JP5762729B2 - Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film - Google Patents

Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film Download PDF

Info

Publication number
JP5762729B2
JP5762729B2 JP2010274596A JP2010274596A JP5762729B2 JP 5762729 B2 JP5762729 B2 JP 5762729B2 JP 2010274596 A JP2010274596 A JP 2010274596A JP 2010274596 A JP2010274596 A JP 2010274596A JP 5762729 B2 JP5762729 B2 JP 5762729B2
Authority
JP
Japan
Prior art keywords
silver powder
mass
carboxylic acid
granular
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010274596A
Other languages
Japanese (ja)
Other versions
JP2011140714A (en
Inventor
佳子 河野
佳子 河野
徳昭 野上
徳昭 野上
整哉 結城
整哉 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2010274596A priority Critical patent/JP5762729B2/en
Publication of JP2011140714A publication Critical patent/JP2011140714A/en
Application granted granted Critical
Publication of JP5762729B2 publication Critical patent/JP5762729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、例えば半導体部品等の電子部品や太陽電池の電極および回路形成に用いられる導電性ペーストに配合される銀粉およびその銀粉の製造方法に関する。   The present invention relates to a silver powder blended in an electronic component such as a semiconductor component, an electrode of a solar cell, and a conductive paste used for circuit formation, and a method for producing the silver powder.

従来より、例えば半導体部品等の電子部品や太陽電池の電極および回路形成には銀粉を有機成分中に分散させて形成される導電性ペーストが使用されている。そして、特に樹脂硬化型導電性ペーストにおいては、樹脂の体積収縮により銀粉同士が接触して導通が取られる。従って、樹脂硬化型導電性ペーストに配合される銀粉としては、接触面積が大きいフレーク状(鱗片状)銀粉が使用されている(例えば特許文献1、特許文献2参照)。   Conventionally, for example, conductive paste formed by dispersing silver powder in an organic component has been used for forming electrodes and circuits of electronic components such as semiconductor components and solar cells. In particular, in a resin curable conductive paste, silver powders come into contact with each other due to the volume shrinkage of the resin, and conduction is obtained. Therefore, flaky (scale-like) silver powder having a large contact area is used as the silver powder blended in the resin curable conductive paste (see, for example, Patent Document 1 and Patent Document 2).

一般的に、フレーク状銀粉は球状または不定形状の銀粉をフレーク状にすることで得られる。球状または不定形状の銀粉を製造する方法としては、例えばアトマイズ法や湿式還元法等が知られている。そして、球状または不定形状の銀粉をフレーク状にする方法としては、例えばアトライタを用いた湿式粉砕法や、ボールミル(例えば特許文献2参照)を用いる方法、あるいは振動ミル等を用いた乾式粉砕法などが知られている。   Generally, flaky silver powder is obtained by making spherical or irregularly shaped silver powder into flakes. As a method for producing a spherical or irregularly shaped silver powder, for example, an atomizing method or a wet reduction method is known. And as a method of making spherical or irregular-shaped silver powder into flakes, for example, a wet pulverization method using an attritor, a method using a ball mill (for example, see Patent Document 2), or a dry pulverization method using a vibration mill, etc. It has been known.

また、樹脂硬化型導電性ペーストの用途としては、上述したように電子部品や太陽電池の電極および回路形成が挙げられる。そして、近年、電子部品の小型化・高性能化が進み、これに伴い実装に際しての高密度化、高信頼性が要求されるようになり、樹脂硬化型導電性ペーストを用いて形成する電極や回路の導電性向上が強く求められている。太陽電池の電極形成においても、電極の導電性が変換効率の向上につながることから、樹脂硬化型導電性ペーストを用いて形成する電極の導電性向上が求められている。   In addition, as described above, the application of the resin curable conductive paste includes electrodes and circuit formation of electronic parts and solar cells. In recent years, electronic components have been reduced in size and performance, and as a result, higher density and higher reliability have been required for mounting. Electrodes formed using resin-cured conductive paste and There is a strong demand for improved circuit conductivity. Also in the electrode formation of a solar cell, since the electroconductivity of an electrode leads to the improvement of conversion efficiency, the electroconductivity improvement of the electrode formed using a resin hardening type conductive paste is calculated | required.

上記フレーク状銀粉が配合された樹脂硬化型導電性ペーストを塗布・加熱(樹脂硬化)させることによって得られる導電膜は、球状銀粉のみを用いて得られる導電膜より抵抗が低くなるが、近年求められている導電性向上に寄与するほどの効果は得られない。そこで、導電膜の抵抗をさらに低減させる方法として、樹脂硬化型導電性ペーストに用いる銀粉として、フレーク状銀粉と球状銀粉の混合粉を用いる方法が提案されている(例えば特許文献3参照)。   A conductive film obtained by applying and heating (resin curing) a resin-curable conductive paste containing the flaky silver powder has a lower resistance than a conductive film obtained using only spherical silver powder, but has recently been demanded. The effect that contributes to the improved conductivity is not obtained. Therefore, as a method for further reducing the resistance of the conductive film, a method has been proposed in which a mixed powder of flaky silver powder and spherical silver powder is used as the silver powder used in the resin curable conductive paste (see, for example, Patent Document 3).

特開2002−150837号公報JP 2002-150837 A 特開2003−55701号公報JP 2003-55701 A 特開昭62−145602号公報JP 62-145602 A

上記導電性の向上、即ち導電膜の抵抗の低減を実現させるため、本発明の目的は、従来の方法によって得られる樹脂硬化型導電性ペーストを用いて形成される導電膜より、導電性の優れた導電膜の形成方法、そのような導電膜を得るための樹脂硬化型導電性ペースト、該樹脂硬化型導電性ペーストに配合される粒状銀粉およびその製造方法を得ることにある。   In order to realize the above-described improvement in conductivity, that is, reduction in the resistance of the conductive film, the object of the present invention is to provide better conductivity than a conductive film formed using a resin-curable conductive paste obtained by a conventional method. It is in obtaining the formation method of the electrically conductive film, the resin curable conductive paste for obtaining such an electrically conductive film, the granular silver powder mix | blended with this resin curable conductive paste, and its manufacturing method.

上記目的に鑑み、本発明によれば、ジグリコール酸又はマレイン酸である多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%被覆させた、粒状銀粉が提供される。該粒状銀粉は例えば樹脂硬化型導電性ペーストに配合される。前記多価カルボン酸は溶媒に溶解された状態で材料銀粉に添加され、その溶解濃度は1質量%〜20質量%であっても良い。また、前記多価カルボン酸を溶解させる溶媒はアルコール、アセトンまたはエーテルであっても良い。また、前記材料銀粉は、比表面積が6m/g以下であり、平均粒径が0.1μm〜50μmであっても良い。
In view of the above object, according to the present invention, there is provided a granular silver powder obtained by coating a polyvalent carboxylic acid that is diglycolic acid or maleic acid in an amount of 0.01% by mass to 0.5% by mass with respect to the material silver powder. . The granular silver powder is blended in, for example, a resin curable conductive paste. The polyvalent carboxylic acid is added to the material silver powder in a state dissolved in a solvent, and the dissolution concentration thereof may be 1% by mass to 20% by mass. The solvent for dissolving the polyvalent carboxylic acid may be alcohol, acetone or ether. The material silver powder may have a specific surface area of 6 m 2 / g or less and an average particle size of 0.1 μm to 50 μm.

また、別な観点からの本発明によれば、粒状銀粉の製造方法であって、溶媒に溶解させた状態でジグリコール酸又はマレイン酸である多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%添加させ、多価カルボン酸を添加させた材料銀粉を粉砕・解砕機で粉砕・解砕しながら混合させて前記多価カルボン酸を前記材料銀粉に被覆させ、前記溶媒を除去して粒状銀粉を得る、粒状銀粉の製造方法が提供される。該粒状銀粉の製造方法は例えば樹脂硬化型導電性ペーストに配合される粒状銀粉を製造するものである。前記材料銀粉に添加させる多価カルボン酸の溶液濃度は1質量%〜20質量%であっても良い。また、前記多価カルボン酸を溶解させる溶媒はアルコール、アセトンまたはエーテルであっても良い。 According to another aspect of the present invention, there is provided a method for producing granular silver powder, in which a polycarboxylic acid that is diglycolic acid or maleic acid is 0.01% with respect to the material silver powder in a state dissolved in a solvent. The material silver powder added by mass% to 0.5% by mass and mixed with the polyvalent carboxylic acid is mixed while being pulverized and pulverized with a pulverizer and pulverizer to coat the polyvalent carboxylic acid on the material silver powder, A method for producing granular silver powder is provided in which the solvent is removed to obtain granular silver powder. The manufacturing method of this granular silver powder manufactures the granular silver powder mix | blended with resin-curable conductive paste, for example. The solution concentration of the polyvalent carboxylic acid added to the material silver powder may be 1% by mass to 20% by mass. The solvent for dissolving the polyvalent carboxylic acid may be alcohol, acetone or ether.

