JP2014047415A - Silver powder for forming conductive film, conductive paste and method of forming conductive film - Google Patents

Silver powder for forming conductive film, conductive paste and method of forming conductive film Download PDF

Info

Publication number
JP2014047415A
JP2014047415A JP2012193200A JP2012193200A JP2014047415A JP 2014047415 A JP2014047415 A JP 2014047415A JP 2012193200 A JP2012193200 A JP 2012193200A JP 2012193200 A JP2012193200 A JP 2012193200A JP 2014047415 A JP2014047415 A JP 2014047415A
Authority
JP
Japan
Prior art keywords
silver powder
conductive film
dicarboxylic acid
forming
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012193200A
Other languages
Japanese (ja)
Inventor
Hisashi Saito
悠 齊藤
Norio Mogi
謙雄 茂木
Takeaki Fujino
剛聡 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2012193200A priority Critical patent/JP2014047415A/en
Publication of JP2014047415A publication Critical patent/JP2014047415A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Position Input By Displaying (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive film excellent in conductivity even when a temperature of a hardening treatment for resin is low such as a touch panel application.SOLUTION: A silver powder used for forming a conductive film is provided by coating 0.01 to 0.2 mass% of dicarboxylic acid to a silver powder material. The dicarboxylic acid is, for example, malonic acid. A conductive paste mixed with, for example, a polyester resin is applied to the silver powder for forming the conductive film, heated to form a conductive film. The invention provides improving conductivity of the conductive film, i.e. reducing resistance of the conductive film even when a temperature of a hardening treatment for the resin is low such as a touch panel application.

Description

本発明は、例えばタッチパネルの導電膜の形成に用いられる導電膜形成用銀粉に関し、更に、その導電膜形成用銀粉を含有する導電性ペーストおよび導電膜の形成方法に関する。   The present invention relates to a silver powder for forming a conductive film used for forming a conductive film of a touch panel, for example, and further relates to a conductive paste containing the silver powder for forming a conductive film and a method for forming a conductive film.

従来より、例えば半導体部品等の電子部品や太陽電池の電極および回路形成には銀粉を含有する導電性ペーストが使用されている。この導電性ペーストでは、銀粉に樹脂を混合させて加熱し、樹脂の体積収縮により銀粉同士が接触して導通がとられる。   Conventionally, for example, conductive paste containing silver powder has been used for forming electrodes and circuits of electronic components such as semiconductor components and solar cells. In this conductive paste, a resin is mixed with silver powder and heated, and the silver powder comes into contact with each other by volume shrinkage of the resin, thereby providing electrical conduction.

ここで、例えば特許文献1には、アジピン酸などのジカルボン酸を0.01〜0.07%被覆させたフレーク銀粉が開示されている。また、特許文献2にも、アジピン酸などのジカルボン酸を0.01〜0.5%被覆させたフレーク銀粉が開示されている。そして、これら特許文献1、2の技術では、ジカルボン酸を被覆させたフレーク銀粉にエポキシ樹脂を混合させ、200℃40分の硬化条件で導電膜を形成している。   Here, for example, Patent Document 1 discloses flake silver powder coated with 0.01 to 0.07% of a dicarboxylic acid such as adipic acid. Patent Document 2 also discloses a flake silver powder coated with 0.01 to 0.5% of a dicarboxylic acid such as adipic acid. In the techniques of Patent Documents 1 and 2, an epoxy resin is mixed with flake silver powder coated with dicarboxylic acid, and a conductive film is formed under curing conditions of 200 ° C. for 40 minutes.

また、例えば特許文献3には、カルボン酸もしくはジカルボン酸を表面化学結合させたハンダ粉が開示されている。そして、この特許文献3の技術では、ハンダ粉に樹脂を混合させ、180℃10分の硬化条件で導電性接着を行っている。   Further, for example, Patent Document 3 discloses a solder powder in which a carboxylic acid or a dicarboxylic acid is chemically bonded to the surface. And in the technique of this patent document 3, resin is mixed with solder powder and conductive adhesion is performed under the curing conditions of 180 ° C. for 10 minutes.

特開2012−62531号公報JP 2012-62531 A 特開2011−140714号公報JP 2011-140714 A 特開2010−126719号公報JP 2010-126719 A

しかしながら、近年、タッチパネル向けの導電膜では、ファインライン化が求められ、銀粉材料の粒子サイズが小さくなっている。粒子サイズが小さくなるほど、銀粉材料の接触面積が減少し、接触面積の低下のため、抵抗が高くなりやすい。例えば、上記特許文献1、2の発明では、導電性向上のために接触面積を大きくとりやすいフレーク状銀粉が使用されている。ところが、表面積が大きくなって被覆有機物量が増えることも抵抗増加の一因となっている。加えて、基材の耐熱性の低いタッチパネル用途では、樹脂の硬化処理温度が低く、例えフレーク状銀粉でも低抵抗(5×10-5Ω・cm以下)にすることは困難であった。 However, in recent years, a conductive film for a touch panel is required to be fine-lined, and the particle size of the silver powder material has been reduced. The smaller the particle size, the smaller the contact area of the silver powder material, and the lower the contact area, the higher the resistance. For example, in the inventions of Patent Documents 1 and 2 described above, flaky silver powder that easily takes a large contact area is used to improve conductivity. However, increasing the surface area and increasing the amount of organic coating material also contributes to the increase in resistance. In addition, for touch panel applications where the heat resistance of the substrate is low, the curing temperature of the resin is low, and even with flaky silver powder, it has been difficult to achieve low resistance (5 × 10 −5 Ω · cm or less).

