JP6264731B2 - Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles - Google Patents

Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles Download PDF

Info

Publication number
JP6264731B2
JP6264731B2 JP2013043132A JP2013043132A JP6264731B2 JP 6264731 B2 JP6264731 B2 JP 6264731B2 JP 2013043132 A JP2013043132 A JP 2013043132A JP 2013043132 A JP2013043132 A JP 2013043132A JP 6264731 B2 JP6264731 B2 JP 6264731B2
Authority
JP
Japan
Prior art keywords
conductive
fine particles
conductive fine
resin composition
dendritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013043132A
Other languages
Japanese (ja)
Other versions
JP2013214508A (en
JP2013214508A5 (en
Inventor
努 早坂
努 早坂
祐司 西山
祐司 西山
和規 松戸
和規 松戸
祥太 森
祥太 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2013043132A priority Critical patent/JP6264731B2/en
Publication of JP2013214508A publication Critical patent/JP2013214508A/en
Publication of JP2013214508A5 publication Critical patent/JP2013214508A5/ja
Application granted granted Critical
Publication of JP6264731B2 publication Critical patent/JP6264731B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers

Description

本発明は、導電性微粒子およびその製造方法に関する。また、前記導電性微粒子を含む導電性樹脂組成物に関する。さらに、前記導電性樹脂組成物から形成してなる導電層を備える導電性シートおよび電磁波シールドシートに関する。   The present invention relates to conductive fine particles and a method for producing the same. The present invention also relates to a conductive resin composition containing the conductive fine particles. Furthermore, it is related with an electroconductive sheet and an electromagnetic wave shield sheet provided with the electroconductive layer formed from the said electroconductive resin composition.

プリント配線板は、携帯電話、デジタルカメラ等の電子機器の小型化に伴って薄型化し、フレキシブルプリント配線板が多用されるようになってきている。プリント配線板には、通常、導電性シート、電磁波シールドシート等(以下、「導電性シート等」ともいう)が使用されている。導電性シート等は、経時的な安定性も含めて優れた導電特性が求められおり、シート中に含有される導電性フィラーの特性が重要となる。   Printed wiring boards are becoming thinner as electronic devices such as mobile phones and digital cameras become smaller, and flexible printed wiring boards are becoming increasingly used. As the printed wiring board, a conductive sheet, an electromagnetic shielding sheet or the like (hereinafter also referred to as “conductive sheet or the like”) is usually used. The conductive sheet or the like is required to have excellent conductive characteristics including stability over time, and the characteristics of the conductive filler contained in the sheet are important.

導電性フィラーとしては、銀粉が導電特性において優れるので、これまで銀粉を含有する導電性シート等が実用化されてきた。しかしながら、銀粉の価格は、導電性シート等に使用される樹脂や他の原料と比較して高価であり、コスト高となる。その上、昨今の銀価格の高騰により、銀粉を使用した導電性シート等の価格上昇が深刻な問題となっている。電子機器の低価格化を達成するためには、導電性フィラーの使用割合を減らす必要に迫られているが、導電性フィラーの使用割合を減らすと、所望の導電性を維持することができなくなるという問題に直面する。   As the conductive filler, silver powder is excellent in conductive properties, and thus conductive sheets containing silver powder have been put to practical use. However, the price of silver powder is expensive compared to resins and other raw materials used for conductive sheets and the like, resulting in high costs. In addition, due to the recent increase in silver prices, the price increase of conductive sheets using silver powder has become a serious problem. In order to achieve a reduction in the price of electronic equipment, it is necessary to reduce the usage rate of the conductive filler. However, if the usage rate of the conductive filler is reduced, the desired conductivity cannot be maintained. Face the problem.

そこで、導電特性を満たしつつ、低コスト化を実現するために種々の提案がなされている。例えば、特許文献1においては、図2に示すようなフレーク状(鱗片状)銀粉を用いることにより、導電性フィラーの量を減らしつつ、被着体に対する接着力を向上させる方法が提案されている。また、特許文献2においては、これらのシートに用いる導電性粒子として銅表面に銀をメッキした銀コート銅粉が開示されている。また、特許文献3では、導電性粒子として樹枝状の銀コート銅粉と鱗片状銀粉を混合した導電性ペーストが開示されている。   Therefore, various proposals have been made to realize cost reduction while satisfying the conductive characteristics. For example, in patent document 1, the method of improving the adhesive force with respect to a to-be-adhered body is proposed, reducing the quantity of an electroconductive filler by using flaky (scale-like) silver powder as shown in FIG. . Moreover, in patent document 2, the silver coat copper powder which plated silver on the copper surface as electroconductive particle used for these sheets is disclosed. Patent Document 3 discloses a conductive paste in which dendritic silver-coated copper powder and scaly silver powder are mixed as conductive particles.

特開2011−86930号公報JP 2011-86930 A 特開2002−75057号公報JP 2002-75057 A 特開2009−230952号公報JP 2009-230952 A

導電性シート等の市場においては、導電特性に優れ、かつ低コスト化を実現するために、高価な銀粉の使用量を削減しつつ導電特性に優れたシートの開発が求められている。さらに、軽薄短小化の要求に対応するために導電性シート等を薄膜化する技術が求められている。特許文献3の導電性ペーストを導電性シートとして用いた場合、樹枝状の銀コート銅粉を配合しているので、シートを薄膜化し難いという問題があった。これは、樹枝状の銀コート銅粉の一部が導電層から突き出して他の層を突き破ったり、他の層を傷つけたりする虞があるためである。なお、上記においては、導電性粒子として銀を用いる例について述べたが、他の導電性粒子を用いる場合についても同様の課題が生じ得る。また、プリント配線板に適用する導電性シート等について述べたが、導電性シート全般において同様の課題が生じ得る。   In the market for conductive sheets and the like, development of a sheet having excellent conductive characteristics while reducing the amount of expensive silver powder used is required in order to achieve excellent conductive characteristics and low cost. Furthermore, there is a need for a technique for reducing the thickness of a conductive sheet or the like in order to meet the demand for reduction in size and thickness. When the conductive paste of Patent Document 3 is used as a conductive sheet, there is a problem that it is difficult to reduce the thickness of the sheet because it contains a dendritic silver-coated copper powder. This is because a part of the dendritic silver-coated copper powder may protrude from the conductive layer and break through other layers or damage other layers. In addition, although the example using silver as electroconductive particle was described in the above, the same subject may arise also when using other electroconductive particle. Moreover, although the conductive sheet etc. which are applied to a printed wiring board were described, the same subject may arise in the whole conductive sheet.

本発明は、上記背景に鑑みてなされたものであり、その目的とするところは、コストダウンが可能で、導電特性に優れ、かつ、例えば樹脂と共に配合した組成物をシート状に形成した際に薄膜化が可能な導電性微粒子を提供することである。   The present invention has been made in view of the above background, and the object of the present invention is that it is possible to reduce costs, have excellent conductive properties, and, for example, when a composition blended with a resin is formed into a sheet shape. It is to provide conductive fine particles that can be made thin.

本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。即ち、本発明に係る導電性微粒子は、導電性物質を含む核体と、前記核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備し、下記数式(1)から求められる円径度係数の平均値が0.15以上、0.4以下であり、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されている。
As a result of extensive studies by the present inventors, it has been found that the problems of the present invention can be solved in the following modes, and the present invention has been completed. That is, the conductive fine particles according to the present invention include a core containing a conductive substance, a coating layer that covers the core and is made of a conductive substance different from the core, and at least a part of which constitutes the outermost layer. And the average value of the circularity degree coefficient obtained from the following formula (1) is 0.15 or more and 0.4 or less, and at least one of notches and branched leaves is formed in the outer edge shape. Yes.

上記構成の本発明によれば、コストダウンが可能で、導電特性に優れ、かつ、例えば樹脂と共に配合した組成物をシート状に形成した際に薄膜化が可能な導電性微粒子を提供することができるという優れた効果を奏する。   According to the present invention having the above-described configuration, it is possible to provide conductive fine particles that can be reduced in cost, have excellent conductive characteristics, and can be thinned when, for example, a composition blended with a resin is formed into a sheet shape. There is an excellent effect of being able to.

本発明者らが鋭意検討を重ねた結果、驚くべきことに、円径度係数の平均値を上記範囲とし、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方を含む葉状の導電性微粒子とすることにより、導電特性が優れることがわかった。また、特許文献3等の樹枝状の導電性微粒子を配合する場合、薄膜化し難いという課題があったが、本発明に係る導電性微粒子によれば、円径度係数の平均値を上記範囲とし、かつ、上述した外縁形状とすることで、組成物に混練してシート状にした際に薄膜化できることがわかった。さらに、核体と被覆層とで異なる導電性物質を用いるので、材料選択肢を増やし、コストダウンを達成できる。   As a result of the extensive studies by the present inventors, surprisingly, the average value of the circularity coefficient is in the above range, and the leaf-like conductive fine particles include at least one of notches and branched leaves in the outer edge shape. As a result, it was found that the conductive characteristics were excellent. In addition, when blending dendritic conductive fine particles such as Patent Document 3 and the like, there is a problem that it is difficult to make a thin film, but according to the conductive fine particles according to the present invention, the average value of the circularity coefficient is within the above range. And it turned out that it can be made into a thin film when it kneads | mixes a composition and makes it into a sheet form by setting it as the outer edge shape mentioned above. Further, since different conductive materials are used for the core and the coating layer, the choice of materials can be increased and the cost can be reduced.

本発明の鱗片葉または分岐葉を有する導電性微粒子の一例を示す電子顕微鏡写真である。It is an electron micrograph which shows an example of the electroconductive fine particles which have a scale leaf or a branched leaf of this invention. 鱗片状銀粉の電子顕微鏡写真である。It is an electron micrograph of scaly silver powder. 樹枝状銀コート銅粉の電子顕微鏡写真である。It is an electron micrograph of dendritic silver coat copper powder. 接続抵抗値の測定用試験サンプルの模式図である。It is a schematic diagram of the test sample for a connection resistance value measurement.

以下、本発明について具現化した実施形態を説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれることは言うまでもない。また、本明細書において「〜」を用いて特定される数値範囲は、「〜」の前後に記載される数値を下限値および上限値の範囲として含むものとする。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。また、下記の実施形態は、互いに好適に組み合わせられる。   Hereinafter, embodiments embodying the present invention will be described. Needless to say, other embodiments are also included in the scope of the present invention as long as they meet the spirit of the present invention. In addition, the numerical range specified using “to” in this specification includes numerical values described before and after “to” as ranges of the lower limit value and the upper limit value. Further, matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters for those skilled in the art based on the prior art in this field. Further, the following embodiments are preferably combined with each other.

(導電性微粒子) 本発明の導電性微粒子は、所謂コアシェルタイプの粒子であり、導電性物質を含む核体と、核体を被覆し、この核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備する。被覆層は、核体の少なくとも一部を被覆していればよいが、より優れた導電特性を得るためには、被覆率が高い方が好ましい。導電特性を良好に保つ観点からは、被覆層による平均被覆率を60%以上とすることが好ましく、70%以上とすることがより好ましく、80%以上とすることがさらに好ましい。なお、本明細書における平均被覆率は、後述する実施例と同様の方法により求めた値をいう。 (Conductive fine particles) The conductive fine particles of the present invention are so-called core-shell type particles, and are composed of a core containing a conductive substance, a core containing the core, and a conductive substance different from the core, and at least one And a coating layer that constitutes the outermost layer. The coating layer only needs to cover at least a part of the nucleus, but in order to obtain more excellent conductive characteristics, a higher coverage is preferable. From the viewpoint of maintaining good conductive properties, the average coverage by the coating layer is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. In addition, the average coverage in this specification says the value calculated | required by the method similar to the Example mentioned later.

導電性微粒子は、核体と被覆層のみから構成されていてもよいが、他の層を含んでいてもよい。例えば、核体と被覆層の間の接合を強固にする中間層、接合層等をはじめとする層が形成されていてもよい。また、核体、被覆層、他の層は、それぞれ独立に単一種類で構成されていてもよいし、複数種類で構成されていてもよい。また、核体、被覆層において、本発明の趣旨を逸脱しない範囲において、導電性物質以外の他の物質が混練されていてもよい。   The conductive fine particles may be composed only of the nucleus and the coating layer, but may include other layers. For example, layers such as an intermediate layer and a bonding layer that strengthen the bonding between the core and the coating layer may be formed. In addition, the core body, the coating layer, and the other layers may be independently formed of a single type or a plurality of types. Further, in the core body and the coating layer, other substances than the conductive substance may be kneaded within a range not departing from the gist of the present invention.

本発明の導電性微粒子は、下記式(1)から求められる円径度係数の平均値が0.15以上、0.4以下であり、かつ、外縁形状に、切れ込みおよび分岐葉の少なくとも一方が複数形成されているものである。
In the conductive fine particles of the present invention, the average value of the circularity coefficient obtained from the following formula (1) is 0.15 or more and 0.4 or less, and the outer edge has at least one of notches and branched leaves. A plurality are formed.