さらに別の観点からの本発明によれば、上記記載の粒状銀粉を含有する樹脂硬化型導電性ペーストが提供され、また、この樹脂硬化型導電性ペーストを加熱させて導電膜を得る、導電膜の形成方法が提供される。   According to another aspect of the present invention, there is provided a resin curable conductive paste containing the granular silver powder described above, and a conductive film obtained by heating the resin curable conductive paste to obtain a conductive film. A forming method is provided.

本発明によれば、従来の方法によって得られる樹脂硬化型導電性ペーストを用いて形成される導電膜より、導電性の優れた導電膜の形成方法、そのような導電膜を得るための樹脂硬化型導電性ペースト、該樹脂硬化型導電性ペーストに配合される粒状銀粉およびその製造方法が提供される。   According to the present invention, a method for forming a conductive film having better conductivity than a conductive film formed using a resin curable conductive paste obtained by a conventional method, and resin curing for obtaining such a conductive film. Type conductive paste, granular silver powder blended in the resin curable conductive paste, and a method for producing the same are provided.

表1の測定結果を示すグラフである。It is a graph which shows the measurement result of Table 1. 表1の測定結果を示すグラフである。It is a graph which shows the measurement result of Table 1. 表1の測定結果のうち、カルボン酸粒状銀粉の平均粒径と得られた導電膜の体積抵抗との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of carboxylic acid granular silver powder among the measurement results of Table 1, and the volume resistance of the obtained electrically conductive film. アジピン酸の添加量と分析値を示すグラフである。It is a graph which shows the addition amount and analysis value of adipic acid.

以下、本発明の実施の形態の一例について説明する。本発明者らは、多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%添加させたカルボン酸粒状銀粉、フレーク状銀粉、樹脂および必要に応じて溶剤、硬化剤を混合することによって導電性の高い樹脂硬化型導電性ペーストが得られ、さらにこの樹脂硬化型導電性ペーストを塗布・加熱(樹脂硬化)することにより導電性の高い導電膜を得ることが可能となることを知見した。以下には、各種銀粉、樹脂硬化型導電性ペーストおよび導電膜を得る詳細な過程について説明する。   Hereinafter, an example of an embodiment of the present invention will be described. The present inventors have added a carboxylic acid granular silver powder, a flaky silver powder, a resin and, if necessary, a solvent and a curing agent to which 0.01% by mass to 0.5% by mass of a polyvalent carboxylic acid is added to the material silver powder. By mixing, a highly conductive resin curable conductive paste can be obtained, and by applying and heating (resin curing) this resin curable conductive paste, a highly conductive conductive film can be obtained. I found out. Below, the detailed process of obtaining various silver powder, a resin curable conductive paste, and a conductive film will be described.

(材料銀粉)
本実施の形態では、先ず、多価カルボン酸を添加させるための材料銀粉が必要となる。本発明において用いられる材料銀粉は、公知技術である湿式還元法によって得られる。ここで、材料銀粉としては、形状が粒状であり、比表面積が6m/g以下であり、平均粒径が0.1μm〜50μmであるものを用いることが好ましい。これは以下の理由からである。即ち、比表面積が6m/gを超えるものを用いると作製後の樹脂硬化型導電性ペーストの粘度が高すぎ、印刷性が悪化する等の不具合が生じる恐れがある。また、平均粒径が0.1μm未満のものを用いた場合にも作製後の樹脂硬化型導電性ペーストの粘度が高すぎ、印刷性が悪化する等の不具合が生じる恐れがあり、平均粒径が50μm超のものを用いた場合、作製後の樹脂硬化型導電性ペーストをスクリーン印刷に用いる場合に銀粉の目詰まりが発生して生産性が低下する恐れがあるといった問題点がある。
(Material silver powder)
In the present embodiment, first, a material silver powder for adding a polyvalent carboxylic acid is required. The material silver powder used in the present invention is obtained by a wet reduction method that is a known technique. Here, as the material silver powder, it is preferable to use a material having a granular shape, a specific surface area of 6 m 2 / g or less, and an average particle size of 0.1 μm to 50 μm. This is for the following reason. That is, if the specific surface area exceeds 6 m 2 / g, the viscosity of the resin-cured conductive paste after production may be too high, which may cause problems such as deterioration of printability. Moreover, even when an average particle size of less than 0.1 μm is used, the viscosity of the resin-cured conductive paste after production may be too high, which may cause problems such as poor printability. However, when a resin paste having a thickness exceeding 50 μm is used, there is a problem in that when the resin-cured conductive paste after production is used for screen printing, clogging of silver powder occurs and productivity may be lowered.

なお、本明細書中では、銀粉の形状について、下記のように分類し、表現した。
「フレーク状銀粉」、「フレーク状」とは、アスペクト比が3以上である銀粉とその形状をいう。ここで、前記アスペクト比は、(平均長径L/平均厚みT)により求める。「平均長径L」と「平均厚みT」は、走査型電子顕微鏡で測定した粒子100個の平均長径と平均厚みを示す。また、「球状銀粉」、「球状」とは、SEMで銀粉を観察した場合、粒子形状が球形または略球形であり、粒子100個の球状度(球状度:SEM写真で粒子を観察した時の、(最も長径部の径)/(最も短径部の径))が1.5以下である銀粉とその形状をいう。また、「不定形銀粉」、「不定形状」とは、SEMで観察した場合、粒子形状が、前記球状銀粉(球状)、フレーク状銀粉(フレーク状)に分類されない銀粉(形状)のことをいう。また、「粒状銀粉」「粒状」とは、上記のうち、球状銀粉、不定形銀粉、およびこれらを混合した銀粉、銀粉の粒子形状を指す。
In addition, in this specification, about the shape of silver powder, it classified and expressed as follows.
“Flake-like silver powder” and “flake-like” refer to silver powder having an aspect ratio of 3 or more and its shape. Here, the aspect ratio is obtained by (average major axis L / average thickness T). “Average major axis L” and “average thickness T” indicate the average major axis and average thickness of 100 particles measured with a scanning electron microscope. “Spherical silver powder” and “spherical” mean that when silver powder is observed with SEM, the particle shape is spherical or substantially spherical, and the sphericity of 100 particles (sphericity: when the particles are observed with an SEM photograph) , (The diameter of the longest diameter portion) / (the diameter of the shortest diameter portion)) is 1.5 or less and the silver powder and its shape. In addition, “amorphous silver powder” and “indefinite shape” refer to silver powder (shape) whose particle shape is not classified into the spherical silver powder (spherical shape) or the flaky silver powder (flaky shape) when observed by SEM. . In addition, “granular silver powder” and “granular” refer to spherical silver powder, amorphous silver powder, silver powder obtained by mixing these, and particle shape of silver powder.

(カルボン酸の添加)
次いで、上記材料銀粉にカルボキシル基を2個以上含む多価カルボン酸を添加する。カルボキシル基を2個以上含む多価カルボン酸としては、例えばアジピン酸、コハク酸、ジグリコール酸、グルタル酸およびマレイン酸が例示される。また、添加する多価カルボン酸の量は材料銀粉の質量に対して0.01質量%〜0.5質量%が好ましく、さらには0.02質量%〜0.4質量%が好ましい。これは、多価カルボン酸の添加量が材料銀粉の質量に対して0.01質量%〜0.5質量%の範囲外の量である場合、作製される導電膜の導電性向上効果が十分に得られないからである。
(Addition of carboxylic acid)
Next, a polyvalent carboxylic acid containing two or more carboxyl groups is added to the material silver powder. Examples of the polyvalent carboxylic acid containing two or more carboxyl groups include adipic acid, succinic acid, diglycolic acid, glutaric acid and maleic acid. Moreover, 0.01 mass%-0.5 mass% are preferable with respect to the mass of material silver powder, and, as for the quantity of polyvalent carboxylic acid to add, 0.02 mass%-0.4 mass% are more preferable. This is because the conductivity improvement effect of the produced conductive film is sufficient when the addition amount of the polyvalent carboxylic acid is outside the range of 0.01% by mass to 0.5% by mass with respect to the mass of the material silver powder. It is because it cannot be obtained.

