JPH0475316B2 - - Google Patents

Info

Publication number
JPH0475316B2
JPH0475316B2 JP60115391A JP11539185A JPH0475316B2 JP H0475316 B2 JPH0475316 B2 JP H0475316B2 JP 60115391 A JP60115391 A JP 60115391A JP 11539185 A JP11539185 A JP 11539185A JP H0475316 B2 JPH0475316 B2 JP H0475316B2
Authority
JP
Japan
Prior art keywords
plating
nickel
solution
reaction
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60115391A
Other languages
Japanese (ja)
Other versions
JPS61276979A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60115391A priority Critical patent/JPS61276979A/en
Publication of JPS61276979A publication Critical patent/JPS61276979A/en
Publication of JPH0475316B2 publication Critical patent/JPH0475316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は水に分散可能な芯材、特に粉粒体の粒
子表面に無電解ニツケルめつき法により緻密で導
電性に優れたニツケルめつき皮膜を形成させるニ
ツケルめつき材料の製造法に関する。更に詳しく
は、本発明は電磁波シールド材としての導電性材
料、導電性顔料等に適したニツケルめつき材料を
工業的に提供する方法に関する。 [従来の技術] 一般に、無電解メツキはその技術の進歩と用途
の開発によつて、今日では有機または無機の材質
を問わないことは勿論、その形状や大きさに関係
なく適用されている。とは言え多くの場合、基材
は板状または成型体が多く、粉末または粒状の如
き微細なめつき基材についてはその用途開発が新
しいだけに最近のことであつて、確立された製造
方法はなく、僅かに従来の一般的方法に従つて処
理されているのが現状である。 即ち、無電解めつきする場合、通常、予め建浴
しためつき液に被めつき基材を浸漬して予め推測
により定められた時間反応させた後、反応を停止
させる方法がとられていた。しかし、この方法で
はめつき反応を繰り返すと薬剤を補充してもめつ
き反応が実質的に生ぜずもはや工業的にその操作
を中止せざるを得ない無電解ニツケルめつき老化
液(以下、単に「老化液」と記載する)が多量に
発生する。 従来、かかる老化液は亜りん酸アルカリ等の反
応生成物の除去による再生処理に関する提案等が
なされているけれども、複雑な液組成のために工
業的に再利用またはニツケル塩の分離回収等は難
しく、多くの場合、無害化処理を加えて廃棄せざ
るを得ないのが実情であつた。 [発明が解決しようとする問題点] 被めつき基材が粉末または粉状体について、上
記と同様な浸漬方法で老化液を使用すると、成型
体の如き大きなめつき基材に比べて比表面積が著
しく大きいためめつき反応を生ずるので有効に利
用できるけれども、この場合、以下に記載する従
来の建浴方式に共通する問題点がある: (1) めつき浴の液性は沈澱が生成し易いため、PH
4.5以上にはできない。従つて、形成ニツケル
皮膜のりん含有率が高くなり皮膜の導電性が劣
化する; (2) 反応初期において、ニツケル及び次亜りん酸
塩濃度が高いと、粗雑なニツケルめつき皮膜が
生じ易く、浴の自己分解も起し易い; (3) 次亜りん酸ソーダの有効利用率が低く、従つ
て、めつき老化液中の全ニツケルイオンを還元
析出させるためには老化液中の次亜りん酸ソー
ダでは不足なので補充する必要がある; (4) めつき反応の初期において水素の発生が激し
いので爆発に対する安全対策を施す必要があ
る。 更に、速やかに粉粒体を浴中に添加しても比表
面積が大きいこともあつて、めつき反応のコント
ロールも困難である。 他方、粉粒体を一挙にめつき浴に投入できれば
上記問題は多少とも抑制しうるが、時間をかけて
投入した場合、始めと終りとではめつき皮膜の膜
厚に差が生じ不均一となることは避けられない。 特に、粉粒体をめつきする場合に問題なのは凝
集した二次粒子にめつき皮膜が施されるとその使
用に際して、二次粒子が壊れて未被覆面の露出に
よる被覆の欠陥が現れる。 従つて、粉粒体をめつきする場合には可能な限
り、二次粒子の少ない状態によく分散したものに
めつき皮膜を施すことが最も重要なことになる
が、従来の方法で老化液を再利用することは全く
期待できないものであつた。 このような粉粒体の微細粒子をめつきするに際
して上記の事実を鑑み、本発明者は、先に粉粒状
芯材に無電解めつきをする方法として該芯材を水
性懸濁体にして、これに無電解めつき液を添加す
ることによりめつき皮膜を付与させる方法を開発
した(特開昭60−59070号公報)。 [問題点を解決するための手段] 本発明は上述の特開昭公報にかかる発明を更に
発展させるもので、めつき液を添加方式にて行な
うめつき方法を更に鋭意研究を重ねたところ、老
化液を水性懸濁体へ添加する方法を用いても驚く
べきことに何ら遜色なく高品位のニツケルめつき
皮膜が形成されることを知見し、本発明を完成す
るに至つた。 従つて、本発明は水に分散可能なめつき基材を
無電解ニツケルめつき液と接触させることからな
るニツケルめつき材料の製造法において、PH4〜
10のめつき基材水性懸濁体を調製し、次いで該懸
濁体に少なくとも無電解ニツケルめつき老化液を
添加して、且つ該PH範囲を維持しながら基材表面
にニツケルめつき皮膜を形成させることを特徴と
するニツケルめつき材料の製造法を提供するにあ
る。 [作用] まず、ニツケルめつき材料におけるめつき基材
(以下、単に「芯材」と記載する)について説明
すると、その1つの特徴は芯材が水に分散可能な
基材に限られるということである。 水に分散可能な芯材というのは、攪拌等の通常
の分散手段により、ニツケル皮膜が芯材に形成し
うる程度に実質的に水中に分散した懸濁体を形成
しうるものをいう。 水に懸濁しうるものであるから、水に実質的に
不溶性のもの、好ましくは酸やアルカリに対して
も溶解または変質しない安定なものである。 それ故、芯材は水に実質的に不溶性の分散可能
なものであれば、その形状や大きさは基本的には
問題でないが、多くの場合、芯材というのは粉状
ないし粒状を対象とする。これらは、コロイド状
微粒子から数mm程度の粒子までの外観上粉末状態
または粒状体のいずれでもよい。また、その形状
を顕微鏡または肉眼によつて観察した場合、球
状、板状、棒状、針状、中空状または繊維状のい
ずれの形状のものであつてもよい。また、アスペ
クト比の大きい板状、針状または繊維状芯材は数
cmの大きさのものであつても分散可能であるから
芯材として適用できる。要するに被めつき基材が
外観上粒状、粉状または繊維状として扱われてい
るような分散可能なものであれば芯材として対象
とすることができる。また、芯材の材質は、有機
質または無機質を問わず無電解めつき可能な材質
を全て包含する。これらは、天然物または合成物
のいずれであつてもよい。また、芯材は化学的に
均一な組織であることを要しないのはもちろんで
あるが、それが結晶質または非晶質(ガラスを含
む)のいずれであつてもよい。重要なことは、芯
の表面が化学的にめつき液と反応して皮膜の形成
能を有することであり、分散可能な材質というこ
とである。 かかる芯材を例示的に列挙すれば、無機芯材と
しては、金属粉末(合金も含む)、金属または非
金属の酸化物(含水物も含む)、アルミノ珪酸塩
を含む金属珪酸塩、金属炭化物、金属窒化物、金
属炭酸塩、金属硫酸塩、金属リン酸塩、金属硫化
物、金属酸塩、金属ハロゲン化物または炭素など
であり、有機芯材としては天然繊維、天然樹脂、
ポリエチレン、ポリプロピレン、ポリ塩化ビニ
ル、ポリスチレン、ポリブテン、ポリアミド、ポ
リアクリル酸エステル、ポリアクリロニトリル、
ポリアセタール、アイオノマー、ポリエステルな
