WO2006085481A1 - Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method - Google Patents

Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method Download PDF

Info

Publication number
WO2006085481A1
WO2006085481A1 PCT/JP2006/301836 JP2006301836W WO2006085481A1 WO 2006085481 A1 WO2006085481 A1 WO 2006085481A1 JP 2006301836 W JP2006301836 W JP 2006301836W WO 2006085481 A1 WO2006085481 A1 WO 2006085481A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
electrically conductive
particles
conductive fine
plating
Prior art date
Application number
PCT/JP2006/301836
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Kubota
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to JP2007502581A priority Critical patent/JP4922916B2/en
Publication of WO2006085481A1 publication Critical patent/WO2006085481A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors

Definitions

  • the present invention relates to conductive fine particles, anisotropic conductive material, and conductive connection method.
  • connection object in which the anisotropic conductive material is used examples include parts such as a substrate and a semiconductor. Electrode portions are respectively formed on these surfaces.
  • the anisotropic conductive material of the present invention for example, when electrodes are connected using an anisotropic conductive film, thermocompression bonding is performed at 120 ° C. or higher as described above.
  • the conductive connection method of the present invention the conductive fine particles of the present invention are heated on the surface of the electrode to cause metal thermal diffusion to form an alloy film of silver bismuth tin and to form a softened alloy film. A part is made to flow on the electrode surface to enlarge the contact area.
  • the copper purity of the copper metal particles in the present invention is not particularly limited, but is preferably 95% by weight or more, more preferably 99% by weight or more. If the purity of the copper is less than 95% by weight, for example, when used in a plasma display panel, it may be difficult to ensure connection reliability when a large current flows.
  • the substrate particles are copper metal particles
  • the method for purifying the surface of the copper metal particles is not particularly limited, and examples thereof include a wet method using persulfate and the like, a dry method using plasma, etc. Among them, the treatment method is simple. Therefore, the wet method is preferably used.
  • the above-described method based on the base catalyst type reduction plating causes a reduction agent that causes an oxidation reaction on the surface of the base metal and does not cause an oxidation reaction on the surface of the deposited metal.
  • a metal film is formed by reducing and precipitating a metal salt.
  • the concentration of the nickel salt in the plating bath is preferably 0.01 to 0.1 ImolZl.
  • the above-described method using a self-catalyzed reduced tin plating is a method of forming a tin plating coating by a disproportionation reaction as a self-catalytic reducing tin plating after a substituted tin plating coating is formed. .
  • the concentration of titanium salt as a reducing agent in the above bath is preferably 0.12-0.8 mol / l.
  • the concentration of darioxylic acid as a crystal adjusting agent in the above-mentioned bath is preferably 0.001 to 0.005 molZl.
  • the pH adjusting agent for adjusting pH in the above-mentioned bath is, for example, ammonia when adjusting to the alkalinity side, sulfuric acid when adjusting to the acidic side, Examples include hydrochloric acid, and sulfuric acid is preferable.
  • the concentration of the imidazole compound as the reducing agent in the plating bath is preferably 0.04-0.lmol / 1.
  • the bath temperature of the above-mentioned bath is preferably 10-30 ° C.
  • the resin of the insulating resin binder is not particularly limited, and examples thereof include a butyl resin such as a butyl acetate resin, a vinyl chloride resin, an acrylic resin, and a styrene resin; Resins, ethylene acetate butyl copolymer, polyamide resins, and other thermoplastic resins; epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene Butadiene / styrene block copolymer, styrene / isoprene / styrene block copolymer, thermoplastic block copolymers such as hydrogenated products thereof; styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile / styrene block Examples include elastomers such as copolymer rubber (rubbers). These resins may be
  • the anisotropic conductive material and conductive connection method using the conductive fine particles of the present invention have a low connection resistance and a large current capacity at the time of connection even when used in a plasma display panel.
  • the connection was prevented by migration and the connection reliability was high.
  • FIG. 1 is a front sectional view schematically showing one structural example of the conductive fine particles of the present invention.
  • Conductive fine particles were obtained in the same manner as in Example 1 except that dibulebenzene resin fine particles having an average particle diameter of 4 ⁇ m were used in place of the copper metal particles.
  • epoxy resin manufactured by Japan Epoxy Resin, “Epicote 828”
  • 2 parts by weight of trisdimethylaminoethylphenol 2 parts by weight of trisdimethylaminoethylphenol
  • 100 parts by weight of toluene were obtained.
  • An adhesive film was obtained.
  • the content of conductive fine particles was 50,000 Zcm 2 in the film.
  • Example 1 and Example 2 showed less resistance increase after the PCT test than Comparative Example 1, and no leakage current between the electrodes. This is thought to be because silver migration occurred in Comparative Example 1 whereas migration was prevented in Example 1.
  • Each conductive fine particle obtained in 0.5 weight. / 0 after applying a composition in which 1.5% by weight of silica spacer is dispersed on one glass substrate, the other glass substrate is aligned and bonded so that the electrode patterns overlap, By thermocompression bonding, a test piece in the form of IT ⁇ Z conductive fine particle paste / soot was prepared. By applying a current of 10 mA and a voltage of 100 V to this test piece, it was judged whether or not high voltage could be handled by checking whether or not the conductive fine particles were destroyed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Powder Metallurgy (AREA)
  • Chemically Coating (AREA)

Abstract

This invention provides electrically conductive fine particles, which, even when used particularly in plasma display panels, have low connection resistance and is large in current capacity at the time of connection, further can prevent migration upon heating, and can realize high connection reliability, and anisotropic electrically conductive materials using the electrically conductive fine particles and an electrically conductive connection method. The electrically conductive fine particles (2) comprise particles (2) and films formed by electroless plating on the surface of the particles, that is, a nickel plating film (3), a tin plating film (4), and a bismuth plating film (5) provided in that order, and a silver plating film (6) provided on the outermost surface. The anisotropic electrically conductive material comprises the above electrically conductive fine particles dispersed in a resin binder. The electrically conductive connection method comprises heating the above electrically conductive fine particles on the surface of an electrode to cause metal heat diffusion to form a silver-bismuth-tin alloy film and to allow a part of the softened alloy film to flow on the surface of the electrode, thereby increasing the contact area.

