JP4223754B2 - Silver-coated copper powder and method for producing the same - Google Patents

Silver-coated copper powder and method for producing the same Download PDF

Info

Publication number
JP4223754B2
JP4223754B2 JP2002211458A JP2002211458A JP4223754B2 JP 4223754 B2 JP4223754 B2 JP 4223754B2 JP 2002211458 A JP2002211458 A JP 2002211458A JP 2002211458 A JP2002211458 A JP 2002211458A JP 4223754 B2 JP4223754 B2 JP 4223754B2
Authority
JP
Japan
Prior art keywords
silver
copper powder
coated copper
coated
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002211458A
Other languages
Japanese (ja)
Other versions
JP2004052044A (en
Inventor
貴彦 坂上
啓太 古本
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2002211458A priority Critical patent/JP4223754B2/en
Publication of JP2004052044A publication Critical patent/JP2004052044A/en
Application granted granted Critical
Publication of JP4223754B2 publication Critical patent/JP4223754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銀コート銅粉及びその銀コート銅粉の製造方法に関するものであり、特に、大気雰囲気中における導電性の経時変化が少ない銀コート銅粉に関する。
【0002】
【従来の技術】
従来から銅粉は、導電ペーストの原料として広く用いられてきた。導電ペーストは、その取り扱いの容易さ故に、実験目的なものから電子産業用途に到るまで広範に使用されている。
【0003】
中でも、銀層を表面に被覆された銀コート銅粉は、導電ペーストに加工され、スクリーン印刷法を用いたプリント配線板の回路形成、各種電気的接点部等に応用され、電気的導通確保の材料として用いられてきた。これは、表面に銀層を被覆しない、通常の銅粉と比較したとき、銀コート銅粉は銅よりも電気的伝導性に優れることになるからである。また、銀のみからなる銀粉のように高価でないため、製造コストを低減できることにもなるからである。そのため、導電特性に優れた銀コート銅粉を用いた導電ペーストにより導体形成を行うと低抵抗の導体を低コストで製造できる。
【0004】
ところで、このような導電ペースト用の銀コート銅粉は、一般的に銅と銀との置換反応を利用した無電解置換メッキ法により製造する技術が知られている。例えば、硝酸銀、炭酸アンモニウム塩、エチレンジアミン四酢酸塩の銀錯塩溶液を用いて金属銅粉の表面に銀を置換析出させる方法(特公昭57−59283号公報)や、キレート化剤溶液に銅粉を分散し、該銅粉分散液に硝酸銀溶液を加え、次いで還元剤を添加して銅粉表面へ銀被膜を析出させるという、本出願人が提案した製造方法(特公平2−46641号公報)などが挙げられる。
【0005】
【発明が解決しようとする課題】
これら従来の製造方法で得られる銀コート銅粉は導電性や耐湿性等の特性に優れ、導電ペースト材料としては好適な材料として利用されてきた。しかしながら、これら従来の製造方法で得られた銀コート銅粉は、大気雰囲気中に放置しておくと、その導電性が経時変化を生じて、良好な導電性が低下する傾向が生じていた。この様な現象は、銀コート銅粉における銅の酸化によるものではないかと考えられた。そこで、このような導電性の経時劣化を防止するため、銅粉と銀層との間に耐候性のあるニッケル層を設けて対応する方法が行われることがある。このニッケル層のバリアを設けると導電性の経時劣化を防止できるものの、その製造工程は複雑となり好ましくなく、また、ニッケルの存在による導電性の低下自体は避けられなくなる。
【0006】
本発明は、以上のような事情の背景になされたものであり、導電性に優れ、大気雰囲気中に放置しても、その導電性の経時変化が少ない銀コート銅粉及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本件発明者等は従来の銀コート銅粉を鋭意研究した結果、ニッケル層のようなバリアを設けなくとも、その銀コート銅粉における銀のコート量(銀コート銅粉における銀の重量パーセント)及びその重量累積粒径D50の値と、銀コート銅粉の表面における色差値とが、ある特定の条件を満足すると、ニッケル層を有した銀コート銅粉と同等レベル以上の経時劣化に対する特性、即ち、大気雰囲気中に放置した際の導電性の経時変化が非常に少ない銀コート銅粉となることを見出したのである。
【0008】
具体的には、銅粉の表面に銀層を形成した銀コート銅粉において、銀コート銅粉における銀の重量パーセントとレーザー回折散乱式粒度分布測定による重量累積粒径D50との積X(但し0.1≦X≦150)及び、銀コート銅粉の色差測定によるLの関係が次式となることを特徴とするものである。
【0009】
【数2】

Figure 0004223754
【0010】
銀コート銅粉は実用的特性を満足できるように所定量(所定の厚み)の銀を被覆するものであるが、銀コート銅粉全量に対する銀の重量パーセントを固定した場合、銀コート銅粉の重量累積粒径D50が大きくなると、被覆される銀の厚さも比例して大きくなる。つまり、銀コート銅粉の銀の厚さは、銀の重量パーセントとその重量累積粒径D50に関係するものと予測できる。そして、銀層の厚みが厚くなるほど、また銀層が均一に被覆されているほど、芯にある銅粉の赤味が消失して、銀の色調、即ち白味を呈する傾向が強くなる。そこで、本発明者らは、銀コート銅粉の色差値(JIS Z 8729に定義されているL(エルスター)表色系)と、銀の重量パーセント及びその重量累積粒径D50との相関を調べ、銀の重量パーセントと重量累積粒径D50との積X(但し0.1≦X≦150)を求め、その銀コート銅粉の色差測定のL値との差を算出したところ、(63+0.35X−2×10−3)−L≦0の関係を満たす銀コート銅粉であると、大気雰囲気中に放置した際の導電性の経時変化が非常に少ないものとなることが判ったのである。
【0011】
上記式のパラメータXは、0.1≦X≦150の範囲で、具体的には、銀の重量パーセントが0.1〜15wt%であり、重量累積粒径D50が1.0〜10μmの範囲内の銀コート銅粉が対象となる。銀の重量パーセントが0.1wt%未満であると均一に銀層が被覆されず、銅粉が酸化されて十分な導電性を確保できなくなり、15wt%を越える銀を被覆しても、導電性は大きく向上することなく、更にコストが高くなりすぎる。また、レーザー回折散乱式粒度分布測定による重量累積粒径D50が1.0μm未満であると、銀のコート量を多くしないと安定した導電性を維持することが難しくなり、凝集しやすくなる。また、10μmを越えると導電ペースト形成用としては実用的でなくなる。尚、本発明者らの研究によると本発明に係る銀コート銅粉では、色差値Lは63〜80の範囲となることを確認している。銀層が均一に被覆されていると、経時劣化が生じにくく、安定した導電性も維持することが可能となる。
【0012】
この本発明に係る銀コート銅粉によれば、導電ペーストにした際に、導電ペースト加工時の初期粘度を低減して、経時的に変化するペースト粘度の変化を小さくすることが可能となる。さらに、この導電ペーストを用いてプリント配線板の導体を形成、例えば、多層プリント配線板の層間導通を確保するために本発明の導電ペーストを用いると、その粘度が低いため、穴への導電ペーストの充填性は非常に良好となる。
【0013】
本発明に係る銀コート銅粉は、酸性溶液中に銅粉を分散し、該銅粉分散液にキレート化剤を加えて銅粉スラリーを作製した後に緩衝剤を添加してpH調整を行い、該銅粉スラリーに銀イオン溶液を連続的に添加することで置換反応により銅粉表面へ銀層を形成することを特徴とする製造方法にて得ることができる。