どの熱可塑性樹脂、アルキツド樹脂、フエノール
樹脂、尿素樹脂、メラミン樹脂、キシレン樹脂、
シリコーン樹脂またはジアリルフタレート樹脂の
如き熱硬化性樹脂などが挙げられる。これらは、
1種または2種以上の混合物であつてもよい。こ
の混合物というのは化学的に組成が不均質のもの
から芯材として混合物であるいずれの場合も含む
ものである。 かかる芯材表面上に無電解ニツケルめつきする
に当り、本発明における第2の特徴はめつき反応
が生ずるような状態にある芯材の水性懸濁体を調
製することである。 ここに芯材がめつき反応が生ずるような状態に
あるというのは芯材をめつき処理するに当り、予
め洗浄、エツチング、増感及び活性化等芯材の物
性に応じた前処理操作を施してめつき反応ができ
る状態をいい、かかる前処理は公知の方法が全て
適用できる。 例えば、洗浄処理は芯材をアルカリ脱脂液にて
浸漬脱脂し、塩酸、硫酸あるいはリン酸に浸漬す
ることにより行なわれる。引き続いて行なわれる
触媒処理は可溶性第1錫塩、次いで可溶性パラジ
ウム塩溶液にて、または第1錫塩とパラジウム塩
の混合コロイド溶液にて、次いで酸またはアルカ
リ性水溶液で、若しくはシランカツプリング剤と
パラジウム混合水溶液にて、夫々芯材と接触処理
することにより前処理すればよい。これらは既に
公知のことであり、本発明において格別の前処理
を行う必要はない。 次に、かかる芯材の水性懸濁体というのは水ま
たは少なくとも1種のめつき用薬剤などを添加し
た水溶液を媒体とする芯材の懸濁体をいい、また
めつき用薬剤というのはニツケル塩、次亜りん酸
塩、錯化剤、反応促進剤あるいはPH調整剤等めつ
き液を構成しうる薬剤であり、それらは1種また
は2種以上であつてもよい。 ただ、めつき液自体を懸濁媒体とする場合には
芯材の懸濁体の調製の際にめつき反応が生じない
程度の薄い状態で用いることが必要である。 通常は単なるPHを調整した水性懸濁体で充分で
あるが、芯材によつては錯化剤を添加した水性懸
濁体が好適となることが多い。 錯化剤というのはニツケルイオンに対し錯化作
用のある化合物であり、例えばクエン酸、酒石
酸、リンゴ酸、乳酸、グルコン酸またはそのアル
カリ金属塩やアンモニウム塩等のカルボン酸
(塩)、グリシン等のアミノ酸、エチレンジアミ
ン、アルキルアミン等のアミン類、その他のアン
モニウム、EDTA、ピロリン酸(塩)等が挙げ
られ、それらは1種または2種以上であつてもよ
い。 錯化剤の懸濁体における含有量は1〜100g/
、望ましくは5〜50g/の範囲にある。 また、懸濁体のPHは4〜10、好ましくは4.5〜
8の範囲に調整して均質に分散させたものであ
る。 水性懸濁体における芯材の分散性は物性によつ
て異なるので、分散方法は適宜所望の手段、例え
ば、通常攪拌から高速攪拌、あるいはコロイドミ
ルまたはホモジナイザーの如き断分散装置等を用
い、芯材のアグロメレートをできるだけ除去した
一次粒子に近い分散状態の懸濁体を調製すること
が望ましい。なお、芯材を分散させるに際し、例
えば界面活性剤等の分散剤を上記したように必要
に応じて用いることができる。懸濁体の濃度は、
特に限定する理由はないが、スラリー濃度が低い
と処理容量が大となるから経済的でなく、また、
逆にその濃度が濃くなると芯材の分散性が悪くな
るので芯材の物性に応じ適宜所望のスラリー濃度
に設定すればよい。多くの場合50g/〜700
g/、好ましくは100g/〜500g/の範囲
にある。また、この懸濁体中の芯材をめつきする
に当り、めつきが効果的に実施されるべく懸濁体
の温度をめつき可能温度に予め調節しておくこと
が望ましい。 かくして調製した芯材の水性懸濁体に少なくと
も無電解ニツケルめつき老化液を添加してめつき
基材表面にニツケルめつき皮膜を形成させること
が本発明の第3の特徴である。 無電解ニツケルめつき老化液(老化液)という
のは、この分野では周知の概念であり、一般的に
は既にめつき反応操作に使用された液であつて、
もはや効率的なめつき反応を維持することができ
なくなつためつき反応後の液をいう。 即ち、無電解ニツケルめつき液は基本的にはニ
ツケル液、還元剤(次亜りん酸ソーダ)、錯化剤
及びPH調整剤(酸またはアルカリ剤)の各薬剤を
所望の配合割合により組成される水溶液であり、
通常は前記したように建浴したこの液に被めつき
物を浸漬してめつき処理を行ない、めつき反応の
進行に伴う液組成の変化に応じて所望の薬剤を適
宜補充してゆくが、最終的には反応生成物(亜り
ん酸ソーダ)の多い老化液となる。 本発明において、老化液というのは前記のよう
な老化液を意味し、本発明にかかるニツケルめつ
き工程において用いられた後の分離液を意味する
ものではない。 このような老化液が本発明にかかる方法におい
て有効なめつき液として、なお添加できることは
全く予想外のことであり、その詳細な作用機構は
明らかでないけれども、恐らく次のような理由に
よるものと思われる。 老化液と言えども建浴時のめつき液と比べて充
分にニツケル塩や還元剤である次亜りん酸ソーダ
が存在するにも拘わらず、いわゆる老化する現象
は反応生成物である亜りん酸ソーダが多量に存在
していることによる。 即ち、めつき反応により亜りん酸ソーダの生成
が増加することにより、亜りん酸ニツケルへの自
己分解反応が併行して生ずるが、還元力を高める
べくPHを上げると、該反応は不可避的かつ沈澱を
生じ易くなるのみならず、これを抑制すべく錯化
剤の増加はめつき反応速度を遅くする。 しかして、本発明にかかる方法では芯材の水性
懸濁体へめつき液を添加してゆくので、常にめつ
き液は該懸濁体へ希釈され、かつPH変化にも充分
許容できる幅をもつことができるので、反応生成
物の亜りん酸ソーダの影響が反応系では通常濃度
のめつき浴中へ被めつき物を浸漬する方法に比べ
て著しく小であることによると考えられるので、
薄いめつき薬剤濃度でもめつき反応を穏やかに進
行させることができる。 従つて、老化液といえどもニツケルめつき液の
基本的薬剤、例えばニツケル塩や次亜りん酸ソー
ダの如き還元剤が充分存在する限り、本発明にお
いては老化液にあらずして、なお直接めつき液と
して使用することができるわけである。勿論、新
規なめつき薬剤をこれに添加して使用することは
言うまでもない。 即ち、本発明において少なくともニツケルめつ
き老化液を添加すると言うのは、上記老化液をそ
のまま使用することは勿論のことであるが、必要
に応じこれを希釈または濃縮し、若しくはこの老
化液を基本として他の薬剤を添加調製して使用す
ることができることをも包含していることを意味
するものである。 なお、本発明において、ニツケル塩というのは
硫酸ニツケルの如きニツケル塩単独と上記他の可
溶性金属塩との混合塩を意味し、この場合にはニ
ツケル合金めつき皮膜を形成させることができ
る。 還元剤としては次亜りん酸アルカリが最も代表
的であるが、他に硼酸水素アルカリ等の還元剤等
がある。 また、PH調整剤というのはめつき反応によつて
反応系のPHが変化するのを予め、または変化に応
じてめつき皮膜の安定な被膜形成のために反応系
のPHを調整する薬剤であり、水酸化ナトリウム、
水酸化カリウム等のアルカリ剤あるいは硫酸、塩
酸等の如き酸性化剤をいう。 なお、錯化剤はPHの如何によつては生成するニ
ツケル水酸化物の生成を抑制するべくニツケルイ
オンにキレート効果を有する錯化剤のことで、既
に述べたとおりである。 かくして調製された錯化剤含有の水性懸濁体に
老化液を添加する際、懸濁体には充分分散状態が
保たれるよう、必要に応じて攪拌、超音波分散処
理などを与えておくことが望ましく、また、温度
も制御できるように設定しておくことが望まし
い。 本発明において、めつき反応は老化液の添加と
共に速やかに生ずるが、その際、液濃度と共に添
加速度がめつき反応に直接的に影響し、また、こ
れらの要素は芯材の物性、特に表面特性にも著し
く関係するのでこれらの要素を十分に考慮した上
で、めつき皮膜のむらの生じないよう均一かつ強
固なめつき皮膜を形成させるためにめつき液の添
加速度を設定して、制御して添加することが必要
であり、多くの場合徐々に定量的に添加する方が
よい。 このようにして、老化液を水性懸濁体に制御し
て添加することにより水素ガスの発生を伴つて速
やかなめつき反応が生じ分散した芯材表面に均一
かつ強固なめつき皮膜が形成されてゆく。従つ
て、添加量に応じてめつき皮膜の膜厚を調節する
ことができ、用途に応じて、添加量は設定すれば