上記式(1)の円径度係数により、導電性微粒子の外縁の凹凸度合(起伏度合)を把握することができる。真球は円径度係数が1となり、凹凸形状の増大に従って円径度係数が低下する。即ち、円径度係数は、0より大きく1以下となる。本明細書における円径度係数は、Mac-View Ver.4(マウンテック社)の解析ソフトを用いて、導電性微粒子の電子顕微鏡画像(千倍〜1万倍程度)を読み込み、手動認識モードで導電性粒子を約20個選択した。葉状や鱗片状の粒子を選択する際は、粒子同士が重なっていない粒子形状全体が確認できるものであって、観察視点から平面板が垂直になる角度のものを抽出して選択した。粒子基準データは、投影面積円相当径、分布は体積分布の設定として、円径度係数と円形係数を算出し、20個の平均値を求めた。上記数式(1)において面積は、二次元に投影した時の外周を形成する線の内部の面積を平板面とし、この平板面を二次元に投影したときの導電性微粒子の外周を周囲長の長さとする。   The degree of unevenness (undulation degree) of the outer edge of the conductive fine particles can be grasped by the circularity degree coefficient of the above formula (1). The true sphere has a circularity coefficient of 1, and the circularity coefficient decreases as the uneven shape increases. That is, the circularity coefficient is greater than 0 and 1 or less. For the circularity coefficient in this specification, use the analysis software of Mac-View Ver.4 (Mounttech) to read the electron microscopic image (approximately 1000 to 10,000 times) of the conductive fine particles, and use the manual recognition mode. About 20 conductive particles were selected. When selecting the leaf-like or scale-like particles, the whole particle shape in which the particles do not overlap each other can be confirmed, and the particles having an angle at which the plane plate is perpendicular from the observation viewpoint are selected and selected. The particle reference data is a projected area equivalent circle diameter, and the distribution is a volume distribution setting. A circularity coefficient and a circular coefficient are calculated, and 20 average values are obtained. In the above formula (1), the area is the area inside the line forming the outer periphery when projected two-dimensionally as a flat plate surface, and the outer periphery of the conductive fine particles when the flat plate surface is projected two-dimensionally is the peripheral length. Length.

上記数式(1)から求められる円径度係数の平均値を0.15以上、0.4以下とし、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されているものを用いたコアシェルタイプの導電性微粒子を用いることにより、コストダウンが可能で、導電特性に優れ、かつ、薄膜化が可能となる。円径度係数の平均値の下限値は、絶縁層への導電フィラーの突き抜け防止の観点から、0.20以上とすることがさらに好ましい。また、円径度係数の平均値の上限値は、導電層のシート抵抗の観点から、0.3以下とすることがさらに好ましい。上記円径度係数の平均値、円形係数の平均値は、1cm2あたりに定義する粒子が約10個以上存在することが好ましい。
A core shell using an average value of the circularity coefficient obtained from the above formula (1) of not less than 0.15 and not more than 0.4, and at least one of notches and branched leaves formed in the outer edge shape By using the type of conductive fine particles, the cost can be reduced, the conductive characteristics are excellent, and the film can be made thin. The lower limit of the average value of the circle径度coefficients viewpoint et penetration preventing conductive filler into the insulating layer, still more preferably 0.20 or more. Moreover, the circular upper limit of the average value of径度coefficient viewpoint et sheet resistance of the conductive layer, 0. More preferably, it is 3 or less. The average value of the circularity coefficient and the average value of the circular coefficient are preferably about 10 or more particles defined per 1 cm 2 .

なお、図3に示すような樹枝状の導電性微粒子の円径度係数は、概ね0.11以下であり、鱗片状の導電性微粒子の円径度係数は、0.4越え、0.5以下程度である。   In addition, the circularity coefficient of the dendritic conductive fine particles as shown in FIG. 3 is about 0.11 or less, and the circularity coefficient of the scaly conductive fine particles exceeds 0.4, 0.5 It is about the following.

本発明の導電性微粒子は、以下の数式(2)より求められる円らしさを表す円形係数の平均値が2以上、5以下であることが好ましい。
ここで、最大直径は、選択粒子の最大長の長さである。円形係数を前述の範囲とすることにより、導電性がより向上するという効果が得られる。絶縁層への導電フィラーの突き抜け防止の観点から、円形係数のより好ましい上限値は、4.5以下であり、さらに好ましくは4.0以下である。また、導電層のシート抵抗の観点から、円形係数のより好ましい下限値は、2以上であり、さらに好ましくは2.4以上である。円形係数により微粒子全体の形状が円に近いか否かがわかる(数値が小さいほど円に近い)。なお、円形係数は、円径度係数で使用した解析ソフト(Mac-View Ver.4)を使用した形状係数3である。
The conductive fine particles of the present invention preferably have an average value of circular coefficients representing circularity obtained from the following formula (2) of 2 or more and 5 or less.
Here, the maximum diameter is the length of the maximum length of the selected particles. By setting the circular coefficient to the above-described range, an effect that the conductivity is further improved can be obtained. From the viewpoint of preventing the conductive filler from penetrating into the insulating layer, the more preferable upper limit of the circular coefficient is 4.5 or less, and more preferably 4.0 or less. Further, from the viewpoint of the sheet resistance of the conductive layer, a more preferable lower limit value of the circular coefficient is 2 or more, and more preferably 2.4 or more. The circular coefficient indicates whether the shape of the entire fine particle is close to a circle (the smaller the value, the closer to the circle). The circular coefficient is a shape factor 3 using the analysis software (Mac-View Ver. 4) used for the circularity coefficient.

本発明の導電性微粒子は、換言すると、鱗片葉および分岐葉の少なくとも一方を複数有する葉状導電性微粒子である。図1に、本発明に係る導電性微粒子の一例を示す電子顕微鏡像を示す。同図の例においては、核体として銅粉を、被覆層として銀を用いたものである。同図に示すように、導電性微粒子は、その外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されている。言い換えると、鱗片葉、分岐葉またはこれに類する形状が複数形成されている。以下、本発明の導電性微粒子を「葉状の導電性微粒子」ともいう。   In other words, the conductive fine particles of the present invention are leaf-shaped conductive fine particles having a plurality of at least one of scale leaves and branched leaves. FIG. 1 shows an electron microscope image showing an example of conductive fine particles according to the present invention. In the example of the figure, copper powder is used as the core and silver is used as the coating layer. As shown in the figure, the conductive fine particle has a plurality of cuts and / or branch leaves formed in the outer edge shape. In other words, a plurality of scale leaves, branched leaves, or similar shapes are formed. Hereinafter, the conductive fine particles of the present invention are also referred to as “leaf-shaped conductive fine particles”.

導電性微粒子の厚さは、0.1〜2μmが好ましく、0.2〜1μmがより好ましい。厚さが0.1〜2μmの範囲になることで導電性シートの導電性を維持しつつ、より薄く製造できる。なお、当該厚さは、電子顕微鏡で千倍〜5万倍程度に拡大した画像を元に得たものであり、ここでいう「厚さ」は、電子顕微鏡の1万倍画像で、異なる粒子を約10〜20個を測定し、その平均値を使用した。   0.1-2 micrometers is preferable and, as for the thickness of electroconductive fine particles, 0.2-1 micrometer is more preferable. When the thickness is in the range of 0.1 to 2 μm, the conductive sheet can be made thinner while maintaining the conductivity of the conductive sheet. In addition, the said thickness was obtained based on the image expanded about 1000 times-50,000 times with the electron microscope, and "thickness" here is a 10,000 times image of an electron microscope, and is different particle | grains. About 10 to 20 were measured, and the average value was used.

また、導電性微粒子の平均粒子径(D50)は1〜100μmが好ましい。平均粒子径(D50)が1〜100μmの範囲内にあることで導電性がより向上し、さらに、例えば樹脂と配合して導電性樹脂組成物を製造した場合に、その溶液安定性をより向上できる。導電性微粒子の平均粒子径(D50)は、3μm以上がより好ましく、50μm以下がより好ましい。なお、平均粒子径(D50)とは、レーザー回折・散乱法粒度分布測定装置LS 13 320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、各導電性微粒子を測定して得た数値であり、粒子の積算値が50%である粒度の直径の平均粒径である。なお、屈折率の設定は1.6とした。
また、導電性微粒子を導電性シートの形態にした際の平均粒子径(D50)の測定方法は、円径度係数を測定する方法と同じ条件で、導電性微粒子をSEM観察し、画像解析ソフトMac-View Ver.4(マウンテック社)にて、粒子基準データは、投影面積円相当径、分布は体積分布の設定として、平均粒子径(D50)を求める。
The average particle diameter (D50) of the conductive fine particles is preferably 1 to 100 μm. When the average particle diameter (D50) is in the range of 1 to 100 μm, the conductivity is further improved. Further, for example, when a conductive resin composition is produced by blending with a resin, the solution stability is further improved. it can. The average particle diameter (D50) of the conductive fine particles is more preferably 3 μm or more, and more preferably 50 μm or less. The average particle size (D50) is obtained by measuring each conductive fine particle with a tornado dry powder sample module using a laser diffraction / scattering particle size distribution analyzer LS 13 320 (manufactured by Beckman Coulter). It is the obtained numerical value, and is the average particle diameter of the diameter of the particle size where the integrated value of the particles is 50%. The refractive index was set to 1.6.
In addition, the measurement method of the average particle diameter (D50) when the conductive fine particles are in the form of a conductive sheet is the same as the method for measuring the circularity coefficient, and the conductive fine particles are observed by SEM, and image analysis software is used. In Mac-View Ver.4 (Mounttech), the particle reference data is the projected area circle equivalent diameter, and the distribution is the volume distribution setting, and the average particle diameter (D50) is obtained.

核体は、導電性微粒子のコア部として機能する。核体は、導電特性を向上させる観点から導電性物質のみから構成することが好ましいが、非導電性物質が含まれていてもよい。核体の原料は、これらを満たすものであれば特に限定されないが、導電性金属、導電性カーボンまたは導電性樹脂等が例示できる。導電性金属は、例えば、金、白金、銅、ニッケル、アルミニウム、鉄、またはその合金等が挙げられるが、価格と導電性の面から銅が好ましい。また、導電性カーボンは、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、カーボンナノチューブ、カーボンナノファイバー、グラファイトおよびグラフェンなどが好ましい。また、導電性樹脂の場合は、ポリ(3,4-エチレンジオキシチオフェン)、ポリアセチレンおよびポリチオフェン等が好ましい。核体は、それ自身が導電性を有することが好ましい。

The nucleus functions as a core part of the conductive fine particles. The nucleus is preferably composed of only a conductive material from the viewpoint of improving the conductive properties, but may contain a non-conductive material. The raw material of the nucleus is not particularly limited as long as it satisfies these, and examples thereof include conductive metal, conductive carbon, or conductive resin. Examples of the conductive metal include gold, platinum, copper, nickel, aluminum, iron, or an alloy thereof, but copper is preferable from the viewpoint of cost and conductivity. The conductive carbon is preferably, for example, acetylene black, ketjen black, furnace black, carbon nanotube, carbon nanofiber, graphite, or graphene. In the case of a conductive resin, poly (3,4-ethylenedioxythiophene), polyacetylene, polythiophene, and the like are preferable. It is preferable that the nucleus itself has conductivity.

被覆層は、核体とは異なる導電性物質からなるものである。被覆層に用いることができる導電性物質は、核体で挙げた物質が例示できる。その中でも、導電特性が高い物質を使用することが本発明の目的に合致する。具体的には、金、白金または銀が好ましく、中でも銀がより好ましい。なお、現在の技術では、金属以外の導電性物質、例えば導電性樹脂等は導電性が低いが、今後技術が進歩して導電性が向上すれば、導電性樹脂等も被覆層として好適である。コスト削減と導電特性の向上を両立させる観点から、被覆層において導電特性が優れる導電性物質を、核体においてコスト的に有利な導電性物質を用いることが好ましい。なお、核体と被覆層の層間に導電性の中間層を設けることもできる。   The coating layer is made of a conductive material different from the core. Examples of the conductive material that can be used for the coating layer include the materials mentioned in the nucleus. Among them, the use of a material having high conductive characteristics meets the object of the present invention. Specifically, gold, platinum or silver is preferable, and silver is more preferable. In the current technology, conductive materials other than metals, such as conductive resins, have low conductivity. However, if the technology improves and the conductivity improves in the future, conductive resins and the like are also suitable as the coating layer. . From the viewpoint of achieving both cost reduction and improvement in conductive characteristics, it is preferable to use a conductive substance having excellent conductive characteristics in the coating layer and a conductive substance advantageous in cost for the core. A conductive intermediate layer can be provided between the core and the coating layer.

被覆層は、核体100重量部に対して1〜40重量部の割合で被覆することが好ましく、5〜30重量部がより好ましく、5〜20重量部がさらに好ましい。1〜40重量部の範囲内の被覆層を用いることにより、被覆層として用いる導電性物質の使用量を削減しつつ、導電特性を引き出すことができる。例えば、核体として銅を用い、被覆層として銀を用いた場合に、導電特性を維持ながら、導電性微粒子の価格を効果的に低減できる。   The coating layer is preferably coated at a ratio of 1 to 40 parts by weight with respect to 100 parts by weight of the core, more preferably 5 to 30 parts by weight, and even more preferably 5 to 20 parts by weight. By using the coating layer in the range of 1 to 40 parts by weight, it is possible to draw out the conductive characteristics while reducing the amount of the conductive material used as the coating layer. For example, when copper is used as the core and silver is used as the coating layer, the price of the conductive fine particles can be effectively reduced while maintaining the conductive characteristics.

本発明の導電性微粒子によれば、円径度係数の平均値を上記範囲とし、かつ、外縁形状に切れ込みおよび分岐葉の少なくともいずれかを含ませる葉状の導電性微粒子とすることにより、導電特性が優れたものになることがわかった。これは、凹凸や起伏がほとんどないフレーク状(鱗状)の導電性微粒子よりも粒子の凹凸を増やし、かつ、粒子の外縁形状に切れ込みおよび分岐葉の少なくともいずれかを含ませる葉状形状とすることで、シート状にした際に、導電性微粒子の接触点を増大させることができたことによるものと考察している。また、樹枝状の導電性微粒子によれば薄膜化が難しいという問題があったが、本発明に係る導電性微粒子によれば、容易に薄膜化できる。これは、樹枝状よりも平坦化されているためである。さらに、核体と被覆層とで異なる導電性物質を用いるので、材料選択肢を増やし、コストダウンを達成できる。   According to the conductive fine particles of the present invention, the conductive characteristics are obtained by setting the average value of the circularity coefficient to the above range and the leaf-shaped conductive fine particles including at least one of notches and branched leaves in the outer edge shape. Was found to be excellent. This is because it increases the irregularities of the particles more than the flaky (scale-like) conductive fine particles with almost no irregularities and undulations, and it has a leaf-like shape that includes at least one of notches and branched leaves in the outer edge shape of the particles. It is considered that the contact point of the conductive fine particles can be increased when the sheet is formed. In addition, the dendritic conductive fine particles have a problem that it is difficult to reduce the thickness, but the conductive fine particles according to the present invention can be easily reduced in thickness. This is because it is flattened rather than dendritic. Further, since different conductive materials are used for the core and the coating layer, the choice of materials can be increased and the cost can be reduced.