本発明の目的は、タッチパネル用途のように樹脂の硬化処理温度が低くても、導電性に優れた導電膜が得られるようにすることにある。   An object of the present invention is to obtain a conductive film having excellent conductivity even when the curing temperature of a resin is low as in a touch panel application.

本発明によれば、導電膜の形成に用いられる銀粉であって、銀粉材料にジカルボン酸を被覆させたことを特徴とする、導電膜形成用銀粉が提供される。前記銀粉材料に対して、前記ジカルボン酸を0.01〜0.2質量%被覆させても良い。前記ジカルボン酸は、例えば、マロン酸、グルタル酸、ジグリコール酸であり、特に、マロン酸が好ましい。また、前記銀粉材料は、フレーク状銀粉または球状銀粉のいずれでも構わない。   According to this invention, it is silver powder used for formation of an electrically conductive film, Comprising: The silver powder for electrically conductive film formation characterized by coating silver powder material with dicarboxylic acid is provided. The silver powder material may be coated with 0.01 to 0.2% by mass of the dicarboxylic acid. Examples of the dicarboxylic acid include malonic acid, glutaric acid, and diglycolic acid, and malonic acid is particularly preferable. The silver powder material may be either flaky silver powder or spherical silver powder.

また、本発明によれば、これらの導電膜形成用銀粉に樹脂を混合したことを特徴とする、導電性ペーストが提供される。前記樹脂は、例えば、ポリエステル樹脂である。ポリエステル樹脂の硬化条件は、約120〜130℃30分と、比較的低温度である。   Moreover, according to this invention, the electrically conductive paste characterized by mixing resin in these silver powder for electrically conductive film formation is provided. The resin is, for example, a polyester resin. The curing condition of the polyester resin is a relatively low temperature of about 120 to 130 ° C. for 30 minutes.

また、本発明によれば、導電性ペーストを塗布し、加熱することを特徴とする、導電膜の形成方法が提供される。例えば、加熱温度が150℃以下である。また、この形成方法は、例えば、タッチパネルの導電膜の形成に好適である。   Moreover, according to this invention, the formation method of an electrically conductive film characterized by apply | coating and heating an electrically conductive paste is provided. For example, the heating temperature is 150 ° C. or lower. Moreover, this formation method is suitable for formation of the electrically conductive film of a touchscreen, for example.

本発明の導電膜形成用銀粉にあっては、銀粉材料の表面あるいは樹脂に対して低温で作用するジカルボン酸を被覆することで、加熱時に銀表面の活性が向上し、樹脂収縮が促進される。低温度で樹脂の体積収縮が効果的に行われることにより、銀粉同士が接触して導通がとられ、低抵抗化となる。本発明によれば、約120〜130℃30分と比較的低温度の硬化条件でも、低抵抗で優れた導電性を有する導電膜を形成できるようになる。   In the silver powder for forming a conductive film of the present invention, the surface of the silver powder material or the resin is coated with dicarboxylic acid that acts at a low temperature, so that the activity of the silver surface is improved during heating and the resin shrinkage is promoted. . By effectively shrinking the volume of the resin at a low temperature, the silver powders are brought into contact with each other to be electrically connected, resulting in a low resistance. According to the present invention, a conductive film having low resistance and excellent conductivity can be formed even under curing conditions at a relatively low temperature of about 120 to 130 ° C. for 30 minutes.

銀粉材料(フレーク状銀粉A)に対するマロン酸添加量(質量%)と、体積抵抗値の関係を示すグラフである。It is a graph which shows the relationship between the malonic acid addition amount (mass%) with respect to silver powder material (flaky silver powder A), and volume resistance value. 銀粉材料(フレーク状銀粉B)に対する添加剤の種類ごとの体積抵抗値の関係を示すグラフである。It is a graph which shows the relationship of the volume resistance value for every kind of additive with respect to silver powder material (flaky silver powder B). 銀粉材料(球状銀粉)に対する添加剤の種類ごとの体積抵抗値の関係を示すグラフである。It is a graph which shows the relationship of the volume resistance value for every kind of additive with respect to silver powder material (spherical silver powder).

以下、本発明の実施の形態の一例について説明する。本発明者らは、銀粉材料にジカルボン酸を被覆させることによって、導電性の高い導電性ペーストが得られ、さらにこの導電性ペーストを塗布・加熱(樹脂硬化)することにより導電性の高い導電膜を得ることが可能となることを知見した。以下に、その詳細について説明する。   Hereinafter, an example of an embodiment of the present invention will be described. The present inventors obtain a conductive paste having high conductivity by coating a silver powder material with dicarboxylic acid, and further applying and heating (resin curing) this conductive paste to provide a conductive film having high conductivity. It has been found that it is possible to obtain The details will be described below.

(銀粉材料)
先ず、ジカルボン酸を被覆させるための銀粉材料が必要となる。本発明において用いられる銀粉材料は、フレーク状銀粉、球状銀粉のいずれでも構わない。これらフレーク状銀粉および球状銀粉は、公知技術である湿式粉砕法または乾式粉砕法によって得られる。
(Silver powder material)
First, a silver powder material for coating dicarboxylic acid is required. The silver powder material used in the present invention may be either flaky silver powder or spherical silver powder. These flaky silver powder and spherical silver powder are obtained by a wet pulverization method or a dry pulverization method which are known techniques.