よい。 なお、めつき反応温度は50〜90℃の範囲が好ま
しい。 老化液の添加終了後、水素ガスの発生の終了を
確認した後、暫時分散手段を施した後、めつき処
理を終了させ、次いで常法により母液を分離し
て、めつき材料を水洗及び分離及び乾燥して回収
する。 [実施例] 以下に実施例(以下、特記しない限り単に
「例」と記載する)を挙げ、本発明を更に説明す
る。 例 1〜4 平均粒径250μmのプロゴパイト系マイカ100g
を2.5g/のシランカツプリング剤[チツソ(株)
製、商品名APS−E]及び0.2g/の塩化パラ
ジウムの混合溶液1に投入し、良く攪拌しなが
ら約60分処理し、ろ過した後、110℃で充分に乾
燥した。次に、この前処理したマイカ10gを予め
第1表に示したPHに調整し、75〜80℃に加熱した
水溶液に添加して充分脱アグロメレートすべく攪
拌分散して水性懸濁体をそれぞれ試料調製した。 次いで、この攪拌下にある水性懸濁体に無電解
ニツケルめつき老化液[日本カンゼン製、ニツケ
ルるめつき液:ブルーシユマーの老化液(ニツケ
ル濃度5.6g/、次亜りん酸ソーダ濃度30.3
g/)]1.2を少量ずつ添加し、めつき処理を
行なつた。なお、反応中液のPHを最初に設定した
PH値に一定に維持するため水酸化ナトリウム水溶
液を適宜滴下した。老化液を全量添加し、水素の
発生が止まつた後、ろ過し、リパルプ洗浄を行な
い、乾燥してそれぞれ異なるPHにある懸濁体での
ニツケルめつきマイカを得た。 例 5〜8 マイカを分散させる水性懸濁体のPHを6.5とし、
第1表に示すように無電解ニツケルめつき老化液
を変えた以外は例1と同一条件で前処理及びめつ
き処理し、それぞれニツケルめつきマイカを得
た。 例 9〜13 マイカの代わりに第1表に示す各種の粉粒物を
芯材としてそれぞれめつきを行つた。 即ち、これらの芯材を例1と同一条件で前処理
し、次いで水性懸濁体のPHを6.5と一定にした以
外は例1と同一条件で調製したそれぞれの水性懸
濁体に老化液を添加してめつき処理を行ない、各
種芯材に対するニツケルめつき粉末を得た。 以上、例1〜13に従つてめつき処理した後ろ過
分離した母液は無色透明であり、これは老化液中
のNi++が実質的に消費し尽くされており、極め
て合理的にめつき反応が行なわれていたことを示
すものである。 比較例 1〜5 例1で用いたと同じ老化液を5バツチ用意し、
それぞれ第1表に示すようなPHに調整して浴とし
た。 次いで、例1と同一の前処理を行なつたマイカ
10gをそれぞれ攪拌下にある各めつき浴に添加し
てめつき処理を行なつた。なお、めつき処理中は
反応液のPHを当初の設定PHに保つべく適宜水酸化
ナトリウムを滴下してPH調製を行なつた。 各バツチ共、マイカの添加当初は激しく水素を
発生して還元反応が進み、PHが中性に近いバツチ
ほど反応が激しかつたが、やがて水素の発生が止
んだので次亜りん酸ソーダを各浴にそれぞれ少量
ずつ全量18gを追加補充して反応を再生させた。 しかし、PH5.5以上のバツチについてはやがて
自己分解反応が生じて沈澱が発生し、いわゆるニ
ツケルめつき処理は施されなかつた。 反応終了後、ろ過分離した母液はいずれのバツ
チ共に淡青色を呈していた。このことは、まだ
Ni++が存在していたにも拘わらず、めつき反応
が生じなかつたことを意味するものである。 ニツケルめつき材料の物性 以上、例1〜13及び比較例1〜5で得られた各
試料について、次に示す測定または要領で物性を
明らかにしたところ、第1表の結果が得られた。 <めつき皮膜中のニツケル量> 試料の所定量を硝酸にて溶解し、I.C.P.分析に
よりNi量を測定し、試料中のNi量を重量%で表
わす。 <めつき皮膜中の含りん量> 試料を硝酸にて溶解したものについて、同じく
I.C.P.分析によりPを測定し、P/Ni+Pの重量
%として表わす。 <めつき材料の抵抗値> 試料をガラス容器(1.59cmφ×20cm)に所定の
充填率で充填した後、4端子法により抵抗を測定
し、体積固有抵抗(Ωcm)として表わす。 <めつき皮膜の電子顕微鏡写真観察> 例2、4及び比較例3、5で得られた試料のめ
つき表面を走査型電子顕微鏡写真(約10000倍)
にて観察する。例2の電子顕微鏡写真を第1図、
例4の電子顕微鏡写真を第2図、比較例3の電子
顕微鏡写真を第3図、比較例5の電子顕微鏡写真
を第4図とする。なお、電子顕微鏡写真の1cmが
ほぼ1μmに相当する。 <めつき材料充填のポリプロピレン樹脂の電磁波
シールド性> 試料とポリプロピレン樹脂(三菱油化株式会社
製:MA−4PPホモポリマー)とを所定の充填率
で配合し、ブラベンダーにて220℃において4分
間混練した後、ロールにて圧延しホツトプレスで
厚さ2mmの試験片を得た。この試験片を用いて体
積固有抵抗値(Ωcm)を測定及び4GHzの電波を
用い管内法により電波透過損失(dB)を測定し
て試験片の電磁波シールド性を評価する。 なお、電波透過損失の値(dB)は測定器の検
出感度の最大値が40dBであるため、それ以上は
全て>40と表わす。
[Industrial Application Field] The present invention is a nickel plating method in which a dense and highly conductive nickel plating film is formed on the particle surface of a water-dispersible core material, particularly a powder or granule, by an electroless nickel plating method. Concerning the manufacturing method of materials. More specifically, the present invention relates to a method for industrially providing a nickel plating material suitable for electroconductive materials, conductive pigments, etc. as electromagnetic shielding materials. [Prior Art] In general, due to advances in technology and development of applications, electroless plating is now applied regardless of the material, organic or inorganic, and regardless of its shape or size. However, in many cases, the base material is plate-shaped or molded, and the development of applications for fine plating base materials such as powder or granules is recent, and there are no established manufacturing methods. At present, it is only processed according to conventional general methods. That is, in the case of electroless plating, the method used is usually to immerse the plating base material in a pre-prepared plating solution, allow it to react for a predetermined time, and then stop the reaction. . However, if the plating reaction is repeated in this method, the plating reaction will not substantially occur even if the chemical is replenished, and the operation must be discontinued industrially. A large amount