なお、本願発明の導電性微粒子は、コアシェルタイプのものであるが、単一の導電性物質において、上記円径度係数、外縁形状を満足する粒子を製造した場合においても、優れた導電特性および薄膜化を達成できる。従って、銀等の価格が低下した場合、コストダウンの課題を解決できれば、単一の導電性物質においても有用である。また、銅を用いると、酸化により導電特性が低下するという問題があるが、酸化防止技術の開発により導電特性が良好に維持できれば、単一の導電性物質においても有用である。   Although the conductive fine particles of the present invention are of the core-shell type, even when particles satisfying the circularity coefficient and the outer edge shape are produced in a single conductive substance, excellent conductive characteristics and Thin film can be achieved. Therefore, if the price of silver or the like is reduced, it is useful even with a single conductive material if the problem of cost reduction can be solved. In addition, when copper is used, there is a problem that the conductive characteristics are lowered due to oxidation. However, if the conductive characteristics can be satisfactorily maintained by the development of an anti-oxidation technique, it is useful even in a single conductive substance.

(導電性微粒子の製造方法) 本発明の導電性微粒子の製造方法は、導電性物質を含む核体と、この核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備する導電性微粒子の製造方法である。より詳細には、導電性を有する樹枝状微粒子と、樹枝状微粒子に衝突させることにより、当該樹枝状微粒子を変形させるための固体媒体とを用意する工程と、樹枝状微粒子と固体媒体を密閉容器内で衝突させることにより当該樹枝状微粒子を下記数式(1)から求められる円径度係数が0.15以上、0.4以下であり、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されるように変形させる工程と、を備えるものである。
以下、本発明の導電性微粒子の製造方法を具現化するために、好適な一例を説明する。但し、以下の製造方法によって限定されるものではなく、種々の製造方法が可能である。
(Method for Producing Conductive Fine Particles) The method for producing conductive fine particles of the present invention comprises a core containing a conductive substance and a conductive substance which covers the core and is different from the core, and at least partly Is a method for producing conductive fine particles comprising a coating layer constituting the outermost layer. More specifically, a step of preparing a dendritic particle having conductivity and a solid medium for deforming the dendritic particle by colliding with the dendritic particle, and the dendritic particle and the solid medium are sealed in a sealed container. The circularity coefficient obtained from the following mathematical formula (1) is 0.15 or more and 0.4 or less, and at least one of notches and branch leaves is formed in the outer edge shape. And a step of deforming so as to be formed.
Hereinafter, a preferred example will be described in order to embody the method for producing conductive fine particles of the present invention. However, it is not limited by the following manufacturing methods, and various manufacturing methods are possible.

本発明の導電性微粒子の製造方法は、導電性を有する樹枝状微粒子と、この樹枝状微粒子に衝突させることにより、当該樹枝状微粒子を変形させるための固体媒体とを用意する工程(ステップ1)と、樹枝状微粒子と固体媒体を密閉容器内で衝突させることにより当該樹枝状微粒子を変形させる工程(ステップ2)とを備える。   In the method for producing conductive fine particles of the present invention, a step of preparing a dendritic fine particle having conductivity and a solid medium for deforming the dendritic fine particle by colliding with the dendritic fine particle (step 1). And a step (step 2) of deforming the dendritic fine particles by causing the dendritic fine particles and the solid medium to collide with each other in a closed container.

ステップ1において、樹枝状粒子は、図3に示すような所謂樹枝状(デンドライト状)の導電特性を有する粒子を用意する。樹枝状粒子は、核体と被覆層を具備してなる葉状の導電性微粒子の前駆体である非葉状の導電性微粒子を好適に用いることができる。また、核体のみからなる樹枝状粒子でもよい。この場合には、ステップ2の処理後に、ステップ3として核体に被覆層を設ける工程を行う。   In step 1, the dendritic particles are prepared so-called dendritic (dendritic) conductive properties as shown in FIG. As the dendritic particles, non-leaf-like conductive fine particles which are precursors of leaf-like conductive fine particles comprising a nucleus and a coating layer can be suitably used. Moreover, the dendritic particle which consists only of a nucleus may be sufficient. In this case, after the process of step 2, a step of providing a coating layer on the core is performed as step 3.

ステップ1における固体媒体は、樹枝状微粒子に衝突させることにより、樹枝状微粒子を数式(1)から求められる円径度係数が0.15以上、0.4以下であり、かつ、外縁形状に、切れ込みおよび分岐葉の少なくとも一方が複数形成されている導電性微粒子が得られるものであれば特に限定されない。   The solid medium in Step 1 is caused to collide with the dendritic fine particles so that the circularity coefficient obtained from the mathematical formula (1) is 0.15 or more and 0.4 or less, and the outer edge shape is There is no particular limitation as long as it is possible to obtain conductive fine particles in which at least one of notches and branched leaves is formed.

固体媒体は、スチールなどの金属、ガラス、ジルコニア、アルミナ、プラスチック、チタニアおよびゼラミック等の素材が好ましい。また、密閉容器は、ボールミル、サンドミル等公知の分散機、または粉砕機などを使用できる。また固体媒体の形状は、球状、楕円状など凹凸が少ない形状が好ましい。固体媒体のサイズは、例えば、0.1〜3mm程度である。また、固体媒体の比重は、例えば、1.0〜10.0程度である。   The solid medium is preferably a metal such as steel, or a material such as glass, zirconia, alumina, plastic, titania or ceramic. As the sealed container, a known disperser such as a ball mill or a sand mill, or a pulverizer can be used. The shape of the solid medium is preferably a shape with few irregularities such as a spherical shape and an elliptical shape. The size of the solid medium is, for example, about 0.1 to 3 mm. The specific gravity of the solid medium is, for example, about 1.0 to 10.0.

ステップ2として、樹枝状微粒子と固体媒体とを密閉容器内に投入し、樹枝状微粒子と固体媒体とを衝突させる。樹枝状微粒子に固体媒体が衝突することにより、樹枝状微粒子が変形し、例えば、図1に示すような葉状の導電性微粒子を得ることができる。導電性微粒子の製造時には、樹脂の存在下で固体媒体を衝突させてもよい。これにより、導電性微粒子の製造と同時に後述する導電性樹脂組成物を製造することができる。ステップ2の衝突させるための分散時間や衝突条件は、上記特性の導電性微粒子が得られる条件であれば特に限定されない。例えば、分散時間を10分〜60分とすることができる。   In step 2, the dendritic fine particles and the solid medium are put into a sealed container, and the dendritic fine particles and the solid medium collide with each other. When the solid medium collides with the dendritic fine particles, the dendritic fine particles are deformed, and for example, leaf-like conductive fine particles as shown in FIG. 1 can be obtained. When producing the conductive fine particles, the solid medium may be collided in the presence of the resin. Thereby, the conductive resin composition mentioned later can be manufactured simultaneously with manufacture of conductive fine particles. The dispersion time and the collision condition for the collision in Step 2 are not particularly limited as long as the conductive fine particles having the above characteristics can be obtained. For example, the dispersion time can be 10 minutes to 60 minutes.

導電性微粒子を製造するときに、導電性微粒子に添加するものとして、増粘剤、分散剤、重金属不活性化剤等を使用できる。増粘剤を使用することで微粒子が過度に沈降することを抑制できる。増粘剤は、例えばシリカ系化合物、ポリカルボン酸系化合物、ポリウレタン系化合物、ウレア系化合物およびポリアマイド系等が挙げられる。分散剤を使用することで導電性微粒子の分散性をより向上できる。分散剤は、例えばカルボン酸やリン酸基から成る酸性分散剤、又はアミン基を含む塩基性分散剤、酸塩基で中和されている塩タイプの分散剤が挙げられる。
A thickener, a dispersing agent, a heavy metal deactivator, etc. can be used as what is added to electroconductive fine particles when manufacturing electroconductive fine particles. By using a thickener, it is possible to prevent the fine particles from precipitating excessively. Examples of the thickener include silica-based compounds, polycarboxylic acid-based compounds, polyurethane-based compounds, urea-based compounds, and polyamide-based compounds. Dispersibility of conductive fine particles by using a dispersant can be further improved. Examples of the dispersant include an acidic dispersant composed of a carboxylic acid or a phosphate group, a basic dispersant containing an amine group, and a salt type dispersant neutralized with an acid base.

重金属不活性化剤を使用することで、不純物として金属イオンが混入した場合でも、導電性が阻害されにくくなる。重金属不活性化剤としては、例えば、アセチルアセトン、カルボキシベンゾトリアゾール系化合物、ヒンダードフェノール系化合物、ヒドラジン系化合物、チオカルバメート系化合物、サルチル酸系イミダゾールおよびチアジアゾール系化合物等が挙げられる。また、化学式(1)で表される単位を有する化合物「以下、「化合物A」とも称する」が好ましい例として挙げられる。   By using a heavy metal deactivator, even when metal ions are mixed as impurities, the conductivity is hardly inhibited. Examples of heavy metal deactivators include acetylacetone, carboxybenzotriazole compounds, hindered phenol compounds, hydrazine compounds, thiocarbamate compounds, salicylic acid imidazoles and thiadiazole compounds. Moreover, a compound having a unit represented by the chemical formula (1) “hereinafter also referred to as“ compound A ”” is a preferred example.

化合物Aの添加量は、本発明の趣旨を逸脱しない範囲で限定されないが、後述する導電性樹脂組成物の粘度安定性、導電性シートの抵抗値の経時安定性、電磁波シールドシートの接着力の経時安定性の観点から、導電性微粒子100重量部に対して0.1重量部以上、30重量部以下とすることが好ましい。経時安定性の向上およびコストダウンの観点から0.5重量部以上、15重量部以下がより好ましい。
The amount of compound A added is not limited within a range that does not depart from the spirit of the present invention, but the viscosity stability of the conductive resin composition described later, the temporal stability of the resistance value of the conductive sheet, and the adhesive strength of the electromagnetic shielding sheet From the viewpoint of stability over time, the content is preferably 0.1 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the conductive fine particles. From the viewpoint of improvement of stability over time and cost reduction, 0.5 parts by weight or more and 15 parts by weight or less are more preferable.

化合物Aは、種々の化合物があり特に限定されないが、好ましい例として、例えば、N−サリシロイル−N’−アルデヒドラジン、N,N−ジベンザル(オキザルヒドラジド)、イソフタリック酸ビス(2−フェノキシプロピオニルヒドラジン)、3−(N−サリチロイル)アミノ−1,2,4−ヒドロキシフェニル)プロピオニル]ヒドラジン、化学式(2)(デカメチレンカルボン酸ジサリチロイルヒドラジド)および化学式(3)(N,N’−ビス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン)が例示できる。これらの中でも化学式(2)および化学式(3)の化合物がより好ましい。これらを含むことにより信頼性の高い導電性樹脂組成物を提供できる。添加のタイミングは、導電性微粒子の製造時に限定されず、導電性微粒子製造後の導電性微粒子と樹脂を混合するタイミング、導電性樹脂組成物を製造後等に添加してもよい。
Compound A includes various compounds and is not particularly limited. Preferred examples include N-salicyloyl-N′-aldehyderazine, N, N-dibenzal (oxal hydrazide), bis (2-phenoxypropionylhydrazine) isophthalic acid. ), 3- (N-salicyloyl) amino-1,2,4-hydroxyphenyl) propionyl] hydrazine, chemical formula (2) (decamethylenecarboxylic acid disalicyloyl hydrazide) and chemical formula (3) (N, N'- Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine) can be exemplified. Among these, the compounds of chemical formula (2) and chemical formula (3) are more preferable. By including these, a highly reliable conductive resin composition can be provided. The timing of addition is not limited to the production of the conductive fine particles, and the timing of mixing the conductive fine particles and the resin after the production of the conductive fine particles and the conductive resin composition may be added after the production.

導電性微粒子の一例として、銀コート銅粉の製造例について以下に説明する。
[製造例1] まず、銅粉に銀メッキを施した樹枝状の銀コート銅粉を準備する。この銀コート銅粉を、固体媒体と共に密閉容器に仕込み、密閉容器内で固体媒体を銀コート銅粉に衝突させ、樹枝状の銀コート銅粉を、本願発明の導電性微粒子に変形させる。固体媒体が銀コート銅粉の樹枝部分に衝突することで、本願発明の鱗片葉または分岐葉を有する導電性微粒子が得られる。なお、銀コート銅粉を投入するタイミングで、重金属不活性化剤等の添加剤、又は/及び導電性樹脂組成物に用いる樹脂を投入してもよい。導電性樹脂組成物や添加剤を加えることにより、導電性微粒子の製造と同時に後述する導電性樹脂組成物を製造することも可能である。
As an example of the conductive fine particles, a production example of silver-coated copper powder will be described below.
[Production Example 1] First, a dendritic silver-coated copper powder obtained by silver plating of copper powder is prepared. The silver-coated copper powder is charged into a sealed container together with a solid medium, the solid medium is collided with the silver-coated copper powder in the sealed container, and the dendritic silver-coated copper powder is transformed into the conductive fine particles of the present invention. When the solid medium collides with the dendritic portion of the silver-coated copper powder, the conductive fine particles having the scale leaf or the branch leaf of the present invention are obtained. In addition, you may throw in resin used for additives, such as a heavy metal deactivator, and / or a conductive resin composition at the timing which throws silver coat copper powder. By adding a conductive resin composition or an additive, it is also possible to manufacture a conductive resin composition, which will be described later, simultaneously with the production of conductive fine particles.

