film-attached base material using the conductive paste, and method for manufacturing conductive film-attached base material
CN103582918A (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP6567921B2 (en) Silver-coated copper powder and method for producing the same
WO2017135138A1 (en) Silver-coated copper powder and method for producing same
JP6681437B2 (en) Conductive paste
WO2017057201A1 (en) Conductive paste and conductive film
US11270810B2 (en) Electrically conductive paste
JP6357599B1 (en) Conductive paste
WO2016114106A1 (en) Silver-coated copper powder and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250