of aging fluid (described as "aging fluid") is generated. Conventionally, proposals have been made to regenerate such aged liquids by removing reaction products such as alkali phosphites, but due to the complex composition of the liquids, industrial reuse or separation and recovery of nickel salts are difficult. In many cases, the reality is that it has no choice but to undergo detoxification treatment and be disposed of. [Problems to be Solved by the Invention] When the aging liquid is used in the same immersion method as described above when the plated substrate is a powder or a powdered material, the specific surface area becomes smaller than that of a large plated substrate such as a molded body. However, in this case, there are problems common to conventional bath preparation methods as described below: (1) The liquid nature of the plating bath is such that precipitation is not formed. Because it is easy, PH
It cannot be higher than 4.5. Therefore, the phosphorus content of the formed nickel film increases and the conductivity of the film deteriorates; (2) If the nickel and hypophosphite concentrations are high in the early stage of the reaction, a rough nickel plating film is likely to occur; Self-decomposition of the bath is also likely to occur; (3) The effective utilization rate of sodium hypophosphite is low; therefore, in order to reduce and precipitate all the nickel ions in the aging solution, Acid soda is insufficient and must be replenished; (4) Hydrogen is generated rapidly in the early stages of the plating reaction, so safety measures must be taken to prevent explosions. Furthermore, even if the powder is quickly added to the bath, the specific surface area is large, making it difficult to control the plating reaction. On the other hand, if the powder and granules can be added to the plating bath all at once, the above problems can be suppressed to some extent, but if the powder is added over time, there will be a difference in the thickness of the plating film between the beginning and the end, resulting in non-uniformity. It is inevitable that it will happen. Particularly, when plating powder or granules, a problem arises when a plating film is applied to aggregated secondary particles, and upon use, the secondary particles are broken and defects in the coating occur due to exposure of the uncoated surface. Therefore, when plating powder or granules, it is most important to apply a plating film to a well-dispersed material with as few secondary particles as possible. There was no hope that it could be reused. In view of the above-mentioned facts when plating such fine particles of powder or granule material, the present inventor first proposed a method for electroless plating of the powder core material by making the core material into an aqueous suspension. developed a method for applying a plating film by adding an electroless plating solution to this (Japanese Patent Application Laid-Open No. 60-59070). [Means for Solving the Problems] The present invention is a further development of the invention disclosed in the above-mentioned Japanese Patent Application Laid-Open Publication No. 1999-19103, and after further intensive research into a plating method using a method of adding a plating liquid, Surprisingly, it was discovered that a high-quality nickel plating film can be formed using a method of adding an aging liquid to an aqueous suspension, and the present invention was completed based on this finding. Therefore, the present invention provides a method for producing a nickel plating material, which comprises contacting a water-dispersible plating base material with an electroless nickel plating solution.