[製造例2] まず、樹枝状の銅粉を準備する。この銅粉を、固体媒体と共に密閉容器に仕込み、密閉容器内で固体媒体を銅粉に衝突させ、樹枝状の銅粉を、本願発明の導電性微粒子様に変形させる。固体媒体が銅粉の樹枝部分に衝突することで、鱗片葉または分岐葉を有する銅粉が得られる。次いで、得られた鱗片葉または分岐葉を有する銅粉に、めっき処理により銀を被覆させることで、本願発明の鱗片葉または分岐葉を有する導電性微粒子が得られる。 [Production Example 2] First, a dendritic copper powder is prepared. The copper powder is charged into a sealed container together with the solid medium, the solid medium is collided with the copper powder in the sealed container, and the dendritic copper powder is deformed like the conductive fine particles of the present invention. When the solid medium collides with the branch portion of the copper powder, copper powder having scale leaves or branched leaves is obtained. Next, the obtained finely divided copper powder having scale leaves or branched leaves is coated with silver by plating to obtain conductive fine particles having scale leaves or branched leaves of the present invention.

(導電性樹脂組成物) 次に、本発明の導電性樹脂組成物について説明する。本発明の導電性樹脂組成物は、本発明の導電性微粒子と樹脂とを含むものである。なお、本発明の導電性樹脂組成物には、本発明の目的を逸脱しない範囲において、本発明の導電性微粒子以外の導電性微粒子を含んでいてもよい。但し、信頼性を向上させる観点からは、本発明の導電性微粒子以外の導電性微粒子は、例えば、樹脂100重量部に対して3重量部以下程度とすることが好ましい。 (Conductive resin composition) Next, the conductive resin composition of this invention is demonstrated. The conductive resin composition of the present invention contains the conductive fine particles of the present invention and a resin. The conductive resin composition of the present invention may contain conductive fine particles other than the conductive fine particles of the present invention within a range not departing from the object of the present invention. However, from the viewpoint of improving reliability, the conductive fine particles other than the conductive fine particles of the present invention are preferably, for example, about 3 parts by weight or less with respect to 100 parts by weight of the resin.

導電性樹脂組成物に使用する樹脂は、熱可塑性樹脂または硬化性樹脂を使用できる。硬化性樹脂は、熱硬化性樹脂または光硬化性樹脂が好ましい。   As the resin used in the conductive resin composition, a thermoplastic resin or a curable resin can be used. The curable resin is preferably a thermosetting resin or a photocurable resin.

熱可塑性樹脂としては、ポリオレフィン系樹脂、ビニル系樹脂、スチレン・アクリル系樹脂、ジエン系樹脂、テルペン樹脂、石油樹脂、セルロース系樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド系樹脂、フッ素樹脂などが挙げられる。   As thermoplastic resins, polyolefin resins, vinyl resins, styrene / acrylic resins, diene resins, terpene resins, petroleum resins, cellulose resins, polyamide resins, polyurethane resins, polyester resins, polycarbonate resins, polyimide resins, A fluororesin etc. are mentioned.

ポリオレフィン系樹脂は、エチレン、プロピレン、α−オレフィン化合物などのホモポリマーまたはコポリマーが好ましい。具体的には、例えば、ポリエチレンエチレンプロピレンゴム、オレフィン系熱可塑性エラストマー、α−オレフィンポリマー等が挙げられる。
ビニル系樹脂は、酢酸ビニルなどのビニルエステルの重合により得られるポリマーおよびビニルエステルとエチレンなどのオレフィン化合物とのコポリマーが好ましい。具体的には、例えば、エチレン−酢酸ビニル共重合体、部分ケン化ポリビニルアルコール等が挙げられる。
The polyolefin resin is preferably a homopolymer or copolymer such as ethylene, propylene, and α-olefin compound. Specific examples include polyethylene ethylene propylene rubber, olefinic thermoplastic elastomer, α-olefin polymer, and the like.
The vinyl resin is preferably a polymer obtained by polymerization of vinyl ester such as vinyl acetate or a copolymer of vinyl ester and olefin compound such as ethylene. Specific examples include ethylene-vinyl acetate copolymer and partially saponified polyvinyl alcohol.

スチレン・アクリル系樹脂は、スチレンや(メタ)アクリロニトリル、アクリルアミド類、(メタ)アクリル酸エステル、マレイミド類などからなるホモポリマーまたはコポリマーが好ましい。具体的には、例えば、シンジオタクチックポリスチレン、ポリアクリロニトリル、アクリルコポリマー、エチレン−メタクリル酸メチル共重合体等が挙げられる。   The styrene / acrylic resin is preferably a homopolymer or copolymer composed of styrene, (meth) acrylonitrile, acrylamides, (meth) acrylic acid esters, maleimides and the like. Specific examples include syndiotactic polystyrene, polyacrylonitrile, acrylic copolymer, ethylene-methyl methacrylate copolymer, and the like.

ジエン系樹脂は、ブタジエンやイソプレン等の共役ジエン化合物のホモポリマーまたはコポリマーおよびそれらの水素添加物が好ましい。具体的には、例えば、スチレン−ブタジエンゴム、スチレン−イソプレンブロックコポリマー等が挙げられる。
テルペン樹脂は、テルペン類からなるポリマーまたはその水素添加物が好ましい。具体的には、例えば、テルペン樹脂、水添テルペン樹脂が挙げられる。
The diene resin is preferably a homopolymer or copolymer of a conjugated diene compound such as butadiene or isoprene and a hydrogenated product thereof. Specific examples include styrene-butadiene rubber and styrene-isoprene block copolymer.
The terpene resin is preferably a polymer composed of terpenes or a hydrogenated product thereof. Specific examples include terpene resins and hydrogenated terpene resins.

石油系樹脂は、ジシクロペンタジエン型石油樹脂、水添石油樹脂が好ましい。
セルロース系樹脂は、セルロースアセテートブチレート樹脂が好ましい。
ポリカーボネート樹脂は、ビスフェノールAポリカーボネートが好ましい。
ポリイミド系樹脂は、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリアミック酸型ポリイミド樹脂が好ましい。
The petroleum resin is preferably a dicyclopentadiene type petroleum resin or a hydrogenated petroleum resin.
The cellulose resin is preferably a cellulose acetate butyrate resin.
The polycarbonate resin is preferably bisphenol A polycarbonate.
The polyimide resin is preferably a thermoplastic polyimide, a polyamideimide resin, or a polyamic acid type polyimide resin.

熱硬化性樹脂は、加熱による架橋反応に利用できる官能基、例えば、水酸基、フェノール性水酸基、メトキシメチル基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、ブロック化カルボキシル基、シラノール基などを1分子中に1つ以上有する樹脂であればよく、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。また、本発明における熱硬化性樹脂は、上記の樹脂に加え、必要に応じて上記の官能基と反応し化学的架橋を形成する樹脂または低分子化合物などの所謂「硬化剤」を含むことが好ましい。   Thermosetting resins are functional groups that can be used for crosslinking reactions by heating, such as hydroxyl groups, phenolic hydroxyl groups, methoxymethyl groups, carboxyl groups, amino groups, epoxy groups, oxetanyl groups, oxazoline groups, oxazine groups, aziridine groups, thiols. Any resin having at least one group, isocyanate group, blocked isocyanate group, blocked carboxyl group, silanol group, etc. in one molecule, such as acrylic resin, maleic resin, polybutadiene resin, polyester resin, polyurethane Examples include resins, epoxy resins, oxetane resins, phenoxy resins, polyimide resins, polyamide resins, phenolic resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins, and fluorine resins. In addition to the above resin, the thermosetting resin in the present invention may contain a so-called “curing agent” such as a resin or a low molecular compound that reacts with the above functional group to form a chemical crosslink as necessary. preferable.

光硬化性樹脂は、光により架橋反応を起こす不飽和結合を1分子中に1つ以上有する樹脂であればよく、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂などが挙げられる。   The photocurable resin may be a resin having at least one unsaturated bond that causes a crosslinking reaction by light, for example, acrylic resin, maleic acid resin, polybutadiene resin, polyester resin, polyurethane resin, epoxy resin. Examples include resins, oxetane resins, phenoxy resins, polyimide resins, polyamide resins, phenolic resins, alkyd resins, amino resins, polylactic acid resins, oxazoline resins, benzoxazine resins, silicone resins, and fluorine resins.

導電性樹脂組成物は、樹脂100重量部に対して、導電性微粒子を50〜500重量部配合することが好ましく、100〜400重量部がより好ましい。導電性微粒子を50〜500重量部配合することで導電性がより向上し、導電層をより形成しやすくなる。   The conductive resin composition is preferably blended in an amount of 50 to 500 parts by weight, more preferably 100 to 400 parts by weight, with respect to 100 parts by weight of the resin. By blending 50 to 500 parts by weight of the conductive fine particles, the conductivity is further improved and the conductive layer is more easily formed.

導電性樹脂組成物は、導電性微粒子と樹脂に加えて、前述した金属不活性化剤、増粘剤等の他に、例えば、分散剤、シランカップリング剤、防錆剤、銅害防止剤、還元剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤などを配合できる。   In addition to the conductive fine particles and the resin, the conductive resin composition includes, for example, the dispersant, the silane coupling agent, the rust preventive agent, the copper damage preventive agent in addition to the metal deactivator and the thickener described above. , Reducing agents, antioxidants, pigments, dyes, tackifying resins, plasticizers, ultraviolet absorbers, antifoaming agents, leveling regulators, fillers, flame retardants, and the like.

導電性樹脂組成物の製造は、上記のように導電性微粒子を製造する前に樹枝状銀コート粉と樹脂とを同時仕込み、固体媒体を衝突させて得ることができる。また、導電性微粒子の製造後に樹脂と混合して得ることもできる。樹脂を分散体に混合する際は、ディスパーマットで分散体を攪拌しながら樹脂を添加する方法が例示できる。
Producing the conductive resin composition can be obtained by the dendritic silver-coated powder and the resin was charged at the same time, to collide with the solid medium before producing the conductive fine particles as described above. It can also be obtained by mixing with a resin after the production of conductive fine particles. When the resin is mixed with the dispersion, a method of adding the resin while stirring the dispersion with a disperse mat can be exemplified.

(導電性シート) 本発明の導電性シートは、本発明の導電性樹脂組成物から形成してなる導電層を備えたものである。導電性シートの製造方法は、特に限定されないが、一例として、導電性樹脂組成物を剥離性シートに塗工して導電層を形成する方法を例示できる。導電性シートは、導電層の単層のみでもよいが、他の機能層や支持層等の積層体であってもよい。機能層としては、絶縁性、熱伝導性、電磁波吸収性、ハードコート性、水蒸気バリア性、酸素バリア性、低誘電率、高誘電率性、低誘電正接、高誘電正接、耐熱性等を有する層が挙げられる。なお、本発明の導電性シートをプリント配線板分野に使用する場合は、耐熱性の観点から熱硬化性樹脂を含むことが好ましい。 (Conductive sheet) The conductive sheet of this invention is equipped with the conductive layer formed from the conductive resin composition of this invention. Although the manufacturing method of an electroconductive sheet is not specifically limited, As an example, the method of coating an electroconductive resin composition on a peelable sheet and forming an electroconductive layer can be illustrated. The conductive sheet may be only a single layer of the conductive layer, but may be a laminate of other functional layers and support layers. The functional layer has insulating properties, thermal conductivity, electromagnetic wave absorption properties, hard coat properties, water vapor barrier properties, oxygen barrier properties, low dielectric constant, high dielectric constant properties, low dielectric loss tangent, high dielectric loss tangent, heat resistance, etc. Layer. In addition, when using the electroconductive sheet of this invention in the printed wiring board field | area, it is preferable that a thermosetting resin is included from a heat resistant viewpoint.

本発明の導電性シートは、種々の用途に制限なく利用できるが、好適な例として、異方導電性シート、静電除去シート、グランド接続用シート、メンブレン回路用、導電性ボンディングシート、熱伝導性シート、ジャンパー回路用導電シート等が挙げられる。   The conductive sheet of the present invention can be used without limitation for various applications. Preferred examples include an anisotropic conductive sheet, an electrostatic removal sheet, a ground connection sheet, a membrane circuit, a conductive bonding sheet, and a heat conduction. For example, conductive sheets and conductive sheets for jumper circuits.

前記塗工方法は、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレード方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピコート方式、ディップコート方式等を使用できる   Examples of the coating method include a gravure coating method, a kiss coating method, a die coating method, a lip coating method, a comma coating method, a blade method, a roll coating method, a knife coating method, a spray coating method, a bar coating method, a spin coating method, and a dip coating. We can use method

導電性シートにおける導電層の厚みは、1〜100μmが好ましく、3〜50μmがより好ましい。厚みが1〜100μmの範囲にあることで導電性と、その他の物性を両立しやすくなる。   1-100 micrometers is preferable and, as for the thickness of the conductive layer in a conductive sheet, 3-50 micrometers is more preferable. It becomes easy to make electroconductivity and other physical properties compatible because thickness exists in the range of 1-100 micrometers.