Description

明 細 書  Specification
導電性微粒子、異方性導電材料、及び導電接続方法  Conductive fine particles, anisotropic conductive material, and conductive connection method
技術分野  Technical field
[0001] 本発明は、導電性微粒子、異方性導電材料、及び導電接続方法に関し、詳しくは [0001] The present invention relates to conductive fine particles, anisotropic conductive material, and conductive connection method.
、接続抵抗が低く接続時の電流容量が大きぐ更に加熱によりマイグレーション防止 となる、接続信頼性が高い導電性微粒子、並びに該導電性微粒子を用いた異方性 導電材料、及び導電接続方法に関する。 The present invention relates to a conductive fine particle having a low connection resistance, a large current capacity at the time of connection and preventing migration by heating, an anisotropic conductive material using the conductive fine particle, and a conductive connection method.
背景技術  Background art
[0002] 導電性微粒子は、バインダー樹脂等と混合させるなどして、異方性導電フィルム、 異方性導電ペースト、異方性導電粘接着剤等の異方性導電材料の主要構成材料と して広く用いられている。これらの異方性導電材料は、液晶ディスプレー、パーソナ ルコンピュータ、携帯電話等の電子機器において、基板同士を電気的に接続したり、 半導体素子等の小型部品を基板に電気的に接続したりするために、相対向する基 板や電極端子の間に挟み込んで使用されてレ、る。  [0002] Conductive fine particles are mixed with a binder resin or the like to form main constituent materials of anisotropic conductive materials such as anisotropic conductive films, anisotropic conductive pastes, anisotropic conductive adhesives, etc. Widely used. These anisotropic conductive materials are used to electrically connect substrates to each other and electronic components such as semiconductor elements in electronic devices such as liquid crystal displays, personal computers, and mobile phones. Therefore, it is used by being sandwiched between opposing substrates and electrode terminals.
[0003] このような導電性微粒子としては、有機基材粒子又は無機基材粒子の外表面に金 属メツキを施したものが広く用いられている。  [0003] As such conductive fine particles, those obtained by applying metal plating to the outer surface of organic base particles or inorganic base particles are widely used.
[0004] 近年、電子機器や電子部品の小型化が進み、基板等の配線も微細になり、接続部 の信頼性の向上が急務となってきている。更に、最近開発されているプラズマデイス プレイパネルへ適用するための素子等は、大電流駆動タイプとなっているため、大電 流に対応できる導電性微粒子が求められている。し力 ながら、基材粒子が樹脂粒 子等の非導電性粒子では、無電解メツキにより設けられる導電層も通常はあまり厚く することができないため、接続時の電流容量が少ないという問題があった。  [0004] In recent years, electronic devices and electronic components have been miniaturized, and wiring on a substrate or the like has become finer, and it has become an urgent task to improve the reliability of the connection portion. Furthermore, recently developed devices for application to plasma display panels, etc., are of a large current drive type, and therefore there is a demand for conductive fine particles that can handle a large current. However, if the base particles are non-conductive particles such as resin particles, the conductive layer provided by electroless plating cannot usually be made too thick, so there is a problem that the current capacity at the time of connection is small. .
[0005] 一方、大電流対応を必要とするプラズマディスプレイパネルに用いられる電極接合 部材として金属粒子を基材粒子とする導電性微粒子が報告されている (例えば、特 許文献 1、特許文献 2参照)。  [0005] On the other hand, conductive fine particles using metal particles as base particles have been reported as electrode joining members used in plasma display panels that require handling of large currents (see, for example, Patent Document 1 and Patent Document 2). ).
[0006] 特許文献 1には、ニッケル粒子や金メッキされたニッケル粒子の導電性微粒子が分 散された接着剤シートを圧着して接合する方法が開示されている。また、特許文献 2 には、ニッケノレや銅等を主成分とする金属粉末に金を被覆してなる導電性微粒子が 用いられた部材が開示されている。 [0006] Patent Document 1 discloses a method in which an adhesive sheet in which conductive particles of nickel particles or gold-plated nickel particles are dispersed is bonded by pressure bonding. Patent Document 2 Discloses a member using conductive fine particles formed by coating gold on a metal powder mainly composed of nickel or copper.
[0007] し力しながら、基材粒子がニッケル粒子の導電性微粒子では、更なる大電流対応 や接続信頼性の向上には十分ではない。また、基材粒子にニッケノレより抵抗値の低 い銅を用いた場合には、銅の酸化やマイグレーションという問題があった。すなわち、 銅金属粒子表面に通常用いられる置換金メッキを行うと、金メッキ被膜は拡散による 合金が形成され、これにより形成された金一銅の合金被膜の場合は、合金被膜層に ピンホールができて、銅の酸化防止やマイグレーション防止が十分ではなかった。ま た、通常、最表面は接続抵抗値の低減化や表面の安定化を図るために金が用いら れている。し力 ながら、金は高価であるため、例えば銀を最表面に用いることが考え られる力 銀は単体ではマイグレーションし易いという問題があった。  [0007] However, if the base particles are conductive fine particles of nickel particles, it is not sufficient for further handling of a large current and improvement of connection reliability. Further, when copper having a lower resistance value than Nikkenore was used for the base particles, there was a problem of copper oxidation and migration. That is, when the substitution gold plating normally used on the copper metal particle surface is performed, the gold plating film forms an alloy by diffusion, and in the case of the gold-copper alloy film formed by this, a pinhole is formed in the alloy film layer. The copper oxidation prevention and migration prevention were not sufficient. Also, gold is usually used on the outermost surface to reduce the connection resistance value and stabilize the surface. However, since gold is expensive, there is a problem that, for example, power silver that can be considered to use silver as the outermost surface is easy to migrate.
[0008] 更に、接続部の信頼性の向上が急務となってきている近年においては、導電性微 粒子を用いた、例えば異方性導電フィルム (ACF)で熱圧着により電極間を接続した ものでは、通常、導電性微粒子での電極への接触面積は小さぐ接続信頼性が十分 でない場合があった。このため、特に、大電流駆動タイプとなっているプラズマデイス プレイパネルへ適用するためには、より接続信頼性の向上が求められてきている。 特許文献 1:特開平 11 16502号公報  [0008] Further, in recent years, where the improvement of the reliability of the connecting portion has become an urgent task, the electrodes are connected by thermocompression bonding using, for example, an anisotropic conductive film (ACF) using conductive fine particles. In general, however, the contact area of the conductive fine particles to the electrode is small, and the connection reliability may not be sufficient. For this reason, in particular, in order to apply to a plasma display panel of a large current drive type, further improvement in connection reliability has been demanded. Patent Document 1: Japanese Patent Laid-Open No. 11 16502
特許文献 2:特開 2001— 143626号公報  Patent Document 2: Japanese Patent Laid-Open No. 2001-143626
発明の開示  Disclosure of the invention
[0009] 本発明は、上記現状に鑑み、特にプラズマディスプレイパネルに用いられた場合で も、接続抵抗が低く接続時の電流容量が大きぐ更に加熱によりマイグレーション防 止となる、接続信頼性が高い導電性微粒子、並びに該導電性微粒子を用いた異方 性導電材料、及び導電接続方法を提供することを目的とする。  [0009] In view of the above situation, the present invention has a high connection reliability, especially when used in a plasma display panel, which has a low connection resistance, a large current capacity at the time of connection, and further prevents migration by heating. An object is to provide conductive fine particles, an anisotropic conductive material using the conductive fine particles, and a conductive connection method.
[0010] 上記目的を達成するために請求項 1記載の発明によれば、粒子と、粒子表面に無 電解メツキ法により形成された導電性被膜とを備え、前記導電性被膜が、無電解メッ キにより内側から順に形成されたニッケルメツキ被膜、錫メツキ被膜、及びビスマスメッ キ被膜を有し、さらに該導電性被膜が最外側表面に、銀メツキ被膜を有することを特 徴とする導電性微粒子が提供される。 [0011] また、請求項 2記載の発明は、請求項 1記載の導電性微粒子が樹脂バインダーに 分散されてなる異方性導電材料を提供する。 [0010] In order to achieve the above object, according to the invention described in claim 1, it is provided with particles and a conductive coating formed on the particle surface by an electroless plating method, and the conductive coating is an electroless mesh. Conductive fine particles characterized by having a nickel plating film, a tin plating film, and a bismuth plating film that are formed in order from the inside with a silver coating, and further having a silver plating film on the outermost surface. Provided. [0011] The invention according to claim 2 provides an anisotropic conductive material in which the conductive fine particles according to claim 1 are dispersed in a resin binder.
[0012] また、請求項 3記載の発明は、請求項 1記載の導電性微粒子を電極表面上で加熱 することにより金属熱拡散を起こさせ、銀一ビスマス一錫の合金被膜を形成させるとと もに、軟ィヒした合金被膜の一部を電極表面に流動させて接触面積を拡大させる導電 接続方法を提供する。  [0012] Further, in the invention of claim 3, the conductive fine particles of claim 1 are heated on the electrode surface to cause metal thermal diffusion to form an alloy film of silver, bismuth, and tin. In addition, the present invention provides a conductive connection method in which a part of a soft alloy film is caused to flow on the electrode surface to expand the contact area.
[0013] 以下、本発明の詳細を説明する。  Hereinafter, details of the present invention will be described.
本発明の導電性微粒子は、基材粒子としての粒子の表面に、導電性被膜が形成さ れている構造を有する。この導電性被膜では、無電解メツキ法により、ニッケルメツキ 被膜、錫メツキ被膜、ビスマスメツキ被膜が順番に形成されており、最表面に銀メツキ 被膜が形成されている。  The conductive fine particles of the present invention have a structure in which a conductive film is formed on the surface of particles as substrate particles. In this conductive film, a nickel plating film, a tin plating film, and a bismuth plating film are sequentially formed by an electroless plating method, and a silver plating film is formed on the outermost surface.
[0014] すなわち、例えば図 1に模式的断面図で示すように、本発明の導電性微粒子 1は、 基材粒子としての粒子 2の表面に、無電解メツキ法により、ニッケルメツキ被膜 3、錫メ ツキ被膜 4、及びビスマスメツキ被膜 5が順に形成された構造を有する。上記導電性 被膜では、このニッケルメツキ被膜 3、錫メツキ被膜、及びビスマスメツキ被膜 5の積層 されている部分のさらに外側に銀メツキ被膜 6が形成されている。従って、最表面は 銀メツキ被膜 6である。  That is, for example, as shown in a schematic cross-sectional view in FIG. 1, the conductive fine particles 1 of the present invention are formed on the surface of the particles 2 as base particles by a nickel plating film 3 and tin by an electroless plating method. It has a structure in which a plating film 4 and a bismuth plating film 5 are sequentially formed. In the conductive film, a silver plating film 6 is formed on the outer side of the portion where the nickel plating film 3, tin plating film, and bismuth plating film 5 are laminated. Therefore, the outermost surface is a silver plating film 6.