多価カルボン酸を材料銀粉に添加する際、本実施の形態では、多価カルボン酸は溶媒に溶解された状態で材料銀粉に添加される。この時溶解させた多価カルボン酸の濃度は1質量%〜20質量%が好ましい。これは、多価カルボン酸の溶解濃度が1質量%未満の場合、溶液の量が多くなり溶媒除去のための乾燥時に溶液が偏在して、多価カルボン酸が均一に材料銀粉に被覆できない恐れがあり、また、溶解濃度が20質量%超の場合には、溶液の量が過少となり、多価カルボン酸が均一に材料銀粉に被覆できない恐れがあるからである。   When adding polyvalent carboxylic acid to material silver powder, in this Embodiment, polyvalent carboxylic acid is added to material silver powder in the state melt | dissolved in the solvent. The concentration of the polyvalent carboxylic acid dissolved at this time is preferably 1% by mass to 20% by mass. This is because when the polycarboxylic acid dissolution concentration is less than 1% by mass, the amount of the solution increases and the solution is unevenly distributed during drying to remove the solvent, so that the polyvalent carboxylic acid cannot be uniformly coated on the material silver powder. In addition, when the dissolution concentration is more than 20% by mass, the amount of the solution becomes too small and the polyvalent carboxylic acid may not be uniformly coated on the material silver powder.

また、多価カルボン酸を溶解させる溶媒としては、多価カルボン酸を溶解可能であればよく、常温で蒸発させることが可能な溶媒であれば、被覆後の溶媒除去が容易になるので好ましい。例えばアルコール、アセトンおよびエーテル等が例示される。特に、アジピン酸は少量の添加でもって体積抵抗が低下する効果があるため、多価カルボン酸としてアジピン酸を用いることが好ましい。   The solvent for dissolving the polyvalent carboxylic acid is not particularly limited as long as it can dissolve the polyvalent carboxylic acid, and any solvent that can be evaporated at room temperature is preferable because the solvent can be easily removed after coating. For example, alcohol, acetone and ether are exemplified. In particular, since adipic acid has the effect of reducing volume resistance when added in a small amount, it is preferable to use adipic acid as the polyvalent carboxylic acid.

(カルボン酸の被覆)
多価カルボン酸が添加された材料銀粉においては、多価カルボン酸が材料銀粉に均一に被覆するように乾式の解砕が行われる。乾式の解砕は、多価カルボン酸が添加された材料銀粉を例えばヘンシェルミキサー、サンプルミル、ブレンダー、コーヒーミル等に入れることで行われる。そして、必要に応じて解砕による摩擦熱やもしくは乾燥工程によって多価カルボン酸を添加させるために用いた溶媒を蒸発させる。これにより多価カルボン酸の被覆された材料銀粉、即ち、本発明でいう粒状銀粉(以下カルボン酸が被覆されていることを示すためにカルボン酸粒状銀粉と呼称する)が得られることとなる。なお、材料銀粉への多価カルボン酸の被覆は、必ずしも銀粉表面を完全に均一に覆うものでなくとも良く、銀粉表面の一部に多価カルボン酸が付着したものをカルボン酸粒状銀粉としても良い。
(Carboxylic acid coating)
In the material silver powder to which the polyvalent carboxylic acid is added, dry crushing is performed so that the polyvalent carboxylic acid uniformly coats the material silver powder. Dry crushing is performed by putting the material silver powder to which the polyvalent carboxylic acid is added into, for example, a Henschel mixer, a sample mill, a blender, a coffee mill or the like. And the solvent used in order to add polyvalent carboxylic acid by the frictional heat by crushing or a drying process as needed is evaporated. As a result, the material silver powder coated with the polyvalent carboxylic acid, that is, the granular silver powder as referred to in the present invention (hereinafter referred to as carboxylic acid granular silver powder to indicate that the carboxylic acid is coated) is obtained. In addition, the coating of the polyvalent carboxylic acid on the material silver powder does not necessarily have to cover the surface of the silver powder completely and uniformly. good.

(カルボン酸の被覆量の定量分析)
材料銀粉に添加したカルボン酸は、材料銀粉の表面を被覆する。カルボン酸粒状銀粉からカルボン酸の被覆量を定量的に分析する方法としては、例えば、アジピン酸を表面に被覆させた銀粉(カルボン酸粒状銀粉)から塩酸溶出を用いてアジピン酸を溶出し、さらに、アジピン酸が溶出された塩酸溶液においてアジピン酸をメチル化し、有機溶媒に抽出してGC−MS(ガスクロマト質量分析計)による定量を行えばよい。なお、この定量分析の手法において、メタノールの代わりに他のエステル化をする薬品を用いるなど、適宜条件を変更しても良い。また、カルボン酸粒状銀粉におけるカルボン酸の被覆量は、他の方法によって定量されても良い。
(Quantitative analysis of carboxylic acid coverage)
The carboxylic acid added to the material silver powder covers the surface of the material silver powder. As a method for quantitatively analyzing the coating amount of carboxylic acid from carboxylic acid granular silver powder, for example, adipic acid is eluted from silver powder (carboxylic acid granular silver powder) coated with adipic acid using hydrochloric acid elution, Adipic acid may be methylated in a hydrochloric acid solution from which adipic acid is eluted, extracted into an organic solvent, and quantified by GC-MS (gas chromatography mass spectrometer). In this quantitative analysis method, the conditions may be changed as appropriate, such as using another esterifying chemical instead of methanol. Moreover, the coating amount of the carboxylic acid in the carboxylic acid granular silver powder may be quantified by other methods.

(樹脂硬化型導電性ペーストの作製)
続いて、上述してきた方法で得られたカルボン酸粒状銀粉とフレーク状銀粉、樹脂および必要に応じた溶剤・硬化剤を混合することによって樹脂硬化型導電性ペーストが作製される。ここで用いられるフレーク状銀粉は、平均粒径が0.2μm〜25μmであり、比表面積が5m/g以下であるものが好ましい。これは、以下の理由による。即ち、混合させるフレーク状銀粉の平均粒径が0.2μm未満である場合、作製された導電性ペーストの粘度が高すぎて印刷性が悪化する恐れがあり、フレーク状銀粉の平均粒径が25μm超である場合、作製された導電性ペーストをスクリーン印刷に用いる際に銀粉の目詰まりが発生して生産性が低下する恐れがあるからである。
(Production of resin-cured conductive paste)
Subsequently, a resin curable conductive paste is prepared by mixing the carboxylic acid granular silver powder obtained by the above-described method, the flaky silver powder, a resin, and a solvent / hardener as necessary. The flaky silver powder used here preferably has an average particle size of 0.2 μm to 25 μm and a specific surface area of 5 m 2 / g or less. This is due to the following reason. That is, when the average particle size of the flaky silver powder to be mixed is less than 0.2 μm, the viscosity of the produced conductive paste may be too high and the printability may be deteriorated. The average particle size of the flaky silver powder is 25 μm. This is because, when it is too high, clogging of silver powder may occur when the produced conductive paste is used for screen printing, which may reduce productivity.

また、カルボン酸粒状銀粉とフレーク状銀粉を混合して混合銀粉を得る際の混合比率は、混合銀粉に対してカルボン酸粒状銀粉が30質量%〜70質量%の範囲であることが好ましい。これは、混合銀粉に対するカルボン酸粒状銀粉の混合比が上記30質量%〜70質量%の範囲外である場合、作製される導電性ペーストから得られる導電膜の導電性が十分に向上しないためである。   Moreover, it is preferable that the mixing ratio at the time of mixing carboxylic acid granular silver powder and flaky silver powder and obtaining mixed silver powder is the range whose carboxylic acid granular silver powder is 30 mass%-70 mass% with respect to mixed silver powder. This is because when the mixing ratio of the carboxylic acid granular silver powder to the mixed silver powder is outside the range of 30% by mass to 70% by mass, the conductivity of the conductive film obtained from the produced conductive paste is not sufficiently improved. is there.

樹脂硬化型導電性ペーストの作製において、樹脂、溶剤および硬化剤は、作製する導電性ペーストの用途等に応じて適宜選択すればよく、樹脂としては例えばエポキシ樹脂が例示される。また、以上の説明におけるフレーク状銀粉とは、アスペクト比(平均長径L/平均厚みT)が3以上である形状の銀粉を指しており、アスペクト比を求める際の平均長径L・平均厚みTは、走査型電子顕微鏡で100個の粒子の長径および厚みを測定して平均することで算出している。   In the production of the resin curable conductive paste, the resin, the solvent, and the curing agent may be appropriately selected according to the use of the conductive paste to be produced. Examples of the resin include an epoxy resin. The flaky silver powder in the above description refers to silver powder having an aspect ratio (average major axis L / average thickness T) of 3 or more, and the average major axis L and average thickness T when determining the aspect ratio are It is calculated by measuring and averaging the major axis and thickness of 100 particles with a scanning electron microscope.