(ジカルボン酸の添加)
次いで、上記銀粉材料にカルボキシル基を2個含むジカルボン酸を添加する。ジカルボン酸としては、例えば、マロン酸、グルタル酸、ジグリコール酸が例示される。特に、マロン酸は少量の添加でもって体積抵抗率が低下する効果があるため、ジカルボン酸としてマロン酸を用いることが好ましい。また、ジカルボン酸の添加量は、銀粉材料の質量に対して0.01〜0.2質量%が好ましい。これは、ジカルボン酸の添加量が銀粉材料の質量に対して0.01質量%未満、あるいは、0.2質量%を超えた場合、作製される導電膜の導電性向上効果が十分に得られないからである。
(Addition of dicarboxylic acid)
Next, a dicarboxylic acid containing two carboxyl groups is added to the silver powder material. Examples of the dicarboxylic acid include malonic acid, glutaric acid, and diglycolic acid. In particular, malonic acid is preferably used as a dicarboxylic acid because malonic acid has the effect of lowering the volume resistivity when added in a small amount. Moreover, 0.01-0.2 mass% of the addition amount of dicarboxylic acid is preferable with respect to the mass of silver powder material. This is because, when the amount of dicarboxylic acid added is less than 0.01% by mass or more than 0.2% by mass with respect to the mass of the silver powder material, the effect of improving the conductivity of the conductive film to be produced is sufficiently obtained. Because there is no.

ジカルボン酸を銀粉材料に添加する際、ジカルボン酸は粉末の状態(乾式)または溶媒に溶解された溶液の状態(湿式)で銀粉材料に添加される。溶液の場合は、溶解させたジカルボン酸の濃度は1〜20質量%が好ましい。これは、ジカルボン酸の溶解濃度が1質量%未満の場合、溶液の量が多くなり溶媒除去のための乾燥時に溶液が偏在して、ジカルボン酸が均一に銀粉材料に被覆されない恐れがあり、また、溶解濃度が20質量%超の場合には、溶液温度の低下によってジカルボン酸が晶析して、ジカルボン酸が均一に銀粉材料に被覆されない恐れがあるからである。このように被覆量は、ジカルボン酸の添加量により調整できるが、被覆は多少の不均一性があっても構わない。導電性に影響ない程度の被覆量のバラツキは問題ではない。   When dicarboxylic acid is added to the silver powder material, the dicarboxylic acid is added to the silver powder material in a powder state (dry type) or in a solution state dissolved in a solvent (wet type). In the case of a solution, the concentration of the dissolved dicarboxylic acid is preferably 1 to 20% by mass. This is because when the dissolution concentration of dicarboxylic acid is less than 1% by mass, the amount of the solution increases and the solution is unevenly distributed at the time of drying for removing the solvent, and the dicarboxylic acid may not be uniformly coated on the silver powder material. If the dissolution concentration is more than 20% by mass, the dicarboxylic acid may be crystallized due to a decrease in the solution temperature, and the dicarboxylic acid may not be uniformly coated on the silver powder material. Thus, the coating amount can be adjusted by the amount of dicarboxylic acid added, but the coating may have some non-uniformity. Variation in the amount of coating that does not affect the conductivity is not a problem.

また、ジカルボン酸を溶解させる溶媒としては、ジカルボン酸を溶解可能であればよく、常温で蒸発させることが可能な溶媒であれば、被覆後の溶媒除去が容易になるので好ましい。例えばアルコール、アセトンおよびエーテル等が例示される。   The solvent for dissolving the dicarboxylic acid is not particularly limited as long as it can dissolve the dicarboxylic acid, and any solvent that can be evaporated at room temperature is preferable because the solvent can be easily removed after coating. For example, alcohol, acetone and ether are exemplified.

(カルボン酸の被覆)
銀粉材料にジカルボン酸を添加した後、ジカルボン酸が銀粉材料に均一に被覆されるように乾式の解砕が行われる。乾式の解砕は、ジカルボン酸が添加された銀粉材料を例えばヘンシェルミキサー、サンプルミル、ブレンダー、コーヒーミル、ボールミル、振動ミル等に入れることで行われる。そして、必要に応じて解砕による摩擦熱やもしくは乾燥工程によってジカルボン酸を添加させるために用いた溶媒を蒸発させる。さらに、必要であれば、篩によって粒径の選別を行う。これによりジカルボン酸の被覆された銀粉材料、即ち、本発明でいう導電膜形成用銀粉(以下、ジカルボン酸が被覆された銀粉材料を「導電膜形成用銀粉」と呼称する)が得られることとなる。
(Carboxylic acid coating)
After adding the dicarboxylic acid to the silver powder material, dry crushing is performed so that the dicarboxylic acid is uniformly coated on the silver powder material. Dry crushing is performed by putting the silver powder material to which the dicarboxylic acid is added into, for example, a Henschel mixer, a sample mill, a blender, a coffee mill, a ball mill, a vibration mill or the like. And the solvent used in order to add dicarboxylic acid by the frictional heat by crushing or a drying process as needed is evaporated. Further, if necessary, the particle size is selected with a sieve. As a result, a silver powder material coated with a dicarboxylic acid, that is, a silver powder for forming a conductive film as referred to in the present invention (hereinafter, a silver powder material coated with a dicarboxylic acid is referred to as “silver powder for forming a conductive film”) is obtained. Become.