[0015] なお、銅金属粒子を基材粒子とし、表面に各金属メツキ被膜を形成させると、接続 抵抗が低く接続時の電流容量が大きぐ特にプラズマディスプレイパネルに用いられ た場合に、良好な導電性微粒子となる。  [0015] It should be noted that when copper metal particles are used as base particles and each metal plating film is formed on the surface, the connection resistance is low and the current capacity at the time of connection is large, which is particularly favorable when used in a plasma display panel. It becomes conductive fine particles.
[0016] 本発明の導電性微粒子は、加熱した場合には、錫メツキ被膜、ビスマスメツキ被膜、 及び銀メツキ被膜の間で金属熱拡散により、銀一ビスマス一錫の合金被膜が形成さ れる。上記合金被膜が形成されると、本発明の導電性微粒子はマイグレーションを防 止すること力 Sできる。  [0016] When the conductive fine particles of the present invention are heated, an alloy film of silver-bismuth-tin is formed by metal thermal diffusion between the tin plating film, the bismuth plating film, and the silver plating film. When the alloy film is formed, the conductive fine particles of the present invention can prevent migration.
[0017] 一般に、プラズマディスプレイパネルにおいては、端子間に 250V程度の高電圧が 力、けられるため、水分と金属イオンが電極間に存在すると、高電圧と合わさってマイ グレーシヨンが発生する原因となってしまう。上記合金被膜が形成されると、金属ィォ ンの溶出がなぐマイグレーションが防止される。 [0018] 上記加熱は、 120°C以上で行われることが好ましい。加熱が、 120°C未満であると、 錫メツキ被膜、ビスマスメツキ被膜、及び銀メツキ被膜の間で金属熱拡散が起こり難い 。また、加熱の上限は、基材粒子の溶融が起こらない温度以下が好ましい。なお、銅 金属粒子を用いる場合は 1000°C以下であることが好ましい。 [0017] Generally, in a plasma display panel, a high voltage of about 250V is applied between terminals, so if moisture and metal ions are present between the electrodes, the cause of the migration is caused by the combined high voltage. turn into. When the alloy film is formed, migration that prevents elution of metal ions is prevented. [0018] The heating is preferably performed at 120 ° C or higher. When the heating is less than 120 ° C., metal thermal diffusion hardly occurs between the tin plating film, the bismuth plating film, and the silver plating film. In addition, the upper limit of heating is preferably equal to or lower than the temperature at which the base particles do not melt. When copper metal particles are used, the temperature is preferably 1000 ° C or lower.
[0019] 上記加熱の方法は、特に限定されないが、例えば、本発明の導電性微粒子を用い て異方性導電材料を作製し、例えば異方性導電フィルムで、電極に熱圧着する際に 120°C以上に加熱する方法が好ましい。通常、異方性導電フィルムを用いて電極間 を接続する場合には、 120°C以上で熱圧着が行われる。  [0019] The heating method is not particularly limited. For example, when the anisotropic conductive material is produced using the conductive fine particles of the present invention and is thermocompression-bonded to the electrode with an anisotropic conductive film, for example, 120 is used. A method of heating to ° C or higher is preferred. Usually, when electrodes are connected using an anisotropic conductive film, thermocompression bonding is performed at 120 ° C or higher.
[0020] 本発明の導電性微粒子は、例えば、異方性導電フィルムを用いて電極間を接続す る場合に通常用いられる 120〜400°Cの範囲で加熱した場合には、錫メツキ被膜、ビ スマスメツキ被膜、及び銀メツキ被膜の間で金属熱拡散により、銀—ビスマス—錫の 合金被膜が形成される。なお、銅金属粒子を基材粒子とする場合では、ニッケルメッ キ被膜は、錫が基材粒子である銅に金属熱拡散するのを防ぐために設けられる。  [0020] When the conductive fine particles of the present invention are heated in the range of 120 to 400 ° C, which is usually used when connecting electrodes using an anisotropic conductive film, for example, a tin plating film, A silver-bismuth-tin alloy coating is formed by metal thermal diffusion between the bismuth coating and the silver coating. When copper metal particles are used as the base particles, the nickel plating film is provided to prevent tin from being thermally diffused into copper, which is the base particles.
[0021] 本発明において、銀 ビスマス 錫の合金被膜が形成されていることの確認は、例 えば、 X線回折分析、エネルギー分散型 X線分光法 (以下、単に「EDX」とも称す)等 により行うことができる。  [0021] In the present invention, confirmation that an alloy film of silver bismuth tin is formed is, for example, by X-ray diffraction analysis, energy dispersive X-ray spectroscopy (hereinafter also simply referred to as "EDX"), etc. It can be carried out.
また、上記合金被膜の組成の含有割合を調べる方法は、例えば、蛍光 X線回折分 析、 EDX等により行うことができる。  Further, the method for examining the content ratio of the composition of the alloy coating can be carried out by, for example, fluorescent X-ray diffraction analysis, EDX or the like.
[0022] 本発明の異方性導電材料は、本発明の導電性微粒子が樹脂バインダーに分散さ れてなるものである。  [0022] The anisotropic conductive material of the present invention is obtained by dispersing the conductive fine particles of the present invention in a resin binder.
[0023] 上記異方性導電材料としては、本発明の導電性微粒子が樹脂バインダーに分散さ れていれば特に限定されるものではなぐ例えば、異方性導電ペースト、異方性導電 インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等が挙げられ る。  [0023] The anisotropic conductive material is not particularly limited as long as the conductive fine particles of the present invention are dispersed in a resin binder. For example, anisotropic conductive paste, anisotropic conductive ink, and different Examples thereof include an anisotropic conductive adhesive, an anisotropic conductive film, and an anisotropic conductive sheet.
[0024] 上記異方性導電材料が用いられる接続対象としては、基板、半導体等の部品等が 挙げられる。これらの表面には、それぞれ電極部が形成されている。本発明の異方 性導電材料として、例えば異方性導電フィルムを用いて電極間を接続する際には、 上述のように 120°C以上で熱圧着が行われる。 [0025] 本発明の導電接続方法は、本発明の導電性微粒子を電極表面上で加熱すること により金属熱拡散を起こさせ、銀 ビスマス 錫の合金被膜を形成させるとともに、軟 化した合金被膜の一部を電極表面に流動させて接触面積を拡大させるものである。 [0024] Examples of the connection object in which the anisotropic conductive material is used include parts such as a substrate and a semiconductor. Electrode portions are respectively formed on these surfaces. As the anisotropic conductive material of the present invention, for example, when electrodes are connected using an anisotropic conductive film, thermocompression bonding is performed at 120 ° C. or higher as described above. [0025] In the conductive connection method of the present invention, the conductive fine particles of the present invention are heated on the surface of the electrode to cause metal thermal diffusion to form an alloy film of silver bismuth tin and to form a softened alloy film. A part is made to flow on the electrode surface to enlarge the contact area.
[0026] 本発明の導電接続方法は、本発明の導電性微粒子が電極表面上で加熱すること により金属熱拡散を起こさせ、銀一ビスマス一錫の合金被膜を形成させているため、 特にプラズマディスプレイパネルに用いられた場合にも、マイグレーションを防止する ことができ良好な導電接続が得られる。  [0026] In the conductive connection method of the present invention, the conductive fine particles of the present invention cause metal thermal diffusion by heating on the electrode surface to form an alloy film of silver, bismuth, and tin. Even when used in display panels, migration can be prevented and good conductive connections can be obtained.
[0027] また、本発明の導電接続方法は、加熱することにより、銀一ビスマス一錫の合金被 膜を形成させているため、合金被膜は軟化することができ、軟化した合金被膜の一 部が電極表面に流動させて接触面積を拡大させることができる。このようにして導電 性微粒子が、電極上で接触面積を拡大させることにより、特にプラズマディスプレイパ ネルに用いられた場合にも、接続信頼性が優れたものとなる。  [0027] In addition, since the conductive coating method of the present invention forms an alloy film of silver, bismuth, and tin by heating, the alloy film can be softened, and a part of the softened alloy film is formed. Can flow to the electrode surface to increase the contact area. In this way, by increasing the contact area on the electrode, the conductive fine particles are excellent in connection reliability even when used particularly in a plasma display panel.
[0028] 本発明の導電接続方法において、導電性微粒子を電極表面上で加熱する方法と しては、特に限定されないが、例えば、異方性導電フィルムを用いて電極に熱圧着 する際に加熱する方法が好ましく用いられる。  [0028] In the conductive connection method of the present invention, the method for heating the conductive fine particles on the electrode surface is not particularly limited. For example, the conductive fine particles are heated when thermocompression-bonded to the electrode using an anisotropic conductive film. Is preferably used.
[0029] 上記加熱は、本発明の導電性微粒子において述べたように、 120°C以上で行われ ることが好ましい。加熱が、 120°C未満であると、錫メツキ被膜、ビスマスメツキ被膜、 及び銀メツキ被膜の間で金属熱拡散が起こり難い。また、加熱の上限は、基材粒子 である銅金属粒子の溶融が起こらない 1000°C以下が好ましい。  [0029] The heating is preferably performed at 120 ° C or higher as described in the conductive fine particles of the present invention. When the heating is less than 120 ° C., metal thermal diffusion hardly occurs between the tin plating film, the bismuth plating film, and the silver plating film. The upper limit of heating is preferably 1000 ° C. or less at which the copper metal particles as the base particles do not melt.
[0030] 本発明の導電接続方法は、加熱することにより導電性微粒子に金属熱拡散を起こ させ、銀 ビスマス 錫の合金被膜を形成させる。上述したように、導電性微粒子は 、例えば、異方性導電フィルムを用いて電極間を接続する場合に通常用いられる 12 0〜400。Cの範囲で加熱した場合には、錫メツキ被膜、ビスマスメツキ被膜、及び銀メ ツキ被膜の間で金属熱拡散により、銀—ビスマス—錫の合金被膜が形成される。  [0030] In the conductive connection method of the present invention, metal thermal diffusion is caused in the conductive fine particles by heating to form an alloy film of silver bismuth tin. As described above, the conductive fine particles are usually used when the electrodes are connected using an anisotropic conductive film, for example, 120 to 400. When heated in the range of C, a silver-bismuth-tin alloy film is formed by metal thermal diffusion between the tin plating film, the bismuth plating film, and the silver plating film.
[0031] 以下、本発明をより詳細に説明する。  [0031] Hereinafter, the present invention will be described in more detail.