(導電膜の作製・評価)
上記方法で作製された樹脂硬化型導電性ペーストを塗布・加熱(樹脂硬化)することにより導電膜が得られ、得られた導電膜の体積抵抗を測定することで導電膜の評価が行われる。
(Production and evaluation of conductive film)
A conductive film is obtained by applying and heating (resin curing) the resin curable conductive paste produced by the above method, and the conductive film is evaluated by measuring the volume resistance of the obtained conductive film.

以上説明した方法によって、従来の方法により得られる樹脂硬化型導電性ペーストより、導電性に優れた樹脂硬化型導電性ペーストが得られ、それに伴い導電性に優れた導電膜を得ることができる。なお、実際に得られる導電膜の具体的な体積抵抗の一例については、以下の実施例において詳しく記載する。   By the method described above, a resin curable conductive paste having excellent conductivity can be obtained from the resin curable conductive paste obtained by the conventional method, and accordingly, a conductive film having excellent conductivity can be obtained. An example of a specific volume resistance of the conductive film actually obtained will be described in detail in the following examples.

以上、本発明の実施の形態の一例を説明したが、本発明は上記説明した形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form demonstrated above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

(実施例1)
本発明にかかる樹脂硬化型導電性ペーストおよび導電膜を以下のような条件で作製した。また、作製した導電膜についてはその特性について測定を行った。
Example 1
The resin curable conductive paste and the conductive film according to the present invention were produced under the following conditions. Moreover, about the produced electrically conductive film, the characteristic was measured.

(材料銀粉の製造)
銀イオン水溶液としての5.7質量%の硝酸銀水溶液3,620gに、30質量%の苛性ソーダ水溶液545gを加えて、その後に還元剤として37質量%ホルマリン水溶液134gを加え、銀粉を含むスラリーを生成した。得られたスラリーをろ過、水洗した後、加熱乾燥して、材料銀粉を200g得た。
上記により得た材料銀粉を解砕し、BET1点法により測定した比表面積は0.7m/g、レーザー回折式粒度分布測定法により測定したD50は、5.9μmであった。
(Manufacture of material silver powder)
To 3,620 g of a 5.7% by mass silver nitrate aqueous solution as a silver ion aqueous solution, 545 g of a 30% by mass caustic soda aqueous solution was added, and then 134 g of a 37% by mass formalin aqueous solution was added as a reducing agent to produce a slurry containing silver powder. . The obtained slurry was filtered, washed with water, and then dried by heating to obtain 200 g of material silver powder.
The material silver powder obtained above was crushed, the specific surface area measured by the BET 1-point method was 0.7 m 2 / g, and the D 50 measured by the laser diffraction particle size distribution measurement method was 5.9 μm.

(カルボン酸粒状銀粉の作製)
多価カルボン酸を含有する溶液として、アジピン酸をエタノールに溶解し、2質量%のアジピン酸エタノール溶液を準備した。上記で製造した材料銀粉50gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に2質量%のアジピン酸エタノール溶液0.25gを加えた後、処理時間10秒間の条件にて解砕を行った。さらに、2質量%のアジピン酸エタノール溶液0.25gを加えて(アジピン酸0.02質量%)、処理時間20秒間の条件にて解砕を行った。その後、このアジピン酸の添加された銀粉を室温で1時間、乾燥を行った。ここで得たカルボン酸粒状銀粉のBET1点法により測定した比表面積、レーザー回折式粒度分布測定法により測定した平均粒径D50の結果を表1に示す。体積抵抗は42.7μΩ・cm、比表面積は0.6m/g、平均粒径D50は6.2μm、アジピン酸分析値は0.016質量%であった。また、カルボン酸粒状銀粉の形状を走査型電子顕微鏡を用いて確認したところ、不定形形状であった。なお、表1には本実施例1以外の以下に説明する実施例2〜8および比較例1〜5の測定結果についても記載している。

Figure 0005762729
(Production of carboxylic acid granular silver powder)
As a solution containing a polyvalent carboxylic acid, adipic acid was dissolved in ethanol to prepare a 2% by mass adipic acid ethanol solution. The material silver powder 50g manufactured above was put into the electric coffee mill (Melita Japan Co., Ltd. make select grind MJ-518), and it disintegrated on the conditions for 10 second of processing time. Next, after adding 0.25 g of 2 mass% adipic acid ethanol solution to this material silver powder, it grind | pulverized on the conditions for the processing time for 10 seconds. Further, 0.25 g of a 2% by mass adipic acid ethanol solution was added (0.02% by mass of adipic acid), and pulverization was performed under the conditions of a treatment time of 20 seconds. Then, the silver powder to which adipic acid was added was dried at room temperature for 1 hour. Here resulting measured specific surface area by BET1 point method of carboxylic acid particulate silver powder, the results of the average particle diameter D 50 measured by a laser diffraction particle size distribution measurement method are shown in Table 1. The volume resistance was 42.7 μΩ · cm, the specific surface area was 0.6 m 2 / g, the average particle diameter D 50 was 6.2 μm, and the adipic acid analysis value was 0.016% by mass. Moreover, when the shape of the carboxylic acid granular silver powder was confirmed using a scanning electron microscope, it was an irregular shape. In Table 1, the measurement results of Examples 2 to 8 and Comparative Examples 1 to 5 described below other than Example 1 are also described.
Figure 0005762729

(アジピン酸の定量方法)
本実施例1におけるカルボン酸粒状銀粉の作製においては、上述したように、材料銀粉に所定の濃度(アジピン酸の含有質量%)のアジピン酸エタノール溶液を加えることでカルボン酸粒状銀粉を得るものとしている。ここで得られたカルボン酸粒状銀粉におけるアジピン酸の被覆量(質量%)は、アジピン酸エタノール溶液に含有される量とほぼ同一の量となる。このことは、作製されるカルボン酸粒状銀粉におけるアジピン酸含有量の定量を行うことで明らかとなる。そこで、以下には、カルボン酸粒状銀粉におけるアジピン酸の含有量を定量する方法について説明する。
(Quantitative method of adipic acid)
In the production of the carboxylic acid granular silver powder in Example 1, as described above, the carboxylic acid granular silver powder is obtained by adding an adipic acid ethanol solution having a predetermined concentration (adipic acid content mass%) to the material silver powder. Yes. The coating amount (mass%) of adipic acid in the carboxylic acid granular silver powder obtained here is almost the same as the amount contained in the adipic acid ethanol solution. This becomes clear by quantifying the adipic acid content in the produced carboxylic acid granular silver powder. Accordingly, a method for quantifying the content of adipic acid in the carboxylic acid granular silver powder will be described below.

本実施例1において作製されたカルボン酸粒状銀粉5gを濃度35質量%の塩酸50mLと共に弗素樹脂製の容器に仕込み、密閉した。そして、該容器を乾燥機において120℃、50分間の条件下で保持させ、その後、超音波分散と振とうを20分間行い、塩酸溶出工程を行った。   5 g of the carboxylic acid granular silver powder prepared in Example 1 was charged into a fluororesin container together with 50 mL of hydrochloric acid having a concentration of 35% by mass and sealed. And this container was hold | maintained on 120 degreeC and the conditions for 50 minutes in the dryer, and ultrasonic dispersion | distribution and shaking were performed for 20 minutes after that, and the hydrochloric acid elution process was performed.

続いて、塩酸溶出工程後の試料液を0.5mL分取し、試験管に仕込み、更にメタノール0.5mLを添加させて乾燥機において50℃、30分間の条件で保持させた。これにより溶出されたアジピン酸のメチル化処理が行われ、アジピン酸ジメチルが生成された。   Subsequently, 0.5 mL of the sample solution after the hydrochloric acid elution step was sampled, charged into a test tube, and further 0.5 mL of methanol was added and kept in a dryer at 50 ° C. for 30 minutes. The methylation process of the adipic acid eluted by this was performed, and the dimethyl adipate was produced | generated.

次いで、メチル化が完了した試料液に、ジクロロメタンとn−ヘキサンの混合有機溶媒(混合比1:4)を5mL添加させ、1分間の振とう抽出を2回行うことで、アジピン酸ジメチルを混合有機溶媒に抽出させた。   Next, 5 mL of a mixed organic solvent of dichloromethane and n-hexane (mixing ratio 1: 4) is added to the sample solution after completion of methylation, and dimethyl adipate is mixed by performing shaking extraction for 1 minute twice. Extract into organic solvent.