(導電性ペーストの作製)
続いて、上述してきた方法で得られた導電膜形成用銀粉に、樹脂および必要に応じた溶剤・硬化剤を混合することによって導電性ペーストが作製される。
(Preparation of conductive paste)
Subsequently, a conductive paste is prepared by mixing the conductive film-forming silver powder obtained by the above-described method with a resin and a solvent / curing agent as necessary.

導電性ペーストの作製において、樹脂、溶剤および硬化剤は、作製する導電性ペーストの用途等に応じて適宜選択すればよく、樹脂としては例えばポリエステル樹脂が例示される。ポリエステル樹脂の硬化条件は、約120〜130℃30分と、比較的低温度である。   In the production of the conductive paste, the resin, the solvent, and the curing agent may be appropriately selected according to the use of the conductive paste to be produced. Examples of the resin include a polyester resin. The curing condition of the polyester resin is a relatively low temperature of about 120 to 130 ° C. for 30 minutes.

(導電膜の作製)
上記方法で作製された導電性ペーストを基板等に塗布し、加熱(樹脂硬化)することにより導電膜が得られる。上述したように、導電性ペーストの作製において使用される樹脂は、例えば、ポリエステル樹脂である。ポリエステル樹脂は、約120〜130℃30分と比較的低温度で樹脂硬化させて、導電膜を得ることができる。このため、基材の耐熱性の低いタッチパネル用途であっても、比較的低温度で樹脂硬化させることができる。
(Preparation of conductive film)
A conductive film is obtained by applying the conductive paste produced by the above method to a substrate or the like and heating (resin curing). As described above, the resin used in the production of the conductive paste is, for example, a polyester resin. The polyester resin can be cured at a relatively low temperature of about 120 to 130 ° C. for 30 minutes to obtain a conductive film. For this reason, even if it is a touch panel use with low heat resistance of a base material, resin hardening can be carried out at comparatively low temperature.

以上に説明した方法によって、タッチパネル用途のように樹脂の硬化処理温度が低くても、導電性に優れた導電性ペーストが得られ、導電性に優れた導電膜を得ることができる。なお、実際に得られる導電膜の具体的な体積抵抗率の一例については、以下の実施例において詳しく記載する。   By the method described above, even when the curing temperature of the resin is low as in a touch panel application, a conductive paste excellent in conductivity can be obtained, and a conductive film excellent in conductivity can be obtained. An example of a specific volume resistivity of the actually obtained conductive film will be described in detail in the following examples.

以上、本発明の実施の形態の一例を説明したが、本発明は上記説明した形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form demonstrated above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

本発明の効果を確認するために、実施例1〜10、比較例1〜6にかかる導電性ペーストおよび導電膜を以下のような条件で作製した。また、作製した導電膜についてはその特性について測定を行った。   In order to confirm the effects of the present invention, conductive pastes and conductive films according to Examples 1 to 10 and Comparative Examples 1 to 6 were produced under the following conditions. Moreover, about the produced electrically conductive film, the characteristic was measured.

(銀粉材料)
まず、実施例1〜10、比較例1〜6では、いずれも市販品の銀粉であるAG2−1C(形状:球状、平均粒子径:1.0μm、DOWAエレクトロニクス社製)を原料に用いた。
(Silver powder material)
First, in Examples 1 to 10 and Comparative Examples 1 to 6, all commercially available silver powder AG2-1C (shape: spherical, average particle size: 1.0 μm, manufactured by DOWA Electronics Co., Ltd.) was used as a raw material.

そして、実施例1〜3および比較例1〜4では、この銀粉(AG2−1C)1250gに、分散剤としてのステアリン酸(和光純薬工業株式会社製)を25g加えてよく混ぜ、SUSボール(直径1.6mm)10.5kgとともにアトライタに投入し、ソルミックスAP−7(日本アルコール社製)624gを加えて、回転数360rpm、105分間の条件でフレーク化処理を実施した。フレーク化処理後、ブレンダーによる解砕・篩別(メッシュサイズ:40μm)処理を実施し、フレーク状銀粉(A)を得た。BET1点法により測定したフレーク状銀粉(A)の比表面積は1.51m2/g、レーザー回折式粒度分布測定法により測定したD50(平均粒径)は、2.3μmであった。   In Examples 1 to 3 and Comparative Examples 1 to 4, 25 g of stearic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant was added to 1250 g of this silver powder (AG2-1C) and mixed well. It was put into an attritor together with 10.5 kg (1.6 mm in diameter), 624 g of Solmix AP-7 (manufactured by Nippon Alcohol Co., Ltd.) was added, and flaking treatment was carried out under the conditions of 360 rpm and 105 minutes. After the flaking process, pulverization and sieving (mesh size: 40 μm) by a blender was performed to obtain a flaky silver powder (A). The specific surface area of the flaky silver powder (A) measured by the BET 1-point method was 1.51 m 2 / g, and D50 (average particle diameter) measured by the laser diffraction particle size distribution measurement method was 2.3 μm.

