JP2014208908A - Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste - Google Patents

Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste Download PDF

Info

Publication number
JP2014208908A
JP2014208908A JP2014068091A JP2014068091A JP2014208908A JP 2014208908 A JP2014208908 A JP 2014208908A JP 2014068091 A JP2014068091 A JP 2014068091A JP 2014068091 A JP2014068091 A JP 2014068091A JP 2014208908 A JP2014208908 A JP 2014208908A
Authority
JP
Japan
Prior art keywords
copper powder
silver
coated copper
carboxylic acid
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014068091A
Other languages
Japanese (ja)
Inventor
佑一 山田
Yuichi Yamada
佑一 山田
愛子 長原
Aiko Nagahara
愛子 長原
徳昭 野上
Tokuaki Nogami
徳昭 野上
藤野 剛聡
Takeaki Fujino
剛聡 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2014068091A priority Critical patent/JP2014208908A/en
Publication of JP2014208908A publication Critical patent/JP2014208908A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/02
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin curing type conductive paste for obtaining a conductive film which is more inexpensive and has a more excellent conductivity than a conductive film formed by using a resin curing type conductive paste obtained by a conventional method, to provide a silver-coated copper powder to be blended in the resin curing type conductive paste, and to provide a method for producing the silver-coated copper powder.SOLUTION: A silver-coated copper powder is obtained by coating a material silver-coated copper powder with 0.01-0.5 mass% of a polycarboxylic acid. The silver coated copper powder is blended in a resin curing type conductive paste.

Description

本発明は、例えば半導体部品等の電子部品や太陽電池の電極や回路などといった導電膜の形成に用いられる導電性ペーストに関し、さらに、導電性ペーストに配合される銀コート銅粉およびその銀コート銅粉の製造方法に関する。   The present invention relates to a conductive paste used for forming a conductive film such as an electronic component such as a semiconductor component, an electrode or a circuit of a solar cell, and moreover, a silver-coated copper powder blended in the conductive paste, and the silver-coated copper The present invention relates to a method for producing powder.

従来より、例えば半導体部品等の電子部品や太陽電池の電極や回路などといった導電膜の形成には銀粉を有機成分中に分散させて形成される導電性ペーストが使用されている。そして、特に樹脂硬化型導電性ペーストにおいては、樹脂の体積収縮により銀粉同士が接触して導通が取られる。従って、樹脂硬化型導電性ペーストに配合される銀粉としては、接触面積が大きいフレーク状(鱗片状)銀粉が使用されている(例えば特許文献1、特許文献2参照)。   Conventionally, a conductive paste formed by dispersing silver powder in an organic component has been used to form a conductive film such as an electronic component such as a semiconductor component or an electrode or a circuit of a solar cell. In particular, in a resin curable conductive paste, silver powders come into contact with each other due to the volume shrinkage of the resin, and conduction is obtained. Therefore, flaky (scale-like) silver powder having a large contact area is used as the silver powder blended in the resin curable conductive paste (see, for example, Patent Document 1 and Patent Document 2).

また、樹脂硬化型導電性ペーストの用途としては、上述したように電子部品や太陽電池の電極や回路などといった導電膜の形成が挙げられる。そして、近年、電子部品の小型化・高性能化が進み、これに伴い実装に際しての高密度化、高信頼性が要求されるようになり、樹脂硬化型導電性ペーストを用いて形成する導電膜の導電性向上が強く求められている。太陽電池の電極形成においても、電極の導電性が変換効率の向上につながることから、樹脂硬化型導電性ペーストを用いて形成する電極の導電性向上が求められている。   In addition, as described above, the application of the resin curable conductive paste includes formation of a conductive film such as an electronic component, a solar cell electrode, or a circuit. In recent years, electronic components have become smaller and higher performance, and accordingly, higher density and higher reliability are required for mounting, and conductive films formed using resin-curable conductive paste. There is a strong demand for improved conductivity. Also in the electrode formation of a solar cell, since the electroconductivity of an electrode leads to the improvement of conversion efficiency, the electroconductivity improvement of the electrode formed using a resin hardening type conductive paste is calculated | required.

一方、銀が高価であること、マイグレーションを起こすことから、その代替として銀コート銅粉を使用することが模索されてきたが、銀粉に比べて抵抗が高くなるため、代替が進んでいなかった。   On the other hand, since silver is expensive and causes migration, it has been sought to use silver-coated copper powder as an alternative. .

特開2002−150837号公報JP 2002-150837 A 特開2003−55701号公報JP 2003-55701 A

本発明の目的は、従来に比べて抵抗の低減を実現でき、導電性に優れた導電膜を形成できる銀コート銅粉を得ることにある。   An object of the present invention is to obtain a silver-coated copper powder capable of realizing a reduction in resistance as compared with the prior art and capable of forming a conductive film having excellent conductivity.

上記目的に鑑み、本発明によれば、多価カルボン酸を材料銀コート銅粉に対して0.01質量%〜0.5質量%被覆させた、銀コート銅粉が提供される。該銀コート銅粉は例えば樹脂硬化型導電性ペーストに配合される。前記多価カルボン酸は溶媒に溶解された状態で材料銀コート銅粉に添加され、その溶解濃度は1質量%〜20質量%であっても良い。また、前記多価カルボン酸を溶解させる溶媒はアルコール、アセトンまたはエーテルであっても良い。また、前記多価カルボン酸はアジピン酸、コハク酸、ジグリコール酸、グルタル酸またはマレイン酸であっても良い。また、前記材料銀コート銅粉は、比表面積が6m/g以下であり、平均粒径が0.1μm〜50μmであっても良い。 In view of the said objective, according to this invention, the silver coat copper powder which coat | covered 0.01 mass%-0.5 mass% of polyvalent carboxylic acid with respect to material silver coat copper powder is provided. The silver-coated copper powder is blended in, for example, a resin curable conductive paste. The polyvalent carboxylic acid may be added to the material silver-coated copper powder in a state dissolved in a solvent, and the dissolution concentration may be 1% by mass to 20% by mass. The solvent for dissolving the polyvalent carboxylic acid may be alcohol, acetone or ether. The polycarboxylic acid may be adipic acid, succinic acid, diglycolic acid, glutaric acid or maleic acid. The material silver-coated copper powder may have a specific surface area of 6 m 2 / g or less and an average particle size of 0.1 μm to 50 μm.