そして、アジピン酸ジメチルが抽出された混合有機溶媒に対し、ガスクロマト定量分析装置であるGC−MS(GC: Hewlett Packard HP 6890 Series MS: Hewlett Packrd
5973 Mass Selective Detector)を用いてMSイオン化EI法による測定を行い、求められたアジピン酸ジメチル量から換算計算によってアジピン酸量を算出した。この算出したアジピン酸量と試料銀粉量を比較することで、試料銀粉におけるアジピン酸被覆量(質量%)が定量化された。図4は、アジピン酸の添加量と分析値を示すグラフである。図4に示すように、アジピン酸の添加量と分析値には正の一次相関があることから、分析が精度良く行なわれたことがわかった。この分析値によりアジピン酸の被覆量が定量された。
GC-MS (GC: Hewlett Packard HP 6890 Series MS: Hewlett Packrd) is a gas chromatographic quantitative analyzer for the mixed organic solvent from which dimethyl adipate has been extracted.
5973 Mass Selective Detector) was used for measurement by MS ionization EI method, and the amount of adipic acid was calculated by conversion calculation from the obtained amount of dimethyl adipate. By comparing the calculated amount of adipic acid and the amount of sample silver powder, the amount of adipic acid coating (mass%) in the sample silver powder was quantified. FIG. 4 is a graph showing the amount of adipic acid added and the analysis value. As shown in FIG. 4, since there was a positive first-order correlation between the added amount of adipic acid and the analysis value, it was found that the analysis was performed with high accuracy. Based on this analysis value, the coating amount of adipic acid was quantified.

(平均粒径D50の測定方法)
平均粒径D50は、レーザー回折散乱式粒度分布測定装置(ハネウエル−日機装株式会社製、MICROTORAC HRA)を用いて、銀粉0.3gをイソプロパノール30mLに加え、45W超音波分散処理を5分間行って試料を準備し、全反射モードで測定を行った。
(The method for measuring the mean particle size D 50)
The average particle diameter D 50 is a laser diffraction scattering particle size distribution measuring apparatus (Honeywell - Nikkiso Co., Microtrac HRA) with added silver powder 0.3g isopropanol 30 mL, performed 45W ultrasonic dispersion treatment for 5 minutes A sample was prepared and measured in total reflection mode.

(比表面積の測定方法)
比表面積は、MONOSORB装置(湯浅アイオニクス株式会社製)で、He70%、N30%のキャリアガスを用い、銀粉3gをセルに入れて脱気を60℃で10分間行った後、BET1点法により測定を行った。
(Measurement method of specific surface area)
Specific surface area is MONOSORB equipment (manufactured by Yuasa Ionics Co., Ltd.), using 70% He and 30% N 2 carrier gas, 3g of silver powder is put into the cell, deaeration is performed at 60 ° C for 10 minutes, BET 1 point Measurement was performed by the method.

(ペーストの作製)
また、(1)被覆処理後のカルボン酸粒状銀粉、(2)フレーク状銀粉、(3)エポキシ樹脂、(4)溶剤および(5)硬化剤を含む組成物を下記組成比で混練することによりペーストを作製した。
(1)被覆処理後のカルボン酸粒状銀粉・・・45質量部
(2)フレーク状銀粉(DOWAハイテック株式会社製、平均粒径D50が9.2μm、比表面積が0.2m/g)・・・45質量部
(3)エポキシ樹脂(株式会社ADEKA製、EP−4901E)・・・10質量部
(4)溶剤(ジエチレングリコールモノエチルエーテルアセテート)・・・5質量部
(5)硬化剤(味の素ファインテクノ株式会社製、アミキュアMY−24)・・・1質量部
前記組成物を混合し、3本ロール(オットハーマン社製、EXAKT80S)を用いて、ロールギャップを110μmから9μmまで通過させて混練処理を行うことによりペーストを得た。得られたペーストは完全に混練されていた。
(Preparation of paste)
Further, by kneading a composition containing (1) carboxylic acid granular silver powder after coating treatment, (2) flaky silver powder, (3) epoxy resin, (4) solvent and (5) curing agent at the following composition ratio A paste was prepared.
(1) coating treatment carboxylic acid particulate silver powder ... 45 parts by weight of the post (2) flaky silver powder (DOWA Hightech Co., average particle diameter D 50 of 9.2 .mu.m, a specific surface area of 0.2 m 2 / g) ... 45 parts by mass (3) Epoxy resin (manufactured by ADEKA, EP-4901E) ... 10 parts by mass (4) Solvent (diethylene glycol monoethyl ether acetate) ... 5 parts by mass (5) Curing agent ( Ajinomoto Fine Techno Co., Ltd., Amicure MY-24) ... 1 part by mass The above composition is mixed, and a roll gap is passed from 110 μm to 9 μm using 3 rolls (manufactured by Otto Herman, EXAKT80S). A paste was obtained by kneading. The obtained paste was completely kneaded.

(導電膜の形成)
96%アルミナ基板上に、前記で得られたペーストを用い、幅500μm、長さ37500μmのペーストの膜をスクリーン印刷機(マイクロ・テック株式会社製、MT−320T)にて印刷した。得られた膜を大気循環式乾燥機を用い、200℃、40分間の条件で加熱処理し、導電膜を形成した。得られた導電膜は表面粗さ計(株式会社小坂研究所製、SE−30D)を用いて、アルミナ基板上で膜を印刷していない部分と導電膜の部分の段差を0.1mm/secで走査することにより導電膜の膜厚を測定した。導電膜の抵抗は、デジタルマルチメーター(ADVANTEST製、R6551)を用いて、導電膜の長さ(間隔)が37.5mmの位置の抵抗値を測定した。導電膜のサイズ(膜厚、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、比抵抗(体積抵抗率)を求めた。比抵抗の結果は表1に示す。実施例1の導電膜は、アジピン酸被覆処理を行わない粒状銀粉を用いて作製された後述する比較例1の導電膜に比べ、低い比抵抗を示した。
(Formation of conductive film)
A paste film having a width of 500 μm and a length of 37500 μm was printed on a 96% alumina substrate with a screen printer (manufactured by Micro Tech Co., Ltd., MT-320T). The obtained film was heat-treated at 200 ° C. for 40 minutes using an atmospheric circulation dryer to form a conductive film. Using the surface roughness meter (SE-30D, manufactured by Kosaka Laboratory Ltd.), the resulting conductive film had a step difference of 0.1 mm / sec between the part where the film was not printed on the alumina substrate and the part of the conductive film. The film thickness of the conductive film was measured by scanning with. The resistance of the conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551) at the position where the length (interval) of the conductive film was 37.5 mm. The volume of the conductive film was determined from the size (film thickness, width, length) of the conductive film, and the specific resistance (volume resistivity) was determined from this volume and the measured resistance value. The results of specific resistance are shown in Table 1. The conductive film of Example 1 exhibited a lower specific resistance than the conductive film of Comparative Example 1 described later, which was prepared using granular silver powder that was not subjected to adipic acid coating treatment.

(実施例2)
材料銀粉に添加するアジピン酸エタノール溶液の濃度を2質量%から10質量%に変更し、アジピン酸エタノール溶液の添加量を、2回の添加とも、0.25gから0.5gに変更した(アジピン酸0.2質量%)以外は、実施例1と同様に導電膜の形成、測定をおこなった。得られた結果を表1に示した。体積抵抗は38.4μΩ・cm、比表面積は0.7m/g、平均粒径D50は4.8μmであった。
(Example 2)
The concentration of the adipic acid ethanol solution added to the material silver powder was changed from 2% by mass to 10% by mass, and the addition amount of the adipic acid ethanol solution was changed from 0.25 g to 0.5 g in both additions (adipine Except for the acid 0.2% by mass, the conductive film was formed and measured in the same manner as in Example 1. The obtained results are shown in Table 1. The volume resistance was 38.4 μΩ · cm, the specific surface area was 0.7 m 2 / g, and the average particle size D 50 was 4.8 μm.