【0014】
この本発明に係る銀コート銅粉の製造方法によれば、銅粉表面に銀層を均一に被覆することが可能となり、その結果、優れた導電性を有するとともに大気雰囲気中における導電性の経時変化が少ない銀コート銅粉となるのである。置換反応を利用した従来の製造方法では、銅粉表面の銀層が比較的大きな析出粒子により形成され、被覆状態の悪い銀コート銅粉となる傾向がある。一方、本発明に係る製造方法によれば、非常に均一な銀層の被覆を有した銀コート銅粉を製造することができる。
【0015】
本発明の製造方法で銀層を均一に被覆できる理由は、銀の置換反応を行う前に銅粉を酸性溶液中に分散させて銅粉表面の酸化物を確実に除去していることと、キレート化剤を加えた銅粉スラリーに緩衝剤を添加してpH調整を行い、銀イオン溶液を連続的に添加することで銀の置換反応速度を一定に維持することによるものと推測している。従来の製造方法では、酸性溶液でないアルカリ性溶液を使用するため、粉として取り出す時に銅水酸化物が再沈殿することが考えられる。また、置換反応の際、銀イオン溶液を一度にまとめて投入するため、銀イオン濃度が銅粉周辺で不均一になり、銀の被覆状態の悪い銀コート銅粉が形成されると考えられる。これに対し本発明の製造方法では、酸性溶液に銅粉を分散させることで銅粉表面の酸化物を除去し、キレート化剤により錯体化した銅イオンを安定な状態で維持できるように緩衝剤によりpH調整をして、銀イオンとの置換反応が均一的に進行するように銀イオン溶液を連続的に添加しているため、銅粉表面に極めて均一に銀層を被覆できるのである。
【0016】
本発明の製造方法では、酸性溶液は、硫酸、塩酸、リン酸から選ばれたものが好ましい。置換反応をさせる前に銅粉表面の銅酸化物を確実に除去できる酸性溶液であればよいが、その選択する種類や濃度は過剰に銅粉の銅自体を溶解しないようにする必要がある。この酸性溶液のpHは、2.0〜5.0の酸性領域とすることが望ましい。pHが5.0を越えると銅粉の酸化物を十分に溶解除去できなくなり、pHが2.0より小さくとなると銅粉の溶解が生じ、銅粉自体の凝集も進行し易くなるからである。
【0017】
また、本発明の製造方法に用いるキレート化剤は、銅の錯生成定数の方が銀の錯生成定数の値よりも大きなものが好ましい。例えば、アンモニアのようなキレート化剤では、銀の錯生成定数と銅の錯生成定数とはほぼ同じであり、置換反応を阻害する銅イオンの安定化が図りにくくなると考えられる。そのため、本発明の製造方法では、例えば、エチレンジアミン四酢酸塩、トリエチレンジアミン、ジエチレントリアミン五酢酸、イミノ二酢酸から選ばれた1種又は2種以上のものを用いることが望ましく、これらによれば優先的に銅イオンの錯体を形成することになり、置換反応に供する銅をイオンとして安定的に維持することが可能となる。
【0018】
また、本発明の製造方法に用いる緩衝剤は、フタル酸塩類であることが好ましい。この緩衝剤であるフタル酸塩類としては、フタル酸カリウム、フタル酸ナトリウムなどが挙げられるが、このような緩衝剤を用いると本発明の製造方法における酸性溶液をpH4.0程度の酸性領域に安定的に維持することができる。
【0019】
そして、本発明に係る銀コート銅粉の製造方法では、銀イオン溶液は、硝酸銀溶液を用いることが好ましい。本発明で用いられる銀イオン溶液は、本発明の効果を奏する限りにおいて特に制限はないが、最も好適なものとしては硝酸銀である。この硝酸銀溶液は硝酸銀濃度20〜300g/Lの範囲であることが好ましく、銅粉スラリーに添加する速度は、200mL/min以下でゆっくりと添加することが望ましい。上記濃度範囲の硝酸銀溶液を比較的ゆっくりとした添加速度、実用的には20〜200mL/minで添加することで、銅粉表面に均一な銀層を被覆することが確実に行えるようになるからである。
【0020】
さらに、本発明に係る銀コート銅粉の製造方法では、酸性溶液中に銅粉を分散した後、デカンテーション処理を行うことが好ましい。このデカンテーション処理とは傾斜法とも呼ばれるが、酸性溶液に銅粉を分散させた後、溶液を静置することで銅粉の沈降をさせた後、上澄み液を静かに傾斜して分離採取する操作のことをいうものである。これによれば、銅粉が大気と接触することがないので、銅粉表面の再酸化を防止した状態で次工程に移行することが可能となるからである。
【0021】
上記した本発明に係る銀コート銅粉及びその製造方法に用いられる銅粉は、その種類、製法等に制限はなく、通常の電解法、還元法、アトマイズ法、機械的粉砕等から得られる銅粉が用いることができる。また、その銅粉形状も特定はなく、球状、フレーク状、針状、樹枝状のものを用いることができる。
【0022】
【発明の実施の形態】
以下に、本発明の好ましい実施形態を、実施例及び従来例、比較例に基づいて説明する。
【0023】
実施形態:本実施形態における銀コート銅粉は、以下の製法により製造した。まず最初に、使用した銅粉について説明する。本実施形態では、いわゆるヒドラジン還元法と呼ばれる製法により得られた銅粉を使用した。また、この銅粉はレーザー回折散乱式粒度分布測定法による重量累積粒径D50は3.8μmであった。
【0024】
そして、硫酸濃度15g/Lの硫酸水溶液2000mLに、上述した銅粉1kgを分散させた。続いてデカンテーション処理を行い、エチレンジアミン四酢酸(以下EDTAと称す)80gを添加して溶解して銅スラリー(総量5000mL)を作製した。その後、緩衝剤としてフタル酸カリウムを所定量溶解してpH4となるようにpH調整を行った。このようにpH調整した銅スラリーに硝酸銀溶液2000mL(硝酸銀180gを水に添加して2000mLとして調製したもの)を、30分間の時間をかけてゆっくりと添加しながら置換反応処理を行い、さらに30分間の攪拌をして銀コート銅粉を得た。そして、濾過洗浄、吸引脱水することで銀コート銅粉と溶液とを濾別し、水洗した後に銀コート銅粉を70℃の温度で5時間の乾燥を行った。尚、ここでは銀コート銅粉全量に対する銀の重量パーセント(wt%)の異なる2つの銀コート銅粉を製造した(実施例1、2)。この銀の重量パーセント(銀のコート量)は、上記硝酸銀溶液濃度を変えることで変化させた。
【0025】
従来例:比較のための一例として、本発明者らが従来から行っている製造方法による銀コート銅粉について説明する。尚、この従来例で使用した銅粉は上記実施例と同じものを用いた。
【0026】
この従来例では、まず、水9000mLにEDTA160gを溶解させ、その溶液中に銅粉1kgを分散させた。この溶液に硝酸銀溶液1000mL(アンモニア水溶液220mLに硝酸銀180gを溶解させ、水を添加して1000mLとして調製したもの)を一度にまとめて添加した。そして、30分間の攪拌をして置換反応処理を行った。その後、ロッシェル塩140gを添加して、30分間攪拌を行って銀コート銅粉を得た。そして、濾過洗浄し吸引脱水することで、銀コート銅粉と溶液とを濾別し、水洗した後に銀コート銅粉を70℃の温度で5時間の乾燥を行った(従来例1)。
【0027】
比較例:もう一つの比較として、バリアとなるニッケル層を有した銀コート銅粉について説明する。尚、この比較例で使用した銅粉は、上記実施例と同様ヒドラジン還元法により得られた銅粉で、重量累積粒径D50が4.5μmのものを用いた。
【0028】
この比較例では、まず、水5000mL中に銅粉1kgを分散させ、アクチベータ液(メルテックス社製アクチベータ352 10mLと、35%塩酸溶液 10mL)を添加し、10分間撹拌後、ろ過洗浄を行った。そして、この銅粉を水10L中に再分散させてスラリーを調製し、ニッケルめっき液(メルテックス社製Ni−426)6500mLを添加して、撹拌しながら液温70℃まで昇温し、その状態で30分間撹拌して銅粉表面にニッケルの被覆を施した。その後、ろ過、洗浄を行い、ニッケル被覆銅粉を得た。続いて、水9000mLにEDTA160gを溶解させ、その溶液中にこのニッケル被覆銅粉1kgを分散させた。この溶液に硝酸銀溶液1000mL(アンモニア水溶液220mLに硝酸銀180gを溶解させ、水を添加して1000mLとして調製したもの)を一度にまとめて添加した。そして、30分間の攪拌をして置換反応処理を行った。その後、ロッシェル塩140gを添加して、30分間攪拌を行って、ニッケルのバリア層を有する銀コート銅粉を得た。そして、濾過洗浄し吸引脱水することで、ニッケルのバリア層を有する銀コート銅粉と溶液とを濾別し、水洗した後に70℃の温度で5時間の乾燥を行った。
【0029】
上述のようにして得られた各銀コート銅粉に関し、その平均粒径及び比表面積を測定した。平均粒径はレーザー回折散乱式粒度分布測定法によるもので、重量累積粒径D50の値を採用した。比表面積(SSA)はBET法により測定した。また、銀層の厚みに関係するX値(銀の重量パーセント(銀コート量)と重量累積粒径D50との積)を算出した。その結果を表1に示す。