また、実施例4〜6および比較例5では、この銀粉(AG2−1C)1250gに、分散剤としてのオレイン酸(和光純薬工業株式会社製)を25g加えてよく混ぜ、SUSボール(直径1.6mm)10.5kgとともにアトライタに入れた。ソルミックスAP−7(日本アルコール社製)624gを加えて、回転数360rpm、135分間の条件でフレーク化処理を実施した。フレーク化処理後、ブレンダーによる解砕・篩別(メッシュサイズ:40μm)処理を実施し、フレーク状銀粉(B)を得た。BET1点法により測定したフレーク状銀粉(B)の比表面積は1.37m2/g、レーザー回折式粒度分布測定法により測定したD50(平均粒径)は
2.7μmであった。
In Examples 4 to 6 and Comparative Example 5, 25 g of oleic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersant was added to 1250 g of this silver powder (AG2-1C) and mixed well. .6 mm) was placed in an attritor with 10.5 kg. 624 g of Solmix AP-7 (manufactured by Nippon Alcohol Co., Ltd.) was added, and flaked treatment was carried out under the conditions of 360 rpm and 135 minutes. After the flaking process, pulverization and sieving (mesh size: 40 μm) by a blender was performed to obtain a flaky silver powder (B). The specific surface area of the flaky silver powder (B) measured by the BET 1-point method was 1.37 m 2 / g, and D50 (average particle diameter) measured by the laser diffraction particle size distribution measuring method was 2.7 μm.

なお、実施例7〜10および比較例6では、この銀粉(AG2−1C)を、そのまま球状銀粉として用いた。   In Examples 7 to 10 and Comparative Example 6, this silver powder (AG2-1C) was used as it was as a spherical silver powder.

[実施例1]
(導電膜形成用銀粉の作製)
上記で製造した銀粉材料(フレーク状銀粉A)75gと、ジカルボン酸として粉末状のマロン酸0.02gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間30秒間の条件にて混合解砕を行い、ジカルボン酸を被覆した。
[Example 1]
(Preparation of silver powder for forming conductive film)
75 g of the above-produced silver powder material (flaky silver powder A) and 0.02 g of powdered malonic acid as dicarboxylic acid are placed in an electric coffee mill (Melita Japan Co., Ltd. Select Grind MJ-518), and the processing time is 30 seconds. The mixture was crushed under the conditions described above to coat the dicarboxylic acid.

(導電性ペーストの作製)
次に、この被覆処理後の導電膜形成用銀粉(フレーク状銀粉A)(1)に、ポリエステル樹脂(2)、及び溶剤(3)を、下記組成比で混練することによりペーストを作製した。
(1)導電膜形成用銀粉(フレーク状銀粉A)・・・75質量部
(2)ポリエステル樹脂(東洋紡績株式会社製、バイロン200)・・・7.5質量部
(3)溶剤(ジエチレングリコールモノエチルエーテルアセテート)・・・17.5質量部
(Preparation of conductive paste)
Next, a paste was prepared by kneading the polyester resin (2) and the solvent (3) in the following composition ratio in the conductive film-forming silver powder (flaky silver powder A) (1) after the coating treatment.
(1) Silver powder for forming a conductive film (flaky silver powder A) 75 parts by mass (2) Polyester resin (byron 200, manufactured by Toyobo Co., Ltd.) 7.5 parts by mass (3) Solvent (diethylene glycol mono 17.5 parts by mass of ethyl ether acetate)

これら(1)〜(3)を混合し、3本ロール(オットハーマン社製、EXAKT80S)を用いて、ロールギャップを110μmから9μmまで通過させて混練処理を行うことにより導電性ペーストを得た。   These (1)-(3) were mixed, and the electrically conductive paste was obtained by performing a kneading | mixing process by letting a roll gap pass from 110 micrometers to 9 micrometers using 3 rolls (The product made by Otto Herman, EXAKT80S).

(導電膜の形成)
PETフィルム上に、前記で得られた導電性ペーストを用い、幅500μm、長さ37500μmのペーストの膜をスクリーン印刷機(マイクロ・テック株式会社製、MT−320T)にて印刷した。得られた膜を大気循環式乾燥機を用いて、130℃、30分間の条件で加熱処理し、導電膜を形成した。得られた導電膜は表面粗さ計(株式会社小坂研究所製、SE−30D)を用いて、PETフィルム上で膜を印刷していない部分と導電膜の部分の段差を0.1mm/secで走査することにより導電膜の膜厚を測定した。導電膜の抵抗は、デジタルマルチメーター(ADVANTEST製、R6551)を用いて、導電膜の長さ(間隔)が37.5mmの位置の抵抗値を測定した。導電膜のサイズ(膜厚、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、体積抵抗率(比抵抗)を求めた。体積抵抗率の結果は表1に示す。実施例1の導電膜は、マロン酸被覆処理を行わないフレーク状銀粉材料を用いて作製された後述する比較例1の導電膜に比べ、低い体積抵抗率を示した。
(Formation of conductive film)
On the PET film, the conductive paste obtained above was used to print a paste film having a width of 500 μm and a length of 37500 μm with a screen printer (manufactured by Micro Tech Co., Ltd., MT-320T). The obtained film was heat-treated at 130 ° C. for 30 minutes using an air circulation dryer to form a conductive film. Using the surface roughness meter (SE-30D, manufactured by Kosaka Laboratory Ltd.), the resulting conductive film had a step difference of 0.1 mm / sec between the portion where the film was not printed on the PET film and the portion of the conductive film. The film thickness of the conductive film was measured by scanning with. The resistance of the conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551) at the position where the length (interval) of the conductive film was 37.5 mm. The volume of the conductive film was determined from the size (film thickness, width, length) of the conductive film, and the volume resistivity (specific resistance) was determined from this volume and the measured resistance value. The results of volume resistivity are shown in Table 1. The conductive film of Example 1 showed a lower volume resistivity than the conductive film of Comparative Example 1 described later, which was prepared using a flaky silver powder material that was not subjected to malonic acid coating treatment.