(実施例3)
アジピン酸エタノール溶液を添加する材料銀粉の量を50gから25gに変更し、材料銀粉に添加するアジピン酸エタノール溶液の濃度を2質量%から10質量%に変更し、アジピン酸エタノール溶液の添加量を、2回の添加とも、0.25gから0.375gに変更した(アジピン酸0.3質量%)以外は、実施例1と同様に導電膜の形成、測定をおこなった。得られた結果を表1に示した。体積抵抗は34.2μΩ・cm、比表面積は0.7m/g、平均粒径D50は4.9μm、アジピン酸分析値は0.289質量%であった。
(Example 3)
The amount of the material silver powder to which the adipic acid ethanol solution is added is changed from 50 g to 25 g, the concentration of the adipic acid ethanol solution to be added to the material silver powder is changed from 2% by mass to 10% by mass, and the added amount of the adipic acid ethanol solution is changed. In both additions, a conductive film was formed and measured in the same manner as in Example 1 except that the amount was changed from 0.25 g to 0.375 g (adipic acid 0.3 mass%). The obtained results are shown in Table 1. The volume resistance was 34.2 μΩ · cm, the specific surface area was 0.7 m 2 / g, the average particle diameter D 50 was 4.9 μm, and the adipic acid analysis value was 0.289 mass%.

(実施例4)
アジピン酸エタノール溶液を添加する材料銀粉の量を50gから25gに変更し、材料銀粉に添加するアジピン酸エタノール溶液の濃度を2質量%から10質量%に変更し、アジピン酸エタノール溶液の添加量を、2回の添加とも、0.25gから0.5gに変更した(アジピン酸0.4質量%)以外は、実施例1と同様に導電膜の形成、測定をおこなった。得られた結果を表1に示した。体積抵抗は31.4μΩ・cm、比表面積は0.7m/g、平均粒径D50は5.2μmであった。
Example 4
The amount of the material silver powder to which the adipic acid ethanol solution is added is changed from 50 g to 25 g, the concentration of the adipic acid ethanol solution to be added to the material silver powder is changed from 2% by mass to 10% by mass, and the added amount of the adipic acid ethanol solution is changed. In both additions, the conductive film was formed and measured in the same manner as in Example 1 except that the amount was changed from 0.25 g to 0.5 g (adipic acid 0.4 mass%). The obtained results are shown in Table 1. The volume resistance was 31.4 μΩ · cm, the specific surface area was 0.7 m 2 / g, and the average particle size D 50 was 5.2 μm.

(実施例5)
アジピン酸エタノール溶液を添加する材料銀粉の量を50gから25gに変更し、材料銀粉に添加するアジピン酸エタノール溶液の濃度を2質量%から10質量%に変更し、アジピン酸エタノール溶液の添加量を、2回の添加とも、0.25gから0.625gに変更した(アジピン酸0.5質量%)以外は、実施例1と同様に導電膜の形成、測定をおこなった。得られた結果を表1に示した。体積抵抗は46.3μΩ・cm、比表面積は0.6m/g、平均粒径D50は4.7μm、アジピン酸分析値は0.486質量%であった。
(Example 5)
The amount of the material silver powder to which the adipic acid ethanol solution is added is changed from 50 g to 25 g, the concentration of the adipic acid ethanol solution to be added to the material silver powder is changed from 2% by mass to 10% by mass, and the added amount of the adipic acid ethanol solution is changed. In both additions, a conductive film was formed and measured in the same manner as in Example 1 except that the amount was changed from 0.25 g to 0.625 g (adipic acid 0.5 mass%). The obtained results are shown in Table 1. The volume resistance was 46.3 μΩ · cm, the specific surface area was 0.6 m 2 / g, the average particle diameter D 50 was 4.7 μm, and the adipic acid analysis value was 0.486% by mass.

(実施例6)
多価カルボン酸を含有する溶液として、コハク酸をエタノールに溶解し、5質量%のコハク酸エタノール溶液を準備した。実施例1で使用した多価カルボン酸を添加する前の材料銀粉と同じ銀粉50gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に5質量%のコハク酸エタノール溶液0.5gを加えて、処理時間10秒間の条件にて解砕を行った。さらに、5質量%のコハク酸エタノール溶液0.5gを加えて、処理時間20秒間の条件にて解砕を行った。即ち、添加したカルボン酸が異なること以外は、実施例1と同様の条件で試験を行った。得られた結果を表1に示した。体積抵抗は50.9μΩ・cm、比表面積は0.7m/g、平均粒径D50は4.4μmであった。
(Example 6)
As a solution containing a polyvalent carboxylic acid, succinic acid was dissolved in ethanol to prepare a 5% by mass succinic acid ethanol solution. 50 g of the same silver powder as the material silver powder before adding the polyvalent carboxylic acid used in Example 1 was put into an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and the solution was processed under conditions of a treatment time of 10 seconds. Crushed. Next, 0.5 g of a 5% by mass succinic acid ethanol solution was added to this material silver powder, and pulverized under the conditions of a treatment time of 10 seconds. Further, 0.5 g of a 5% by mass succinic acid ethanol solution was added, and pulverization was performed under the condition of a treatment time of 20 seconds. That is, the test was performed under the same conditions as in Example 1 except that the added carboxylic acid was different. The obtained results are shown in Table 1. The volume resistance was 50.9 μΩ · cm, the specific surface area was 0.7 m 2 / g, and the average particle size D 50 was 4.4 μm.

(実施例7)
多価カルボン酸を含有する溶液として、ジグリコール酸をエタノールに溶解し、15質量%のジグリコール酸エタノール溶液を準備した。実施例1で使用した多価カルボン酸を添加する前の材料銀粉と同じ材料銀粉25gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に15質量%のジグリコール酸エタノール溶液0.083gを加えて、処理時間20秒間の条件にて解砕を行った。さらに、15質量%のジグリコール酸エタノール溶液0.083gを加えて、処理時間20秒間の条件にて解砕を行った。即ち、使用した銀粉量と添加したカルボン酸が異なること以外は、実施例1と同様の条件で試験を行った。得られた結果を表1に示した。体積抵抗は52.5μΩ・cm、比表面積は0.6m/g、平均粒径D50は4.1μmであった。
(Example 7)
As a solution containing a polyvalent carboxylic acid, diglycolic acid was dissolved in ethanol to prepare a 15% by mass diglycolic acid ethanol solution. 25 g of the same material silver powder as the material silver powder before adding the polyvalent carboxylic acid used in Example 1 was put in an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and the processing time was 10 seconds. Crushing was performed. Next, 0.083 g of a 15% by mass diglycolic acid ethanol solution was added to this material silver powder, and pulverized under the conditions of a treatment time of 20 seconds. Furthermore, 0.083 g of a 15% by mass diglycolic acid ethanol solution was added, and pulverization was performed under the conditions of a treatment time of 20 seconds. That is, the test was performed under the same conditions as in Example 1 except that the amount of silver powder used was different from the added carboxylic acid. The obtained results are shown in Table 1. The volume resistance was 52.5 μΩ · cm, the specific surface area was 0.6 m 2 / g, and the average particle diameter D 50 was 4.1 μm.

(実施例8)
多価カルボン酸を含有する溶液として、グルタル酸をエタノールに溶解し、5質量%のグルタル酸エタノール溶液を準備した。実施例1で使用した多価カルボン酸を添加する前の材料銀粉と同じ銀粉25gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に5質量%のグルタル酸エタノール溶液0.25gを加えて、処理時間10秒間の条件にて解砕を行った。さらに、5質量%のグルタル酸エタノール溶液0.25gを加えて、処理時間20秒間の条件にて解砕を行った。即ち、添加したカルボン酸が異なること以外は、実施例1と同様の条件で試験を行った。得られた結果を表1に示した。体積抵抗は57.9μΩ・cm、比表面積は0.6m/g、平均粒径D50は5.4μmであった。
(Example 8)
As a solution containing a polyvalent carboxylic acid, glutaric acid was dissolved in ethanol to prepare a 5 mass% glutaric acid ethanol solution. 25 g of the same silver powder as the material silver powder before adding the polyvalent carboxylic acid used in Example 1 was put in an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and the solution was processed under conditions of a treatment time of 10 seconds. Crushed. Next, 0.25 g of a 5% by mass glutaric acid ethanol solution was added to this material silver powder, and pulverization was performed under conditions of a treatment time of 10 seconds. Further, 0.25 g of a 5% by mass glutaric acid ethanol solution was added, and pulverization was performed under conditions of a treatment time of 20 seconds. That is, the test was performed under the same conditions as in Example 1 except that the added carboxylic acid was different. The obtained results are shown in Table 1. The volume resistance was 57.9 μΩ · cm, the specific surface area was 0.6 m 2 / g, and the average particle size D 50 was 5.4 μm.