【0030】
【表1】
Figure 0004223754
【0031】
表1で示す物性値を有する実施例1,2及び従来例1、比較例の銀コート銅粉について、それぞれ粉体抵抗率を測定することにより、その経時変化を調べた結果を説明する。抵抗率測定は、試料15gを筒状容器に入れプレス圧40×10Pa(408kgf/cm)で圧縮成形した測定サンプルを形成し、ロレスタAP及びロレスタPD−41型(いずれも三菱化学(株)社製)により測定を行った。経時変化の調査は、初期時の抵抗率と、大気雰囲気中156℃の加熱炉内に測定サンプルを100時間保持後の抵抗率とを比較することで行った。具体的には、100時間後の測定抵抗率値を初期時の抵抗率値で割ることにより、抵抗変化率を求めて導電性についての経時変化状態を特定した。この粉体抵抗率測定の結果を表1に示す。
【0032】
また、銀コート銅粉の色差測定は、SMカラーコンピュータ SM−4−2(スガ試験機株式会社製)を使用して、本実施形態ではLを評価値とした。このLの値は、色差測定で明るさを表す「明度指数」とも呼ばれるもので、この値が大きなものほど白色になり、小さいほど黒くなることを示す。その測定結果を表1に示しているが、比較例1のニッケル層を有する銀コート銅粉はニッケル層を形成した銀コート前の状態での表面色が銅粉とは異なるために、表面色の比較対象に含めることが適当でないため測定値を記載していない。
【0033】
表1を見ると判るように、実施例1及び2の銀コート銅粉では、初期抵抗率が小さく、経時変化による変化率も小さいことが確認された。これに対し従来例1の銀コート銅粉では、100時間放置後の抵抗率はかなり大きくなり、その変化率も大きくなっていた。一方、バリアとしてニッケル層を有した比較例の銀コート銅粉では、経時変化は比較的良好なであったが、初期抵抗率自体が高い値であることが確認された。また、実施例1及び2のLの値は、従来例1のものに比較して大きな数値を示すことが確認された。
【0034】
次に、実施例1と従来例1との銀コート銅粉について走査電子線顕微鏡観察した結果について説明する。図1(A)が実施例1で、(B)が従来例1である。図1(C)は銀コートを行う前の銅粉観察したものである(全て倍率25000倍)。この図1(A)を見ると判るように、実施例1の銀コート銅粉では、(C)の銅粉形状があまり変形していない、つまり、下地である銅粉形状が明確に現れるような均一な銀層を形成していることが判明した。一方、従来例1で説明した製造方法により得られた銀コート銅粉では、下地の銅粉凹凸形状は殆ど消失した状態で銀層を被覆していることが確認された。
【0035】
最後に、銀のコート量及びその重量累積粒径D50の値と、銀コート銅粉の表面における色差値Lとの関係を調べた結果について説明する。上記した実施例の製造方法において、数種類の重量累積粒径D50(1.0〜10μm)の銅粉を用い、銀のコート量を0.1〜15wt%範囲内で変化させた銀コート銅粉を製造し、その色差測定を行った。そして、銀コート銅粉全量に対する銀の重量パーセント(wt%)とその重量累積粒径D50との積(以下X値と略す)を求め、横軸X、縦軸Lとしてその分布図(図2)を作成した。図2中黒丸でプロットしたものが上記本実施形態の製造方法により得た銀コート銅粉であり、黒四角でプロットしたものが上記従来例の製造方法により得られた銀コート銅粉である。
【0036】
図2にプロットした黒丸(実施例データ)の銀コート銅粉データを表2に示す。表2の実施例3〜14の銀コート銅粉は、重量累積粒径D50が1.5〜8.0μmの範囲に含まれる銅粉を用い、銀のコート量を1wt%、5wt%、10wt%相当被覆したものである。この実施例3〜14の銀コート銅粉の製造方法は、上記実施例1、2の場合と同様である。但し、銀のコート量を変更するために、1wt%相当被覆する場合は硝酸銀17gを水に添加して700mLとして調製した硝酸銀溶液、5wt%相当被覆する場合は硝酸銀85gを水に添加して1500mLとして調製したもの、10wt%相当被覆する場合は硝酸銀170gを水に添加して2000mLとして調製したものを用いて銀の被覆処理を行っている点は異なる。
【0037】
また、図2にプロットした黒四角(比較データ)の銀コート銅粉データを表2に示す。表2の従来例2〜6の銀コート銅粉は重量累積粒径D50が、1.5〜8.0μmの範囲に含まれる銅粉を用い、銀のコート量を5wt%、10wt%相当被覆したものである。この従来例2〜6の銀コート銅粉の製造方法は上記従来例1の場合と同様である。但し、銀のコート量を変更するために、10wt%相当被覆する場合は従来例1と同じ硝酸銀溶液、5wt%相当被覆する場合はアンモニア水溶液110mLに硝酸銀90gを溶解させ、水を添加して500mLとして調製したものを用いて銀の被覆処理を行っている。尚、表2には表1で示した実施例1、2、従来例1のデータも記載している。
【0038】
【表2】
Figure 0004223754
【0039】
図2における実施例と従来例とのデータ分布を見ると、本実施形態の製造方法による銀コート銅粉は従来例のものに比べて、上方側、即ち色差値Lが大きくなる傾向を示すことが判明した。また、図2を見ると判るように、実施例のデータは上方の領域に分布し、従来例のデータは下方の領域分布していることから、この上下の領域に分ける境界線の算出を試みた。即ち、本実施例のデータを満足するX値と色差値Lの関数式を回帰分析したところ、次式で示す2次関数式が本実施例に適当なものとして算出された。
【0040】
【数3】
Figure 0004223754
【0041】
この上式を満足する銀コート銅粉は、従来法と比較して下地の銅粉が銀層により均一に被覆されているので、銅の赤味が少なくより白味があり、導電性に優れ、大気雰囲気中における導電性の経時変化が非常に少ないものとなる。
【0042】
【発明の効果】
以上説明したように本発明によれば、導電性に優れ、大気雰囲気中に放置しても、その導電性の経時変化が少ない銀コート銅粉となるので、導電ペーストに使用した際の経時劣化を有効に防止することができ、また、このような経時変化の少ない銀コート銅粉を容易に提供することが可能となる。
【図面の簡単な説明】
【図1】銀コート銅粉の走査電子線顕微鏡観察像を示す図。
【図2】銀の重量パーセントとその重量累積粒径D50との積X及びL値の関係を示す分布図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silver-coated copper powder and a method for producing the silver-coated copper powder, and more particularly, to a silver-coated copper powder with little change in conductivity over time in the air atmosphere.
[0002]
[Prior art]
Conventionally, copper powder has been widely used as a raw material for conductive paste. Conductive pastes are widely used because of their ease of handling, from experimental purposes to applications in the electronics industry.
[0003]
Above all, the silver-coated copper powder coated with a silver layer is processed into a conductive paste and applied to circuit formation of printed wiring boards using screen printing methods, various electrical contact points, etc., to ensure electrical continuity. It has been used as a material. This is because the silver-coated copper powder has better electrical conductivity than copper when compared to normal copper powder that does not cover the surface with a silver layer. Moreover, it is because it is not expensive like the silver powder which consists only of silver, Therefore A manufacturing cost can also be reduced. Therefore, a conductor having a low resistance can be manufactured at low cost when the conductor is formed with a conductive paste using silver-coated copper powder having excellent conductive properties.