また、本発明によれば、銀コート銅粉の製造方法であって、溶媒に溶解させた状態で多価カルボン酸を材料銀コート銅粉に対して0.01質量%〜0.5質量%添加させ、多価カルボン酸を添加させた材料銀コート銅粉を粉砕・解砕機で粉砕・解砕しながら混合させて前記多価カルボン酸を前記材料銀コート銅粉に被覆させ、前記溶媒を除去して銀コート銅粉を得る、銀コート銅粉の製造方法が提供される。   Moreover, according to this invention, it is a manufacturing method of silver coat copper powder, Comprising: Polycarboxylic acid is 0.01 mass%-0.5 mass% with respect to material silver coat copper powder in the state dissolved in the solvent. The material silver-coated copper powder to which the polyvalent carboxylic acid is added is mixed while being pulverized and pulverized with a pulverizer / disintegrator to coat the polyvalent carboxylic acid on the material silver-coated copper powder, and the solvent is added. A method for producing silver-coated copper powder is provided which is removed to obtain silver-coated copper powder.

さらに本発明によれば、上記記載の銀コート銅粉を含有する樹脂硬化型導電性ペーストが提供される。   Furthermore, according to the present invention, there is provided a resin curable conductive paste containing the silver-coated copper powder described above.

本発明によれば、従来の樹脂硬化型導電性ペーストを用いて形成される導電膜より、導電性の優れた導電膜を形成方法できる。   ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive film which was excellent in electroconductivity can be formed rather than the electrically conductive film formed using the conventional resin hardening type conductive paste.

以下、本発明の実施の形態の一例について説明する。本発明者らは、多価カルボン酸を材料銀コート銅粉に対して0.01質量%〜0.5質量%添加させたカルボン酸銀コート銅粉、フレーク状銀コート銅粉、樹脂および必要に応じて溶剤、硬化剤を混合することによって、導電性の高い樹脂硬化型導電性ペーストが得られ、さらにこの樹脂硬化型導電性ペーストを塗布・加熱(樹脂硬化)することにより導電性の高い導電膜を得ることが可能となることを知見した。以下には、各種銀コート銅粉、樹脂硬化型導電性ペーストおよび導電膜を得る詳細な過程について説明する。   Hereinafter, an example of an embodiment of the present invention will be described. The present inventors have added a carboxylic acid silver-coated copper powder, a flaky silver-coated copper powder, a resin, and a resin to which polyvalent carboxylic acid is added in an amount of 0.01% to 0.5% by mass with respect to the material silver-coated copper powder. By mixing a solvent and a curing agent according to the above, a highly conductive resin curable conductive paste can be obtained, and by applying and heating (resin curing) this resin curable conductive paste, high conductivity can be obtained. It has been found that a conductive film can be obtained. Hereinafter, detailed processes for obtaining various silver-coated copper powders, resin-curable conductive pastes, and conductive films will be described.

(材料銀コート銅粉)
本実施の形態では、先ず、多価カルボン酸を添加させるための材料銀コート銅粉が必要となる。本発明において用いられる材料銀コート銅粉は、公知技術である置換還元法によって得られる。ここで、材料銀コート銅粉としては、比表面積が6m/g以下であり、平均粒径が0.1μm〜50μmであるものを用いることが好ましい。これは以下の理由からである。即ち、比表面積が6m/gを超えるものを用いると作製後の樹脂硬化型導電性ペーストの粘度が高すぎ、印刷性が悪化する等の不具合が生じる恐れがある。また、平均粒径が0.1μm未満のものを用いた場合にも作製後の樹脂硬化型導電性ペーストの粘度が高すぎ、印刷性が悪化する等の不具合が生じる恐れがあり、平均粒径が50μm超のものを用いた場合、作製後の樹脂硬化型導電性ペーストをスクリーン印刷に用いる場合に銀コート銅粉の目詰まりが発生して生産性が低下する恐れがあるといった問題点がある。形状については特に限定されず、適宜選択される。例えば球状粒子を選択したり、フレーク粒子を選択したりすることができる。さらにはフレーク粒子と球状粒子を混合して使用すること等も選択できる。
(Material: Silver coated copper powder)
In the present embodiment, first, a material silver-coated copper powder for adding a polyvalent carboxylic acid is required. The material silver-coated copper powder used in the present invention is obtained by a substitution reduction method which is a known technique. Here, as the material silver-coated copper powder, it is preferable to use a material having a specific surface area of 6 m 2 / g or less and an average particle size of 0.1 μm to 50 μm. This is for the following reason. That is, if the specific surface area exceeds 6 m 2 / g, the viscosity of the resin-cured conductive paste after production may be too high, which may cause problems such as deterioration of printability. Moreover, even when an average particle size of less than 0.1 μm is used, the viscosity of the resin-cured conductive paste after production may be too high, which may cause problems such as poor printability. When using a resin paste of more than 50 μm, there is a problem that clogging of the silver-coated copper powder may occur and the productivity may be lowered when the resin-cured conductive paste after production is used for screen printing. . The shape is not particularly limited and is appropriately selected. For example, spherical particles or flake particles can be selected. Furthermore, it is possible to select a mixture of flake particles and spherical particles.