(比較例1)
実施例1で使用した材料銀粉に多価カルボン酸の被覆処理を行わずに同様の条件で試験を行った。得られた結果を表1に示した。なお、アジピン酸は検出できなかった。
(Comparative Example 1)
The material silver powder used in Example 1 was tested under the same conditions without coating with polyvalent carboxylic acid. The obtained results are shown in Table 1. Adipic acid could not be detected.

(比較例2)
材料銀粉にアジピン酸エタノール溶液を添加して解砕する条件を下記に変更した以外は、実施例1と同様に導電膜の形成、測定をおこなった。実施例1で使用した材料銀粉と同じ材料銀粉25gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に10質量%のアジピン酸エタノール溶液1.125gを加えて、処理時間10秒間の条件にて解砕を行った。さらに、10質量%のアジピン酸エタノール溶液1.125gを加えて、処理時間20秒間の条件にて解砕を行った(アジピン酸0.9質量%)。得られた結果を表1に示した。
(Comparative Example 2)
A conductive film was formed and measured in the same manner as in Example 1 except that the conditions for pulverizing the material silver powder by adding an adipic acid ethanol solution were changed to the following. 25 g of the same material silver powder as the material silver powder used in Example 1 was put in an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and pulverized under conditions of a treatment time of 10 seconds. Next, 1.125 g of a 10% by mass adipic acid ethanol solution was added to this material silver powder, and pulverization was performed under the condition of a treatment time of 10 seconds. Furthermore, 1.125 g of a 10% by mass adipic acid ethanol solution was added, and pulverization was performed under the conditions of a treatment time of 20 seconds (adipic acid 0.9% by mass). The obtained results are shown in Table 1.

(比較例3)
材料銀粉にアジピン酸エタノール溶液を添加して解砕する条件を下記に変更した以外は、実施例1と同様に導電膜の形成、測定をおこなった。実施例1で使用した材料銀粉と同じ材料銀粉25gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に12.5%のアジピン酸エタノール溶液1.5gを加えて、処理時間10秒間の条件にて解砕を行った。さらに、7.5%のアジピン酸エタノール溶液2.5gを加えて、処理時間20秒間の条件にて解砕を行った(アジピン酸1.5質量%)。得られた結果を表1に示した。
(Comparative Example 3)
A conductive film was formed and measured in the same manner as in Example 1 except that the conditions for pulverizing the material silver powder by adding an adipic acid ethanol solution were changed to the following. 25 g of the same material silver powder as the material silver powder used in Example 1 was put in an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and pulverized under conditions of a treatment time of 10 seconds. Next, 1.5 g of a 12.5% adipic acid ethanol solution was added to this material silver powder, and pulverization was performed under conditions of a treatment time of 10 seconds. Further, 2.5 g of a 7.5% adipic acid ethanol solution was added, and pulverization was performed under the conditions of a treatment time of 20 seconds (adipic acid 1.5% by mass). The obtained results are shown in Table 1.

(比較例4)
材料銀粉にアジピン酸エタノール溶液を添加して解砕、乾燥する条件を下記に変更した以外は、実施例1と同様に導電膜の形成、測定をおこなった。実施例1で使用した材料銀粉と同じ材料銀粉25gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間10秒間の条件にて解砕を行った。次に、この材料銀粉に10質量%のアジピン酸エタノール溶液3.75gを加えて、処理時間10秒間の条件にて解砕を行った。さらに、10質量%のアジピン酸エタノール溶液3.75gを加えて、処理時間20秒間の条件にて解砕を行った(アジピン酸3.0質量%)。得られた結果を表1に示した。
(Comparative Example 4)
The conductive film was formed and measured in the same manner as in Example 1 except that the conditions for adding adipic acid ethanol solution to the material silver powder and crushing and drying were changed as follows. 25 g of the same material silver powder as the material silver powder used in Example 1 was put in an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and pulverized under conditions of a treatment time of 10 seconds. Next, 3.75 g of a 10% by mass adipic acid ethanol solution was added to this material silver powder, and pulverization was performed under conditions of a treatment time of 10 seconds. Furthermore, 3.75 g of a 10% by mass adipic acid ethanol solution was added, and pulverization was performed under the conditions of a treatment time of 20 seconds (adipic acid 3.0% by mass). The obtained results are shown in Table 1.

(比較例5)
実施例1で使用したフレーク状銀粉のみを使用し、粒状の材料銀粉を使用せずにペーストを作製した。
(1)フレーク状銀粉、(2)エポキシ樹脂、(3)溶剤及および(4)硬化剤を含む組成物を下記組成比で混練することによりペーストを作製した。
(1)フレーク状銀粉・・・90質量部
(2)エポキシ樹脂(株式会社ADEKA製、EP−4901E)・・・10質量部
(3)溶剤(ジエチレングリコールモノエチルエーテルアセテート)・・・5質量部
(4)硬化剤(味の素ファインテクノ株式会社製、アミキュアMY−24)・・・1質量部
前記組成物を混合し、3本ロール(オットハーマン社製、EXAKT80S)を用いて、ロールギャップを110μmから9μmまで通過させて混練処理を行うことによりペーストを得た。
導電性ペーストを製造するのに使用した銀粉が異なる(フレーク状銀粉である)こと以外は、実施例1と同様に導電膜の形成、測定をおこなった。得られた結果を表1に示した。
(Comparative Example 5)
Only the flaky silver powder used in Example 1 was used, and a paste was prepared without using the granular material silver powder.
A paste was prepared by kneading a composition containing (1) flaky silver powder, (2) an epoxy resin, (3) a solvent, and (4) a curing agent at the following composition ratio.
(1) Flaky silver powder: 90 parts by mass (2) Epoxy resin (manufactured by ADEKA, EP-4901E): 10 parts by mass (3) Solvent (diethylene glycol monoethyl ether acetate): 5 parts by mass (4) Curing agent (Ajinomoto Fine Techno Co., Ltd., Amicure MY-24) ... 1 part by mass The above composition is mixed, and a roll gap is 110 μm using three rolls (Otto Herman, EXAKT80S). To 9 μm to perform a kneading process to obtain a paste.
A conductive film was formed and measured in the same manner as in Example 1 except that the silver powder used to produce the conductive paste was different (it was flaky silver powder). The obtained results are shown in Table 1.

図1および図2は表1の測定結果を示すグラフである。表1、図1および図2から分かるように、本発明の特徴である多価カルボン酸(アジピン酸、コハク酸、ジクリコール酸、グルタル酸)を材料銀粉に対して0.01質量%〜0.5質量%添加させたカルボン酸粒状銀粉を用いて作製した場合の導電膜の体積抵抗(実施例1〜実施例8)は、多価カルボン酸を材料銀粉に添加しない場合(比較例1)や多価カルボン酸を材料銀粉に多量に添加する場合(比較例2〜4)の導電膜の体積抵抗より低い。即ち、多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%添加させたカルボン酸粒状銀粉を用いて作製した導電膜の方が導電性が高く電子部品や太陽電池等の電極や回路を形成するのに有用であることがわかった。また、フレーク状の銀粉のみを用いて導電膜を作製した場合(比較例5)も導電性の向上は見られず、上記実施の形態で述べたカルボン酸粒状銀粉とフレーク状銀粉を混合させて導電膜を作製する方法の方が有効であることが分かった。 1 and 2 are graphs showing the measurement results of Table 1. FIG. As can be seen from Table 1, FIG. 1 and FIG. 2, the polyvalent carboxylic acid (adipic acid, succinic acid, diglycolic acid, glutaric acid), which is a feature of the present invention, is contained in an amount of 0.01% by mass to 0.00% with respect to the material silver powder. The volume resistance (Example 1 to Example 8) of the conductive film when produced using 5% by mass of carboxylic acid granular silver powder is the case where no polyvalent carboxylic acid is added to the material silver powder (Comparative Example 1) It is lower than the volume resistance of the conductive film in the case where a large amount of polyvalent carboxylic acid is added to the material silver powder (Comparative Examples 2 to 4). That is, the conductive film produced using the carboxylic acid granular silver powder added with 0.01% by mass to 0.5% by mass of the polyvalent carboxylic acid with respect to the material silver powder has higher electrical conductivity, electronic parts, solar cells, etc. It was found to be useful for forming electrodes and circuits. In addition, when the conductive film was produced using only the flaky silver powder (Comparative Example 5), the conductivity was not improved, and the carboxylic acid granular silver powder and the flaky silver powder described in the above embodiment were mixed. It turned out that the method of producing a conductive film is more effective.