本発明における基材粒子としては、樹脂粒子、無機粒子、有機無機ハイブリッド粒 子、金属粒子などが挙げられる。樹脂粒子を構成する樹脂としては、例えば、ジビニ ルベンゼン樹脂、スチレン樹脂、アクリル樹脂、尿素樹脂、イミド樹脂などが挙げられ る。また、無機粒子を構成する無機物としては、シリカ、カーボンブラックなどが挙げら れる。また、有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポ リマーとアクリル樹脂とからなる有機無機ハイブリッドが挙げられる。また、金属粒子と しては、銅金属や銅合金などが挙げられる。なかでも、基材粒子は銅金属であること が好ましい。 Examples of the substrate particles in the present invention include resin particles, inorganic particles, organic-inorganic hybrid particles, and metal particles. Examples of the resin constituting the resin particles include divinylbenzene resin, styrene resin, acrylic resin, urea resin, and imide resin. The Further, examples of the inorganic substance constituting the inorganic particles include silica and carbon black. Examples of the organic-inorganic hybrid particles include organic-inorganic hybrids composed of a crosslinked alkoxysilyl polymer and an acrylic resin. In addition, examples of the metal particles include copper metal and copper alloy. Especially, it is preferable that a base particle is a copper metal.
[0032] 本発明における銅金属粒子の銅の純度は、特に限定されないが、 95重量%以上 が好ましぐ 99重量%以上がより好ましい。銅の純度が 95重量%未満であると、例え ばプラズマディスプレイパネルに用いられた場合に、大電流が流されることへの接続 信頼性確保が得られ難くなることがある。  [0032] The copper purity of the copper metal particles in the present invention is not particularly limited, but is preferably 95% by weight or more, more preferably 99% by weight or more. If the purity of the copper is less than 95% by weight, for example, when used in a plasma display panel, it may be difficult to ensure connection reliability when a large current flows.
[0033] 上記粒子の形状としては、特に限定されず、例えば、球状、繊維状、中空状、針状 等の特定の形状を持った粒子でもよぐ不定形状の粒子であってもよい。なかでも、 良好な電気的接続を得るために、粒子は球状が好ましレ、。 [0033] The shape of the particles is not particularly limited, and may be, for example, particles having a specific shape such as a spherical shape, a fibrous shape, a hollow shape, or a needle shape, or may be an irregularly shaped particle. In particular, to obtain a good electrical connection, the particles are preferred to be spherical.
[0034] 上記粒子の平均粒子径は、特に限定されるものではなレ、が、 1-100 μ mが好まし く、 2〜20 μ ΐηがより好ましい。 [0034] The average particle size of the particles is not particularly limited, but is preferably 1-100 μm, more preferably 2-20 μΐη.
[0035] また、上記粒子の CV値は、特に限定されるものではなレ、が、 10%以下が好ましぐ[0035] The CV value of the particles is not particularly limited, but is preferably 10% or less.
7%以下がより好ましい。なお、 CV値は、粒子径分布における標準偏差を平均粒子 径で除して百分率とした値である。 7% or less is more preferable. The CV value is a percentage obtained by dividing the standard deviation in the particle size distribution by the average particle size.
[0036] 上記平均粒子径、 CV値を満たしうる銅金属粒子の市販品としては、例えば、エス' サイエンス社製の球状銅粉「SCP— 10」、三井金属社製の球状銅粉「MA— CD— S[0036] Examples of commercially available copper metal particles that can satisfy the above average particle diameter and CV value include spherical copper powder "SCP-10" manufactured by S'Science, and spherical copper powder "MA-" manufactured by Mitsui Kinzoku Co., Ltd. CD— S
」等が挙げられる。 Or the like.
[0037] 基材粒子が銅金属粒子である場合には、上記粒子表面に無電解メツキを行う際に は、銅金属粒子の表面を金属銅の活性面が出るまで浄化することが好ましい。銅金 属粒子の表面を浄化する方法としては、特に限定されず、例えば、過硫酸塩等を使 用する湿式法、プラズマ等を利用する乾式法等が挙げられ、なかでも、処理方法が 簡便なため湿式法が好ましく用いられる。  [0037] When the substrate particles are copper metal particles, it is preferable to purify the surface of the copper metal particles until the active surface of the metal copper comes out when performing electroless plating on the surface of the particles. The method for purifying the surface of the copper metal particles is not particularly limited, and examples thereof include a wet method using persulfate and the like, a dry method using plasma, etc. Among them, the treatment method is simple. Therefore, the wet method is preferably used.
[0038] 本発明におけるニッケルメツキ被膜の膜厚は、特に限定されるものではないが、粒 子の平均粒子径の:!〜 5%が好ましレ、。  [0038] The thickness of the nickel plating film in the present invention is not particularly limited, but is preferably from 5 to 5% of the average particle diameter of the particles.
[0039] また、錫メツキ被膜の膜厚は、特に限定されるものではないが、粒子の平均粒子径 の:!〜 5%が好ましい。 [0039] The film thickness of the tin plating film is not particularly limited, but the average particle diameter of the particles :! ~ 5% is preferred.
[0040] また、ビスマスメツキ被膜の膜厚は、特に限定されるものではなレ、が、粒子の平均粒 子径の 1〜3. 5%が好ましい。  [0040] The thickness of the bismuth plating film is not particularly limited, but is preferably 1 to 3.5% of the average particle diameter of the particles.
[0041] また、銀メツキ被膜の膜厚は、特に限定されるものではないが、粒子の平均粒子径 の 0. 01〜0. 05ο/οカ好ましレヽ。 [0041] Further, the film thickness of the silver plating film is not particularly limited, but it is preferably 0.01 to 0.05 ο / ο of the average particle diameter of the particles.
[0042] 本発明において、無電解メツキ法によりメツキ被膜を形成する方法としては、特に限 定されないが、例えば、還元ニッケルメツキ、還元錫メツキ、還元ビスマスメツキ、還元 銀メツキ等の還元メツキや、置換錫メツキ等にて形成される方法が好適に用いられる。 [0042] In the present invention, the method for forming the coating film by the electroless plating method is not particularly limited. For example, a reduction plating such as a reduction nickel plating, a reduction tin plating, a reduction bismuth plating, a reduction silver plating, A method formed by substitution tin plating or the like is preferably used.
[0043] 上記還元メツキにて形成される方法は、 自己触媒型の還元メツキによる方法でも、 下地触媒型の還元メツキによる方法でもよぐ更に自己触媒型の還元メツキによる方 法と下地触媒型の還元メツキによる方法とを併用してもよい。 [0043] The method formed by the above reduction plating may be a method using an autocatalytic reduction method, a method using a base catalyst type reduction method, or a method using a self catalyst type reduction method and a method using a base catalyst type. You may use together the method by a reduction method.
[0044] 上記の、下地触媒型の還元メツキによる方法は、下地金属の表面で酸化反応を起 こし析出金属の表面では酸化反応を起こさない還元剤を下地金属の表面に存在さ せ、メツキする金属塩を還元させて析出させることによりメツキ被膜を形成する方法で ある。 [0044] The above-described method based on the base catalyst type reduction plating causes a reduction agent that causes an oxidation reaction on the surface of the base metal and does not cause an oxidation reaction on the surface of the deposited metal. In this method, a metal film is formed by reducing and precipitating a metal salt.
[0045] 上記ニッケルメツキ被膜を形成する場合、ニッケル塩としては、特に限定されず、例 えば、硫酸ニッケル、塩ィ匕ニッケル、硝酸ニッケノレ等が挙げられる。  [0045] When the nickel plating film is formed, the nickel salt is not particularly limited, and examples thereof include nickel sulfate, nickel chloride, nickel nitrate and the like.
[0046] また、上記錫メツキ被膜を形成する場合、錫塩としては、特に限定されず、例えば、 塩化錫、硝酸錫等が挙げられる。 [0046] Further, when the tin plating film is formed, the tin salt is not particularly limited, and examples thereof include tin chloride and tin nitrate.
[0047] また、上記ビスマスメツキ被膜を形成する場合、ビスマス塩としては、特に限定され ず、例えば、硝酸ビスマス等が挙げられる。 [0047] When the bismuth plating film is formed, the bismuth salt is not particularly limited, and examples thereof include bismuth nitrate.
[0048] また、上記銀メツキ被膜を形成する場合、銀塩としては、特に限定されず、例えば、 硝酸銀、塩化銀、シアン化銀等が挙げられる。 [0048] When the silver plating film is formed, the silver salt is not particularly limited, and examples thereof include silver nitrate, silver chloride, and silver cyanide.
[0049] 次に、 自己触媒型の還元ニッケルメツキの具体的な方法について説明する。 [0049] Next, a specific method of autocatalytic reduced nickel plating will be described.
上記の、 自己触媒型の還元ニッケルメツキによる方法は、まずパラジウム金属を付 着させ触媒とし、その後自己触媒によりニッケルメツキ被膜を析出させる方法である。  The above-described method using a self-catalyst type reduced nickel plating is a method in which palladium metal is first deposited as a catalyst, and then a nickel plating film is deposited by the autocatalyst.
[0050] 自己触媒型の還元ニッケルメツキ浴としては、例えば、ニッケル塩を基本とするメッ キ浴に、錯化剤としてクェン酸、酒石酸等のカルボン酸類、グリシン等のアミノカルボ ン酸類、還元剤として次亜リン酸ナトリウム等のリン系還元剤、ジメチルァミノボラン等 のホウ素系還元剤、 pH緩衝剤としてホウ酸等の他に酢酸、プロピオン酸等のモノ力 ルボン酸、及び、 pH調整剤が添加されたメツキ浴等が挙げられる。 [0050] Examples of self-catalyzed reduced nickel plating baths include nickel salt-based plating baths, complexing agents such as carboxylic acids such as citrate and tartaric acid, and aminocarbo- yls such as glycine. Acids, Phosphorus-based reducing agents such as sodium hypophosphite as reducing agents, Boron-based reducing agents such as dimethylaminoborane, Boric acid etc. as pH buffering agents, monostrength rubonic acids such as acetic acid and propionic acid, And a plating bath to which a pH adjusting agent is added.
[0051] 上記メツキ浴中のニッケル塩の濃度は、 0. 01〜0. ImolZlが好ましい。 [0051] The concentration of the nickel salt in the plating bath is preferably 0.01 to 0.1 ImolZl.
[0052] 上記メツキ浴中の錯ィ匕剤としてクェン酸の濃度は、 0. 08〜0. 8molZlが好ましレヽ [0052] The concentration of citrate as a complexing agent in the above bath is preferably from 0.08 to 0.8 molZl.
[0053] 上記メツキ浴中の還元剤として次亜リン酸の濃度は、 0. 03〜0. 7molZlが好まし レ、。 [0053] The concentration of hypophosphorous acid as the reducing agent in the plating bath is preferably 0.03 to 0.7 molZl.
[0054] 上記メツキ浴中の、 pH変動を抑制する pH緩衝剤の濃度は、 0. 01〜0. 3mol/l が好ましい。  [0054] The concentration of the pH buffer that suppresses pH fluctuation in the above-mentioned bath is preferably from 0.01 to 0.3 mol / l.
[0055] また、上記メツキ浴中の、 pHを調整するための pH調整剤としては、例えば、アル力 リ性側に調整する場合はアンモニア、水酸化ナトリウム等が挙げられ、なかでも、アン モニァが好ましぐ酸性側に調整する場合は硫酸、塩酸等が挙げられ、なかでも、硫 酸が好ましい。  [0055] Further, examples of the pH adjuster for adjusting the pH in the above-mentioned bath include ammonia, sodium hydroxide and the like when adjusting to the strength side, and among others, ammonia. In the case of adjusting to the more preferable acidic side, sulfuric acid, hydrochloric acid and the like can be mentioned. Of these, sulfuric acid is preferable.
[0056] 上記メツキ浴の pHは、反応駆動力を高めるため高い方がよぐ 8〜: 10が好ましい。  [0056] The pH of the plating bath is preferably 8 to 10 in order to increase the reaction driving force.
[0057] 更に、上記メツキ浴の浴温は、反応駆動力を高めるため高い方がよいが、高過ぎる と浴分解が起こることがあるため、 50〜70°Cが好ましい。 [0057] Further, the bath temperature of the above-mentioned bath is preferably higher in order to increase the reaction driving force, but if it is too high, bath decomposition may occur, so 50-70 ° C is preferable.