[0004]
By the way, the technique of manufacturing such a silver coat copper powder for electrically conductive pastes generally by the electroless displacement plating method using the substitution reaction of copper and silver is known. For example, silver nitrate, ammonium carbonate, and ethylenediaminetetraacetic acid silver complex solution is used to deposit and deposit silver on the surface of metallic copper powder (Japanese Patent Publication No. 57-59283). A manufacturing method proposed by the present applicant (Japanese Patent Publication No. 2-46641), in which a silver nitrate solution is added to the copper powder dispersion and then a reducing agent is added to deposit a silver coating on the surface of the copper powder. Is mentioned.
[0005]
[Problems to be solved by the invention]
The silver-coated copper powder obtained by these conventional production methods is excellent in properties such as conductivity and moisture resistance, and has been used as a suitable material as a conductive paste material. However, when the silver-coated copper powder obtained by these conventional production methods is left in an air atmosphere, the conductivity of the silver-coated copper powder tends to change with time, and the good conductivity tends to decrease. Such a phenomenon was thought to be due to copper oxidation in the silver-coated copper powder. Therefore, in order to prevent such deterioration of conductivity over time, a corresponding method may be performed by providing a nickel layer having weather resistance between the copper powder and the silver layer. Providing this nickel layer barrier can prevent the deterioration of conductivity over time, but the manufacturing process becomes complicated and is not preferable, and the decrease in conductivity itself due to the presence of nickel is unavoidable.
[0006]
The present invention has been made in the background of the circumstances as described above, and provides a silver-coated copper powder excellent in conductivity and having little change with time in conductivity even when left in an air atmosphere, and a method for producing the same. To do.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have intensively studied conventional silver-coated copper powder, and as a result, the amount of silver coated in the silver-coated copper powder (silver-coated copper) can be obtained without providing a barrier such as a nickel layer. the value of% by weight) and the weight-cumulative particle diameter D 50 of silver in powder, and the color difference value in the surface of the silver-coated copper powder is to satisfy the specific conditions, comparable to silver-coated copper powder having a nickel layer It has been found that the silver coated copper powder has a characteristic with respect to deterioration over time that is higher than the level, that is, a change with time in conductivity when left in an air atmosphere.
[0008]
Specifically, in the silver-coated copper powder to form a silver layer on the surface of the copper powder, the product of the weight cumulative particle diameter D 50 by weight percent and laser diffraction scattering particle size distribution measurement of silver in the silver-coated copper powder X ( However, the relationship of 0.1 ≦ X ≦ 150) and L * by the color difference measurement of the silver-coated copper powder is the following formula.