10, an aqueous suspension of plating base material is prepared, and then at least an electroless nickel plating aging solution is added to the suspension, and a nickel plating film is formed on the surface of the base material while maintaining the pH range. The object of the present invention is to provide a method for producing a nickel-plated material, which is characterized by forming a nickel-plated material. [Function] First, to explain the plating base material (hereinafter simply referred to as "core material") in nickel plating materials, one of its characteristics is that the core material is limited to base materials that can be dispersed in water. It is. A water-dispersible core material is one that can form a suspension substantially dispersed in water to the extent that a nickel film can be formed on the core material by ordinary dispersion means such as stirring. Since it can be suspended in water, it must be substantially insoluble in water, preferably stable enough to not dissolve or deteriorate even in acids or alkalis. Therefore, the shape and size of the core material basically does not matter as long as it is substantially insoluble in water and can be dispersed, but in many cases, the core material is in the form of powder or granules. shall be. These may be powdery or granular in appearance, ranging from colloidal fine particles to particles on the order of several mm. Further, when its shape is observed under a microscope or with the naked eye, it may be spherical, plate-like, rod-like, needle-like, hollow, or fibrous. In addition, plate-like, needle-like, or fibrous core materials with large aspect ratios are
Since it can be dispersed even if it has a size of cm, it can be used as a core material. In short, any dispersible material that can be treated as a granular, powdery or fibrous material can be used as the core material. Further, the material of the core material includes all materials capable of electroless plating, regardless of whether they are organic or inorganic. These may be either natural or synthetic. Furthermore, it goes without saying that the core material does not need to have a chemically uniform structure, but it may be either crystalline or amorphous (including glass). What is important is that the surface of the core has the ability to chemically react with the plating solution to form a film, and that it is a dispersible material. Examples of such core materials include metal powders (including alloys), metal or non-metal oxides (including hydrated materials), metal silicates including aluminosilicates, and metals. These include carbides, metal nitrides, metal carbonates, metal sulfates, metal phosphates, metal sulfides, metal salts, metal halides, or carbon, and organic core materials include natural fibers, natural resins,
Polyethylene, polypropylene, polyvinyl chloride, polystyrene, polybutene, polyamide, polyacrylic acid ester, polyacrylonitrile,
Thermoplastic resins such as polyacetal, ionomer, polyester, alkyd resins, phenolic resins, urea resins, melamine resins, xylene resins,
Examples include thermosetting resins such as silicone resins and diallyl phthalate resins. these are,
It may be one type or a mixture of two or more types. This mixture includes anything from chemically heterogeneous compositions to mixtures used as core materials. In performing electroless nickel plating on the surface of such a core material, a second feature of the present invention is to prepare an aqueous suspension of the core material in such a state that the plating reaction occurs. The fact that the core material is in a state where a plating reaction occurs means that before plating the core material, pretreatment operations such as cleaning, etching, sensitization, and activation are performed in accordance with the physical properties of the core material. This refers to a state in which a plating reaction can occur, and all known methods can be applied to such pretreatment. For example, the cleaning treatment is performed by immersing and degreasing the core material in an alkaline degreasing solution and then immersing it in hydrochloric acid, sulfuric acid, or phosphoric acid. Subsequent catalytic treatment is carried out with a soluble stannous salt and then with a soluble palladium salt solution, or with a mixed colloidal solution of a stannous salt and a palladium salt, then with an acid or alkaline aqueous solution, or with a silane coupling agent and palladium. Pretreatment may be performed by contacting each core material with a mixed aqueous solution. These are already known, and there is no need for special pretreatment in the present invention. Next, an aqueous suspension of a core material refers to a suspension of a core material in water or an aqueous solution to which at least one kind of a plating agent has been added; These are agents that can constitute the plating solution, such as nickel salts, hypophosphites, complexing agents, reaction accelerators, and PH regulators, and they may be one type or two or more types. However, when the plating liquid itself is used as a suspending medium, it is necessary to use it in a thin enough state that no plating reaction occurs when preparing a suspension of the core material. Usually, an aqueous suspension with a simple pH adjustment is sufficient, but depending on the core material, an aqueous suspension with a complexing agent added is often suitable. Complexing agents are compounds that have a complexing effect on nickel ions, such as carboxylic acids (salts) such as citric acid, tartaric acid, malic acid, lactic acid, gluconic acid or their alkali metal salts and ammonium salts, glycine, etc. amino acids, amines such as ethylenediamine and alkyl amines, other ammoniums, EDTA, pyrophosphoric acid (salt), etc., and they may be used alone or in combination of two or more. The content of the complexing agent in the suspension is 1 to 100 g/
, preferably in the range of 5 to 50 g/. In addition, the pH of the suspension is 4-10, preferably 4.5-10.
It was adjusted to a range of 8 and uniformly dispersed. The dispersibility of the core material in an aqueous suspension differs depending on its physical properties, so the dispersion method for the core material is determined by appropriate means, such as normal stirring, high-speed stirring, or a dispersion device such as a colloid mill or homogenizer. It is desirable to prepare a suspension in a state of dispersion close to that of primary particles, with as much of the agglomerates as possible removed. In addition, when dispersing the core material, for example, a dispersant such as a surfactant can be used as necessary, as described above. The concentration of the suspension is
There is no particular reason to limit it, but if the slurry concentration is low, the processing capacity will be large, which is not economical, and
On the other hand, if the concentration becomes high, the dispersibility of the core material deteriorates, so the slurry concentration may be appropriately set to a desired value depending on the physical properties of the core material. Often 50g/~700
g/, preferably in the range from 100 g/ to 500 g/. Furthermore, when plating the core material in this suspension, it is desirable to adjust the temperature of the suspension in advance to a temperature that allows plating so that plating can be carried out effectively. A third feature of the present invention is to form a nickel plating film on the surface of the plating substrate by adding at least an electroless nickel plating aging solution to the aqueous suspension of the core material thus prepared. Electroless nickel plating aging solution (aging solution) is a well-known concept in this field, and is generally a solution that has already been used in plating reaction operations.