(カルボン酸の添加)
次いで、上記材料銀コート銅粉にカルボキシル基を2個以上含む多価カルボン酸を添加する。カルボキシル基を2個以上含む多価カルボン酸としては、例えばアジピン酸、コハク酸、ジグリコール酸、グルタル酸およびマレイン酸が例示される。また、添加する多価カルボン酸の量は材料銀コート銅粉の質量に対して0.01質量%〜0.5質量%が好ましく、さらには0.02質量%〜0.4質量%が好ましい。これは、多価カルボン酸の添加量が材料銀コート銅粉の質量に対して0.01質量%〜0.5質量%の範囲外の量である場合、作製される導電膜の導電性向上効果が十分に得られないからである。
(Addition of carboxylic acid)
Next, a polyvalent carboxylic acid containing two or more carboxyl groups is added to the material silver-coated copper powder. Examples of the polyvalent carboxylic acid containing two or more carboxyl groups include adipic acid, succinic acid, diglycolic acid, glutaric acid and maleic acid. Moreover, 0.01 mass%-0.5 mass% are preferable with respect to the mass of material silver coat copper powder, and also the quantity of polyvalent carboxylic acid to add is 0.02 mass%-0.4 mass% is preferable. . This is an improvement in the conductivity of the conductive film produced when the amount of polycarboxylic acid added is outside the range of 0.01% to 0.5% by weight based on the weight of the material silver-coated copper powder. This is because a sufficient effect cannot be obtained.

多価カルボン酸を材料銀コート銅粉に添加する際、本実施の形態では、多価カルボン酸は溶媒に溶解された状態で材料銀コート銅粉に添加される。この時溶解させた多価カルボン酸の濃度は1質量%〜20質量%が好ましい。これは、多価カルボン酸の溶解濃度が1質量%未満の場合、溶液の量が多くなり溶媒除去のための乾燥時に溶液が偏在して、多価カルボン酸が均一に材料銀コート銅粉に被覆できない恐れがあり、また、溶解濃度が20質量%超の場合には、溶液の量が過少となり、多価カルボン酸が均一に材料銀コート銅粉に被覆できない恐れがあるからである。   When adding polyvalent carboxylic acid to material silver coat copper powder, in this embodiment, polyvalent carboxylic acid is added to material silver coat copper powder in the state dissolved in a solvent. The concentration of the polyvalent carboxylic acid dissolved at this time is preferably 1% by mass to 20% by mass. This is because, when the polycarboxylic acid dissolution concentration is less than 1% by mass, the amount of the solution increases and the solution is unevenly distributed during drying for solvent removal, so that the polyvalent carboxylic acid is uniformly formed into the material silver-coated copper powder. This is because there is a possibility that it cannot be coated, and when the dissolution concentration exceeds 20% by mass, the amount of the solution becomes too small, and the polyvalent carboxylic acid may not be uniformly coated on the material silver-coated copper powder.

また、多価カルボン酸を溶解させる溶媒としては、多価カルボン酸を溶解可能であればよく、常温で蒸発させることが可能な溶媒であれば、被覆後の溶媒除去が容易になるので好ましい。例えばアルコール、アセトンおよびエーテル等が例示される。特に、アジピン酸は少量の添加でもって体積抵抗が低下する効果があるため、多価カルボン酸としてアジピン酸を用いることが好ましい。   The solvent for dissolving the polyvalent carboxylic acid is not particularly limited as long as it can dissolve the polyvalent carboxylic acid, and any solvent that can be evaporated at room temperature is preferable because the solvent can be easily removed after coating. For example, alcohol, acetone and ether are exemplified. In particular, since adipic acid has the effect of reducing volume resistance when added in a small amount, it is preferable to use adipic acid as the polyvalent carboxylic acid.

(カルボン酸の被覆)
多価カルボン酸が添加された材料銀コート銅粉においては、多価カルボン酸が材料銀コート銅粉に均一に被覆するように乾式の解砕が行われる。乾式の解砕は、多価カルボン酸が添加された材料銀コート銅粉を例えばヘンシェルミキサー、サンプルミル、ブレンダー、コーヒーミル等に入れることで行われる。そして、必要に応じて解砕による摩擦熱やもしくは乾燥工程によって多価カルボン酸を添加させるために用いた溶媒を蒸発させる。これにより多価カルボン酸の被覆された材料銀コート銅粉、即ち、本発明でいう銀コート銅粉(以下カルボン酸が被覆されていることを示すためにカルボン酸銀コート銅粉と呼称する)が得られることとなる。なお、材料銀コート銅粉への多価カルボン酸の被覆は、必ずしも材料銀コート銅粉の表面を完全に均一に覆うものでなくとも良く、材料銀コート銅粉の表面の一部に多価カルボン酸が付着したものも本発明の銀コート銅粉(カルボン酸銀コート銅粉)に含まれる。
(Carboxylic acid coating)
In the material silver-coated copper powder to which the polyvalent carboxylic acid is added, dry crushing is performed so that the polyvalent carboxylic acid uniformly coats the material silver-coated copper powder. Dry crushing is performed by putting the material silver-coated copper powder to which polyvalent carboxylic acid is added into, for example, a Henschel mixer, a sample mill, a blender, a coffee mill or the like. And the solvent used in order to add polyvalent carboxylic acid by the frictional heat by crushing or a drying process as needed is evaporated. Thus, the material coated with polyvalent carboxylic acid silver-coated copper powder, that is, silver-coated copper powder as referred to in the present invention (hereinafter referred to as carboxylic acid silver-coated copper powder to indicate that the carboxylic acid is coated) Will be obtained. Note that the coating of the polyvalent carboxylic acid on the material silver-coated copper powder may not necessarily cover the surface of the material silver-coated copper powder completely and uniformly. The thing to which carboxylic acid adhered is also contained in the silver coat copper powder (carboxylate silver coat copper powder) of this invention.