[実施例2]
ジカルボン酸(マロン酸)の添加量を0.01gに変更した以外は、実施例1と同様にして、カルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 2]
Except having changed the addition amount of dicarboxylic acid (malonic acid) into 0.01 g, it carried out similarly to Example 1, and performed covering of carboxylic acid, formation of the electrically conductive film, and measurement. The obtained results are shown in Table 1.

[実施例3]
ジカルボン酸(マロン酸)の添加量を0.1gに変更した以外は、実施例1と同様にして、カルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 3]
Except that the amount of dicarboxylic acid (malonic acid) added was changed to 0.1 g, carboxylic acid coating, conductive film formation, and measurement were performed in the same manner as in Example 1. The obtained results are shown in Table 1.

[実施例4]
(フレーク状銀粉材料の製造)
フレーク状銀粉Bとジカルボン酸として粉末状のマロン酸0.02gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、処理時間30秒間の条件にて混合解砕を行い、ジカルボン酸を被覆した。実施例1と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 4]
(Manufacture of flaky silver powder material)
Put flake silver powder B and 0.02 g of malonic acid powder as dicarboxylic acid into an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and perform mixed crushing under conditions of a treatment time of 30 seconds. Dicarboxylic acid was coated. In the same manner as in Example 1, coating with a carboxylic acid, formation of a conductive film, and measurement were performed. The obtained results are shown in Table 1.

[実施例5]
ジカルボン酸をジグリコール酸に変更した以外は、実施例4と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 5]
Except for changing the dicarboxylic acid to diglycolic acid, the coating of the carboxylic acid, the formation of the conductive film, and the measurement were performed in the same manner as in Example 4. The obtained results are shown in Table 1.

[実施例6]
ジカルボン酸をグルタル酸に変更した以外は、実施例4と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 6]
Except that dicarboxylic acid was changed to glutaric acid, coating with carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 4. The obtained results are shown in Table 1.

[実施例7]
銀粉(AG2−1C)を、そのまま球状銀粉として用いた以外は、実施例1と同様にカルボン酸(マロン酸)の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 7]
The coating of carboxylic acid (malonic acid), formation of a conductive film, and measurement were performed in the same manner as in Example 1 except that silver powder (AG2-1C) was used as it was as spherical silver powder. The obtained results are shown in Table 1.

[実施例8]
ジカルボン酸をグルタル酸に変更した以外は、実施例7と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 8]
Except that dicarboxylic acid was changed to glutaric acid, coating with carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 7. The obtained results are shown in Table 1.

[実施例9]
ジカルボン酸をジグリコール酸に変更した以外は、実施例7と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 9]
Except having changed dicarboxylic acid into diglycolic acid, the coating of carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 7. The obtained results are shown in Table 1.

[実施例10]
ジカルボン酸をアジピン酸に変更した以外は、実施例7と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表1に示した。
[Example 10]
Except for changing the dicarboxylic acid to adipic acid, the coating of the carboxylic acid, the formation of the conductive film, and the measurement were performed in the same manner as in Example 7. The obtained results are shown in Table 1.

[比較例1]
実施例1で使用したフレーク状銀粉材料にジカルボン酸の被覆処理を行わずに同様の条件で試験を行った。得られた結果を表2に示した。
[Comparative Example 1]
The flaky silver powder material used in Example 1 was tested under the same conditions without performing the dicarboxylic acid coating treatment. The obtained results are shown in Table 2.

[比較例2]
ジカルボン酸(マロン酸)の添加量を0.3gに変更した以外は、実施例1と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表2に示した。
[Comparative Example 2]
Except having changed the addition amount of dicarboxylic acid (malonic acid) into 0.3 g, the coating of carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 1. The obtained results are shown in Table 2.

[比較例3]
ジカルボン酸(マロン酸)の添加量を0.5gに変更した以外は、実施例1と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表2に示した。
[Comparative Example 3]
Except having changed the addition amount of dicarboxylic acid (malonic acid) into 0.5 g, the coating of carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 1. The obtained results are shown in Table 2.

[比較例4]
ジカルボン酸(マロン酸)の添加量を0.005gに変更した以外は、実施例1と同様にカルボン酸の被覆、導電膜の形成、測定を行った。得られた結果を表2に示した。
[Comparative Example 4]
Except having changed the addition amount of dicarboxylic acid (malonic acid) into 0.005 g, the coating of carboxylic acid, formation of a conductive film, and measurement were performed in the same manner as in Example 1. The obtained results are shown in Table 2.

[比較例5]
フレーク状銀粉Bにジカルボン酸の被覆処理を行わずに、同様の条件で試験を行った。得られた結果を表2に示した。
[Comparative Example 5]
The test was performed under the same conditions without coating the flaky silver powder B with the dicarboxylic acid. The obtained results are shown in Table 2.

[比較例6]
銀粉(AG2−1C)を、そのまま球状銀粉として用い、ジカルボン酸の被覆処理を行わずに同様の条件で試験を行った。得られた結果を表2に示した。
[Comparative Example 6]
The silver powder (AG2-1C) was used as a spherical silver powder as it was, and the test was performed under the same conditions without performing the dicarboxylic acid coating treatment. The obtained results are shown in Table 2.