(電磁波シールドシート) 本発明の電磁波シールドシートは、本発明の導電性樹脂組成物から形成してなる導電層と、絶縁層とを備えるものであり、例えば、回路から発生する電磁波のシールドを目的として使用できる。電磁波シールドシートの製造方法は、特に限定されないが、一例として、前述の方法により製造した導電層と絶縁層とを貼り合わせる方法が例示できる。絶縁層としては、予め成形した絶縁性フィルムを用いてもよいし、剥離性シートに絶縁性樹脂組成物を塗工することで絶縁層を形成し、これと剥離性シート付き導電層とを貼り合わせてもよい。または、導電層上に直接絶縁性樹脂組成物を塗工して絶縁層を形成してもよい。 (Electromagnetic wave shielding sheet) The electromagnetic wave shielding sheet of the present invention includes a conductive layer formed from the conductive resin composition of the present invention and an insulating layer, and is intended to shield electromagnetic waves generated from a circuit, for example. Can be used as Although the manufacturing method of an electromagnetic wave shield sheet is not specifically limited, As an example, the method of bonding the electrically conductive layer manufactured by the above-mentioned method and an insulating layer can be illustrated. As the insulating layer, a pre-formed insulating film may be used, or the insulating layer is formed by applying an insulating resin composition to the peelable sheet, and this is attached to the conductive layer with the peelable sheet. You may combine them. Alternatively, the insulating layer may be formed by coating the insulating resin composition directly on the conductive layer.

絶縁層の厚みは、用途やニーズに応じて変動し得るが、例えばフレキシブルプリント配線板に使用する場合は柔軟性を維持しながら、電磁波シールドシートのシールド効果を高める観点から、2〜10μmとすることが好ましい。また、絶縁層の厚みは、導電層の厚みを100としたときに50〜200の割合であることが好ましい。前記の割合になることで諸物性のバランスが取りやすくなる。   The thickness of the insulating layer may vary depending on the application and needs. For example, when used for a flexible printed wiring board, the thickness is set to 2 to 10 μm from the viewpoint of enhancing the shielding effect of the electromagnetic wave shielding sheet while maintaining flexibility. It is preferable. Moreover, it is preferable that the thickness of an insulating layer is a ratio of 50-200 when the thickness of a conductive layer is 100. It becomes easy to balance various physical properties by becoming the said ratio.

絶縁性フィルムの材料は、特に限定されないが、ポリエステル、ポリカーボネート、ポリイミド、ポリフェニレンサルファイドなどのプラスチックフィルムを使用することもできる。また、絶縁性樹脂組成物を成形した被膜であってもよい。   Although the material of an insulating film is not specifically limited, Plastic films, such as polyester, a polycarbonate, a polyimide, polyphenylene sulfide, can also be used. Moreover, the film which shape | molded the insulating resin composition may be sufficient.

絶縁性樹脂組成物は、樹脂を必須成分とするが、この樹脂は、導電層に使用できる樹脂を使用することが好ましい。また、絶縁性樹脂組成物には、樹脂に加えてシランカップリング剤、酸化防止剤、顔料、染料、分散剤、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤などを配合できる。   The insulating resin composition contains a resin as an essential component, and it is preferable to use a resin that can be used for the conductive layer. In addition to the resin, the insulating resin composition includes a silane coupling agent, an antioxidant, a pigment, a dye, a dispersant, a tackifier resin, a plasticizer, an ultraviolet absorber, an antifoaming agent, a leveling regulator, and a filling agent. An agent, a flame retardant, etc. can be mix | blended.

本発明の電磁波シールドシートは、導電層および絶縁層のほかに、他の層を備えることができる。他の層は、例えば、ハードコート性、熱伝導性、断熱性、電磁波吸収性、水蒸気バリア性、酸素バリア性、低誘電率、高誘電率性、低誘電正接、高誘電正接、耐熱性等を有する層が挙げられる。なお、本発明の電磁波シールドシートをプリント配線板分野に使用する場合は、耐熱性の観点から熱硬化性樹脂を含むことが好ましい。   The electromagnetic wave shielding sheet of the present invention can include other layers in addition to the conductive layer and the insulating layer. Other layers include, for example, hard coat properties, thermal conductivity, heat insulation properties, electromagnetic wave absorption properties, water vapor barrier properties, oxygen barrier properties, low dielectric constant, high dielectric constant, low dielectric loss tangent, high dielectric loss tangent, heat resistance, etc. The layer which has is mentioned. In addition, when using the electromagnetic wave shielding sheet of this invention for the printed wiring board field | area, it is preferable that a thermosetting resin is included from a heat resistant viewpoint.

本発明の電磁波シールドシートは、フレキシブルプリント基板、リジッドプリント基板、リジッドフレキシルブル基板等に貼り付けて加熱圧着することで、電磁波シールド層として使用できる。また、電子部品の匡体に直接貼り付けて使用することもできる。本発明の電磁波シールドシートを組み込んだプリント配線板は、例えば、スマートフォンなどの携帯電話、パソコン、タブレット端末、LED照明、有機EL照明、液晶テレビ、有機ELテレビ、デジタルカメラ、デジタルビデオカメラ、自動車などの車載部品等に使用することができる。   The electromagnetic wave shielding sheet of the present invention can be used as an electromagnetic wave shielding layer by being attached to a flexible printed circuit board, a rigid printed circuit board, a rigid flexible substrate, etc. and thermocompression bonded. It can also be used by directly pasting the electronic component housing. The printed wiring board incorporating the electromagnetic wave shielding sheet of the present invention is, for example, a mobile phone such as a smartphone, a personal computer, a tablet terminal, LED lighting, organic EL lighting, liquid crystal television, organic EL television, digital camera, digital video camera, automobile, etc. It can be used for automotive parts.

≪実施例≫
以下、実施例により本発明を更に詳細に説明するが、本発明はこれらによって限定されるものではない。なお、以下の「部」及び「%」は、それぞれ「重量部」及び「重量%」に基づく値である。
<< Example >>
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these. The following “parts” and “%” are values based on “parts by weight” and “% by weight”, respectively.

表1に原料として用いる非葉状の導電性微粒子を示す。導電性微粒子1〜7の樹枝状銀コート銅粉は三井金属鉱業社製の製品を使用した。また、導電性微粒子8の樹枝状銅粉、導電性微粒子9の球状銀コート銅粉、および導電性微粒子11の鱗片状銀粉は、福田金属箔粉工業社製の製品を使用した。また、導電性微粒子10の鱗片状銀コート銅粉は三井金属鉱業社製の製品を使用した。なお、原料の導電性微粒子の平均粒子径(D50)は、レーザー回折・散乱法粒度分布測定装置LS 13 320(ベックマン・コールター社製)により求めた。   Table 1 shows non-leaf-like conductive fine particles used as a raw material. As the dendritic silver-coated copper powder of the conductive fine particles 1 to 7, a product manufactured by Mitsui Metal Mining Co., Ltd. was used. Further, as the dendritic copper powder of the conductive fine particles 8, the spherical silver-coated copper powder of the conductive fine particles 9, and the scaly silver powder of the conductive fine particles 11, products made by Fukuda Metal Foil Powder Industry Co., Ltd. were used. Moreover, the product made from Mitsui Metal Mining Co., Ltd. was used for the scale-like silver coat copper powder of the electroconductive fine particles 10. FIG. The average particle diameter (D50) of the conductive fine particles as a raw material was determined with a laser diffraction / scattering particle size distribution analyzer LS 13 320 (manufactured by Beckman Coulter).

<実施例A(導電性微粒子の製造)>
表1に示す非葉状の導電性微粒子1を100部、トルエンを400.0部、増粘剤(日本アエロジル社製AEROSIL R972)を10.0部、および重金属不活性化剤(デカメチレンカルボン酸ジサリチロイルヒドラジド)を1.0部、量り取り、均一となるように混合撹拌した。次いで、これを直径0.5mmのジルコニアビーズと共にアイガーミル(アイガージャパン社製「ミニモデルM−250 MKII」)に投入して分散処理を10分間行った。得られた微粒子をメチルエチルケトンにより5回デカンテーションした。更に、100℃のオーブン内で乾燥することにより実施例Aの葉状の導電性微粒子を得た。実施例Aに係る葉状の導電性微粒子の平均粒子径(D50)、厚み、円径度係数および円形係数を測定した。平均粒子径(D50)、厚みは、前述した方法により求めた。また、円径度係数と円形係数は、以下の方法によりサンプルを作製し、前述した方法により算出した。得られた葉状の導電性微粒子の厚み、平均粒子径(D50)、円径度係数、円形係数および被覆率の値を表2に記載する。
<Example A (Production of conductive fine particles)>
100 parts of non-leaf-like conductive fine particles 1 shown in Table 1, 400.0 parts of toluene, 10.0 parts of thickener (AEROSIL R972 manufactured by Nippon Aerosil Co., Ltd.), and heavy metal deactivator (decamethylene carboxylic acid) 1.0 parts of disalicyloyl hydrazide) was weighed and mixed and stirred so as to be uniform. Next, this was introduced into an Eiger mill (“Mini Model M-250 MKII” manufactured by Eiger Japan) together with zirconia beads having a diameter of 0.5 mm, followed by dispersion treatment for 10 minutes. The obtained fine particles were decanted with methyl ethyl ketone five times. Furthermore, the leaf-like electroconductive fine particle of Example A was obtained by drying in 100 degreeC oven. The average particle diameter (D50), thickness, circularity degree coefficient, and circular coefficient of the leaf-like conductive fine particles according to Example A were measured. The average particle diameter (D50) and thickness were determined by the method described above. In addition, the circularity coefficient and the circular coefficient were calculated by the method described above after preparing a sample by the following method. Table 2 shows values of the thickness, average particle diameter (D50), circularity coefficient, circular coefficient, and coverage of the obtained leaf-shaped conductive fine particles.

<円径度係数と円形係数> 測定サンプルとして、後述する電磁波シールドシートの作製方法により、対応する導電性微粒子を用いたサンプルを用意した。そして、SEM用の円柱形の試料台に導電粘着剤を介して、1cm2のサンプルを固定した。具体的には、電磁波シールドシートの導電層側のセパレーターを剥離し、導電層が上層、絶縁層が下層になるように試料台に固定した。そして、電磁波シールドシートの導電層上に、白金蒸着を施した。蒸着後、1000倍、加速電圧15kVの条件下で導電性粒子のSEM画像を取得し、上述の方法により解析した。
<Circularity coefficient and circular coefficient> As a measurement sample, a sample using corresponding conductive fine particles was prepared by a method for producing an electromagnetic wave shielding sheet described later. And the sample of 1 cm < 2 > was fixed to the cylindrical sample stand for SEM through the electrically conductive adhesive. Specifically, the separator on the conductive layer side of the electromagnetic wave shield sheet was peeled off and fixed to the sample stage so that the conductive layer was the upper layer and the insulating layer was the lower layer. Then, the electromagnetic shielding sheet of the conductive layer was subjected to platinum deposition. After vapor deposition, SEM images of the conductive particles were obtained under the conditions of 1000 times and acceleration voltage of 15 kV, and analyzed by the method described above.

<被覆率> 専用の台に両面粘着テープを貼り、両面粘着テープ上に各金属粒子粉を落とした後エアーで余分な粉を飛ばした。そして、X線光電子分光分析装置(ESCA AXIS-HS、島津製作所社製)にて異なる点を5箇所測定した。そして、解析ソフト(Kratos社製)により被覆層(銀)と核体(銅)のピーク面積から算出される、被覆層(銀)の質量濃度%の平均値を銀の被覆率とした。 <Coverage> A double-sided pressure-sensitive adhesive tape was affixed to a dedicated stand, each metal particle powder was dropped on the double-sided pressure-sensitive adhesive tape, and then excess powder was blown off with air. Then, five different points were measured with an X-ray photoelectron spectrometer (ESCA AXIS-HS, manufactured by Shimadzu Corporation). And the average value of mass concentration% of a coating layer (silver) calculated from the peak area of a coating layer (silver) and a nucleus (copper) with analysis software (made by Kratos) was made into the silver coverage.

<実施例B〜K,比較例δ(導電性微粒子の製造)>
非葉状の導電性微粒子の原料およびアイガーミルを用いた分散処理時間を、表2に記載したとおりに変更した以外は、実施例Aと同様の方法により導電性微粒子を製造した。
<Examples B to K, Comparative Example δ (Production of conductive fine particles)>
Conductive fine particles were produced in the same manner as in Example A, except that the raw material of non-leaf conductive fine particles and the dispersion treatment time using Eiger mill were changed as described in Table 2.

<実施例1〜20、比較例1〜4、参考例1(導電性樹脂組成物の製造)>
表3に示した原料を容器に仕込み、ディスパーで5分間攪拌を行うことで実施例1〜20、比較例1〜4、参考例1の導電性樹脂組成物を得た。
<Examples 1-20, Comparative Examples 1-4, Reference Example 1 (Production of conductive resin composition)>
The raw materials shown in Table 3 were charged in a container, and stirred for 5 minutes with a disper to obtain conductive resin compositions of Examples 1 to 20, Comparative Examples 1 to 4, and Reference Example 1.

なお、ベース樹脂のウレタンは、ポリウレタン樹脂(トーヨーケム社製)、アミドは、ポリアミドイミド樹脂(トーヨーケム社製)、ポリエステルは、縮合型ポリエステル(トーヨーケム社製)と、付加型ポリエステル(トーヨーケム社製)を用いた。ベース樹脂100重量部に対して硬化剤(アジリジン化合物)を10部使用した。   The base resin urethane is a polyurethane resin (Toyochem), the amide is a polyamideimide resin (Toyochem), and the polyester is a condensed polyester (Toyochem) and an addition polyester (Toyochem). Using. 10 parts of a curing agent (aziridine compound) was used with respect to 100 parts by weight of the base resin.