上記の他、カルボン酸の被覆として次の方法でも良い。すなわち、多価カルボン酸が添加された材料銀コート銅粉においては、多価カルボン酸が材料銀コート銅粉に均一に被覆するように湿式での被覆を行っても良い。湿式での被覆は例えば多価カルボン酸が溶解した溶媒に材料銀コート銅粉を浸漬後、濾過することで行われる。そして、必要に応じて乾燥工程によって多価カルボン酸を添加させるために用いた溶媒を蒸発させる。これにより材料銀コート銅粉に多価カルボン酸の被覆された銀コート銅粉、即ち、本発明でいう銀コート銅粉が得られることとなる。なお、材料銀コート銅粉への多価カルボン酸の被覆は、必ずしも材料銀コート銅粉表面を完全に均一に覆うものでなくとも良く、材料銀コート銅粉表面の一部に多価カルボン酸が付着したものを銀コート銅粉(カルボン酸銀コート銅粉)としても良い。   In addition to the above, the following method may be used for coating the carboxylic acid. That is, in the material silver-coated copper powder to which the polyvalent carboxylic acid is added, wet coating may be performed so that the polyvalent carboxylic acid uniformly coats the material silver-coated copper powder. The wet coating is performed by, for example, immersing the material silver-coated copper powder in a solvent in which polyvalent carboxylic acid is dissolved and then filtering. And the solvent used in order to add polyvalent carboxylic acid by a drying process as needed is evaporated. Thereby, the silver coat copper powder by which polyvalent carboxylic acid was coat | covered with the material silver coat copper powder, ie, the silver coat copper powder as used in the field of this invention, will be obtained. The coating of the polyvalent carboxylic acid on the material silver-coated copper powder may not necessarily cover the surface of the material silver-coated copper powder completely and uniformly. A silver-coated copper powder (a silver carboxylate-coated copper powder) may be used.

(カルボン酸の被覆量の定量分析)
材料銀コート銅粉に添加したカルボン酸は、材料銀コート銅粉の表面を被覆する。銀コート銅粉(カルボン酸銀コート銅粉)からカルボン酸の被覆量を定量的に分析する方法としては、例えば、アジピン酸を表面に被覆させた銀コート銅粉(カルボン酸銀コート銅粉)から塩酸溶出を用いてアジピン酸を溶出し、さらに、アジピン酸が溶出された塩酸溶液においてアジピン酸をメチル化し、有機溶媒に抽出してGC−MS(ガスクロマト質量分析計)による定量を行えばよい。なお、この定量分析の手法において、メタノールの代わりに他のエステル化をする薬品を用いるなど、適宜条件を変更しても良い。また、銀コート銅粉(カルボン酸銀コート銅粉)におけるカルボン酸の被覆量は、他の方法によって定量されても良い。
(Quantitative analysis of carboxylic acid coverage)
The carboxylic acid added to the material silver-coated copper powder covers the surface of the material silver-coated copper powder. As a method for quantitatively analyzing the coating amount of carboxylic acid from silver-coated copper powder (silver carboxylate-coated copper powder), for example, silver-coated copper powder having adipic acid coated on the surface (silver carboxylate-coated copper powder) Then, adipic acid is eluted using hydrochloric acid elution, and adipic acid is methylated in a hydrochloric acid solution from which adipic acid is eluted, extracted into an organic solvent, and quantified by GC-MS (Gas Chromatograph Mass Spectrometer). Good. In this quantitative analysis method, the conditions may be changed as appropriate, such as using another esterifying chemical instead of methanol. Moreover, the coating amount of the carboxylic acid in the silver coated copper powder (silver carboxylate coated copper powder) may be quantified by other methods.

(樹脂硬化型導電性ペーストの作製)
続いて、上述してきた方法で得られた銀コート銅粉(カルボン酸銀コート銅粉)、樹脂および必要に応じた溶剤・硬化剤を混合することによって樹脂硬化型導電性ペーストが作製される。
(Production of resin-cured conductive paste)
Subsequently, a resin-curable conductive paste is prepared by mixing the silver-coated copper powder (carboxylate-coated copper powder) obtained by the above-described method, a resin, and a solvent / curing agent as necessary.

樹脂硬化型導電性ペーストの作製において、樹脂、溶剤および硬化剤は、作製する導電性ペーストの用途等に応じて適宜選択すればよく、樹脂としては例えばエポキシ樹脂が例示される。   In the production of the resin curable conductive paste, the resin, the solvent, and the curing agent may be appropriately selected according to the use of the conductive paste to be produced. Examples of the resin include an epoxy resin.

(導電膜の作製・評価)
上記方法で作製された樹脂硬化型導電性ペーストを塗布・加熱(樹脂硬化)することにより導電膜が得られ、得られた導電膜の体積抵抗を測定することで導電膜の評価が行われる。
(Production and evaluation of conductive film)
A conductive film is obtained by applying and heating (resin curing) the resin curable conductive paste produced by the above method, and the conductive film is evaluated by measuring the volume resistance of the obtained conductive film.

以上説明した方法によって、従来の方法により得られる樹脂硬化型導電性ペーストより、導電性に優れた樹脂硬化型導電性ペーストが得られ、それに伴い導電性に優れた導電膜を得ることができる。なお、実際に得られる導電膜の具体的な体積抵抗の一例については、以下の実施例において詳しく記載する。   By the method described above, a resin curable conductive paste having excellent conductivity can be obtained from the resin curable conductive paste obtained by the conventional method, and accordingly, a conductive film having excellent conductivity can be obtained. An example of a specific volume resistance of the conductive film actually obtained will be described in detail in the following examples.

以上、本発明の実施の形態の一例を説明したが、本発明は上記説明した形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form demonstrated above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

(実施例1)
本発明にかかる樹脂硬化型導電性ペーストおよび導電膜を以下のような条件で作製した。また、作製した導電膜についてはその特性について測定を行った。
Example 1
The resin curable conductive paste and the conductive film according to the present invention were produced under the following conditions. Moreover, about the produced electrically conductive film, the characteristic was measured.