Figure 2014047415
Figure 2014047415
Figure 2014047415
Figure 2014047415

図1に、銀粉材料(フレーク状銀粉A)に対するマロン酸添加量(質量%)と、体積抵抗値の関係を示した。図2に、銀粉材料(フレーク状銀粉B)に対する添加剤の種類ごとの体積抵抗値の関係を示した。図3に、銀粉材料(球状銀粉)に対する添加剤の種類ごとの体積抵抗値の関係を示した。   FIG. 1 shows the relationship between the amount of malonic acid added (% by mass) relative to the silver powder material (flaky silver powder A) and the volume resistance value. In FIG. 2, the relationship of the volume resistance value for every kind of additive with respect to silver powder material (flaky silver powder B) was shown. In FIG. 3, the relationship of the volume resistance value for every kind of additive with respect to silver powder material (spherical silver powder) was shown.

これら表1、表2、図1〜3から分かるように、本発明の特徴であるジカルボン酸(マロン酸、ジクリコール酸、グルタル酸、アジピン酸)を材料銀粉に対して0.01質量%〜0.2質量%添加させた導電膜形成用銀粉を用いて作製した場合の導電膜の体積抵抗(実施例1〜実施例9)は、ジカルボン酸を材料銀粉に添加しない場合(比較例1、5、6)やジカルボン酸を材料銀粉に多量に添加した場合(比較例2、3)の導電膜の体積抵抗より低い。即ち、ジカルボン酸を材料銀粉に対して0.01質量%〜0.2質量%添加させたカルボン酸被覆銀粉を用いて作製した導電膜の方が導電性が高く、電子部品や太陽電池等の電極や回路を形成するのに有用であることがわかった。   As can be seen from Tables 1 and 2 and FIGS. 1 to 3, the dicarboxylic acid (malonic acid, diglycolic acid, glutaric acid, adipic acid), which is a feature of the present invention, is 0.01% by mass to 0% with respect to the material silver powder. The volume resistance (Examples 1 to 9) of the conductive film in the case of using the conductive film forming silver powder added by 2% by mass is not added to the material silver powder (Comparative Examples 1 and 5). 6) or the volume resistance of the conductive film when a large amount of dicarboxylic acid is added to the material silver powder (Comparative Examples 2 and 3). That is, the conductive film produced using the carboxylic acid-coated silver powder added with 0.01% by mass to 0.2% by mass of dicarboxylic acid with respect to the material silver powder has higher conductivity, such as electronic parts and solar cells. It has been found useful for forming electrodes and circuits.

本発明は、例えばタッチパネルの製造分野で有用である。   The present invention is useful, for example, in the manufacturing field of touch panels.

Claims (9)

導電膜の形成に用いられる銀粉であって、
銀粉材料にジカルボン酸を被覆させたことを特徴とする、導電膜形成用銀粉。
Silver powder used for forming a conductive film,
A silver powder for forming a conductive film, wherein a silver powder material is coated with a dicarboxylic acid.
前記銀粉材料に対して、前記ジカルボン酸を0.01〜0.2質量%被覆させたことを特徴とする、請求項1に記載の導電膜形成用銀粉。   The silver powder for forming a conductive film according to claim 1, wherein 0.01 to 0.2% by mass of the dicarboxylic acid is coated on the silver powder material. 前記ジカルボン酸は、マロン酸であることを特徴とする、請求項1または2に記載の導電膜形成用銀粉。   The silver powder for forming a conductive film according to claim 1 or 2, wherein the dicarboxylic acid is malonic acid. 前記銀粉材料は、フレーク状銀粉または球状銀粉であることを特徴とする、請求項1〜3のいずれかに記載の導電膜形成用銀粉。   The silver powder for forming a conductive film according to any one of claims 1 to 3, wherein the silver powder material is flaky silver powder or spherical silver powder. 請求項1〜4のいずれかに記載の導電膜形成用銀粉に樹脂を混合したことを特徴とする、導電性ペースト。   A conductive paste comprising a resin mixed with the silver powder for forming a conductive film according to claim 1. 前記樹脂は、ポリエステル樹脂であることを特徴とする、請求項5に記載の導電性ペースト。   The conductive paste according to claim 5, wherein the resin is a polyester resin. 請求項5または6に記載の導電性ペーストを塗布し、加熱することを特徴とする、導電膜の形成方法。   A method for forming a conductive film, wherein the conductive paste according to claim 5 or 6 is applied and heated. 加熱温度が150℃以下であることを特徴とする、請求項7に記載の導電膜の形成方法。   The method for forming a conductive film according to claim 7, wherein the heating temperature is 150 ° C. or lower. タッチパネルの導電膜の形成であることを特徴とする、請求項7または8に記載の導電膜の形成方法。   The method for forming a conductive film according to claim 7, wherein the conductive film is formed on a touch panel.
JP2012193200A 2012-09-03 2012-09-03 Silver powder for forming conductive film, conductive paste and method of forming conductive film Pending JP2014047415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193200A JP2014047415A (en) 2012-09-03 2012-09-03 Silver powder for forming conductive film, conductive paste and method of forming conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193200A JP2014047415A (en) 2012-09-03 2012-09-03 Silver powder for forming conductive film, conductive paste and method of forming conductive film

Publications (1)

Publication Number Publication Date
JP2014047415A true JP2014047415A (en) 2014-03-17

Family

ID=50607398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193200A Pending JP2014047415A (en) 2012-09-03 2012-09-03 Silver powder for forming conductive film, conductive paste and method of forming conductive film

Country Status (1)