<実施例1の導電性シートの製造>
実施例1の導電性樹脂組成物をポリエチレンテレフタレートの剥離性シートに、乾燥厚みが5μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで導電層を有する導電性シートC1を得た。
<Manufacture of the electroconductive sheet of Example 1>
The conductive resin composition of Example 1 was coated on a polyethylene terephthalate peelable sheet using a bar coater so that the dry thickness was 5 μm, and dried in an electric oven at 100 ° C. for 2 minutes to form a conductive layer. A conductive sheet C1 having was obtained.

<実施例1の電磁波シールドシートの製造>
熱硬化性ウレタン樹脂(トーヨーケム社製)をポリエチレンテレフタレートの剥離性シートに、乾燥厚みが5μmになるようにバーコーターを使用して塗工し、100℃の電気オーブンで2分間乾燥することで絶縁層を得た。導電性シートC1の導電層と前記絶縁層を重ね、80℃、2MPaの条件で熱圧着することで電磁波シールドシートE1を得た。
<Manufacture of the electromagnetic wave shielding sheet of Example 1>
A thermosetting urethane resin (manufactured by Toyochem Co., Ltd.) is coated on a polyethylene terephthalate release sheet using a bar coater to a dry thickness of 5 μm, and then dried in an electric oven at 100 ° C. for 2 minutes for insulation. A layer was obtained. The conductive layer of the conductive sheet C1 and the insulating layer were overlapped, and an electromagnetic wave shield sheet E1 was obtained by thermocompression bonding under conditions of 80 ° C. and 2 MPa.

<実施例2〜20、比較例1〜4、参考例1の導電性シートの製造>
実施例1の導電性樹脂組成物に代えて実施例2〜20の導電性樹脂組成物を用いた以外は、実施例1と同様の方法により導電性シートC2〜C20を得た。また、実施例1の導電性樹脂組成物に代えて比較例1〜4、参考例1の導電性樹脂組成物を用いた以外は、実施例1と同様の方法により導電性シートC21〜C25を得た。
<Manufacture of the conductive sheet of Examples 2-20, Comparative Examples 1-4, and Reference Example 1>
Conductive sheets C2 to C20 were obtained in the same manner as in Example 1, except that the conductive resin composition of Examples 2 to 20 was used instead of the conductive resin composition of Example 1. Moreover, it replaced with the conductive resin composition of Example 1, and except having used the conductive resin composition of Comparative Examples 1-4 and Reference Example 1, conductive sheet C21-C25 was carried out by the method similar to Example 1. Obtained.

<実施例2〜20、比較例1〜4、参考例1の電磁波シールドシートの製造>
導電性シート1に代えて表4に記載した導電性シートを使用した以外は、実施例1と同様に行うことで電磁波シールドシートE2〜E25を得た。
実施例1の導電性樹脂組成物に代えて実施例2〜20の導電性樹脂組成物を用いた以外は、実施例1と同様の方法により電磁波シールドシートE2〜E20を得た。また、実施例1の導電性樹脂組成物に代えて比較例1〜4、参考例1の導電性樹脂組成物を用いた以外は、実施例1と同様の方法により電磁波シールドシートE21〜E25を得た。

<Manufacture of electromagnetic wave shield sheets of Examples 2 to 20, Comparative Examples 1 to 4 and Reference Example 1>
Instead of the conductive sheet C 1 except for using the conductive sheet as described in Table 4, to obtain an electromagnetic wave shielding sheet E2~E25 by performing in the same manner as in Example 1.
Electromagnetic wave shield sheets E2 to E20 were obtained in the same manner as in Example 1, except that the conductive resin composition of Examples 2 to 20 was used instead of the conductive resin composition of Example 1. Moreover, it replaced with the electroconductive resin composition of Example 1, and except using the electroconductive resin composition of Comparative Examples 1-4 and the reference example 1 by the method similar to Example 1, electromagnetic shielding sheet E21-E25 was carried out. Obtained.

<接続抵抗値の測定>
縦25mm、横25mmにカットした導電性シート10を用意し、横25mm、縦100mm、厚み0.5mmのステンレス板11の端部に固定し80℃、2MPaの条件で熱圧着することで仮接着した。その後、剥離性シートを剥がし、同じ大きさのステンレス板12を上記同様に重ねた上で、再度80℃、2MPaの条件で熱圧着することで仮接着した。これを150℃、2MPaの条件で30分間熱圧着を行うことで図4に示す接続抵抗値測定用のテストピースを得た。このテストピースを使用して三菱化学アナリテック社製「ロレスターGP」のBSPプローブを図4のように、ステンレス板11のB側およびステンレス板12のA側に接触させることにより接続抵抗値を測定した。評価基準は以下の通りである。
A:1.0×10-3未満
B:1.0×10-3以上、1.0×10-2未満
C:1.0×10-2以上、1.0×10-1未満
D:1.0×10-1以上
<Measurement of connection resistance>
Prepare conductive sheet 10 cut to 25mm length and 25mm width, and fix it to the end of stainless steel plate 11 with width 25mm, length 100mm, thickness 0.5mm, and temporarily press bonded under conditions of 80 ° C and 2MPa. did. Thereafter, the peelable sheet was peeled off, and the stainless steel plates 12 having the same size were stacked in the same manner as described above, and then temporarily bonded by thermocompression bonding under the conditions of 80 ° C. and 2 MPa. This was thermocompression bonded for 30 minutes under the conditions of 150 ° C. and 2 MPa to obtain a test piece for connection resistance measurement shown in FIG. Using this test piece, the connection resistance value is measured by bringing the BSP probe of “Lorester GP” manufactured by Mitsubishi Chemical Analytech into contact with the B side of the stainless steel plate 11 and the A side of the stainless steel plate 12 as shown in FIG. did. The evaluation criteria are as follows.
A: Less than 1.0 × 10 −3 B: 1.0 × 10 −3 or more, less than 1.0 × 10 −2 C: 1.0 × 10 −2 or more, less than 1.0 × 10 −1 D: 1.0 × 10 -1 or more

<表面抵抗値の測定>
得られた電磁波シールドシートの導電層の表面抵抗値を三菱化学アナリテック社製「ロレスタGP」の四探針プローブを用いて測定した。評価基準は以下の通りである。
A:1.0未満
B:1.0以上、10.0未満
C:10.0以上、50.0未満
D:50.0以上
<Measurement of surface resistance value>
The surface resistance value of the conductive layer of the obtained electromagnetic wave shielding sheet was measured using a four-point probe of “Loresta GP” manufactured by Mitsubishi Chemical Analytech. The evaluation criteria are as follows.
A: Less than 1.0 B: 1.0 or more and less than 10.0 C: 10.0 or more and less than 50.0 D: 50.0 or more

一方、電磁波シールドシートの絶縁層の表面抵抗値を三菱化学アナリテック社製「ハイレスタUP」のリングプローブURSを用いて測定した。評価基準は以下の通りである。
A:1×107以上
B:1×107未満、1×106以上
C:1×106未満、1×104以上
D:1×104未満
On the other hand, the surface resistance value of the insulating layer of the electromagnetic wave shielding sheet was measured using a ring probe URS of “HIRESTA UP” manufactured by Mitsubishi Chemical Analytech. The evaluation criteria are as follows.
A: 1 × 10 7 or more B: less than 1 × 10 7 , 1 × 10 6 or more C: less than 1 × 10 6 , 1 × 10 4 or more D: less than 1 × 10 4

<接着力の測定>
幅25mm、長さ70mmの電磁波シールドシートを用意した。導電層と当接する剥離性フィルムを剥がし、露出した導電層に厚さが50μmのポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)を150℃、1.0MPa、30minの条件で圧着することで導電層および絶縁層を硬化させた。電磁波シールドシートを測定のために補強する目的で、50μm厚みの絶縁層と当接する剥離性フィルムを除去し、露出した絶縁層に、ポリウレタンポリウレア系接着剤を使用した接着シートを用いて、ポリイミドフィルム(東レ・デュポン社製「カプトン200EN」)を、150℃、1MPa、30minの条件で圧着した。これらの工程を経て「ポリイミドフィルム/電磁波シールドシート/接着シート/ポリイミドフィルム」のテストピースを得た。このテストピースを23℃、相対湿度50%の雰囲気下、引っ張り速度50mm/min、剥離角度90°で、導電層とポリイミドフィルムとの界面を剥離することにより接着力を測定した。
A:8N/25mm以上
B:8N/25mm未満、6N/25mm以上
C:6N/25mm未満、3N/25mm以上
D:3N/25mm未満
<Measurement of adhesive strength>
An electromagnetic wave shielding sheet having a width of 25 mm and a length of 70 mm was prepared. By peeling off the peelable film that comes into contact with the conductive layer, and pressing the polyimide film (“Kapton 200EN” manufactured by Toray DuPont) with a thickness of 50 μm on the exposed conductive layer under the conditions of 150 ° C., 1.0 MPa, and 30 min. The conductive layer and the insulating layer were cured. In order to reinforce the electromagnetic shielding sheet for measurement, the release film that contacts the 50 μm-thick insulating layer is removed, and the exposed insulating layer is a polyimide film using an adhesive sheet using a polyurethane polyurea adhesive. (“Kapton 200EN” manufactured by Toray DuPont) was pressure-bonded under the conditions of 150 ° C., 1 MPa, and 30 min. Through these steps, a test piece of “polyimide film / electromagnetic wave shield sheet / adhesive sheet / polyimide film” was obtained. The adhesive strength of the test piece was measured by peeling the interface between the conductive layer and the polyimide film under an atmosphere of 23 ° C. and a relative humidity of 50% at a pulling speed of 50 mm / min and a peeling angle of 90 °.
A: 8N / 25mm or more B: Less than 8N / 25mm, 6N / 25mm or more C: Less than 6N / 25mm, 3N / 25mm or more D: Less than 3N / 25mm

[付記]
本明細書は、上記実施形態から把握される以下に示す技術思想の発明も開示する。
(付記1)
導電性の核体を、前記核体とは異なる導電性物質で被覆してなる、複数の、鱗片葉または分岐葉を有する葉状導電性微粒子。
(付記2)
固体媒体が導電性の核体を銀で被覆した樹枝状微粒子に衝突することで、前記樹枝状導電性微粒子が変形して、複数の、鱗片葉または分岐葉を有する葉状の微粒子を得る工程を含むことを特徴とする葉状導電性微粒子の製造方法。
(付記3)
下記数式(1)から求められる円径度係数が0.15以上、0.4以下であり、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されている導電性微粒子。
(付記4)
導電性物質を含む核体と、
前記核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備し、
下記数式(1)から求められる円径度係数が0.15以上、0.4以下であり、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されている導電性微粒子。
(付記5)
前記核体100重量部に対して、前記被覆層が1重量部以上、40重量部以下である付記4記載の導電性微粒子。
(付記6)
厚みが、0.1μm以上、2μm以下である付記4又は5記載の導電性微粒子。
(付記7)
前記被覆層が、銀である付記4〜6いずれかに記載の導電性微粒子。
(付記8)
付記4〜7いずれかに記載の導電性微粒子と、樹脂とを含む、導電性樹脂組成物。
(付記9)
下記化学式(1)で表される単位を有する化合物が配合されている付記4〜8いずれかに記載の導電性樹脂組成物。
(付記10)
前記化学式(1)で表される単位を有する化合物は、下記化学式(2)および下記化学式(3)の少なくともいずれかを含む付記9に記載の導電性樹脂組成物。
(付記11)
付記8〜10いずれかに記載の導電性樹脂組成物から形成してなる導電層を備えた導電性シート。
(付記12)
付記8〜10いずれかに記載の導電性樹脂組成物から形成してなる導電層と、絶縁層とを備えた電磁波シールドシート。
(付記13)
導電性物質を含む核体と、
前記核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備する導電性微粒子の製造方法であって、
導電性を有する樹枝状微粒子と、前記樹枝状微粒子に衝突させることにより、当該樹枝状微粒子を変形させるための固体媒体とを用意する工程と、
前記樹枝状微粒子と前記固体媒体を密閉容器内で衝突させることにより、当該樹枝状微粒子を下記数式(1)から求められる円径度係数が0.15以上、0.4以下であり、かつ、外縁形状に切れ込みおよび分岐葉の少なくとも一方が複数形成されるように変形させる工程と、を備える導電性微粒子の製造方法。
(付記14)
前記樹枝状微粒子は、樹枝状の前記核体に、前記被覆層が被覆されているものである付記13に記載の導電性微粒子の製造方法。
(付記15)
前記樹枝状微粒子は、樹枝状の前記核体を具備し、当該樹枝状微粒子を変形させた後に前記被覆層を前記樹枝状微粒子に被覆させる付記13に記載の導電性微粒子の製造方法。
[Appendix]
The present specification also discloses the invention of the technical idea shown below, which is grasped from the above-described embodiment.
(Appendix 1)
A leaf-shaped conductive fine particle having a plurality of scale leaves or branched leaves, which is formed by coating a conductive core with a conductive substance different from the core.
(Appendix 2)
A step in which a solid medium collides with a dendritic fine particle coated with silver on a conductive core, whereby the dendritic conductive fine particle is deformed to obtain a plurality of leaf-like fine particles having scale leaves or branch leaves A method for producing leaf-shaped conductive fine particles, comprising:
(Appendix 3)
Conductive fine particles having a circularity coefficient determined from the following mathematical formula (1) of 0.15 or more and 0.4 or less, and at least one of notches and branched leaves is formed in the outer edge shape.
(Appendix 4)
A nucleus containing a conductive material;
Covering the core body, comprising a conductive material different from the core body, comprising at least a coating layer constituting an outermost layer,
Conductive fine particles having a circularity coefficient determined from the following mathematical formula (1) of 0.15 or more and 0.4 or less, and at least one of notches and branched leaves is formed in the outer edge shape.
(Appendix 5)
The conductive fine particles according to supplementary note 4, wherein the coating layer is 1 part by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the core.
(Appendix 6)
The conductive fine particles according to supplementary note 4 or 5, wherein the thickness is 0.1 μm or more and 2 μm or less.
(Appendix 7)
The conductive fine particles according to any one of supplementary notes 4 to 6, wherein the coating layer is silver.
(Appendix 8)
A conductive resin composition comprising the conductive fine particles according to any one of supplementary notes 4 to 7 and a resin.
(Appendix 9)
The conductive resin composition according to any one of supplementary notes 4 to 8, wherein a compound having a unit represented by the following chemical formula (1) is blended.
(Appendix 10)
The conductive resin composition according to appendix 9, wherein the compound having a unit represented by the chemical formula (1) includes at least one of the following chemical formula (2) and the following chemical formula (3).
(Appendix 11)
The conductive sheet provided with the conductive layer formed from the conductive resin composition in any one of appendix 8-10.
(Appendix 12)
The electromagnetic wave shield sheet provided with the conductive layer formed from the conductive resin composition in any one of Additional remark 8-10, and the insulating layer.
(Appendix 13)
A nucleus containing a conductive material;
A method for producing conductive fine particles, comprising a coating layer that coats the core and is made of a conductive material different from the core, and at least a part of which forms a coating layer.
Preparing a dendritic particle having conductivity and a solid medium for deforming the dendritic particle by colliding with the dendritic particle;
By causing the dendritic microparticles and the solid medium to collide in a closed container, the circularity coefficient obtained from the following mathematical formula (1) is 0.15 or more and 0.4 or less, and And a step of deforming the outer edge so that at least one of notches and branched leaves is formed in plural.
(Appendix 14)
The method for producing conductive fine particles according to appendix 13, wherein the dendritic fine particles are obtained by coating the dendritic core with the coating layer.
(Appendix 15)
14. The method for producing conductive fine particles according to appendix 13, wherein the dendritic fine particles include the dendritic core, and the dendritic fine particles are coated with the coating layer after the dendritic fine particles are deformed.