(材料銀コート銅粉の製造) (Manufacture of material silver-coated copper powder)

5リットルのビーカーに金属銅粉(アトマイズ粉)350gをイオン交換水1500g、9gの炭酸アンモニウムと共に加えて、20分間、25℃で撹拌を行い、以下の組成の銀錯塩溶液を15分間で添加して、さらに15分間、25℃で同所要動力で撹拌を継続して、金属銅表面への銀の析出を行った。ステアリン酸1.0gを含む懸濁液10gを添加した後、5分間、25℃で撹拌を継続して、銀被服銅粉への表面処理を行った。   Add 350 g of metal copper powder (atomized powder) together with 1500 g of ion-exchanged water and 9 g of ammonium carbonate to a 5 liter beaker, stir at 25 ° C. for 20 minutes, and add a silver complex salt solution having the following composition over 15 minutes. Then, stirring was continued for 15 minutes at 25 ° C. with the same required power to deposit silver on the surface of the metallic copper. After adding 10 g of a suspension containing 1.0 g of stearic acid, stirring was continued at 25 ° C. for 5 minutes to perform surface treatment on the silver-coated copper powder.

(銀錯塩溶液)
AgNO3 66.1g
EDTA四ナトリウム 315g
炭酸アンモニウム 175g
イオン交換 1500g
得られた銀被覆銅粉を濾過して、イオン交換水でろ液の電気伝導度が0.3mS/m以下になるまで洗浄して、さらにイソプロパノール250gで洗浄して、得られた含湿ケーキを70℃で真空乾燥を行い乾燥粉を得た。
(Silver complex solution)
AgNO3 66.1g
EDTA tetrasodium 315g
175 g of ammonium carbonate
Ion exchange 1500g
The obtained silver-coated copper powder is filtered, washed with ion-exchanged water until the electric conductivity of the filtrate becomes 0.3 mS / m or less, and further washed with 250 g of isopropanol. Vacuum drying was performed at 70 ° C. to obtain a dry powder.

(銀コート銅粉(カルボン酸銀コート銅粉)の作製)
多価カルボン酸を含有する溶液として、アジピン酸をエタノールに溶解し、10質量%のアジピン酸エタノール溶液を準備した。上記で製造した材料銀コート銅粉90gを電動コーヒーミル(メリタジャパン株式会社製、セレクトグラインドMJ−518)に入れ、10質量%のアジピン酸エタノール溶液0.18gを加えた後、処理時間20秒間2回の条件にて解砕を行った。その後、このアジピン酸の添加された銀コート銅粉(カルボン酸銀コート銅粉)を室温で1時間、乾燥を行った。ここで得た銀コート銅粉(カルボン酸銀コート銅粉)のBET1点法により測定した比表面積、レーザー回折式粒度分布測定法により測定した平均粒径D50の結果を表1に示す。また、銀コート銅粉(カルボン酸銀コート銅粉)の形状を走査型電子顕微鏡を用いて確認したところ、粒状であった。なお、表1には本実施例1以外の以下に説明する比較例1の測定結果についても記載している。
(Preparation of silver coated copper powder (silver carboxylate coated copper powder))
As a solution containing a polyvalent carboxylic acid, adipic acid was dissolved in ethanol to prepare a 10% by mass adipic acid ethanol solution. 90 g of the material-coated copper powder produced above was put into an electric coffee mill (Melita Japan Co., Ltd., Select Grind MJ-518), and 0.18 g of 10 mass% adipic acid ethanol solution was added, followed by a treatment time of 20 seconds. Crushing was performed under two conditions. Thereafter, the silver-coated copper powder (carboxylate-coated copper powder) to which adipic acid was added was dried at room temperature for 1 hour. Table 1 shows the results of the specific surface area measured by the BET one-point method of the silver-coated copper powder (silver carboxylate-coated copper powder) obtained here and the average particle diameter D50 measured by the laser diffraction particle size distribution measurement method. Moreover, when the shape of silver coat copper powder (silver carboxylate coat copper powder) was confirmed using the scanning electron microscope, it was granular. Table 1 also shows the measurement results of Comparative Example 1 described below other than Example 1.

(平均粒径D50の測定方法)
平均粒径D50は、レーザー回折散乱式粒度分布測定装置(ハネウエル−日機装株式会社製、MICROTORAC HRA X−100)を用いて、銀コート銅粉(カルボン酸銀コート銅粉)0.3gをイソプロピルアルコール30mLに加え、45W超音波分散処理を5分間行って試料を準備し、全反射モードで測定を行った。なお、平均粒径D50以外の粒径D10、D90、Dmaxについても同様の測定方法によって測定した。
(Measuring method of average particle diameter D50)
The average particle size D50 is obtained by using 0.3 g of silver-coated copper powder (silver carboxylate-coated copper powder) with isopropyl alcohol using a laser diffraction / scattering particle size distribution measuring device (Honeywell-Nikkiso Co., Ltd., MICROTORAC HRA X-100). In addition to 30 mL, 45 W ultrasonic dispersion treatment was performed for 5 minutes to prepare a sample, and measurement was performed in the total reflection mode. The particle diameters D10, D90, and Dmax other than the average particle diameter D50 were also measured by the same measurement method.

(比表面積の測定方法)
比表面積は、MONOSORB装置(カンタローム−湯浅アイオニクス株式会社製)で、He70%、N230%のキャリアガスを用い、銀コート銅粉(カルボン酸銀コート銅粉)3gをセルに入れて脱気を60℃で10分間行った後、BET1点法により測定を行った。
(Measurement method of specific surface area)
The specific surface area is MONOSORB (Cantalom-Yuasa Ionics Co., Ltd.) using He70%, N230% carrier gas, 3g of silver-coated copper powder (carboxylate-coated copper powder) in the cell for degassing After performing at 60 degreeC for 10 minute (s), it measured by the BET 1 point method.