[0058] また、上記メツキ浴は、水溶液中に粒子が均一に分散していないと反応による凝集 が生じ易くなるため、粒子を均一に分散させ、凝集を生じさせないように超音波及び 攪拌機の少なくともいずれかの分散手段を用いることが好ましい。 [0058] In addition, since the above-mentioned Metsu bath tends to cause aggregation due to the reaction if the particles are not uniformly dispersed in the aqueous solution, at least an ultrasonic wave and a stirrer are used so that the particles are uniformly dispersed and aggregation is not caused. It is preferable to use any dispersing means.
[0059] 次に、置換錫メツキ及び自己触媒型の還元錫メツキの具体的な方法にっレ、て説明 する。 [0059] Next, specific methods for substituted tin plating and autocatalytic reduced tin plating will be described.
[0060] 上記の、置換錫メツキによる方法は、下地であるニッケルを溶解して、溶解したニッ ケル塩の電子を錫塩が受け取り、錫メツキ被膜を析出させる方法である。  [0060] The above-described method using substituted tin plating is a method in which nickel as a base is dissolved, the tin salt receives the dissolved nickel salt electrons, and a tin plating film is deposited.
[0061] 置換錫メツキ浴としては、例えば、錫塩を基本とするメツキ浴に、錯化剤として酒石 酸等のカルボン酸類、及びチォ尿素等の硫黄系化合物が添加されたメツキ浴等が挙 げられる。  [0061] The substituted tin plating bath includes, for example, a plating bath obtained by adding a carboxylic acid such as tartaric acid and a sulfur compound such as thiourea as a complexing agent to a plating bath based on a tin salt. Can be mentioned.
[0062] 上記メツキ浴中の錫塩の濃度は、 0. 01〜0. lmol/1が好ましい。 [0063] 上記メツキ浴中の錯ィヒ剤として、酒石酸の濃度は、 0. 08〜0. 8mol/lが好ましぐ チォ尿素の濃度は、 0. 08-0. 8mol/lが好ましい。 [0062] The concentration of the tin salt in the plating bath is preferably 0.01 to 0.1 mol / l. [0063] The concentration of tartaric acid is preferably from 0.08 to 0.8 mol / l as the complexing agent in the above-mentioned Metz bath. The concentration of thiourea is preferably from 0.08 to 0.8 mol / l.
[0064] また、上記メツキ浴の pH調整、浴温調整、及び分散手段は、上述の還元ニッケルメ ツキ浴の場合と同様にして行うことが好ましい。 [0064] Further, the pH adjustment, bath temperature adjustment, and dispersion means of the plating bath are preferably performed in the same manner as in the case of the above-described reduced nickel plating bath.
[0065] 上記の、 自己触媒型の還元錫メツキによる方法は、置換錫メツキ被膜が形成された 上に自己触媒型の還元錫メツキとして不均化反応により錫メツキ被膜を形成させる方 法である。 [0065] The above-described method using a self-catalyzed reduced tin plating is a method of forming a tin plating coating by a disproportionation reaction as a self-catalytic reducing tin plating after a substituted tin plating coating is formed. .
[0066] 不均化反応としての還元錫メツキ浴としては、例えば、錫塩を基本とするメツキ浴に 、錯化剤としてクェン酸、酒石酸等のカルボン酸類、還元剤として水酸化ナトリウム、 水酸化カリウム等、及び、緩衝剤としてリン酸水素ナトリウム、リン酸水素アンモニゥム 等が添加されたメツキ浴等が挙げられる。  [0066] Examples of the reduced tin plating bath as a disproportionation reaction include a plating bath based on a tin salt, carboxylic acids such as citrate and tartaric acid as complexing agents, sodium hydroxide and hydroxide as reducing agents. Examples thereof include potassium baths and a plating bath to which sodium hydrogen phosphate, ammonium hydrogen phosphate and the like are added as a buffering agent.
[0067] 上記メツキ浴中の錫塩の濃度は、 0. 01〜0. lmol/1が好ましい。 [0067] The concentration of the tin salt in the plating bath is preferably 0.01 to 0.1 mol / l.
[0068] 上記メツキ浴中の錯化剤としてクェン酸の濃度は、 0. 08-0. 8mol/lが好ましレヽ [0068] The concentration of citrate as a complexing agent in the above bath is preferably 0.08-0.8 mol / l.
[0069] 上記メツキ浴中の還元剤として水酸化ナトリウムの濃度は、 0. 3〜2. 4mol/lが好 ましい。 [0069] The concentration of sodium hydroxide as the reducing agent in the plating bath is preferably 0.3 to 2.4 mol / l.
[0070] 上記メツキ浴中の、錫析出を安定させる緩衝剤のリン酸水素ナトリウムの濃度は、 0 [0070] The concentration of sodium hydrogen phosphate, which is a buffer that stabilizes tin precipitation, in the above bath is 0
.:!〜 0. 3mol/lが好ましい。 .:! To 0.3 mol / l is preferred.
[0071] また、上記メツキ浴の pH調整、浴温調整、及び分散手段は、上述の還元ニッケルメ ツキ浴の場合と同様にして行うことが好ましい。 [0071] The pH adjustment, bath temperature adjustment, and dispersion means of the above-mentioned plating bath are preferably performed in the same manner as in the above-described reduced nickel plating bath.
[0072] 次に、 自己触媒型の還元ビスマスメツキの具体的な方法について説明する。 [0072] Next, a specific method of autocatalytic reduced bismuth plating will be described.
上記の、 自己触媒型の還元ビスマスメツキによる方法は、下地である錫メツキ被膜に まずパラジウム金属を付着させ触媒とし、その後自己触媒によりビスマスメツキ被膜を 析出させる方法である。  The self-catalytic reduced bismuth plating method described above is a method in which palladium metal is first attached to the underlying tin plating film as a catalyst, and then the bismuth plating film is deposited by the autocatalysis.
[0073] 自己触媒型の還元ビスマスメツキ浴としては、例えば、ビスマス塩を基本とするメッ キ浴に、錯化剤としてクェン酸ナトリウム等のカルボン酸類、還元剤として塩化チタン[0073] Examples of the self-catalyzed reduced bismuth plating bath include, for example, a plating bath based on a bismuth salt, a carboxylic acid such as sodium citrate as a complexing agent, and titanium chloride as a reducing agent.
(ΠΙ)、塩ィ匕チタン (IV)等、結晶調整剤としてダリオキシノレ酸等、緩衝剤としてリン酸水 素塩等、及び、 pH調整剤が添加されたメツキ浴等が挙げられる。 [0074] 上記メツキ浴中のビスマス塩の濃度は、 0. 01-0. 03mol/lが好ましい。 (Ii), salty titanium (IV), etc., darioxynolic acid as a crystal modifier, phosphate salt as a buffer, and a bath with a pH adjuster added. [0074] The concentration of the bismuth salt in the plating bath is preferably 0.01 to 0.03 mol / l.
[0075] 上記メツキ浴中の錯ィ匕剤としてクェン酸ナトリウムの濃度は、 0. 04〜0. lmol/1が 好ましい。  [0075] The concentration of sodium citrate as a complexing agent in the above-mentioned bath is preferably 0.04 to 0.1 mol / l.
[0076] 上記メツキ浴中の還元剤として塩ィ匕チタンの濃度はそれぞれ、 0. 12-0. 8mol/l が好ましい。  [0076] The concentration of titanium salt as a reducing agent in the above bath is preferably 0.12-0.8 mol / l.
[0077] 上記メツキ浴中の結晶調整剤としてダリオキシル酸の濃度は、 0. 001〜0. 005mo lZlが好ましい。  [0077] The concentration of darioxylic acid as a crystal adjusting agent in the above-mentioned bath is preferably 0.001 to 0.005 molZl.
[0078] 上記メツキ浴中の緩衝剤としてリン酸水素塩の濃度は、 0. 04-0. 12molZlが好 ましい。  [0078] The concentration of hydrogen phosphate as a buffering agent in the above bath is preferably 0.04-0.12 molZl.
[0079] また、上記メツキ浴中の、 pHを調整するための pH調整剤としては、例えば、アル力 リ性側に調整する場合はアンモニア等が挙げられ、酸性側に調整する場合は硫酸、 塩酸等が挙げられ、なかでも、硫酸が好ましい。  [0079] The pH adjusting agent for adjusting pH in the above-mentioned bath is, for example, ammonia when adjusting to the alkalinity side, sulfuric acid when adjusting to the acidic side, Examples include hydrochloric acid, and sulfuric acid is preferable.
[0080] 上記メツキ浴の pHは、反応駆動力を高めるため高い方がよぐ 8〜: 10が好ましい。  [0080] The pH of the plating bath is preferably 8 to 10 in order to increase the reaction driving force.
[0081] 更に、上記メツキ浴の浴温は、 10〜30°Cが好ましい。  [0081] Further, the bath temperature of the above-mentioned bath is preferably 10-30 ° C.
[0082] また、上記メツキ浴の分散手段は、上述の還元ニッケルメツキ浴の場合と同様にし て行うことが好ましい。  [0082] Further, it is preferable to carry out the dispersing means of the plating bath in the same manner as in the case of the above-described reduced nickel plating bath.
[0083] 次に、 自己触媒型の還元銀メツキの具体的な方法について説明する。 [0083] Next, a specific method of autocatalytic reduced silver plating will be described.
自己触媒型の還元銀メツキ浴としては、例えば、銀塩を基本とするメツキ浴に、錯化 剤としてコハク酸イミド等のカルボン酸類、還元剤としてイミダゾールイ匕合物、結晶を 細力べ生成させるための結晶調整剤としてダリオキシノレ酸等、及び、 pH調整剤が添 カロされたメツキ浴等が挙げられる。  As a self-catalyzed reduced silver plating bath, for example, a plating bath based on a silver salt, a carboxylic acid such as succinimide as a complexing agent, an imidazole compound as a reducing agent, and crystals are generated. Examples of the crystal adjusting agent for adjusting the concentration include dalixinolic acid and a plating bath supplemented with a pH adjusting agent.
[0084] 上記メツキ浴中の銀塩の濃度は、 0. 01〜0. 03mol/lが好ましい。 [0084] The concentration of the silver salt in the plating bath is preferably 0.01 to 0.03 mol / l.
[0085] 上記メツキ浴中の錯ィ匕剤としてコハク酸イミドの濃度は、 0. 04-0. ImolZlが好ま しい。 [0085] The concentration of succinimide as the complexing agent in the above bath is preferably 0.04-0. ImolZl.
[0086] 上記メツキ浴中の還元剤としてイミダゾール化合物の濃度は、 0. 04-0. lmol/1 が好ましい。  [0086] The concentration of the imidazole compound as the reducing agent in the plating bath is preferably 0.04-0.lmol / 1.
[0087] 上記メツキ浴中の結晶調整剤としてダリオキシル酸の濃度は、 0. 001〜0. 005mo lZlが好ましい。 [0088] また、上記メツキ浴中の、 pHを調整するための pH調整剤としては、例えば、アル力 リ性側に調整する場合はアンモニア等が挙げられ、酸性側に調整する場合は硫酸、 塩酸等が挙げられ、なかでも、硫酸が好ましい。 [0087] The concentration of darioxylic acid as a crystal adjusting agent in the above-mentioned bath is preferably 0.001 to 0.005 molZl. [0088] In addition, examples of the pH adjuster for adjusting the pH in the above-mentioned bath include ammonia when adjusting to the alkaline side, and sulfuric acid when adjusting to the acidic side. Examples include hydrochloric acid, and sulfuric acid is preferable.
[0089] 上記メツキ浴の pHは、反応駆動力を高めるため高い方がよぐ 8〜: 10が好ましい。  [0089] The pH of the plating bath is preferably 8 to 10 in order to increase the reaction driving force.
[0090] 更に、上記メツキ浴の浴温は、 10〜30°Cが好ましい。  [0090] Further, the bath temperature of the above-mentioned bath is preferably 10-30 ° C.
[0091] また、上記メツキ浴の分散手段は、上述の還元ニッケルメツキ浴の場合と同様にし て行うことが好ましい。  [0091] Further, the dispersion means of the plating bath is preferably performed in the same manner as in the case of the reduced nickel plating bath.