この出願は、2011年3月6日に出願された日本出願特願2012−49680を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2012-49680 for which it applied on March 6, 2011, and takes in those the indications of all here.

本発明の導電性微粒子は、導電特性を必要とするフィラーとして各種用途に使用できる。好適には、本発明の導電性微粒子と、樹脂とを含む導電性樹脂組成物において各種用途に利用できる。例えば、導電性樹脂組成物から導電層を形成し、導電性シートや電磁波シールドシートとして使用できる。導電性シートは、例えば、回路間の電気的な接続を目的に使用できる。本発明の導電性シートや電磁波シールドシートは、例えば、繰り返し屈曲を受けるフレキシブルプリント配線板や、リジッドプリント配線板、金属板やフレキシブルコネクタ等に好適である。   The conductive fine particles of the present invention can be used for various applications as a filler that requires conductive properties. Preferably, the conductive resin composition containing the conductive fine particles of the present invention and a resin can be used for various applications. For example, a conductive layer can be formed from a conductive resin composition and used as a conductive sheet or an electromagnetic wave shielding sheet. The conductive sheet can be used for the purpose of electrical connection between circuits, for example. The conductive sheet and electromagnetic wave shield sheet of the present invention are suitable for, for example, a flexible printed wiring board that is repeatedly bent, a rigid printed wiring board, a metal plate, a flexible connector, and the like.

10 サンプル
11、12 ステンレス板
10 Sample 11, 12 Stainless plate

Claims (24)

金属からなる導電性物質を含む核体と、前記核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備する導電性微粒子と、
樹脂とを含み、
前記導電性微粒子は、樹枝状微粒子が薄膜化された葉状の粒子であって、前記葉状の外縁に亘って、前記樹枝状微粒子の樹枝の形跡を残す突起および切れ込みが認められ、且つ下記数式(1)から求められる円径度係数の平均値が0.15以上、0.3以下である導電性樹脂組成物。
但し、前記周囲長は、前記導電性微粒子の電子顕微鏡画像を読み込み、前記導電性微粒子の葉状の平面が観察視点に対して垂直な方向になり、全体が確認できる前記導電性微粒子を抽出して、当該抽出した前記導電性微粒子を二次元に投影したときの外周の長さをいい、前記面積は、前記抽出した前記導電性微粒子を二次元に投影したときの外周により画定される領域の広さをいう。
A conductive fine particle comprising: a core containing a conductive substance made of metal ; and a coating layer that covers the core and is made of a conductive substance different from the core, and at least a part of which constitutes the outermost layer. ,
Including resin,
The conductive fine particles are leaf-like particles obtained by thinning dendritic fine particles, and protrusions and cuts that leave traces of dendritic fine particle dendrites are recognized across the leaf-like outer edge, and the following formula ( 1) the average value of the circle径度coefficient obtained from 0.15 or more, 0.3 der Ru conductive resin composition or less.
However, the perimeter length is obtained by reading the electron microscopic image of the conductive fine particles, and extracting the conductive fine particles that can be confirmed as a whole with the leaf-like plane of the conductive fine particles being in a direction perpendicular to the observation viewpoint. Means the length of the outer periphery when the extracted conductive fine particles are projected two-dimensionally, and the area is a wide area defined by the outer periphery when the extracted conductive fine particles are projected two-dimensionally. Say it.
前記核体100重量部に対して、前記被覆層が1重量部以上、40重量部以下である請求項1記載の導電性樹脂組成物。   The conductive resin composition according to claim 1, wherein the coating layer is 1 part by weight or more and 40 parts by weight or less with respect to 100 parts by weight of the core. 前記導電性微粒子の厚みが、0.1μm以上、2μm以下である請求項1又は2記載の導電性樹脂組成物。 The conductive resin composition according to claim 1, wherein the conductive fine particles have a thickness of 0.1 μm or more and 2 μm or less. 前記被覆層が、銀である請求項1〜3いずれか1項に記載の導電性樹脂組成物。   The conductive resin composition according to claim 1, wherein the coating layer is silver. 前記導電性微粒子は、下記数式(2)から求められる円形係数の平均値が2以上、5以下である請求項1〜4いずれか1項に記載の導電性樹脂組成物。  5. The conductive resin composition according to claim 1, wherein the conductive fine particles have an average value of a circular coefficient obtained from the following mathematical formula (2) of 2 or more and 5 or less.
但し、前記面積は、前記導電性微粒子の電子顕微鏡画像を読み込み、前記導電性微粒子の葉状の平面が観察視点に対して垂直な方向になり、全体が確認できる前記導電性微粒子を抽出して、当該抽出した前記導電性微粒子を二次元に投影したときの外周により画定される領域の広さをいい、前記最大直径は、前記抽出した前記導電性微粒子の最大長の長さをいう。However, the area reads the electron microscopic image of the conductive fine particles, the leaf-like plane of the conductive fine particles is in a direction perpendicular to the observation viewpoint, and the conductive fine particles that can be confirmed as a whole are extracted, The width of the region defined by the outer periphery when the extracted conductive fine particles are two-dimensionally projected is referred to, and the maximum diameter is the maximum length of the extracted conductive fine particles.
前記樹脂100重量部に対して、前記導電性微粒子を50〜500重量部を含む請求項1〜5いずれか1項に記載の導電性樹脂組成物。  The conductive resin composition according to any one of claims 1 to 5, comprising 50 to 500 parts by weight of the conductive fine particles with respect to 100 parts by weight of the resin. さらに、下記化学式(1)で表される単位を有する化合物が配合されている請求項1〜いずれか1項に記載の導電性樹脂組成物。
Furthermore, the conductive resin composition of any one of Claims 1-6 in which the compound which has a unit represented by following Chemical formula (1) is mix | blended.
前記化学式(1)で表される単位を有する化合物は、下記化学式(2)および下記化学式(3)の少なくともいずれかを含む請求項に記載の導電性樹脂組成物。
The conductive resin composition according to claim 7 , wherein the compound having a unit represented by the chemical formula (1) includes at least one of the following chemical formula (2) and the following chemical formula (3).
請求項いずれか1項に記載の導電性樹脂組成物から形成してなる導電層を備えた導電性シート。 Conductive sheet having a conductive layer obtained by forming a conductive resin composition according to any one of claims 1-8. 前記導電層の接続抵抗値が、1.0×10  The connection resistance value of the conductive layer is 1.0 × 10 -1-1 Ω/25mm未満であるLess than Ω / 25mm
(但し、前記接続抵抗値は、前記導電層が、厚み5μm、縦25mm、横25mmのサンプルを用意し、当該サンプルの一主面の全面を、横25mm、縦100mm、厚み0.5mmの第一ステンレス板主面の端部と対向配置させ、80℃、2MPaの条件で熱圧着することで仮接着し、(However, for the connection resistance value, a sample having a conductive layer of 5 μm in thickness, 25 mm in length and 25 mm in width is prepared, and the entire main surface of the sample is 25 mm in width, 100 mm in length, and 0.5 mm in thickness. It is placed opposite to the end of the main surface of one stainless steel plate and temporarily bonded by thermocompression bonding under conditions of 80 ° C. and 2 MPa,
更に、前記サンプルの他主面の全面を、横25mm、縦100mm、厚み0.5mmの第二ステンレス板主面の端部と対向するように、且つ前記サンプルと対向していない領域の前記第一ステンレス板と前記第二ステンレス板が互いに最も離間するように配置させ、80℃、2MPaの条件で熱圧着することで仮接着し、  Further, the entire surface of the other main surface of the sample is opposed to the end of the main surface of the second stainless steel plate having a width of 25 mm, a length of 100 mm, and a thickness of 0.5 mm, and in the region not facing the sample. One stainless steel plate and the second stainless steel plate are arranged so as to be most separated from each other, and temporarily bonded by thermocompression bonding under the conditions of 80 ° C. and 2 MPa,
前記サンプルが挟持された前記第一ステンレス板と前記第二ステンレス板を150℃、2MPaの条件で30分間熱圧着して得たテストピースに対し、  For the test piece obtained by thermocompression bonding the first stainless steel plate and the second stainless steel plate sandwiched with the sample at 150 ° C. and 2 MPa for 30 minutes,
前記第一ステンレス板および前記第二ステンレス板が互いに対向配置されていない同一方向の其々の主面に抵抗率計のプローブを接触させて測定した値とする)  The first stainless steel plate and the second stainless steel plate are the values measured by bringing a probe of a resistivity meter into contact with each main surface in the same direction where the first stainless steel plate and the second stainless steel plate are not opposed to each other)
請求項9に記載の導電性シート。The conductive sheet according to claim 9.
請求項いずれか1項に記載の導電性樹脂組成物から形成してなる導電層と、絶縁層とを備えた電磁波シールドシート。 An electromagnetic wave shielding sheet comprising a conductive layer formed from the conductive resin composition according to any one of claims 1 to 8, and an insulating layer. 金属からなる導電性物質を含む核体と、前記核体を被覆し、当該核体とは異なる導電性物質からなり、少なくとも一部が最外層を構成する被覆層とを具備する導電性微粒子の製造方法であって、
導電性を有する樹枝状微粒子と、前記樹枝状微粒子に衝突させることにより、当該樹枝状微粒子を変形させるための固体媒体とを用意する工程と、
前記樹枝状微粒子と前記固体媒体を密閉容器内で衝突させることにより、前記樹枝状微粒子を、薄膜化された葉状に変形させる工程とを備え、
前記変形により形成された前記葉状の外縁に亘って、前記樹枝状微粒子の形跡を残す突起および切れ込みが認められ、且つ下記数式(1)から求められる円径度係数の平均値が0.15以上、0.3以下である導電性微粒子の製造方法。
但し、前記周囲長は、前記導電性微粒子の電子顕微鏡画像を読み込み、前記導電性微粒子の葉状の平面が観察視点に対して垂直な方向になり、全体が確認できる前記導電性微粒子を抽出して、当該抽出した前記導電性微粒子を二次元に投影したときの外周の長さをいい、前記面積は、前記抽出した前記導電性微粒子を二次元に投影したときの外周により画定される領域の広さをいう。
A conductive fine particle comprising: a nucleus containing a conductive material made of metal ; and a coating layer that covers the nucleus and is made of a conductive material different from the nucleus, and at least a part of which constitutes the outermost layer. A manufacturing method comprising:
Preparing a dendritic particle having conductivity and a solid medium for deforming the dendritic particle by colliding with the dendritic particle;
A step of causing the dendritic microparticles and the solid medium to collide with each other in a closed container, thereby transforming the dendritic microparticles into a thinned leaf shape,
Protrusions and cuts that leave traces of the dendritic fine particles are recognized across the leaf-shaped outer edge formed by the deformation, and the average value of the circularity coefficient obtained from the following formula (1) is 0.15 or more 0.3 der Ru method for producing conductive fine particles or less.
However, the perimeter length is obtained by reading the electron microscopic image of the conductive fine particles, and extracting the conductive fine particles that can be confirmed as a whole with the leaf-like plane of the conductive fine particles being in a direction perpendicular to the observation viewpoint. Means the length of the outer periphery when the extracted conductive fine particles are projected two-dimensionally, and the area is a wide area defined by the outer periphery when the extracted conductive fine particles are projected two-dimensionally. Say it.
前記核体100重量部に対して、前記被覆層を1重量部以上、40重量部以下とする請求項12記載の導電性微粒子の製造方法。  The manufacturing method of the electroconductive fine particles of Claim 12 which makes the said coating layer 1 to 40 weight part with respect to 100 weight part of said nuclei. 前記導電性微粒子の厚みを、0.1μm以上、2μm以下とする請求項12又は13記載の導電性樹微粒子の製造方法。  The method for producing conductive fine particles according to claim 12 or 13, wherein a thickness of the conductive fine particles is 0.1 µm or more and 2 µm or less. 前記被覆層が、銀である請求項12〜14いずれか1項に記載の導電性微粒子の製造方法。  The method for producing conductive fine particles according to claim 12, wherein the coating layer is silver. 下記数式(2)から求められる円形係数の平均値が2以上、5以下である請求項12〜15いずれか1項に記載の導電性微粒子の製造方法。  The average value of the circular coefficient calculated | required from following Numerical formula (2) is 2-5, The manufacturing method of the electroconductive fine particles of any one of Claims 12-15.
但し、前記面積は、前記導電性微粒子の電子顕微鏡画像を読み込み、前記導電性微粒子の葉状の平面が観察視点に対して垂直な方向になり、全体が確認できる前記導電性微粒子を抽出して、当該抽出した前記導電性微粒子を二次元に投影したときの外周により画定される領域の広さをいい、前記最大直径は、前記抽出した前記導電性微粒子の最大長の長さをいう。However, the area reads the electron microscopic image of the conductive fine particles, the leaf-like plane of the conductive fine particles is in a direction perpendicular to the observation viewpoint, and the conductive fine particles that can be confirmed as a whole are extracted, The width of the region defined by the outer periphery when the extracted conductive fine particles are two-dimensionally projected is referred to, and the maximum diameter is the maximum length of the extracted conductive fine particles.
前記核体の表面に対する前記被覆層の平均被覆率を60%以上とする請求項12〜16いずれか1項に記載の導電性微粒子の製造方法。  The method for producing conductive fine particles according to any one of claims 12 to 16, wherein an average coverage of the coating layer with respect to the surface of the core is 60% or more. 前記樹枝状微粒子は、樹枝状の前記核体に、前記被覆層が被覆されているものである請求項12〜17いずれか1項に記載の導電性微粒子の製造方法。 The method for producing conductive fine particles according to any one of claims 12 to 17 , wherein the dendritic fine particles are obtained by covering the dendritic core with the coating layer. 前記樹枝状微粒子は、樹枝状の前記核体であり、当該樹枝状微粒子を変形させた後に前記被覆層を前記樹枝状微粒子に被覆させる請求項12〜17いずれか1項に記載の導電性微粒子の製造方法。 The dendritic particles are dendritic the nucleus, conductive fine particles according to item 1 or one of claims 12 to 17 to be coated on the dendritic particles said coating layer after deforming the dendritic particles Manufacturing method. 請求項12〜19いずれか1項に記載の導電性微粒子の製造方法により得られた導電性微粒子と、  Conductive fine particles obtained by the method for producing conductive fine particles according to any one of claims 12 to 19,
樹脂と、を配合する導電性樹脂組成物の製造方法。  The manufacturing method of the conductive resin composition which mix | blends resin.
更に、下記化学式(1)で表される単位を有する化合物を配合する請求項20に記載の導電性樹脂組成物の製造方法。  Furthermore, the manufacturing method of the conductive resin composition of Claim 20 which mix | blends the compound which has a unit represented by following Chemical formula (1).
前記化学式(1)で表される単位を有する化合物は、下記化学式(2)および下記化学式(3)の少なくともいずれかを含む請求項21に記載の導電性樹脂組成物の製造方法。  The method for producing a conductive resin composition according to claim 21, wherein the compound having a unit represented by the chemical formula (1) includes at least one of the following chemical formula (2) and the following chemical formula (3).
導電性微粒子と、樹脂とを含む導電性樹脂組成物を形成し、  Forming a conductive resin composition containing conductive fine particles and a resin;
前記導電性樹脂組成物を用いて導電層を形成する工程を含む導電性シートの製造方法であって、  A method for producing a conductive sheet comprising a step of forming a conductive layer using the conductive resin composition,
前記導電性樹脂組成物は、請求項20〜22いずれか1項に記載の導電性樹脂組成物の製造方法により形成する導電性シートの製造方法。  The said conductive resin composition is a manufacturing method of the conductive sheet formed with the manufacturing method of the conductive resin composition of any one of Claims 20-22.
導電性微粒子と、樹脂とを含む導電性樹脂組成物を形成し、  Forming a conductive resin composition containing conductive fine particles and a resin;
絶縁層上に、前記導電性樹脂組成物を用いて導電層を形成する工程を含む電磁波シールドシートの製造方法であって、  A method for producing an electromagnetic wave shielding sheet comprising a step of forming a conductive layer on the insulating layer using the conductive resin composition,
前記導電性樹脂組成物は、請求項20〜22いずれか1項に記載の導電性樹脂組成物の製造方法により形成する電磁波シールドシートの製造方法。  The said conductive resin composition is a manufacturing method of the electromagnetic wave shield sheet formed with the manufacturing method of the conductive resin composition of any one of Claims 20-22.
JP2013043132A 2012-03-06 2013-03-05 Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles Active JP6264731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013043132A JP6264731B2 (en) 2012-03-06 2013-03-05 Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012049680 2012-03-06
JP2012049680 2012-03-06
JP2013043132A JP6264731B2 (en) 2012-03-06 2013-03-05 Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017175665A Division JP6410064B2 (en) 2012-03-06 2017-09-13 Conductive fine particles and conductive sheet