(ペーストの作製)
また、(1)被覆処理後の銀コート銅粉(カルボン酸銀コート銅粉)、(3)エポキシ樹脂、(4)溶剤および(5)硬化剤を含む組成物を下記組成比で混練することによりペーストを作製した。
(1)銀コート銅粉(カルボン酸銀コート銅粉)・・・84.2質量部
(3)エポキシ樹脂(株式会社ADEKA製、EP−4901E)・・・6.6質量部
(4)溶剤(ジエチレングリコールモノエチルエーテルアセテート)・・・7.9質量部
(5)硬化剤(味の素ファインテクノ株式会社製、アミキュアMY−24)・・・1.3質量部
(Preparation of paste)
Also, (1) a silver-coated copper powder after coating (silver carboxylate-coated copper powder), (3) an epoxy resin, (4) a solvent and (5) a composition containing a curing agent are kneaded in the following composition ratio. A paste was prepared.
(1) Silver-coated copper powder (silver carboxylate-coated copper powder) 84.2 parts by mass (3) Epoxy resin (manufactured by ADEKA, EP-4901E) 6.6 parts by mass (4) Solvent (Diethylene glycol monoethyl ether acetate) ... 7.9 parts by mass (5) Curing agent (Ajinomoto Fine Techno Co., Ltd., Amicure MY-24) ... 1.3 parts by mass

前記組成物を混合し、3本ロール(オットハーマン社製、EXAKT80S)を用いて、ロールギャップを110μmから9μmまで通過させて混練処理を行うことによりペーストを得た。得られたペーストは完全に混練されていた。   The said composition was mixed and the paste was obtained by performing a kneading | mixing process by letting a roll gap pass from 110 micrometers to 9 micrometers using 3 rolls (The product made by Otto Herman, EXAKT80S). The obtained paste was completely kneaded.

(導電膜の形成)
スライドガラスに10mm幅でメンディングテープを貼り、手動スキージ印刷した。得られた膜を大気循環式乾燥機を用い、200℃、40分間の条件で加熱処理し、導電膜を形成した。得られた導電膜は表面粗さ計(株式会社小坂研究所製、SE−30D)を用いて、スライドガラス上で膜を印刷していない部分と導電膜の部分の段差を0.1mm/secで走査することにより導電膜の膜厚を測定した。導電膜の抵抗は、デジタルマルチメーター(ADVANTEST製、R6551)を用いて、導電膜の長さ(間隔)が65mmの位置の抵抗値を測定した。導電膜のサイズ(膜厚、幅、長さ)より、導電膜の体積を求め、この体積と測定した抵抗値から、比抵抗(体積抵抗率)を求めた。比抵抗の結果は表1に示す。実施例1の導電膜は、アジピン酸被覆処理を行わない銀コート銅粉を用いて作製された後述する比較例1の導電膜に比べ、低い比抵抗を示した。
(Formation of conductive film)
A mending tape was applied to the slide glass with a width of 10 mm, and manual squeegee printing was performed. The obtained film was heat-treated at 200 ° C. for 40 minutes using an atmospheric circulation dryer to form a conductive film. Using a surface roughness meter (SE-30D, manufactured by Kosaka Laboratory Ltd.), the resulting conductive film had a step difference of 0.1 mm / sec between the portion where the film was not printed on the slide glass and the portion of the conductive film. The film thickness of the conductive film was measured by scanning with. The resistance of the conductive film was measured using a digital multimeter (manufactured by ADVANTEST, R6551) at a position where the length (interval) of the conductive film was 65 mm. The volume of the conductive film was determined from the size (film thickness, width, length) of the conductive film, and the specific resistance (volume resistivity) was determined from this volume and the measured resistance value. The results of specific resistance are shown in Table 1. The conductive film of Example 1 exhibited a lower specific resistance than the conductive film of Comparative Example 1 described later, which was prepared using silver-coated copper powder that was not subjected to adipic acid coating treatment.

(比較例1)
実施例1で使用した材料銀コート銅粉に多価カルボン酸の被覆処理を行わずに同様の条件で試験を行った。得られた結果を表1に示した。
(Comparative Example 1)
The material silver-coated copper powder used in Example 1 was tested under the same conditions without coating with polyvalent carboxylic acid. The obtained results are shown in Table 1.

Figure 2014208908
Figure 2014208908

(実施例2)
実施例1と製造ロットが異なり、平均粒径が僅かに異なる金属銅粉(アトマイズ粉)を用いた。これ以外は実施例1と同様の条件で試験を行った。なお、実施例1と同様に、用いた金属銅粉の形状は粒状であり、マイクロトラックによる平均粒径(D50)の仕様は4.5〜6.5μmである。
用いた銀錯塩溶液の組成は以下の通りである。
AgNO3 66.1g
EDTA四ナトリウム 735g
炭酸アンモニウム 175g
イオン交換 1130g
導電ペーストの成形は可能であり、得られた導電膜の比抵抗は実施例1と同様であった。
(Example 2)
A copper metal powder (atomized powder) having a production lot different from that in Example 1 and having a slightly different average particle diameter was used. Except for this, the test was performed under the same conditions as in Example 1. In addition, the shape of the used metal copper powder is granular like Example 1, and the specification of the average particle diameter (D50) by a micro track is 4.5-6.5 micrometers.
The composition of the used silver complex salt solution is as follows.
AgNO3 66.1g
EDTA Tetrasodium 735g
175 g of ammonium carbonate
Ion exchange 1130g
The conductive paste could be molded, and the specific resistance of the obtained conductive film was the same as in Example 1.