[0092] 本発明の異方性導電材料の作製方法としては、特に限定されるものではないが、 例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混 合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接 着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添カロ し、均一に混合して導電性組成物を作製した後、この導電性組成物を必要に応じて 有機溶媒中に均一に溶解 (分散)させるか、又は加熱溶融させて、離型紙や離型フィ ルム等の離型材の離型処理面に所定のフィルム厚さとなるように塗工し、必要に応じ て乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする 方法等が挙げられ、作製しょうとする異方性導電材料の種類に対応して、適宜の作 製方法をとればよい。また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを 、混合することなぐ別々に用いて異方性導電材料としてもよい。  [0092] The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder and mixed uniformly. For example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., or by adding the conductive fine particles of the present invention in an insulating resin binder, After preparing a conductive composition by mixing uniformly, this conductive composition is uniformly dissolved (dispersed) in an organic solvent as necessary, or heated and melted to release paper or a release film. For example, an anisotropic conductive film, an anisotropic conductive sheet, etc. are applied to the release treatment surface of the release material such as a film to a predetermined film thickness, and dried or cooled as necessary. Corresponding to the type of anisotropic conductive material to be manufactured. Te may be taken as appropriate of the work made by the method. Alternatively, the insulating resin binder and the conductive fine particles of the present invention may be used separately without being mixed to form an anisotropic conductive material.
[0093] 上記絶縁性の樹脂バインダーの樹脂としては、特に限定されるものではないが、例 えば、酢酸ビュル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等の ビュル系樹脂;ポリオレフイン系樹脂、エチレン 酢酸ビュル共重合体、ポリアミド系 樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽 和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン—ブタジェ ン一スチレンブロック共重合体、スチレン一イソプレン一スチレンブロック共重合体、 これらの水素添カ卩物等の熱可塑性ブロック共重合体;スチレン—ブタジエン共重合ゴ ム、クロロプレンゴム、アクリロニトリル一スチレンブロック共重合ゴム等のエラストマ一 類 (ゴム類)等が挙げられる。これらの樹脂は、単独で用レ、られてもよいし、 2種以上 が併用されてもよい。また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、 湿気硬化型等のレ、ずれの硬化形態であってもよレ、。 [0093] The resin of the insulating resin binder is not particularly limited, and examples thereof include a butyl resin such as a butyl acetate resin, a vinyl chloride resin, an acrylic resin, and a styrene resin; Resins, ethylene acetate butyl copolymer, polyamide resins, and other thermoplastic resins; epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene Butadiene / styrene block copolymer, styrene / isoprene / styrene block copolymer, thermoplastic block copolymers such as hydrogenated products thereof; styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile / styrene block Examples include elastomers such as copolymer rubber (rubbers). These resins may be used alone or in combination of two or more. In addition, the curable resin is a room temperature curing type, a thermosetting type, a photocurable type, It may be a moisture-curing type or a miscured cured form.
[0094] 本発明の異方性導電材料には、絶縁性の樹脂バインダー、及び、本発明の導電性 微粒子に加えるに、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、 増量剤、軟化剤 (可塑剤)、粘接着性向上剤、酸化防止剤 (老化防止剤)、熱安定剤 、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤の 1種又は 2種以上が併用されてもよい。  [0094] In addition to the insulating resin binder and the conductive fine particles of the present invention, the anisotropic conductive material of the present invention includes, for example, an increased amount within a range that does not hinder the achievement of the object of the present invention. Additives, softeners (plasticizers), tackifiers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. One or more of these may be used in combination.
[0095] 本発明の導電性微粒子は、上述の構成よりなるので、特にプラズマディスプレイパ ネルに用いられた場合でも、接続抵抗が低く接続時の電流容量が大きぐ更に加熱 によりマイグレーション防止となる、接続信頼性が高いものを得ることが可能となった。  [0095] Since the conductive fine particles of the present invention have the above-mentioned configuration, even when used particularly in a plasma display panel, the connection resistance is low, the current capacity at the time of connection is large, and further heating prevents migration. It has become possible to obtain a connection with high reliability.
[0096] また、本発明の導電性微粒子を用いた異方性導電材料、及び導電接続方法は、 特にプラズマディスプレイパネルに用いられた場合でも、接続抵抗が低く接続時の電 流容量が大きぐ更に加熱によりマイグレーション防止となる、接続信頼性が高レ、もの となった。  In addition, the anisotropic conductive material and conductive connection method using the conductive fine particles of the present invention have a low connection resistance and a large current capacity at the time of connection even when used in a plasma display panel. In addition, the connection was prevented by migration and the connection reliability was high.
図面の簡単な説明  Brief Description of Drawings
[0097] [図 1]図 1は、本発明の導電性微粒子の一構造例を模式的に示す正面断面図である 符号の説明  FIG. 1 is a front sectional view schematically showing one structural example of the conductive fine particles of the present invention.
[0098] 1…導電性微粒子 [0098] 1 ... conductive fine particles
2…粒子  2 ... Particle
3…ニッケルメツキ被膜  3 ... Nickel coating
4…錫メツキ被膜  4 ... Tin plating film
5…ビスマスメツキ被月莫  5 ... Bismuth moon
6…銀メツキ被膜  6 ... Silver plating film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0099] 以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例 に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.
[0100] (実施例 1) [0100] (Example 1)
粒径 5 μ mの銅金属粒子(純度 99重量%)を、過酸化水素一硫酸混合液に浸して 行う湿式法で浄化処理し、表面に金属銅が露出し表面が浄化された銅金属粒子を 得た。 Soak copper metal particles (purity 99% by weight) with a particle size of 5 μm in hydrogen peroxide-monosulfuric acid mixture. Purification was carried out by a wet method to obtain copper metal particles with exposed surface of the copper metal and purified surface.
[0101] 得られた銅金属粒子に二液活性化法でパラジウムを付着させ、パラジウムが付着し た銅金属粒子を得た。  [0101] Palladium was attached to the obtained copper metal particles by a two-component activation method to obtain copper metal particles to which palladium was attached.
[0102] 次に、硫酸ニッケル 25gとイオン交換水 1000mlとを含む溶液を調整し、得られた パラジウムが付着した銅金属粒子 10gを混合して水性懸濁液を調整した。  [0102] Next, a solution containing 25 g of nickel sulfate and 1000 ml of ion-exchanged water was prepared, and 10 g of the obtained copper metal particles to which palladium adhered was mixed to prepare an aqueous suspension.
[0103] 得られた水性懸濁液に、クェン酸 30g、次亜リン酸ナトリウム 80g、及び、酢酸 10g を投入しメツキ液を調整した。 [0103] To the obtained aqueous suspension, 30 g of citrate, 80 g of sodium hypophosphite and 10 g of acetic acid were added to prepare a solution.
[0104] 得られたメツキ液に、アンモニアを用レ、 pHを 10に合わせ、浴温を 60°Cにし、 15〜 [0104] To the obtained solution, ammonia was used, the pH was adjusted to 10, and the bath temperature was adjusted to 60 ° C.
20分程度反応させることによりニッケルメツキ被膜が形成された粒子を得た。  By reacting for about 20 minutes, particles having a nickel plating film were obtained.
[0105] 次に、塩ィ匕錫 5gとイオン交換水 1000mlとを含む溶液を調整し、得られたニッケノレ メツキ被膜が形成された粒子 15gを混合して水性懸濁液を調整した。 [0105] Next, a solution containing 5 g of salty tin and 1000 ml of ion-exchanged water was prepared, and 15 g of the particles having the Nikkenore-Metsuki coating formed were mixed to prepare an aqueous suspension.
[0106] 得られた水性懸濁液に、チォ尿素 30g、及び、酒石酸 80gを投入しメツキ液を調整 した。 [0106] 30 g of thiourea and 80 g of tartaric acid were added to the obtained aqueous suspension to prepare a solution.
[0107] 得られたメツキ液を浴温 60°Cにし、 15〜20分程度反応させることにより置換錫メッ キ被膜が形成された粒子を得た。  [0107] The obtained plating solution was brought to a bath temperature of 60 ° C and reacted for about 15 to 20 minutes to obtain particles on which a substituted tin plating film was formed.
[0108] 更に、このメツキ浴に、塩化錫 20g、クェン酸 40g、及び、水酸化ナトリウム 30gを投 入し、浴温 60°C、 15〜20分程度反応させることにより錫メツキ被膜が形成された粒 子を得た。 [0108] Further, 20 g of tin chloride, 40 g of citrate, and 30 g of sodium hydroxide were added to this plating bath and reacted at a bath temperature of 60 ° C for about 15 to 20 minutes to form a tin plating film. Obtained particles.
[0109] 得られた錫メツキ被膜が形成された粒子に二液活性化法でパラジウムを付着させ、 パラジウムが付着した錫メツキ被膜が形成された粒子を得た。  [0109] Palladium was adhered to the obtained particles having the tin plating film by a two-component activation method to obtain particles having the tin plating film having palladium attached thereto.
[0110] 次に、硝酸ビスマス 18gとイオン交換水 1000mlとを含む溶液を調整し、得られたパ ラジウムが付着した錫メツキ被膜が形成された粒子 20gを混合して水性懸濁液を調 整した。 [0110] Next, an aqueous suspension was prepared by preparing a solution containing 18 g of bismuth nitrate and 1000 ml of ion-exchanged water, and mixing the obtained 20 g of particles having a tin-plated film with attached palladium. did.
[0111] 得られた水性懸濁液に、クェン酸ナトリウム 30g、塩化チタン (III) 40g、塩化チタン( IV) 40g、及び、リン酸水素アンモニゥム 40gを投入しメツキ液を調整した。  [0111] To the obtained aqueous suspension, 30 g of sodium citrate, 40 g of titanium (III) chloride, 40 g of titanium (IV) chloride, and 40 g of ammonium hydrogen phosphate were added to prepare a solution.
[0112] 得られたメツキ液にダリオキシノレ酸 5gを投入後、アンモニアを用い pHを 10に合わ せ、浴温を 20°Cにし、 15〜20分程度反応させることによりビスマスメツキ被膜が形成 された粒子を得た。 [0112] After adding 5 g of darioxynolic acid to the obtained solution, adjust the pH to 10 using ammonia, set the bath temperature to 20 ° C, and react for about 15 to 20 minutes to form a bismuth plating film. Particles were obtained.
[0113] 次に、硝酸銀 5gとイオン交換水 1000mlとを含む溶液を調整し、得られたビスマス メツキ被膜が形成された粒子 24gを混合して水性懸濁液を調整した。  [0113] Next, a solution containing 5 g of silver nitrate and 1000 ml of ion-exchanged water was prepared, and 24 g of the particles on which the obtained bismuth plating film was formed were mixed to prepare an aqueous suspension.
[0114] 得られた水性懸濁液に、コハク酸イミド 30g、イミダゾール 80g、及び、ダリオキシノレ 酸 5gを投入しメツキ液を調整した。 [0114] To the obtained aqueous suspension, 30 g of succinimide, 80 g of imidazole, and 5 g of darioxynolic acid were added to prepare a solution.
[0115] 得られたメツキ液にアンモニアを用レ、 pHを 9に合わせ、浴温を 20°Cにし、 15-20 分程度反応させることにより銀メツキ被膜が形成された粒子を得た。得られた銀メツキ 被膜が形成された粒子を導電性微粒子とした。 [0115] By using ammonia in the obtained plating solution, adjusting the pH to 9, and setting the bath temperature to 20 ° C and reacting for about 15-20 minutes, particles having a silver plating film formed were obtained. The obtained particles having the silver plating film were used as conductive fine particles.