This refers to the liquid after the plating reaction that is no longer able to maintain an efficient plating reaction. That is, an electroless nickel plating solution is basically composed of a nickel solution, a reducing agent (sodium hypophosphite), a complexing agent, and a PH adjuster (acid or alkaline agent) in desired proportions. It is an aqueous solution that
Normally, the plating process is carried out by immersing the object to be plated in this solution prepared as described above, and the desired agent is replenished as needed according to changes in the solution composition as the plating reaction progresses. , the final result is an aged liquid containing a large amount of reaction products (sodium phosphite). In the present invention, the aged liquid means the aged liquid as described above, and does not mean the separated liquid used in the nickel plating process according to the present invention. It is completely unexpected that such an aged solution can still be added as an effective plating solution in the method of the present invention, and although the detailed mechanism of action is not clear, it is probably due to the following reasons. It will be done. Even though the aging solution contains more nickel salt and sodium hypophosphite, which is a reducing agent, compared to the plating solution used during bath preparation, the so-called aging phenomenon occurs due to the reaction product phosphorous acid. Due to the presence of large amounts of soda. In other words, as the production of sodium phosphite increases due to the plating reaction, a self-decomposition reaction to nickel phosphite occurs simultaneously, but when the pH is increased to increase the reducing power, this reaction becomes inevitable and Not only does precipitation become more likely to occur, but increasing the complexing agent to suppress this also slows down the plating reaction rate. However, in the method according to the present invention, since the plating liquid is added to the aqueous suspension of the core material, the plating liquid is always diluted into the suspension, and the range is sufficient to allow for pH changes. This is thought to be due to the fact that the influence of the reaction product, sodium phosphite, is significantly smaller in the reaction system than in the method of immersing the plated object in a plating bath with a normal concentration.
The plating reaction can proceed gently even at a low plating drug concentration. Therefore, even if the aging solution is used, as long as the basic chemicals of the nickel plating solution, such as reducing agents such as nickel salt and sodium hypophosphite, are sufficiently present, the present invention can be used directly without using the aging solution. This means that it can be used as a plating solution. Of course, it goes without saying that a new licking agent can be added thereto. That is, in the present invention, adding at least the nickel plating aging solution means that the above-mentioned aging solution can of course be used as it is, but it can be diluted or concentrated as necessary, or this aging solution can be used as a base material. This also means that other drugs can be added and used. In the present invention, nickel salt means a mixed salt of a single nickel salt such as nickel sulfate and the other soluble metal salts mentioned above, and in this case, a nickel alloy plating film can be formed. The most typical reducing agent is alkali hypophosphite, but there are other reducing agents such as alkali hydrogen borate. In addition, a PH regulator is a drug that adjusts the PH of the reaction system in advance or in response to changes in the PH of the reaction system in order to form a stable plating film due to the plating reaction. ,Sodium hydroxide,
Refers to alkaline agents such as potassium hydroxide, or acidifying agents such as sulfuric acid, hydrochloric acid, etc. The complexing agent is a complexing agent that has a chelating effect on nickel ions in order to suppress the formation of nickel hydroxide, which is generated depending on the pH, and is as described above. When adding the aging liquid to the aqueous suspension containing the complexing agent prepared in this manner, the suspension is subjected to stirring, ultrasonic dispersion treatment, etc. as necessary to maintain a sufficiently dispersed state. It is desirable that the temperature be set so as to be controllable. In the present invention, the plating reaction occurs quickly with the addition of the aging solution, but at this time, the addition rate as well as the solution concentration directly affect the plating reaction, and these factors also affect the physical properties of the core material, especially the surface properties. After fully considering these factors, the addition rate of the plating solution should be set and controlled in order to form a uniform and strong plating film without causing unevenness of the plating film. addition is necessary, and in many cases it is better to add gradually and quantitatively. In this way, by controlling and adding the aging liquid to the aqueous suspension, a rapid plating reaction occurs with the generation of hydrogen gas, and a uniform and strong plating film is formed on the surface of the dispersed core material. . Therefore, the thickness of the plating film can be adjusted depending on the amount added, and the amount added can be set depending on the application. Note that the plating reaction temperature is preferably in the range of 50 to 90°C. After the addition of the aging liquid is completed, after confirming the end of hydrogen gas generation, after applying a dispersion method for a while, the plating process is completed, and then the mother liquor is separated by a conventional method, and the plating material is washed with water and separated. and dry and collect. [Example] The present invention will be further explained with reference to Examples (hereinafter simply referred to as "examples" unless otherwise specified). Examples 1 to 4 100g of progopitite mica with an average particle size of 250μm
2.5g/silane coupling agent [Chitsuso Co., Ltd.]
APS-E] and 0.2 g/palladium chloride in a mixed solution 1, treated for about 60 minutes with thorough stirring, filtered, and thoroughly dried at 110°C. Next, 10 g of this pretreated mica was adjusted to the pH shown in Table 1, added to an aqueous solution heated to 75 to 80°C, and stirred and dispersed to sufficiently deagglomerate, to prepare an aqueous suspension for each sample. Prepared. Next, an electroless nickel plating aging solution [manufactured by Nippon Kanzen, nickel glittering solution: Blue Schumer aging solution (nickel concentration 5.6 g/, sodium hypophosphite concentration 30.3) was added to the aqueous suspension under stirring.
g/)]1.2 was added little by little, and plating treatment was performed. In addition, the pH of the reaction solution was initially set.