また、図3は、表1の測定結果のうち、カルボン酸粒状銀粉の平均粒径と得られた導電膜の体積抵抗の関係を示すグラフである。この結果から、カルボン酸粒状銀粉の平均粒径と導電膜の体積抵抗には、相関が見られなかった。即ち、本発明にかかる方法によって作製された導電膜の導電性の向上は、カルボン酸粒状銀粉の平均粒径の変動によるものではなく、多価カルボン酸を適量添加したことによるものであることが分かった。 Moreover, FIG. 3 is a graph which shows the relationship between the average particle diameter of carboxylic acid granular silver powder among the measurement results of Table 1, and the volume resistance of the obtained electrically conductive film. From this result, the correlation was not seen by the average particle diameter of carboxylic acid granular silver powder, and the volume resistance of an electrically conductive film. That is, the improvement in the conductivity of the conductive film produced by the method according to the present invention is not due to the change in the average particle diameter of the carboxylic acid granular silver powder, but due to the addition of an appropriate amount of polyvalent carboxylic acid. I understood.

本発明は、例えば半導体部品等の電子部品や太陽電池の電極および回路形成に用いられる導電性ペーストに配合される銀粉およびその銀粉の製造方法に適用できる。   The present invention can be applied to, for example, silver powder blended in an electronic component such as a semiconductor component, an electrode of a solar cell, and a conductive paste used for circuit formation and a method for producing the silver powder.

Claims (11)

ジグリコール酸又はマレイン酸である多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%被覆させた、粒状銀粉。 The granular silver powder which coat | covered 0.01 mass%-0.5 mass% of polyvalent carboxylic acid which is diglycolic acid or maleic acid with respect to material silver powder. 樹脂硬化型導電性ペーストに配合される請求項1に記載の粒状銀粉。 The granular silver powder according to claim 1, which is blended in a resin curable conductive paste. 前記多価カルボン酸は溶媒に溶解された状態で材料銀粉に添加され、その溶解濃度は1質量%〜20質量%である、請求項1または2に記載の粒状銀粉。 The granular silver powder according to claim 1 or 2, wherein the polyvalent carboxylic acid is added to the material silver powder in a state of being dissolved in a solvent, and the dissolution concentration thereof is 1 mass% to 20 mass%. 前記多価カルボン酸を溶解させる溶媒はアルコール、アセトンまたはエーテルである、請求項3に記載の粒状銀粉。 The granular silver powder according to claim 3, wherein the solvent for dissolving the polyvalent carboxylic acid is alcohol, acetone or ether. 前記材料銀粉は、比表面積が6mThe material silver powder has a specific surface area of 6 m. 2 /g以下であり、平均粒径が0.1μm〜50μmである、請求項1〜4のいずれかに記載の粒状銀粉。The granular silver powder according to any one of claims 1 to 4, which has an average particle diameter of 0.1 to 50 µm. 粒状銀粉の製造方法であって、A method for producing granular silver powder,
溶媒に溶解させた状態でジグリコール酸又はマレイン酸である多価カルボン酸を材料銀粉に対して0.01質量%〜0.5質量%添加させ、A polycarboxylic acid that is diglycolic acid or maleic acid dissolved in a solvent is added in an amount of 0.01% by mass to 0.5% by mass with respect to the material silver powder,
多価カルボン酸を添加させた材料銀粉を粉砕・解砕機で粉砕・解砕しながら混合させて前記多価カルボン酸を前記材料銀粉に被覆させ、The material silver powder to which the polyvalent carboxylic acid has been added is mixed while being pulverized and pulverized by a pulverizer / disintegrator to coat the polyvalent carboxylic acid on the material silver powder,
前記溶媒を除去して粒状銀粉を得る、粒状銀粉の製造方法。The manufacturing method of granular silver powder which removes the said solvent and obtains granular silver powder.
樹脂硬化型導電性ペーストに配合される粒状銀粉を製造する、請求項6に記載の粒状銀粉の製造方法。The manufacturing method of the granular silver powder of Claim 6 which manufactures the granular silver powder mix | blended with resin curable conductive paste. 前記材料銀粉に添加させる多価カルボン酸の溶液濃度は1質量%〜20質量%である、請求項6または7に記載の粒状銀粉の製造方法。The manufacturing method of the granular silver powder of Claim 6 or 7 whose solution concentration of the polyhydric carboxylic acid added to the said material silver powder is 1 mass%-20 mass%. 前記多価カルボン酸を溶解させる溶媒はアルコール、アセトンまたはエーテルである、請求項6〜8のいずれかに記載の粒状銀粉の製造方法。The method for producing granular silver powder according to any one of claims 6 to 8, wherein the solvent for dissolving the polyvalent carboxylic acid is alcohol, acetone or ether. 請求項2に記載の粒状銀粉を含有する樹脂硬化型導電性ペースト。A resin curable conductive paste containing the granular silver powder according to claim 2. 請求項10に記載の樹脂硬化型導電性ペーストを加熱して導電膜を得る、導電膜の形成方法。The formation method of an electrically conductive film which heats the resin curable conductive paste of Claim 10, and obtains an electrically conductive film.
JP2010274596A 2009-12-10 2010-12-09 Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film Active JP5762729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274596A JP5762729B2 (en) 2009-12-10 2010-12-09 Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009280521 2009-12-10
JP2009280521 2009-12-10
JP2010274596A JP5762729B2 (en) 2009-12-10 2010-12-09 Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film

Publications (2)

Publication Number Publication Date
JP2011140714A JP2011140714A (en) 2011-07-21
JP5762729B2 true JP5762729B2 (en) 2015-08-12

Family

ID=44456763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274596A Active JP5762729B2 (en) 2009-12-10 2010-12-09 Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film

Country Status (1)

Country Link
JP (1) JP5762729B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047415A (en) * 2012-09-03 2014-03-17 Dowa Electronics Materials Co Ltd Silver powder for forming conductive film, conductive paste and method of forming conductive film
JP6049606B2 (en) * 2013-12-25 2016-12-21 株式会社ノリタケカンパニーリミテド Heat-curing conductive paste
JP6239067B2 (en) 2015-08-24 2017-11-29 Dowaエレクトロニクス株式会社 Silver powder, method for producing the same, and conductive paste
WO2019009146A1 (en) * 2017-07-03 2019-01-10 Dowaエレクトロニクス株式会社 Electrically conductive paste
JP6681437B2 (en) * 2017-07-03 2020-04-15 Dowaエレクトロニクス株式会社 Conductive paste
CN114334222B (en) * 2022-01-13 2024-07-12 深圳市普瑞威科技有限公司 Conductive silver paste for relay contacts and preparation method thereof
CN118430870B (en) * 2024-07-03 2024-09-03 乾宇微纳技术(深圳)有限公司 Low-temperature sintering photosensitive silver paste and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627561B2 (en) * 1973-05-02 1981-06-25
JP2001102206A (en) * 1999-09-29 2001-04-13 Sony Corp Magnetic metal powder and magnetic recording medium and method for production thereof
JP5297344B2 (en) * 2009-11-04 2013-09-25 京都エレックス株式会社 Heat curable conductive paste composition

Also Published As

Publication number Publication date
JP2011140714A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5762729B2 (en) Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film
JP2012062531A (en) Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
JP5847516B2 (en) Flaky silver powder and conductive paste
JP6423139B2 (en) Flake silver powder, method for producing the same, and conductive paste
KR102050124B1 (en) Ultrathin flake-type silver powder and manufacturing method therefor
JP6166012B2 (en) Conductive powder and conductive paste
WO2016017599A1 (en) Silver powder, method for producing same, and conductive paste
JP2006161081A (en) Silvered copper powder, its manufacturing method, and conductive paste
EP4446031A1 (en) Silver powder, production method for silver powder, and conductive paste
JP6239067B2 (en) Silver powder, method for producing the same, and conductive paste
JP2010180471A (en) Flaky silver powder and method for producing the same, and conductive paste
JP2012167337A (en) Method of manufacturing silver coated flake copper powder
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
JP6167060B2 (en) Flaked copper powder and method for producing the same
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JP2011208278A (en) Flaky silver powder and method for producing the same
JP7093812B2 (en) Silver powder and its manufacturing method
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP5756694B2 (en) Flat metal particles
WO2015008628A1 (en) Silver-coated copper alloy powder and process for producing same
JP2012122880A (en) Quantitation method for adipic acid on silver powder surface
WO2017033889A1 (en) Silver powder, manufacturing method therefor, and conductive paste
JP2014047415A (en) Silver powder for forming conductive film, conductive paste and method of forming conductive film
JP7242952B1 (en) Silver powder and method for producing silver powder
JP7416905B2 (en) Silver powder and method for producing silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5762729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250