[0009]
[Expression 2]
Figure 0004223754
[0010]
The silver-coated copper powder covers a predetermined amount (predetermined thickness) of silver so as to satisfy practical characteristics. However, when the weight percentage of silver relative to the total amount of silver-coated copper powder is fixed, When the weight-cumulative particle diameter D 50 is increased, also it increases in proportion thickness of the silver to be coated. In other words, the thickness of the silver of the silver-coated copper powder can be predicted weight percent silver and relate to the weight cumulative particle diameter D 50. And the thicker the silver layer is, and the more uniformly the silver layer is coated, the more red the copper powder in the core disappears, and the stronger the tendency to exhibit the color of silver, that is, the whiteness. Therefore, the inventors of the present invention calculated the color difference value of the silver-coated copper powder (L * (Elster) color system defined in JIS Z 8729), the silver weight percentage, and the weight cumulative particle diameter D 50 thereof. The correlation was examined, the product X (0.1 ≦ X ≦ 150) of the weight percent of silver and the weight cumulative particle size D 50 was obtained, and the difference from the L * value of the color difference measurement of the silver-coated copper powder was calculated. However, when the silver-coated copper powder satisfies the relationship of (63 + 0.35X-2 × 10 −3 X 2 ) −L * ≦ 0, the change with time of conductivity when left in the atmosphere is very small. It was found that
[0011]
The parameter X in the above formula is in the range of 0.1 ≦ X ≦ 150. Specifically, the weight percentage of silver is 0.1 to 15 wt%, and the weight cumulative particle diameter D 50 is 1.0 to 10 μm. Silver-coated copper powder within the range is targeted. When the silver weight percentage is less than 0.1 wt%, the silver layer is not uniformly coated, and the copper powder is oxidized, so that sufficient conductivity cannot be ensured. Without much improvement, and the cost is too high. Further, when the weight-cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measurement is less than 1.0 .mu.m, it is difficult to maintain silver Without much coating amount stable conductivity, likely to aggregate. On the other hand, if it exceeds 10 μm, it is not practical for forming a conductive paste. According to the studies by the present inventors, it has been confirmed that the color difference value L * is in the range of 63 to 80 in the silver-coated copper powder according to the present invention. When the silver layer is uniformly coated, deterioration with time is unlikely to occur, and stable conductivity can be maintained.
[0012]
According to the silver-coated copper powder according to the present invention, when the conductive paste is formed, the initial viscosity at the time of processing the conductive paste can be reduced, and the change in paste viscosity that changes with time can be reduced. Furthermore, a conductor of a printed wiring board is formed using this conductive paste. For example, when the conductive paste of the present invention is used to ensure interlayer conduction in a multilayer printed wiring board, the viscosity of the conductive paste is low. The filling property is very good.
[0013]
The silver-coated copper powder according to the present invention is prepared by dispersing copper powder in an acidic solution, adding a chelating agent to the copper powder dispersion and preparing a copper powder slurry, and then adding a buffer to adjust the pH, A silver ion solution can be continuously added to the copper powder slurry to form a silver layer on the surface of the copper powder by a substitution reaction.
[0014]
According to the method for producing a silver-coated copper powder according to the present invention, it is possible to uniformly coat the surface of the copper powder with a silver layer. As a result, it has excellent conductivity and conductivity over time in the atmosphere. It becomes silver coat copper powder with little change. In the conventional manufacturing method using the substitution reaction, the silver layer on the surface of the copper powder tends to be formed by relatively large precipitated particles, resulting in a silver-coated copper powder having a poor coating state. On the other hand, according to the production method of the present invention, it is possible to produce a silver-coated copper powder having a very uniform silver layer coating.
[0015]
The reason why the silver layer can be uniformly coated by the production method of the present invention is that the copper powder is dispersed in an acidic solution and the oxide on the surface of the copper powder is surely removed before the silver substitution reaction, It is assumed that the pH is adjusted by adding a buffering agent to the copper powder slurry to which the chelating agent is added, and the silver substitution reaction rate is kept constant by continuously adding the silver ion solution. . In the conventional manufacturing method, since an alkaline solution that is not an acidic solution is used, it is considered that the copper hydroxide is reprecipitated when taken out as a powder. In addition, it is considered that since the silver ion solution is charged all at once during the substitution reaction, the silver ion concentration becomes non-uniform around the copper powder, and a silver-coated copper powder having a poor silver coating state is formed. On the other hand, in the production method of the present invention, the copper powder is dispersed in the acidic solution to remove the oxide on the surface of the copper powder, and the buffering agent so that the copper ions complexed by the chelating agent can be maintained in a stable state. Since the pH is adjusted and the silver ion solution is continuously added so that the substitution reaction with silver ions proceeds uniformly, the surface of the copper powder can be coated extremely uniformly.
[0016]
In the production method of the present invention, the acidic solution is preferably selected from sulfuric acid, hydrochloric acid, and phosphoric acid. Any acidic solution that can reliably remove the copper oxide on the surface of the copper powder before the substitution reaction may be used, but the type and concentration to be selected should not excessively dissolve the copper powder itself. The pH of this acidic solution is desirably in the acidic range of 2.0 to 5.0. When the pH exceeds 5.0, the oxide of the copper powder cannot be sufficiently dissolved and removed, and when the pH is lower than 2.0, the copper powder dissolves and the aggregation of the copper powder itself easily proceeds. .
[0017]
The chelating agent used in the production method of the present invention is preferably such that the copper complex formation constant is larger than the silver complex formation constant. For example, in the case of a chelating agent such as ammonia, the silver complex formation constant and the copper complex formation constant are almost the same, and it is considered difficult to stabilize copper ions that inhibit the substitution reaction. Therefore, in the production method of the present invention, for example, it is desirable to use one or more selected from ethylenediaminetetraacetate, triethylenediamine, diethylenetriaminepentaacetic acid, and iminodiacetic acid. Thus, it becomes possible to form a copper ion complex and to stably maintain copper used for the substitution reaction as ions.
[0018]
Moreover, it is preferable that the buffer used for the manufacturing method of this invention is phthalates. Examples of the phthalates as the buffer include potassium phthalate and sodium phthalate. When such a buffer is used, the acidic solution in the production method of the present invention can be stabilized in the acidic range of about pH 4.0. Can be maintained.
[0019]
And in the manufacturing method of the silver coat copper powder concerning this invention, it is preferable to use a silver nitrate solution for a silver ion solution. The silver ion solution used in the present invention is not particularly limited as long as the effects of the present invention are exhibited, but silver nitrate is most preferable. The silver nitrate solution preferably has a silver nitrate concentration in the range of 20 to 300 g / L, and the rate of addition to the copper powder slurry is preferably slowly added at 200 mL / min or less. By adding a silver nitrate solution in the above concentration range at a relatively slow addition rate, practically at 20 to 200 mL / min, a uniform silver layer can be reliably coated on the copper powder surface. It is.
[0020]
Furthermore, in the manufacturing method of the silver coat copper powder which concerns on this invention, after dispersing copper powder in an acidic solution, it is preferable to perform a decantation process. This decantation treatment is also called a gradient method, but after dispersing copper powder in an acidic solution, the solution is allowed to stand to allow the copper powder to settle, and then the supernatant is gently tilted and collected. This is an operation. According to this, since the copper powder does not come into contact with the atmosphere, it is possible to shift to the next step in a state in which reoxidation of the copper powder surface is prevented.