In order to maintain a constant pH value, an aqueous sodium hydroxide solution was added dropwise as appropriate. After adding the entire amount of aged liquid and stopping the generation of hydrogen, it was filtered, repulped and washed, and dried to obtain nickel-plated mica in suspension at different pH levels. Examples 5 to 8 The pH of the aqueous suspension in which mica is dispersed is 6.5,
As shown in Table 1, the pretreatment and plating treatment were carried out under the same conditions as in Example 1 except that the electroless nickel plating aging solution was changed to obtain nickel-plated mica. Examples 9 to 13 Plating was performed using various powders shown in Table 1 as core materials instead of mica. That is, these core materials were pretreated under the same conditions as in Example 1, and then the aging solution was added to each aqueous suspension prepared under the same conditions as in Example 1, except that the pH of the aqueous suspension was kept constant at 6.5. The powder was added and subjected to plating treatment to obtain nickel plating powder for various core materials. As mentioned above, the overseparated mother liquor after plating treatment according to Examples 1 to 13 is colorless and transparent, which means that the Ni ++ in the aged liquor has been substantially consumed, and it is possible to perform plating very rationally. This indicates that a reaction was occurring. Comparative Examples 1 to 5 Five batches of the same aging liquid used in Example 1 were prepared,
Each bath was adjusted to a pH as shown in Table 1. Next, mica was subjected to the same pretreatment as in Example 1.
Plating treatment was carried out by adding 10 g of each to each plating bath under stirring. During the plating process, sodium hydroxide was appropriately added dropwise to adjust the pH of the reaction solution in order to keep it at the originally set pH. In each batch, when mica was first added, hydrogen was generated vigorously and the reduction reaction progressed, and the reaction was more intense in batches with a pH closer to neutrality, but eventually the hydrogen generation stopped, so sodium hypophosphite was added. A total amount of 18 g was added to each bath in small amounts to regenerate the reaction. However, batches with a pH of 5.5 or higher eventually undergo a self-decomposition reaction and form a precipitate, so the so-called nickel plating treatment was not applied. After the reaction was completed, the mother liquors separated by filtration had a pale blue color in all batches. This is still
This means that no plating reaction occurred despite the presence of Ni ++ . Physical Properties of Nickel Plated Materials The physical properties of each of the samples obtained in Examples 1 to 13 and Comparative Examples 1 to 5 were determined by the following measurements or procedures, and the results shown in Table 1 were obtained. <Nickel content in plating film> A predetermined amount of the sample was dissolved in nitric acid, the Ni content was measured by ICP analysis, and the Ni content in the sample was expressed in weight%. <Phosphorus content in the plating film> Regarding the sample dissolved in nitric acid, the same
P was determined by ICP analysis and expressed as weight % of P/Ni+P. <Resistance value of plating material> After filling a glass container (1.59 cmφ x 20 cm) with a sample at a predetermined filling rate, the resistance was measured by the 4-probe method and expressed as volume resistivity (Ωcm). <Electron micrograph observation of plating film> Scanning electron micrograph of the plated surfaces of the samples obtained in Examples 2 and 4 and Comparative Examples 3 and 5 (approximately 10,000x magnification)
Observe at. Figure 1 shows the electron micrograph of Example 2.
An electron micrograph of Example 4 is shown in FIG. 2, an electron micrograph of Comparative Example 3 is shown in FIG. 3, and an electron micrograph of Comparative Example 5 is shown in FIG. Note that 1 cm in the electron micrograph corresponds to approximately 1 μm. <Electromagnetic wave shielding properties of polypropylene resin filled with plating material> The sample and polypropylene resin (manufactured by Mitsubishi Yuka Corporation: MA-4PP homopolymer) were blended at a specified filling rate, and heated in a Brabender at 220°C for 4 minutes. After kneading, the mixture was rolled with rolls and hot pressed to obtain a test piece with a thickness of 2 mm. The electromagnetic shielding properties of the test piece are evaluated by measuring the volume resistivity (Ωcm) using this test piece and measuring the radio wave transmission loss (dB) using 4 GHz radio waves using the in-pipe method. Note that the radio wave transmission loss value (dB) is expressed as >40 because the maximum detection sensitivity of the measuring device is 40 dB.

【表】【table】

【表】 [発明の効果] 本発明にかかる方法によれば従来、その処理に
窮していたニツケルめつき老化液を合理的に有効
利用できると共に優れたニツケルめつき材料を工
業的に提供することができる。 本発明の特徴的利点を以下に具体的に記載す
る。 (1) めつき反応速度は老化液の添加速度により調
節でき、しかも常にNi++、次亜りん酸塩濃度
の低い領域で反応しているので、反応速度は穏
やかであり、析出めつき皮膜は微細で緻密なも
のが得られる。 (2) めつき液中のニツケル濃度は常に低い所で保
持されるためPHが6〜7になつても沈澱は生成
しない。従つて、PHが6〜7でめつき反応を進
めることもできるので次亜りん酸塩の自己分解
は少なくなり、析出めつき皮膜中のりん含有率
も低下する。その結果、製品の導電性は向上
し、電磁波シールド特性も良くなる。 (3) めつき液中のニツケル及び次亜りん酸塩の低
濃度化、PHが4.5から6〜7へ水素イオン濃度
が低下することにより次亜りん酸塩の消費量は
減少し、老化液中に存在する量のみで液中のニ
ツケルを充分還元することができる。これによ
り経費の削減がはかれる。 (4) 次亜りん酸塩の消費量の減少と穏やかなめつ
き反応により水素ガスの発生は従来より著しく
減少することができるので、爆発に対処する安
全装置は著しく簡略化できる。
[Table] [Effects of the Invention] According to the method of the present invention, it is possible to rationally and effectively utilize the aging nickel plating solution, which has hitherto been difficult to process, and to industrially provide excellent nickel plating materials. be able to. The characteristic advantages of the present invention will be specifically described below. (1) The plating reaction rate can be adjusted by the addition rate of the aging solution, and since the reaction is always in the region where the Ni ++ and hypophosphite concentrations are low, the reaction rate is slow and the precipitated plating film is A fine and dense product can be obtained. (2) Since the nickel concentration in the plating solution is always maintained at a low level, no precipitate is formed even when the pH reaches 6 to 7. Therefore, since the plating reaction can proceed at a pH of 6 to 7, self-decomposition of hypophosphite is reduced, and the phosphorus content in the precipitated plating film is also reduced. As a result, the product's conductivity improves and its electromagnetic shielding properties improve. (3) By lowering the concentration of nickel and hypophosphite in the plating solution and reducing the hydrogen ion concentration from pH 4.5 to 6-7, the amount of hypophosphite consumed decreases, and the aging solution The amount of nickel present in the liquid can sufficiently reduce the nickel in the liquid. This will help reduce costs. (4) Due to the reduced consumption of hypophosphite and the mild plating reaction, the generation of hydrogen gas can be significantly reduced compared to before, so the safety equipment for dealing with explosions can be significantly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は例2のニツケルめつき皮膜の構造を示
す走査型電子顕微鏡写真(約104倍)であり、第
2図は例4のニツケルめつき皮膜の構造を示す走
査型電子顕微鏡写真(約104倍)であり、第3図
は比較例3のニツケルめつき皮膜の構造を示す走
査型電子顕微鏡写真(約104倍)であり、第4図
は比較例5のニツケルめつき皮膜の構造を示す走
査型電子顕微鏡写真(約104倍)である。
Fig. 1 is a scanning electron micrograph (approximately 104 times magnification) showing the structure of the nickel plating film of Example 2, and Fig. 2 is a scanning electron micrograph showing the structure of the nickel plating film of Example 4 ( Figure 3 is a scanning electron micrograph (approximately 104 times) showing the structure of the nickel plating film of Comparative Example 3, and Figure 4 shows the structure of the nickel plating film of Comparative Example 5. This is a scanning electron micrograph (approximately 104 times magnification) showing the structure of.