(実施例3)
実施例2で使用した材料銀コート銅粉にアジピン酸の代わりにマロン酸を用いた。即ち、多価カルボン酸を含有する溶液として10質量%のマロン酸エタノール溶液0.18gを用いた以外は実施例2と同様の条件で試験を行った。導電ペーストの成形は可能であった。
Example 3
Malonic acid was used in place of adipic acid for the material silver-coated copper powder used in Example 2. That is, the test was performed under the same conditions as in Example 2 except that 0.18 g of a 10% by mass malonic acid ethanol solution was used as the solution containing the polyvalent carboxylic acid. It was possible to form a conductive paste.

(実施例4)
実施例2で使用した材料銀コート銅粉にアジピン酸の代わりにマレイン酸を用いた。即ち、多価カルボン酸を含有する溶液として10質量%のマレイン酸エタノール溶液0.18gを用いた以外は実施例2と同様の条件で試験を行った。導電ペーストの成形は可能であった。
Example 4
Maleic acid was used in place of adipic acid for the material silver-coated copper powder used in Example 2. That is, the test was performed under the same conditions as in Example 2 except that 0.18 g of a 10% by mass maleic acid ethanol solution was used as the solution containing the polyvalent carboxylic acid. It was possible to form a conductive paste.

(実施例5)
実施例2で使用した材料銀コート銅粉にアジピン酸の代わりにジグリコール酸を用いた。即ち、多価カルボン酸を含有する溶液として10質量%のジグリコール酸エタノール溶液0.18gを用いた以外は実施例2と同様の条件で試験を行った。導電ペーストの成形は可能であった。また、導電性についても確認できた。
(Example 5)
Diglycolic acid was used instead of adipic acid for the material silver-coated copper powder used in Example 2. That is, the test was performed under the same conditions as in Example 2 except that 0.18 g of a 10% by mass diglycolic acid ethanol solution was used as the solution containing the polyvalent carboxylic acid. It was possible to form a conductive paste. Moreover, it has also confirmed about electroconductivity.

(実施例6)
実施例2で使用した材料銀コート銅粉にアジピン酸の代わりにグルタル酸を用いた。即ち、多価カルボン酸を含有する溶液として10質量%のグルタル酸エタノール溶液0.18gを用いた以外は実施例2と同様の条件で試験を行った。導電ペーストの成形は可能であった。また、導電性についても確認できた。
(Example 6)
Instead of adipic acid, glutaric acid was used for the material silver-coated copper powder used in Example 2. That is, the test was performed under the same conditions as in Example 2 except that 0.18 g of a 10% by mass glutaric acid ethanol solution was used as the solution containing the polyvalent carboxylic acid. It was possible to form a conductive paste. Moreover, it has also confirmed about electroconductivity.

(実施例7)
実施例2で使用した材料銀コート銅粉にアジピン酸の代わりにコハク酸を用いた。即ち、多価カルボン酸を含有する溶液として10質量%のコハク酸エタノール溶液0.18gを用いた以外は実施例2と同様の条件で試験を行った。導電ペーストの成形は可能であった。また、導電性についても確認できた。
(Example 7)
In place of adipic acid, succinic acid was used for the material silver-coated copper powder used in Example 2. That is, the test was performed under the same conditions as in Example 2 except that 0.18 g of a 10% by mass succinic acid ethanol solution was used as the solution containing the polyvalent carboxylic acid. It was possible to form a conductive paste. Moreover, it has also confirmed about electroconductivity.

(比較例2)
実施例2で使用した材料銀コート銅粉に多価カルボン酸の被覆処理を行わずに同様の条件で試験を行った。
(Comparative Example 2)
The material silver-coated copper powder used in Example 2 was tested under the same conditions without being coated with a polyvalent carboxylic acid.

実施例2〜7及び比較例2について、ペーストの作製条件と導電膜の比抵抗の結果を以下の表2に示した。また、実施例2〜7及び比較例2について、材料銀コート銅粉の粉体特性を以下の表3に示した。   For Examples 2 to 7 and Comparative Example 2, the results of the paste preparation conditions and the specific resistance of the conductive film are shown in Table 2 below. Moreover, about Examples 2-7 and the comparative example 2, the powder characteristic of material silver coat copper powder was shown in the following Table 3.

Figure 2014208908
Figure 2014208908

Figure 2014208908
Figure 2014208908

また、実施例2において、被覆したアジピン酸について、塩酸を用いて溶出し、更に、アジピン酸が溶出した塩酸溶液においてアジピン酸をメチル化し、有機溶媒に抽出してGC−MS(ガスクロマト質量分析計)による定量分析をした。その結果、アジピン酸の被覆量は0.016wt%であることが分かった。   Further, in Example 2, the coated adipic acid was eluted with hydrochloric acid, and then adipic acid was methylated in a hydrochloric acid solution from which adipic acid was eluted, extracted into an organic solvent, and GC-MS (Gas Chromatograph Mass Spectrometry). Quantitative analysis. As a result, it was found that the coating amount of adipic acid was 0.016 wt%.

以上より、本発明の多価カルボン酸を被覆させた銀コート銅粉を用いることで、樹脂硬化型導電性ペーストとして使用した際に、体積抵抗の低い導電膜を得ることができることが分かった。   From the above, it was found that by using the silver-coated copper powder coated with the polyvalent carboxylic acid of the present invention, a conductive film having a low volume resistance can be obtained when used as a resin curable conductive paste.

本発明は、例えば半導体部品等の電子部品や太陽電池の電極および回路形成に用いられる導電性ペーストに配合される銀コート銅粉およびその銀コート銅粉の製造方法に適用できる。   The present invention can be applied to, for example, a silver-coated copper powder blended in an electronic component such as a semiconductor component, an electrode of a solar cell, and a conductive paste used for circuit formation, and a method for producing the silver-coated copper powder.