[0021]
The copper powder used in the silver-coated copper powder and the production method thereof according to the present invention described above is not limited in type, production method, etc., and is obtained from a normal electrolytic method, reduction method, atomization method, mechanical grinding, etc. Powder can be used. Also, the shape of the copper powder is not specified, and a spherical shape, flake shape, needle shape, or dendritic shape can be used.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described based on examples, conventional examples, and comparative examples.
[0023]
Embodiment : The silver coat copper powder in this embodiment was manufactured with the following manufacturing methods. First, the used copper powder will be described. In this embodiment, copper powder obtained by a so-called hydrazine reduction method is used. Further, the copper powder by weight cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measuring method was 3.8 .mu.m.
[0024]
And 1 kg of the above-mentioned copper powder was dispersed in 2000 mL of sulfuric acid aqueous solution having a sulfuric acid concentration of 15 g / L. Subsequently, decantation treatment was performed, and 80 g of ethylenediaminetetraacetic acid (hereinafter referred to as EDTA) was added and dissolved to prepare a copper slurry (total amount of 5000 mL). Thereafter, pH adjustment was performed so that a predetermined amount of potassium phthalate was dissolved as a buffering agent to obtain pH 4. The copper slurry adjusted to pH in this manner was subjected to a substitution reaction treatment while adding 2000 mL of a silver nitrate solution (prepared as 2000 mL by adding 180 g of silver nitrate to water) over a period of 30 minutes, and further 30 minutes. The silver coat copper powder was obtained by stirring. Then, the silver-coated copper powder and the solution were separated by filtration and suction dehydration, washed with water, and then dried for 5 hours at a temperature of 70 ° C. Here, two silver-coated copper powders having different silver weight percent (wt%) based on the total amount of the silver-coated copper powder were produced (Examples 1 and 2). The silver weight percentage (silver coating amount) was changed by changing the concentration of the silver nitrate solution.
[0025]
Conventional Example : As an example for comparison, a silver-coated copper powder produced by the manufacturing method that the inventors have conventionally performed will be described. The copper powder used in this conventional example was the same as that used in the above example.
[0026]
In this conventional example, first, 160 g of EDTA was dissolved in 9000 mL of water, and 1 kg of copper powder was dispersed in the solution. To this solution, 1000 mL of a silver nitrate solution (a solution prepared by dissolving 180 g of silver nitrate in 220 mL of an aqueous ammonia solution and adding water to prepare 1000 mL) was added all at once. And the substitution reaction process was performed by stirring for 30 minutes. Thereafter, 140 g of Rochelle salt was added and stirred for 30 minutes to obtain silver-coated copper powder. Then, the silver-coated copper powder and the solution were separated by filtration, washed and dehydrated by suction, washed with water, and then dried for 5 hours at a temperature of 70 ° C. (Conventional Example 1).
[0027]
Comparative Example : As another comparison, a silver-coated copper powder having a nickel layer serving as a barrier will be described. Incidentally, copper powder used in this comparative example, copper powder obtained in the above Examples the same hydrazine reduction method, the weight-cumulative particle diameter D 50 was used in the 4.5 [mu] m.
[0028]
In this comparative example, first, 1 kg of copper powder was dispersed in 5000 mL of water, activator solution (10 mL of activator 352 manufactured by Meltex, and 10 mL of 35% hydrochloric acid solution) was added, and after 10 minutes of stirring, filtered and washed. . And this copper powder is re-dispersed in 10 L of water to prepare a slurry, 6500 mL of nickel plating solution (Ni-426 manufactured by Meltex Co.) is added, and the temperature is raised to 70 ° C. while stirring, The state was stirred for 30 minutes, and the surface of the copper powder was coated with nickel. Thereafter, filtration and washing were performed to obtain nickel-coated copper powder. Subsequently, 160 g of EDTA was dissolved in 9000 mL of water, and 1 kg of this nickel-coated copper powder was dispersed in the solution. To this solution, 1000 mL of a silver nitrate solution (a solution prepared by dissolving 180 g of silver nitrate in 220 mL of an aqueous ammonia solution and adding water to prepare 1000 mL) was added all at once. And the substitution reaction process was performed by stirring for 30 minutes. Thereafter, 140 g of Rochelle salt was added and stirred for 30 minutes to obtain a silver-coated copper powder having a nickel barrier layer. The silver-coated copper powder having a nickel barrier layer and the solution were separated by filtration, washed and dehydrated by suction, washed with water, and then dried at a temperature of 70 ° C. for 5 hours.
[0029]
The average particle diameter and specific surface area of each silver-coated copper powder obtained as described above were measured. The average particle size is due to a laser diffraction scattering particle size distribution measuring method was adopted the value of the weight-cumulative particle diameter D 50. Specific surface area (SSA) was measured by the BET method. It was also calculated X values relating to the thickness of the silver layer (the product of weight percent silver and (silver coating amount) and a weight cumulative particle diameter D 50). The results are shown in Table 1.
[0030]
[Table 1]
Figure 0004223754
[0031]
The results of examining the time-dependent change of each of the silver-coated copper powders of Examples 1 and 2 having the physical properties shown in Table 1 and Conventional Example 1 and Comparative Example will be described. The resistivity measurement was performed by forming a measurement sample in which 15 g of a sample was put into a cylindrical container and compression-molded at a press pressure of 40 × 10 6 Pa (408 kgf / cm 2 ), and Loresta AP and Loresta PD-41 types (both Mitsubishi Chemical Measurement was carried out by a company). The change with time was investigated by comparing the resistivity at the initial stage with the resistivity after holding the measurement sample in a heating furnace at 156 ° C. in an air atmosphere for 100 hours. Specifically, the resistance change rate was obtained by dividing the measured resistivity value after 100 hours by the initial resistivity value, and the temporal change state of the conductivity was specified. The results of the powder resistivity measurement are shown in Table 1.
[0032]
The color difference measurement of the silver-coated copper powder, using SM color computer SM-4-2 (manufactured by Suga Test Instruments Co., Ltd.), in the present embodiment is an evaluation value of L *. The value of L * is also called a “brightness index” representing brightness in color difference measurement, and indicates that the larger the value, the whiter the color, and the smaller the value, the blacker. Although the measurement result is shown in Table 1, since the surface color in the state before the silver coat in which the nickel layer which formed the nickel layer formed the nickel layer of the comparative example 1 differs from copper powder, surface color Measurement values are not listed because it is not appropriate to be included in the comparison target.
[0033]
As can be seen from Table 1, the silver-coated copper powders of Examples 1 and 2 were confirmed to have a low initial resistivity and a small change rate with time. In contrast, in the silver-coated copper powder of Conventional Example 1, the resistivity after standing for 100 hours was considerably increased, and the rate of change was also increased. On the other hand, in the silver-coated copper powder of Comparative Example having a nickel layer as a barrier, the change with time was relatively good, but it was confirmed that the initial resistivity itself was a high value. Further, it was confirmed that the values of L * in Examples 1 and 2 were larger than those in Conventional Example 1.