[0116] (実施例 2) [0116] (Example 2)
銅金属粒子に代えて、平均粒径 4 μ mのジビュルベンゼン樹脂微粒子を用いたこ と以外は実施例 1と同様にして導電微粒子を得た。  Conductive fine particles were obtained in the same manner as in Example 1 except that dibulebenzene resin fine particles having an average particle diameter of 4 μm were used in place of the copper metal particles.
[0117] (比較例 1) [0117] (Comparative Example 1)
実施例 1と同様にして、表面が浄化された銅金属粒子を得た。  In the same manner as in Example 1, copper metal particles having a purified surface were obtained.
得られた表面が浄化された銅金属粒子に、ニッケルメツキ被膜、錫メツキ被膜、及び ビスマスメツキ被膜は形成させなかった。  Nickel plating film, tin plating film, and bismuth plating film were not formed on the obtained copper metal particles whose surface was purified.
[0118] 次に、硝酸銀 10gとイオン交換水 1000mlとを含む溶液を調整し、得られた表面が 浄化された銅金属粒子 10gを混合して水性懸濁液を調整した。 [0118] Next, a solution containing 10 g of silver nitrate and 1000 ml of ion-exchanged water was prepared, and 10 g of copper metal particles whose surface was purified was mixed to prepare an aqueous suspension.
[0119] 得られた水性懸濁液に、コハク酸イミド 30g、イミダゾール 80g、及び、ダリオキシノレ 酸 5gを投入しメツキ液を調整した。 [0119] To the obtained aqueous suspension, 30 g of succinimide, 80 g of imidazole, and 5 g of darioxynolic acid were added to prepare a solution.
[0120] 得られたメツキ液にアンモニアを用い pHを 9に合わせ、浴温を 60°Cにし、 15〜20 分程度反応させることにより銀メツキ被膜が形成された粒子を得た。得られた銀メツキ 被膜が形成された粒子を導電性微粒子とした。 [0120] The obtained plating solution was adjusted to pH 9 using ammonia, the bath temperature was set to 60 ° C, and the mixture was reacted for about 15 to 20 minutes to obtain particles having a silver plating film formed. The obtained particles having the silver plating film were used as conductive fine particles.
[0121] (導電性微粒子の抵抗値測定) [0121] (Measurement of resistance of conductive fine particles)
得られたそれぞれの導電性微粒子について、微小圧縮試験機(「DUH_ 200」、 島津製作所社製)を、抵抗値が測定できるようにして用い、導電性微粒子を圧縮しな 力 Sら 10— の電圧をかけて通電を行レ、、粒子 1個当たりの抵抗値を測定することによ り、導電性微粒子の抵抗値を測定した。  For each of the obtained conductive fine particles, a micro compression tester (“DUH_200”, manufactured by Shimadzu Corporation) is used so that the resistance value can be measured. The resistance value of the conductive fine particles was measured by applying a voltage and measuring the resistance value per particle.
[0122] また、 PCT試験(80°C、 95%RHの高温高湿環境下で 1000時間保持)を行った後 、同様にして導電性微粒子の抵抗値を測定した。 [0122] After conducting a PCT test (held at 80 ° C, 95% RH in a high temperature and high humidity environment for 1000 hours) Similarly, the resistance value of the conductive fine particles was measured.
評価結果を表 1に示す。  Table 1 shows the evaluation results.
[0123] (リーク電流の評価)  [0123] (Evaluation of leakage current)
樹脂バインダーの樹脂としてエポキシ樹脂(ジャパンエポキシレジン社製、「ェピコ ート 828」) 100重量部、トリスジメチルアミノエチルフヱノール 2重量部、及びトルエン 100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて 充分に混合した後、離型フィルム上に乾燥後の厚さが 7 x mとなるように塗布し、トノレ ェンを蒸発させて導電性微粒子を含有する接着フィルムを得た。なお、導電性微粒 子の配合量は、フィルム中の含有量が 5万個 Zcm2とした。 As the resin binder resin, 100 parts by weight of epoxy resin (manufactured by Japan Epoxy Resin, “Epicote 828”), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene were obtained. Add fine particles, mix thoroughly using a planetary stirrer, and then apply on the release film so that the thickness after drying is 7 xm, evaporate the tolene and contain conductive fine particles An adhesive film was obtained. The content of conductive fine particles was 50,000 Zcm 2 in the film.
[0124] その後、導電性微粒子を含有する接着フィルムを、導電性微粒子を含有させずに 得た接着フィルムと常温で貼り合わせ厚さ 17 μ mで 2層構造の異方性導電フィルム を得た。  [0124] Thereafter, an adhesive film containing conductive fine particles was bonded to an adhesive film obtained without containing conductive fine particles at room temperature to obtain an anisotropic conductive film having a two-layer structure with a thickness of 17 μm. .
[0125] 得られた異方性導電フィルムを 5 X 5mmの大きさに切断した。また、一方に抵抗測 定用の引き回し線を持つ、幅 200 μ m、長さ lmm、高さ 0. 2 /i m、 L/S20 β mのァ ノレミニゥム電極が形成されたガラス基板を 2枚用意した。異方性導電フィルムを一方 のガラス基板のほぼ中央に貼り付けた後、他方のガラス基板を異方性導電フィルム 力 S貼り付けられたガラス基板の電極パターンと重なるように位置あわせをして貼り合わ せた。  [0125] The obtained anisotropic conductive film was cut into a size of 5 X 5 mm. In addition, two glass substrates with a 200 μm wide, lmm long, 0.2 / im high, L / S20 β m anodized electrode with resistance measurement leads on one side are prepared. did. After attaching the anisotropic conductive film to the center of one glass substrate, align the other glass substrate so that it overlaps the electrode pattern of the glass substrate attached with the anisotropic conductive film. Combined.
[0126] 2枚のガラス基板を、圧力 10N、温度 180°Cの条件で熱圧着した後、電極間のリー ク電流の有無を得られた異方性導電フィルムについてそれぞれ測定した。  [0126] Two glass substrates were subjected to thermocompression bonding under conditions of a pressure of 10 N and a temperature of 180 ° C, and then each of the anisotropic conductive films obtained for the presence or absence of a leak current between the electrodes was measured.
[0127] また、 PCT試験(80°C、 95%RHの高温高湿環境下で 1000時間保持)を行った後 、同様にして電極間のリーク電流の有無を測定した。  [0127] Further, after conducting a PCT test (held at 80 ° C, 95% RH in a high-temperature and high-humidity environment for 1000 hours), the presence or absence of leakage current between electrodes was measured in the same manner.
評価結果を表 1に示す。  Table 1 shows the evaluation results.
[0128] 熱圧着した後のそれぞれの導電性微粒子を取り出し、エネルギー分散型 X線分光 機(日本電子データム社製)により、合金被膜の形成を調べた。その結果、実施例 1 の導電性微粒子には、銀一ビスマス一錫の合金被膜が形成されており、比較例 1の 導電性微粒子には、合金被膜が形成されてレ、なかった。  [0128] Each conductive fine particle after thermocompression bonding was taken out, and the formation of an alloy film was examined with an energy dispersive X-ray spectrometer (manufactured by JEOL Datum). As a result, a silver-bismuth-tin alloy alloy film was formed on the conductive fine particles of Example 1, and an alloy film was not formed on the conductive fine particles of Comparative Example 1.
[0129] [表 1] 実施例 1 実施例 2 比較例 1 通常 導電性微粒子の抵抗値 1.5 X Ω 1.5 X 10-6 Q [0129] [Table 1] The resistance value of Example 1 Example 2 Comparative Example 1 normal conductive fine particles 1.5 X Ω 1.5 X 10- 6 Q
電極間のリ-ク鼋流の有無 無し 無し 無し Existence of leakage between electrodes No No No
PCT試験後 導電性微粒子の抵抗値 3.4 Χ 10"6 Ω 19.5 10"6 Ω (80°C、95SRH、1000Hr後) 電極間のリ-ク電流の有無 無し 有り After PCT test Resistance of conductive fine particles 3.4 Χ 10 " 6 Ω 19.5 10" 6 Ω (after 80 ° C, 95SRH, 1000Hr) Existence of leakage current between electrodes No Yes
異方性導電フィルム熱圧着後の 銀-ビスマス-錫銀-ビスマス-錫  Silver-bismuth-tin silver-bismuth-tin after anisotropic conductive film thermocompression bonding
無し 導電性微粒子の合金被膜の形成 の合金被膜 の合金被膜  None Formation of conductive fine particle alloy coating Alloy coating Alloy coating
[0130] 表 1より、実施例 1、実施例 2は比較例 1に比べて、 PCT試験後の、抵抗値の上昇 の度合いは低ぐ電極間のリーク電流も無レ、。これは、比較例 1は銀のマイグレーショ ンが起こっているのに対して、実施例 1はマイグレーションが防止されているためと考 えられる。 [0130] From Table 1, Example 1 and Example 2 showed less resistance increase after the PCT test than Comparative Example 1, and no leakage current between the electrodes. This is thought to be because silver migration occurred in Comparative Example 1 whereas migration was prevented in Example 1.
[0131] 更に、プラズマディスプレイパネルで用いられるような高電圧対応として以下の方法 により通電を行レ、評価した。  [0131] Further, energization was performed and evaluated by the following method to cope with a high voltage used in a plasma display panel.
[0132] 20mm X 40mm,接続部 IT〇線幅 300 μ mの ΙΤΟガラス基板を 2枚用意した。熱 硬化型樹脂としてエポキシ樹脂(ジャパンエポキシレジン社製 X、「ェピコート 1009」 ) — _5  [0132] Two glass substrates of 20 mm X 40 mm, connecting part IT ○ line width 300 μm were prepared. Epoxy resin as thermosetting resin (Japan Epoxy Resin X, “Epicoat 1009”) — _5
中に得られたそれぞれの導電性微粒子 0· 5重量。 /0、シリカスぺ一サ 1 · 5重量%を分 散させた組成物を一方のガラス基板上に塗布した後、更に他方のガラス基板を電極 パターンが重なるように位置あわせをして貼り合わせ、熱圧着することで、 IT〇Z導 電性微粒子ペースト/ ΙΤΟの形態の試験片を作製した。この試験片に電流 10mA、 電圧 100Vをかけることによって、導電性微粒子が破壊されるか否かを確認すること によって高電圧対応可能であるか否力 ^判断した。 Each conductive fine particle obtained in 0.5 weight. / 0 , after applying a composition in which 1.5% by weight of silica spacer is dispersed on one glass substrate, the other glass substrate is aligned and bonded so that the electrode patterns overlap, By thermocompression bonding, a test piece in the form of IT ○ Z conductive fine particle paste / soot was prepared. By applying a current of 10 mA and a voltage of 100 V to this test piece, it was judged whether or not high voltage could be handled by checking whether or not the conductive fine particles were destroyed.
[0133] その結果、実施例 1及び比較例 1ともに、銅金属粒子を基材粒子としているので、 樹脂粒子を基材粒子とした導電性微粒子で起こるような基材粒子の破壊等による通 電不良は発生しなかった。一方、実施例 2で得られた導電性微粒子は基材粒子が破 壊した。  As a result, in both Example 1 and Comparative Example 1, since the copper metal particles are used as the base particles, the conduction due to the destruction of the base particles, which occurs in the conductive fine particles using the resin particles as the base particles, and the like. No defects occurred. On the other hand, the conductive fine particles obtained in Example 2 were destroyed by the base material particles.
産業上の利用可能性  Industrial applicability
[0134] 本発明によれば、特にプラズマディスプレイパネルに用いられた場合でも、接続抵 抗が低く接続時の電流容量が大き 更に加熱によりマイグレーション防止となる、接 続信頼性が高レ、導電性微粒子、並びに該導電性微粒子を用いた異方性導電材料、 及び導電接続方法を提供できる。 [0134] According to the present invention, even when used particularly in a plasma display panel, the connection resistance is low, the current capacity during connection is large, and migration is prevented by heating, the connection reliability is high, and the conductivity is high. Fine particles, and anisotropic conductive material using the conductive fine particles, And a conductive connection method.