Claims (1)

【特許請求の範囲】 1 水に分散可能なめつき基材を無電解ニツケル
めつき液と接触させることからなるニツケルめつ
き材料の製造法において、PH4〜10のめつき基材
水性懸濁体を調製し、次いで該懸濁体に少なくと
も無電解ニツケルめつき老化液を添加して且つ該
PH範囲を維持しながら基材表面にニツケルめつき
皮膜を形成させることを特徴とするニツケルめつ
き材料の製造法。 2 水に分散可能なめつき基材は結晶質または非
晶質の攪拌手段で分散しうる無機または有機の粉
体、粒体または繊維状物質である特許請求の範囲
第1項記載のニツケルめつき材料の製造法。
[Scope of Claims] 1. A method for producing a nickel plating material comprising contacting a water-dispersible plating base material with an electroless nickel plating solution, in which an aqueous suspension of the plating base material with a pH of 4 to 10 is brought into contact with an electroless nickel plating solution. and then adding at least an electroless nickel plating aging solution to the suspension and
A method for producing nickel-plated materials characterized by forming a nickel-plated film on the surface of a base material while maintaining the pH range. 2. Nickel plating according to claim 1, wherein the water-dispersible plating base material is an inorganic or organic powder, granule, or fibrous material that can be dispersed by crystalline or amorphous stirring means. Method of manufacturing materials.
JP60115391A 1985-05-30 1985-05-30 Manufacture of nickel plated material Granted JPS61276979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115391A JPS61276979A (en) 1985-05-30 1985-05-30 Manufacture of nickel plated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115391A JPS61276979A (en) 1985-05-30 1985-05-30 Manufacture of nickel plated material

Publications (2)

Publication Number Publication Date
JPS61276979A JPS61276979A (en) 1986-12-06
JPH0475316B2 true JPH0475316B2 (en) 1992-11-30

Family

ID=14661385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115391A Granted JPS61276979A (en) 1985-05-30 1985-05-30 Manufacture of nickel plated material

Country Status (1)

Country Link
JP (1) JPS61276979A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421082A (en) * 1987-07-15 1989-01-24 Nippon Chemical Ind Production of powdery plated material
US5170009A (en) * 1990-03-22 1992-12-08 Canon Kabushiki Kaisha Electrically conductive covers and electrically conductive covers of electronic equipment
US5234558A (en) * 1990-03-22 1993-08-10 Canon Kabushiki Kaisha Electrically conductive circuit member, method of manufacturing the same and electrically conductive paste
US5186802A (en) * 1990-03-22 1993-02-16 Canon Kabushiki Kaisha Electro-deposition coated member and process for producing it
US5676812A (en) * 1990-03-24 1997-10-14 Canon Kabushiki Kaisha Electronic equipment with an adhesive member to intercept electromagnetic waves
CN103736994B (en) * 2014-01-15 2015-11-18 南京德磊科技有限公司 A kind of processing method of chemical nickel-plating solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841926A (en) * 1971-09-30 1973-06-19
JPS56119703A (en) * 1980-02-13 1981-09-19 Matsushita Electric Ind Co Ltd Production of nickel-coated finely grained particles
JPS6059070A (en) * 1983-09-12 1985-04-05 Nippon Chem Ind Co Ltd:The Manufacture of plated fine grain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841926A (en) * 1971-09-30 1973-06-19
JPS56119703A (en) * 1980-02-13 1981-09-19 Matsushita Electric Ind Co Ltd Production of nickel-coated finely grained particles
JPS6059070A (en) * 1983-09-12 1985-04-05 Nippon Chem Ind Co Ltd:The Manufacture of plated fine grain

Also Published As

Publication number Publication date
JPS61276979A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
US20060073335A1 (en) Conductive electrolessly plated powder and method for making same
CN104646683A (en) Spherical silver powder with controllable granularity and preparation method thereof
JPH07118866A (en) Spherical electroless-plated powder or electrically conductive material having excellent dispersibility and its production
JPH0696771B2 (en) Electroless plating powder, conductive filler and method for producing the same
CN111687429A (en) End slurry silver powder for chip electronic component and preparation method thereof
JPH0475316B2 (en)
JPH0225431B2 (en)
JP2602495B2 (en) Manufacturing method of nickel plating material
JPS6320486A (en) Production of silver or copper coated mica
JP3905014B2 (en) Conductive electroless plating powder and manufacturing method thereof
JPH0249390B2 (en)
JP2004197160A (en) Conductive electroless-plated powder and manufacturing method therefor
CN108213415B (en) Production method of corrosion-resistant high-temperature-resistant silver-copper coated powder
JP2004131800A (en) Conductive electroless plating powder and method for manufacturing the same
JP3210096B2 (en) Nickel alloy plated powder and method for producing the same
US20050227073A1 (en) Conductive electrolessly plated powder and method for making same
JPS62207875A (en) Production of metal plated inorganic particles
JP2004323962A (en) Electroless-plated electroconductive powder and manufacturing method therefor
JPS62107073A (en) Production of noble metal plated material
JP4247039B2 (en) Method for producing conductive electroless plating powder
TW201641698A (en) Silver coated copper flakes and methods of their manufacture
JP3028972B2 (en) Aluminum-based electroless plating powder, conductive filler and method for producing the same
JP2619266B2 (en) Colored electroless plating powder and method for producing the same
JPH0215176A (en) Magnetic electroless-plated powder
JPS60162779A (en) Silver plated composition and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term