[0034]
Next, the results of observation with a scanning electron beam microscope of the silver-coated copper powder of Example 1 and Conventional Example 1 will be described. 1A shows the first embodiment, and FIG. 1B shows the first conventional example. FIG. 1 (C) is an observation of copper powder before silver coating (all magnification is 25000 times). As can be seen from FIG. 1A, in the silver-coated copper powder of Example 1, the shape of the copper powder in (C) is not so deformed, that is, the shape of the copper powder that is the base appears clearly. It was found that a uniform silver layer was formed. On the other hand, in the silver coat copper powder obtained by the manufacturing method demonstrated in the prior art example 1, it was confirmed that the copper layer uneven | corrugated shape of a base | substrate has coat | covered the silver layer in the state which almost disappeared.
[0035]
Finally, the value of the silver coating amount and the weight-cumulative particle diameter D 50, the results of examining the relationship between the color difference value L * of the surface of the silver-coated copper powder is described. In the manufacturing method of the embodiment described above, with copper powder of several weight cumulative particle diameter D 50 (1.0 to 10 [mu] m), silver-coated copper was varied coating amount of silver in the 0.1 to 15% range Powder was manufactured and the color difference was measured. Then, the weight percent of silver to silver-coated copper powder total amount (wt%) and obtains a product (hereinafter referred to as X value) of the weight-cumulative particle diameter D 50, the horizontal axis X, the distribution diagram as the vertical axis L * ( Fig. 2) was created. In FIG. 2, a black circle plots the silver-coated copper powder obtained by the manufacturing method of the present embodiment, and a black square plots the silver-coated copper powder obtained by the conventional manufacturing method.
[0036]
Table 2 shows the silver-coated copper powder data of the black circles (Example data) plotted in FIG. Table 2 Example silver-coated copper powder of 3 to 14, using a copper powder by weight cumulative particle diameter D 50 is in the range from 1.5~8.0μm, 1wt% of coating amount of silver, 5 wt%, The coating is equivalent to 10 wt%. The manufacturing method of the silver coat copper powder of these Examples 3-14 is the same as that of the said Examples 1 and 2. However, in order to change the coating amount of silver, a silver nitrate solution prepared as 700 mL by adding 17 g of silver nitrate to water when coating equivalent to 1 wt% is added to water to obtain a 700 wt. In the case of coating with 10 wt%, silver coating is performed using a solution prepared by adding 170 g of silver nitrate to water to prepare 2000 mL.
[0037]
Table 2 shows the silver-coated copper powder data of black squares (comparative data) plotted in FIG. The silver-coated copper powders of Conventional Examples 2 to 6 in Table 2 use a copper powder having a weight cumulative particle diameter D 50 in the range of 1.5 to 8.0 μm, and the silver coating amount is equivalent to 5 wt% and 10 wt%. It is coated. The manufacturing method of the silver coat copper powder of these conventional examples 2-6 is the same as that of the said conventional example 1. However, in order to change the coating amount of silver, in the case of coating corresponding to 10 wt%, the same silver nitrate solution as in Conventional Example 1 and in the case of coating corresponding to 5 wt%, 90 g of silver nitrate is dissolved in 110 mL of an aqueous ammonia solution, and water is added to add 500 mL. The silver coating process is performed using what was prepared as. Table 2 also shows data of Examples 1 and 2 and Conventional Example 1 shown in Table 1.
[0038]
[Table 2]
Figure 0004223754
[0039]
When the data distribution of the Example in FIG. 2 and a prior art example is seen, the silver coat copper powder by the manufacturing method of this embodiment shows the tendency which the upper side, ie, color difference value L *, becomes large compared with the thing of a prior art example. It has been found. Further, as can be seen from FIG. 2, the data of the example is distributed in the upper region, and the data of the conventional example is distributed in the lower region, so an attempt was made to calculate the boundary line divided into the upper and lower regions. It was. That is, when a regression analysis was performed on the function expression of the X value and the color difference value L * satisfying the data of the present embodiment, a quadratic function expression represented by the following expression was calculated as appropriate for the present embodiment.
[0040]
[Equation 3]
Figure 0004223754
[0041]
The silver-coated copper powder that satisfies the above formula has a lower copper redness and whiteness, and is superior in conductivity because the underlying copper powder is uniformly coated with a silver layer compared to the conventional method. In addition, the temporal change in conductivity in the air atmosphere is very small.
[0042]
【The invention's effect】
As described above, according to the present invention, the silver-coated copper powder is excellent in conductivity and has little change with time in conductivity even when left in the atmosphere. In addition, it is possible to easily provide such silver-coated copper powder with little change with time.
[Brief description of the drawings]
FIG. 1 shows a scanning electron microscope image of silver-coated copper powder.
[Figure 2] distribution diagram showing the relationship of the product X and L * values of the weight percent of silver and the weight cumulative particle diameter D 50.

Claims (9)

銅粉の表面に銀層を形成した銀コート銅粉において、
銀コート銅粉における銀の重量パーセントとレーザー回折散乱式粒度分布測定による重量累積粒径D50との積X(但し0.1≦X≦150、銀の重量パーセントは0.1wt%〜15wt%であり、D 50 が1.0〜10μmである)及び、銀コート銅粉の色差測定によるLの関係が次式となり、
大気雰囲気中156℃の加熱炉内にて銀コート銅粉の粉体抵抗率を測定した際に100時間保持後の抵抗率を初期時の抵抗率で割ることにより求められる抵抗変化率が3000以下であることを特徴とする銀コート銅粉。
Figure 0004223754
In silver-coated copper powder in which a silver layer is formed on the surface of copper powder,
Product X (where 0.1 ≦ X ≦ 0.99 for the weight cumulative particle diameter D 50 by weight percent and laser diffraction scattering particle size distribution measurement of silver in the silver-coated copper powder, percent by weight of silver 0.1 wt% 15 wt% And D 50 is 1.0 to 10 μm ) and the relationship of L * by the color difference measurement of the silver-coated copper powder is
When the powder resistivity of the silver-coated copper powder is measured in a heating furnace at 156 ° C. in an air atmosphere, the resistance change rate obtained by dividing the resistivity after holding for 100 hours by the initial resistivity is 3000 or less. Silver-coated copper powder characterized by being
Figure 0004223754
請求項1に記載の銀コート銅粉を用いて製造した導電ペースト。  The electrically conductive paste manufactured using the silver coat copper powder of Claim 1. 請求項2に記載の導電ペーストを用いて形成した導体を備えたプリント配線板。  The printed wiring board provided with the conductor formed using the electrically conductive paste of Claim 2. 銅粉の表面に銀層を形成する銀コート銅粉の製造方法において、
酸性溶液中に銅粉を分散し、該銅粉分散液にキレート化剤を加えて銅粉スラリーを作製した後に、酸性領域に安定的に維持するために緩衝剤を添加し、該銅粉スラリーに銀イオン溶液を20〜200mL/minの添加速度により連続的に添加することで置換反応により銅粉表面へ銀層を形成することを特徴とする銀コート銅粉の製造方法。
In the method for producing a silver-coated copper powder that forms a silver layer on the surface of the copper powder,
After copper powder is dispersed in an acidic solution, a chelating agent is added to the copper powder dispersion to prepare a copper powder slurry, and then a buffer is added to stably maintain the acidic region in the copper powder slurry. A silver ion solution is continuously added at a rate of 20 to 200 mL / min to form a silver layer on the surface of the copper powder by a substitution reaction.