Country Link
JP (1) JP2014047415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190246A1 (en) * 2017-04-14 2018-10-18 学校法人 関西大学 Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
WO2011078140A1 (en) * 2009-12-22 2011-06-30 Dic株式会社 Conductive paste for screen printing
JP2011140714A (en) * 2009-12-10 2011-07-21 Dowa Electronics Materials Co Ltd Silver powder, method for producing the same, resin-curing electroconductive paste and method for forming electroconductive film
JP2011240406A (en) * 2010-03-15 2011-12-01 Dowa Electronics Materials Co Ltd Bonding material and bonding method using the same
WO2011155615A1 (en) * 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012062531A (en) * 2010-09-16 2012-03-29 Dowa Electronics Materials Co Ltd Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
WO2012060284A1 (en) * 2010-11-01 2012-05-10 Dowaエレクトロニクス株式会社 Low-temperature sintering conductive paste, conductive film using same, and method for forming conductive film
JP2012104388A (en) * 2010-11-10 2012-05-31 Dowa Electronics Materials Co Ltd Silver particle-containing composition, dispersion liquid, paste, and production method for each thereof
JP2012122880A (en) * 2010-12-09 2012-06-28 Dowa Electronics Materials Co Ltd Quantitation method for adipic acid on silver powder surface
WO2012099161A1 (en) * 2011-01-18 2012-07-26 Dowaエレクトロニクス株式会社 Metal particle powder and paste composition using same
JP2013216919A (en) * 2012-04-04 2013-10-24 Nippon Handa Kk Method for manufacturing heat-sinterable silver particle, paste-like silver particle composition, method for manufacturing solid silver, method for joining metal members, method for manufacturing printed wiring board, and method for manufacturing electrical circuit connection bump

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
JP2011140714A (en) * 2009-12-10 2011-07-21 Dowa Electronics Materials Co Ltd Silver powder, method for producing the same, resin-curing electroconductive paste and method for forming electroconductive film
WO2011078140A1 (en) * 2009-12-22 2011-06-30 Dic株式会社 Conductive paste for screen printing
JP2011240406A (en) * 2010-03-15 2011-12-01 Dowa Electronics Materials Co Ltd Bonding material and bonding method using the same
WO2011155615A1 (en) * 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP2012062531A (en) * 2010-09-16 2012-03-29 Dowa Electronics Materials Co Ltd Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
WO2012060284A1 (en) * 2010-11-01 2012-05-10 Dowaエレクトロニクス株式会社 Low-temperature sintering conductive paste, conductive film using same, and method for forming conductive film
JP2012104388A (en) * 2010-11-10 2012-05-31 Dowa Electronics Materials Co Ltd Silver particle-containing composition, dispersion liquid, paste, and production method for each thereof
JP2012122880A (en) * 2010-12-09 2012-06-28 Dowa Electronics Materials Co Ltd Quantitation method for adipic acid on silver powder surface
WO2012099161A1 (en) * 2011-01-18 2012-07-26 Dowaエレクトロニクス株式会社 Metal particle powder and paste composition using same
JP2013216919A (en) * 2012-04-04 2013-10-24 Nippon Handa Kk Method for manufacturing heat-sinterable silver particle, paste-like silver particle composition, method for manufacturing solid silver, method for joining metal members, method for manufacturing printed wiring board, and method for manufacturing electrical circuit connection bump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190246A1 (en) * 2017-04-14 2018-10-18 学校法人 関西大学 Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
CN110621424A (en) * 2017-04-14 2019-12-27 学校法人关西大学 Copper particle mixture and method for producing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture
JPWO2018190246A1 (en) * 2017-04-14 2020-02-20 学校法人 関西大学 Copper particle mixture and method for producing the same, copper particle mixture dispersion, copper particle mixture-containing ink, method for storing copper particle mixture, and method for sintering copper particle mixture
US11767443B2 (en) 2017-04-14 2023-09-26 The School Corporation Kansai University Copper particle mixture and method for manufacturing same, copper particle mixture dispersion, ink containing copper particle mixture, method for storing copper particle mixture, and method for sintering copper particle mixture

Similar Documents

Publication Publication Date Title
JP2012062531A (en) Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
WO2017033911A1 (en) Metal paste having excellent low-temperature sinterability and method for producing the metal paste
JP6423139B2 (en) Flake silver powder, method for producing the same, and conductive paste
TWI530967B (en) A sheet-like conductive filler, a conductive paste composition, a conductive article, and a sheet-like conductive filler
TWI530963B (en) Sheet-like silver microparticles and methods for producing the same, and a paste using the same and a paste
JP6314728B2 (en) Method for producing conductive paste and conductive paste obtained thereby
WO2014054618A1 (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP5762729B2 (en) Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP7171703B2 (en) Conductive film-forming composition and method for producing conductive film
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
WO2015133474A1 (en) Conductive filler, method for manufacturing conductive filler, and conductive paste
TWI567756B (en) A conductive paste composition for forming conductive thin film on a flexible substrate and a method for producing the same
JP2011208278A (en) Flaky silver powder and method for producing the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2014047415A (en) Silver powder for forming conductive film, conductive paste and method of forming conductive film
JP6578966B2 (en) Conductive paste and manufacturing method thereof
TW201230065A (en) Conductive paste composite
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP2003331648A (en) Conductive paste and manufacturing method for electric circuit
KR101789037B1 (en) Metallic paste composition for formation of an electrode comprisiing graphite and ag-graphite composite electrodes usign the same
JP2014203652A (en) Polymer type conductive paste and method of producing electrode by using the same
TWI652695B (en) Liquid composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004