Claims (7)

多価カルボン酸を材料銀コート銅粉に対して0.01質量%〜0.5質量%被覆させた、銀コート銅粉。 A silver-coated copper powder in which a polyvalent carboxylic acid is coated on the material silver-coated copper powder in an amount of 0.01% by mass to 0.5% by mass. 樹脂硬化型導電性ペーストに配合される、請求項1に記載の銀コート銅粉。 The silver coat copper powder of Claim 1 mix | blended with resin curable conductive paste. 前記多価カルボン酸は溶媒に溶解された状態で材料銀コート銅粉に添加され、その溶解濃度は1質量%〜20質量%である、請求項1または2に記載の銀コート銅粉。 The silver-coated copper powder according to claim 1 or 2, wherein the polyvalent carboxylic acid is added to the material silver-coated copper powder in a state of being dissolved in a solvent, and the dissolution concentration thereof is 1 mass% to 20 mass%. 前記多価カルボン酸はアジピン酸、コハク酸、ジグリコール酸、グルタル酸、マロン酸またはマレイン酸である、請求項1〜3いずれかに記載の銀コート銅粉。 The silver-coated copper powder according to any one of claims 1 to 3, wherein the polyvalent carboxylic acid is adipic acid, succinic acid, diglycolic acid, glutaric acid, malonic acid or maleic acid. 前記材料銀コート銅粉は、比表面積が6m/g以下であり、平均粒径が0.1μm〜50μmである、請求項1〜4のいずれかに記載の銀コート銅粉。 5. The silver-coated copper powder according to claim 1, wherein the material silver-coated copper powder has a specific surface area of 6 m 2 / g or less and an average particle size of 0.1 μm to 50 μm. 銀コート銅粉の製造方法であって、溶媒に溶解させた状態で多価カルボン酸を材料銀コート銅粉に対して0.01質量%〜0.5質量%添加させ、多価カルボン酸を添加させた材料銀コート銅粉を粉砕・解砕機で粉砕・解砕しながら混合させて前記多価カルボン酸を前記材料銀コート銅粉に被覆させ、前記溶媒を除去して銀コート銅粉を得る、銀コート銅粉の製造方法。 A method for producing a silver-coated copper powder, wherein a polyvalent carboxylic acid is added in an amount of 0.01% to 0.5% by mass with respect to the material silver-coated copper powder in a state dissolved in a solvent, and a polyvalent carboxylic acid is added. The added material silver-coated copper powder is mixed while being pulverized and pulverized with a pulverizer, and the polyvalent carboxylic acid is coated on the material silver-coated copper powder, and the solvent is removed to remove the silver-coated copper powder. A method for producing a silver-coated copper powder. 請求項2に記載の銀コート銅粉を含有する樹脂硬化型導電性ペースト。 A resin-curable conductive paste containing the silver-coated copper powder according to claim 2.
JP2014068091A 2013-03-29 2014-03-28 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste Pending JP2014208908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068091A JP2014208908A (en) 2013-03-29 2014-03-28 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013074677 2013-03-29
JP2013074677 2013-03-29
JP2014068091A JP2014208908A (en) 2013-03-29 2014-03-28 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste

Publications (1)

Publication Number Publication Date
JP2014208908A true JP2014208908A (en) 2014-11-06

Family

ID=51903284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068091A Pending JP2014208908A (en) 2013-03-29 2014-03-28 Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste

Country Status (1)

Country Link
JP (1) JP2014208908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575686A (en) * 2015-01-21 2015-04-29 华南理工大学 Low cost copper-doped conductive silver paste and preparation method thereof
CN113122182A (en) * 2021-05-24 2021-07-16 南京中贝新材料科技有限公司 Semiconductor conductive adhesive and production process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
JP2012062531A (en) * 2010-09-16 2012-03-29 Dowa Electronics Materials Co Ltd Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
JP2012062531A (en) * 2010-09-16 2012-03-29 Dowa Electronics Materials Co Ltd Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
JP2012167337A (en) * 2011-02-15 2012-09-06 Dowa Electronics Materials Co Ltd Method of manufacturing silver coated flake copper powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104575686A (en) * 2015-01-21 2015-04-29 华南理工大学 Low cost copper-doped conductive silver paste and preparation method thereof
CN113122182A (en) * 2021-05-24 2021-07-16 南京中贝新材料科技有限公司 Semiconductor conductive adhesive and production process thereof

Similar Documents

Publication Publication Date Title
JP6029719B2 (en) Silver powder, method for producing the same, and conductive paste
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP2012062531A (en) Flake-shaped silver powder, method for producing the same, resin curing type conductive paste, and method for forming conductive film
JP6166012B2 (en) Conductive powder and conductive paste
TWI530967B (en) A sheet-like conductive filler, a conductive paste composition, a conductive article, and a sheet-like conductive filler
JP6423139B2 (en) Flake silver powder, method for producing the same, and conductive paste
JP6389091B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
KR20170038860A (en) Silver powder and method for producing same
JP5778941B2 (en) Method for producing silver-coated flake copper powder
JP5631841B2 (en) Silver coated copper powder
JP2013001917A (en) Silver coated copper powder and method for manufacturing the same
JP2009013449A (en) Flat silver powder, method for producing flat silver powder, and electrically conductive paste
JP5762729B2 (en) Silver powder, method for producing silver powder, resin curable conductive paste, and method for forming conductive film
WO2017094361A1 (en) Dendritic silver powder
JP6167060B2 (en) Flaked copper powder and method for producing the same
JP2010236039A (en) Flaky silver powder, its production method and conductive paste
TW201631603A (en) Silver-coated copper powder and method for producing same
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
TWI668707B (en) Silver-coated copper powder and method for producing same
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2014208908A (en) Silver-coated copper powder, method for producing silver-coated copper powder, and resin curing type conductive paste
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
TWI567756B (en) A conductive paste composition for forming conductive thin film on a flexible substrate and a method for producing the same
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2011208278A (en) Flaky silver powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180508