Publications (3)

Publication Number Publication Date
JP2013214508A JP2013214508A (en) 2013-10-17
JP2013214508A5 JP2013214508A5 (en) 2015-12-17
JP6264731B2 true JP6264731B2 (en) 2018-01-24

Family

ID=49116326

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013043132A Active JP6264731B2 (en) 2012-03-06 2013-03-05 Conductive resin composition, conductive sheet, electromagnetic wave shielding sheet, manufacturing method thereof, and manufacturing method of conductive fine particles
JP2017175665A Active JP6410064B2 (en) 2012-03-06 2017-09-13 Conductive fine particles and conductive sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017175665A Active JP6410064B2 (en) 2012-03-06 2017-09-13 Conductive fine particles and conductive sheet

Country Status (5)

Country Link
JP (2) JP6264731B2 (en)
KR (1) KR102017121B1 (en)
CN (2) CN104170023B (en)
TW (2) TWI546823B (en)
WO (1) WO2013132831A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065343A (en) * 2013-09-25 2015-04-09 タツタ電線株式会社 Shield housing body, printed circuit board, electronic apparatus and method for manufacturing shield housing body
JP2015065342A (en) * 2013-09-25 2015-04-09 タツタ電線株式会社 Shield housing body, printed circuit board and electronic apparatus
AU2013263700B1 (en) * 2013-11-25 2015-05-14 Smart Start Technology Pty Ltd Electrical System Enhancer
KR20160122694A (en) * 2014-02-12 2016-10-24 도레이 카부시키가이샤 Conductive paste, method for producing pattern, method for producing conductive pattern, and sensor
JP6466758B2 (en) * 2014-07-31 2019-02-06 Dowaエレクトロニクス株式会社 Silver-coated flaky copper powder, method for producing the same, and conductive paste using the silver-coated flaky copper powder
WO2016114339A1 (en) * 2015-01-14 2016-07-21 東洋紡株式会社 Conductive fabric
WO2016151859A1 (en) * 2015-03-26 2016-09-29 住友金属鉱山株式会社 Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
JP6332125B2 (en) * 2015-04-17 2018-05-30 住友金属鉱山株式会社 Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP5907301B1 (en) * 2015-05-15 2016-04-26 住友金属鉱山株式会社 Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
JP5907302B1 (en) 2015-05-15 2016-04-26 住友金属鉱山株式会社 Copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing copper powder
CN107250308B (en) 2015-05-20 2019-10-25 积水化学工业株式会社 Conductive adhesive material and conductive adhesive material with conductive substrate
JP5871098B1 (en) * 2015-07-16 2016-03-01 東洋インキScホールディングス株式会社 Conductive adhesive layer, conductive adhesive sheet and printed wiring board
WO2017026130A1 (en) * 2015-08-07 2017-02-16 太陽インキ製造株式会社 Conductive composition, conductor and base
US10550291B2 (en) * 2015-08-25 2020-02-04 Hitachi Chemical Co., Ltd. Core-shell, oxidation-resistant, electrically conducting particles for low temperature conductive applications
EP3650499B1 (en) * 2017-07-07 2023-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Electroconductive resin composition and method for manufacturing shielded package using same
KR102113732B1 (en) * 2019-03-21 2020-05-21 주식회사 아이에스시 Conductive powder and test connector comprising the same
CN111462935A (en) * 2020-05-12 2020-07-28 无锡市伍豪机械设备有限公司 Conductive particle and method for producing same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11152505A (en) * 1997-11-18 1999-06-08 Sumitomo Metal Mining Co Ltd Flat shaped nickel powder and its production
JP2000133050A (en) * 1998-10-27 2000-05-12 Sekisui Chem Co Ltd Anisotropic conductive film and conductive connection structural body
JP4864195B2 (en) 2000-08-30 2012-02-01 三井金属鉱業株式会社 Coated copper powder
US6663799B2 (en) * 2000-09-28 2003-12-16 Jsr Corporation Conductive metal particles, conductive composite metal particles and applied products using the same
JP4059486B2 (en) * 2002-11-01 2008-03-12 化研テック株式会社 Conductive powder, conductive composition, and method for producing conductive powder
JP4779134B2 (en) 2001-02-13 2011-09-28 Dowaエレクトロニクス株式会社 Conductive filler for conductive paste and method for producing the same
JP4183924B2 (en) * 2001-03-30 2008-11-19 日揮触媒化成株式会社 METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP4168116B2 (en) * 2002-03-06 2008-10-22 Dowaエレクトロニクス株式会社 Foil flake copper powder and conductive paste using the same
TWI228534B (en) * 2002-03-25 2005-03-01 Sony Chemicals Corp Conductive particle and adhesive agent
JP4178374B2 (en) 2002-08-08 2008-11-12 三井金属鉱業株式会社 Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4724369B2 (en) * 2003-09-29 2011-07-13 ソニーケミカル&インフォメーションデバイス株式会社 Method for producing conductive particles
JP4583147B2 (en) * 2004-11-19 2010-11-17 三井金属鉱業株式会社 Conductive composite powder and method for producing the same
JP4613362B2 (en) 2005-01-31 2011-01-19 Dowaエレクトロニクス株式会社 Metal powder for conductive paste and conductive paste
CN100588453C (en) * 2006-05-24 2010-02-10 比亚迪股份有限公司 Method for preparing globular shape powdered nickel precursor body and globular shape powdered nickel
JP4922793B2 (en) * 2007-03-09 2012-04-25 アルファーサイエンティフィック株式会社 Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
CN101041430A (en) * 2007-04-23 2007-09-26 华东理工大学 Preparation method of spherical charcoal-aero gel
JP4936142B2 (en) 2008-03-21 2012-05-23 福田金属箔粉工業株式会社 Conductive paste composition, electronic circuit, and electronic component
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
JP5521207B2 (en) * 2009-01-28 2014-06-11 東ソー株式会社 Conductive film forming composition, method for producing the same, and conductive film forming method
TW201121405A (en) 2009-09-18 2011-06-16 Toyo Ink Mfg Co Electro-magnetic wave shielding film and wiring board
TWI443458B (en) * 2010-04-21 2014-07-01 Toyo Ink Sc Holdings Co Ltd Red-coloring composition for color filter and color filter

Also Published As

Publication number Publication date
CN106424711A (en) 2017-02-22
CN104170023A (en) 2014-11-26
WO2013132831A1 (en) 2013-09-12
JP2018067531A (en) 2018-04-26
JP6410064B2 (en) 2018-10-24
JP2013214508A (en) 2013-10-17
CN104170023B (en) 2016-12-28
TWI546823B (en) 2016-08-21
TWI600033B (en) 2017-09-21
KR20140138136A (en) 2014-12-03
KR102017121B1 (en) 2019-09-02
CN106424711B (en) 2019-02-15
TW201705156A (en) 2017-02-01
TW201344703A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP6410064B2 (en) Conductive fine particles and conductive sheet
JP5796690B1 (en) Electromagnetic shielding sheet and printed wiring board
JP6255816B2 (en) Electromagnetic shielding sheet and printed wiring board
TWI608791B (en) Electromagnetic wave shield material for fpc
JP5707216B2 (en) Electromagnetic wave shielding material for FPC
JP6028290B2 (en) Electromagnetic shielding sheet and printed wiring board
JP6287430B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
JP6597927B1 (en) Electromagnetic shielding sheet and electromagnetic shielding wiring circuit board
WO2019239710A1 (en) Electromagnetic wave shielding sheet
JP2019009452A (en) Electronic component-mounted substrate, laminate, electromagnetic wave-shielding sheet and electronic equipment
JP6624331B1 (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
TW201840418A (en) Resin composition, method for producing resin composition, and structure
JP2017193717A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board
WO2020071356A1 (en) Electromagnetic shielding sheet and electronic component mounting substrate
WO2018147355A1 (en) Component mounting substrate, method for producing same, laminate, electromagnetic shielding sheet and electronic device
JP6183568B1 (en) Manufacturing method of component mounting board
JP2018074168A (en) Electromagnetic wave shield sheet and printed wiring board
TW201922999A (en) Electroconductive adhesive
JP6645610B1 (en) Electromagnetic wave shielding sheet and electromagnetic wave shielding wiring circuit board
JP6451879B2 (en) Conductive adhesive sheet, electromagnetic shielding sheet, and printed wiring board
JP2019041132A (en) Conductive resin composition, conductive adhesive sheet, electromagnetic wave shield sheet and printed wiring board
JP2019216234A (en) Electromagnetic wave shield sheet, component mounting substrate, and electronic apparatus
JP2018129495A (en) Method for manufacturing component-mounted board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R151 Written notification of patent or utility model registration

Ref document number: 6264731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250