Claims

請求の範囲 The scope of the claims
[1] 粒子と、粒子表面に無電解メツキ法により形成された導電性被膜とを備え、  [1] A particle and a conductive film formed on the particle surface by an electroless plating method,
前記導電性被膜が、無電解メツキにより内側から順に形成されたニッケルメツキ被 膜、錫メツキ被膜、及びビスマスメツキ被膜を有し、さらに該導電性被膜が最外側表 面に、銀メツキ被膜を有することを特徴とする導電性微粒子。  The conductive coating has a nickel plating coating, a tin plating coating, and a bismuth plating coating formed in order from the inside by an electroless plating, and the conductive coating has a silver plating coating on the outermost surface. Conductive fine particles characterized by the above.
[2] 請求項 1記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする 異方性導電材料。  [2] An anisotropic conductive material, wherein the conductive fine particles according to claim 1 are dispersed in a resin binder.
[3] 請求項 1記載の導電性微粒子を電極表面上で加熱することにより金属熱拡散を起 こさせ、銀一ビスマス 錫の合金被膜を形成させるとともに、軟化した合金被膜の一 部を電極表面に流動させて接触面積を拡大させることを特徴とする導電接続方法。  [3] The conductive fine particles according to claim 1 are heated on the electrode surface to cause metal thermal diffusion to form a silver-bismuth-tin alloy coating, and a part of the softened alloy coating is applied to the electrode surface. The conductive connection method is characterized in that the contact area is expanded by flowing the liquid into the surface.
PCT/JP2006/301836 2005-02-09 2006-02-03 Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method WO2006085481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007502581A JP4922916B2 (en) 2005-02-09 2006-02-03 Conductive fine particles, anisotropic conductive material, and conductive connection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005033497 2005-02-09
JP2005-033497 2005-02-09

Publications (1)

Publication Number Publication Date
WO2006085481A1 true WO2006085481A1 (en) 2006-08-17

Family

ID=36793055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301836 WO2006085481A1 (en) 2005-02-09 2006-02-03 Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method

Country Status (5)

Country Link
JP (1) JP4922916B2 (en)
KR (1) KR20070100967A (en)
CN (1) CN101111903A (en)
TW (1) TW200632134A (en)
WO (1) WO2006085481A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110095A1 (en) * 2008-03-07 2009-09-11 富士通株式会社 Conductive material, conductive paste, circuit board, and semiconductor device
JP2012122122A (en) * 2010-12-10 2012-06-28 Noritake Co Ltd Sulphur-containing nickel particle and method for producing the same
JP5585750B1 (en) * 2014-01-30 2014-09-10 千住金属工業株式会社 Cu core ball, solder joint, foam solder, and solder paste

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821396B2 (en) * 2006-03-27 2011-11-24 住友金属鉱山株式会社 Conductive composition and method for forming conductive film
KR101219139B1 (en) * 2009-12-24 2013-01-07 제일모직주식회사 Anisotropic conductive paste and film, circuit connecting structure body comprising the same
KR102095823B1 (en) * 2012-10-02 2020-04-01 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive material and connecting structure
JP5985414B2 (en) * 2013-02-19 2016-09-06 デクセリアルズ株式会社 Anisotropic conductive adhesive, light emitting device, and method of manufacturing anisotropic conductive adhesive
CN103215575A (en) * 2013-04-26 2013-07-24 中国矿业大学(北京) Novel welding method for metal nanowire
CN111627679A (en) 2016-02-01 2020-09-04 株式会社村田制作所 Electronic component and method for manufacturing the same
CN109727701A (en) * 2017-10-27 2019-05-07 玮锋科技股份有限公司 Eutectic formula anisotropic conductive film and production method
KR102388958B1 (en) * 2017-12-22 2022-04-22 엑카르트 게엠베하 Electrically Conductive Particles, Compositions, Articles and Methods of Making Electrically Conductive Particles
JP7452418B2 (en) * 2018-06-26 2024-03-19 株式会社レゾナック Anisotropic conductive film and method for producing the same, and method for producing a connected structure
CN111261316B (en) * 2020-02-25 2021-08-10 轻工业部南京电光源材料科学研究所 Conductive particle and ultraviolet light curing conductive silver paste containing same
JP7049536B1 (en) * 2020-07-03 2022-04-06 三菱マテリアル電子化成株式会社 Metal-coated resin particles and their manufacturing method, conductive paste containing metal-coated resin particles, and conductive film
CN113573498A (en) * 2021-06-21 2021-10-29 深圳市信维通信股份有限公司 Low-melting-point conductive paste and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013205A1 (en) * 2000-08-04 2002-02-14 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
JP2002075057A (en) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd Coated copper powder
JP2003068145A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2004047343A (en) * 2002-07-15 2004-02-12 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2004152660A (en) * 2002-10-31 2004-05-27 Shin Etsu Chem Co Ltd Conductive powder, its manufacturing method, and conductive silicone rubber composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013205A1 (en) * 2000-08-04 2002-02-14 Sekisui Chemical Co., Ltd. Conductive fine particles, method for plating fine particles, and substrate structural body
JP2002075057A (en) * 2000-08-30 2002-03-15 Mitsui Mining & Smelting Co Ltd Coated copper powder
JP2003068145A (en) * 2001-08-23 2003-03-07 Sekisui Chem Co Ltd Conductive fine particle and conductive connection structure
JP2004047343A (en) * 2002-07-15 2004-02-12 Ube Nitto Kasei Co Ltd Conductive particle and its manufacturing method
JP2004152660A (en) * 2002-10-31 2004-05-27 Shin Etsu Chem Co Ltd Conductive powder, its manufacturing method, and conductive silicone rubber composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110095A1 (en) * 2008-03-07 2009-09-11 富士通株式会社 Conductive material, conductive paste, circuit board, and semiconductor device
CN101965617B (en) * 2008-03-07 2013-03-06 富士通株式会社 Conductive material, conductive paste, circuit board, and semiconductor device
JP5212462B2 (en) * 2008-03-07 2013-06-19 富士通株式会社 Conductive material, conductive paste, circuit board, and semiconductor device
US8673050B2 (en) 2008-03-07 2014-03-18 Fujitsu Limited Conductive material, conductive paste, circuit board, and semiconductor device
US9402313B2 (en) 2008-03-07 2016-07-26 Fujitsu Limited Conductive material, conductive paste, circuit board, and semiconductor device
JP2012122122A (en) * 2010-12-10 2012-06-28 Noritake Co Ltd Sulphur-containing nickel particle and method for producing the same
JP5585750B1 (en) * 2014-01-30 2014-09-10 千住金属工業株式会社 Cu core ball, solder joint, foam solder, and solder paste
WO2015114771A1 (en) * 2014-01-30 2015-08-06 千住金属工業株式会社 Cu CORE BALL, SOLDER JOINT, FOAM SOLDER, AND SOLDER PASTE

Also Published As

Publication number Publication date
JPWO2006085481A1 (en) 2008-06-26
JP4922916B2 (en) 2012-04-25
TW200632134A (en) 2006-09-16
CN101111903A (en) 2008-01-23
KR20070100967A (en) 2007-10-15

Similar Documents

Publication Publication Date Title
WO2006085481A1 (en) Electrically conductive fine particles, anisotropic electrically conductive material, and electrically conductive connection method
JP4863988B2 (en) Conductive fine particles and anisotropic conductive material
JP5151920B2 (en) Conductive particles and method for producing conductive particles
KR101261184B1 (en) Coated conductive particles and method for producing same
JP4991666B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP4640532B2 (en) Coated conductive particles
JP5114607B2 (en) Conductive particle, method for producing conductive particle, anisotropic conductive material, and connection structure
JP5024260B2 (en) Conductive particles, insulating coated conductive particles and manufacturing method thereof, anisotropic conductive adhesive
TW201125661A (en) Conductive fine particles and anisotropic conductive material
KR101294946B1 (en) Method for producing conductive particles, method for producing insulating coated conductive particles, and anisotropic conductive adhesive film
KR101995595B1 (en) Conductive particle and conductive material comprising the same
WO2011002084A1 (en) Conductive particle
JP2011029179A (en) Conductive particle
US20080160309A1 (en) Electrically Conductive Fine Particles, Anisotropic Electrically Conductive Material, and Electrically Conductive Connection Method
JP4715969B1 (en) Conductive particles
JP5589361B2 (en) Conductive particles and method for producing the same
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP2003346556A (en) Anisotropic conductive material
KR101151072B1 (en) Conductive particles, insulating coated conductive particles and method for producing the same, and anisotropic conductive adhesive
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
JP5834548B2 (en) Insulating coated conductive particles and anisotropic conductive adhesive film
TW201108340A (en) Connecting method, connecting structure and electronic machine
WO2007072912A1 (en) Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007502581

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680003484.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11883852

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077018198

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712979

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712979

Country of ref document: EP