酸性溶液が、硫酸、塩酸、リン酸から選ばれたもので作製されたものである請求項4に記載の銀コート銅粉の製造方法。  The method for producing a silver-coated copper powder according to claim 4, wherein the acidic solution is prepared from one selected from sulfuric acid, hydrochloric acid, and phosphoric acid. キレート化剤は、エチレンジアミン四酢酸塩、トリエチレンジアミン、ジエチレントリアミン五酢酸、イミノ二酢酸から選ばれた1種又は2種以上のものからなる請求項4又は請求項5に記載の銀コート銅粉の製造方法。  6. The silver-coated copper powder according to claim 4, wherein the chelating agent comprises one or more selected from ethylenediamine tetraacetate, triethylenediamine, diethylenetriaminepentaacetic acid, and iminodiacetic acid. Method. 緩衝剤は、フタル酸塩類である請求項4〜請求項6に記載の銀コート銅粉の製造方法。  The method for producing a silver-coated copper powder according to claim 4, wherein the buffer is a phthalate. 銀イオン溶液は、硝酸銀溶液である請求項4〜請求項7に記載の銀コート銅粉の製造方法。  The method for producing a silver-coated copper powder according to claim 4, wherein the silver ion solution is a silver nitrate solution. 酸性溶液中に銅粉を分散した後、デカンテーション処理を行うものである請求項4〜請求項に記載の銀コート銅粉の製造方法。After dispersing the copper powder in an acidic solution, a manufacturing method of the silver-coated copper powder according to claim 4 claim 8 performs a decantation process.
JP2002211458A 2002-07-19 2002-07-19 Silver-coated copper powder and method for producing the same Expired - Lifetime JP4223754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002211458A JP4223754B2 (en) 2002-07-19 2002-07-19 Silver-coated copper powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002211458A JP4223754B2 (en) 2002-07-19 2002-07-19 Silver-coated copper powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004052044A JP2004052044A (en) 2004-02-19
JP4223754B2 true JP4223754B2 (en) 2009-02-12

Family

ID=31934690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002211458A Expired - Lifetime JP4223754B2 (en) 2002-07-19 2002-07-19 Silver-coated copper powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4223754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133636A (en) * 2011-03-10 2011-07-27 昆明理工大学 Method for preparing anti-migration flaky silver coated copper powder

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660701B2 (en) * 2004-12-03 2011-03-30 Dowaエレクトロニクス株式会社 Silver-coated copper powder, method for producing the same, and conductive paste
WO2008059789A1 (en) * 2006-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2009253080A (en) * 2008-04-08 2009-10-29 Sumitomo Electric Ind Ltd Printed wiring board
JP5453598B2 (en) * 2010-07-12 2014-03-26 Dowaエレクトロニクス株式会社 Silver-coated copper powder and conductive paste
JP5695879B2 (en) * 2010-10-25 2015-04-08 石原ケミカル株式会社 Method for producing tin-plated copper powder
US10062473B2 (en) * 2012-01-17 2018-08-28 Dowa Electronics Materials Co., Ltd. Silver-coated copper alloy powder and method for producing same
JP5785532B2 (en) 2012-11-30 2015-09-30 三井金属鉱業株式会社 Silver-coated copper powder and method for producing the same
WO2014156978A1 (en) 2013-03-28 2014-10-02 東洋アルミニウム株式会社 Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
JP6579958B2 (en) 2014-01-14 2019-09-25 東洋アルミニウム株式会社 Composite conductive particles, conductive resin composition containing the same, and conductive coating material
JP5892282B1 (en) * 2015-04-27 2016-03-23 東洋インキScホールディングス株式会社 Conductive adhesive, conductive adhesive sheet, and wiring device
TWI609381B (en) * 2016-02-02 2017-12-21 國立成功大學 Method of fabricating high-conductivity thick-film copper paste coated with nano-silver for being sintered in the air
JP6846969B2 (en) * 2016-03-31 2021-03-24 Dowaエレクトロニクス株式会社 Silver-coated nickel powder and its manufacturing method
JP7029341B2 (en) * 2018-04-13 2022-03-03 Jx金属株式会社 Copper powder
JP7335768B2 (en) * 2019-09-30 2023-08-30 Dowaエレクトロニクス株式会社 Silver-coated metal powder, method for producing the same, and conductive paint
CN112935244A (en) * 2021-01-27 2021-06-11 刘勤华 Silver-coated copper composite powder process for photovoltaic use and replacing pure silver slurry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133636A (en) * 2011-03-10 2011-07-27 昆明理工大学 Method for preparing anti-migration flaky silver coated copper powder
CN102133636B (en) * 2011-03-10 2012-11-21 昆明理工大学 Method for preparing anti-migration flaky silver coated copper powder

Also Published As

Publication number Publication date
JP2004052044A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP4223754B2 (en) Silver-coated copper powder and method for producing the same
JP5785532B2 (en) Silver-coated copper powder and method for producing the same
JP4660701B2 (en) Silver-coated copper powder, method for producing the same, and conductive paste
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP4821014B2 (en) Copper powder manufacturing method
EP3275571A1 (en) Silver-coated copper powder and conductive paste, conductive material, and conductive sheet using same
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
EP3187279A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP5920540B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP2018076603A (en) Conductive particles, conductive resin composition containing the same, and coated material
JP5327582B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
KR100880742B1 (en) Spherical NiP micro-particles and producing method thereof, conductive particles for anisotropic conductive film
JP4149364B2 (en) Dendritic fine silver powder and method for producing the same
JP4100244B2 (en) Nickel powder and method for producing the same
JP2016139598A (en) Silver coated copper powder, and copper paste, conductive coating and conductive sheet using the same
JP5453598B2 (en) Silver-coated copper powder and conductive paste
JP2017071819A (en) Silver powder and conductive paste, conductive coating and conductive sheet using the same
JP4583164B2 (en) Silver-copper composite powder and method for producing silver-copper composite powder
JP5285412B2 (en) Tin-doped indium oxide particles and method for producing the same
US20050072270A1 (en) Nickel powder and production method therefor
TW201338893A (en) Silver powder
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2016008333A (en) Copper powder and copper paste using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Ref document number: 4223754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term