JP6846969B2 - Silver-coated nickel powder and its manufacturing method - Google Patents

Silver-coated nickel powder and its manufacturing method Download PDF

Info

Publication number
JP6846969B2
JP6846969B2 JP2017060625A JP2017060625A JP6846969B2 JP 6846969 B2 JP6846969 B2 JP 6846969B2 JP 2017060625 A JP2017060625 A JP 2017060625A JP 2017060625 A JP2017060625 A JP 2017060625A JP 6846969 B2 JP6846969 B2 JP 6846969B2
Authority
JP
Japan
Prior art keywords
silver
nickel powder
coated nickel
coated
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017060625A
Other languages
Japanese (ja)
Other versions
JP2017186661A (en
Inventor
恭三 増田
恭三 増田
良幸 道明
良幸 道明
江原 厚志
厚志 江原
井上 健一
健一 井上
孝造 尾木
孝造 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Publication of JP2017186661A publication Critical patent/JP2017186661A/en
Application granted granted Critical
Publication of JP6846969B2 publication Critical patent/JP6846969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀被覆ニッケル粉末およびその製造方法に関し、特に、導電性ペーストなどに使用する銀被覆ニッケル粉末およびその製造方法に関する。 The present invention relates to a silver-coated nickel powder and a method for producing the same, and more particularly to a silver-coated nickel powder used for a conductive paste or the like and a method for producing the same.

従来、電子部品の電極や配線を形成するために、銀粉などの導電性の金属粉末に溶剤、樹脂、分散剤などを配合して作製した導電性ペーストが使用されている。 Conventionally, in order to form electrodes and wiring of electronic parts, a conductive paste prepared by blending a solvent, a resin, a dispersant or the like with a conductive metal powder such as silver powder has been used.

しかし、銀粉は、体積抵抗率が極めて小さく、良好な導電性物質であるが、貴金属の粉末であるため、コストが高くなる。 However, although silver powder has an extremely low volume resistivity and is a good conductive substance, it is a precious metal powder, so that the cost is high.

そのため、導電性ペーストなどに使用する導電性の金属粉末として、比較的安価なニッケル粉末の表面を銀で被覆した銀被覆ニッケル粉末を使用することが検討されている。 Therefore, as a conductive metal powder used for a conductive paste or the like, it has been studied to use a silver-coated nickel powder in which the surface of a relatively inexpensive nickel powder is coated with silver.

このような銀被覆ニッケル粉末として、銀とニッケルからなり、銀とニッケルの合計100質量部に対して、銀を6〜15質量部を含み、圧力5.6MPaにおける粉体抵抗値が0.1〜0.5Ω・mmである銀被覆ニッケル粉末(例えば、特許文献1参照)や、ニッケルを含むコア粒子の表面に銀が被覆された銀コートニッケル粒子において、銀コートニッケル粒子の表面の全域にわたって、多数の凸部が形成されて表面が凹凸形状になり、平面視における凸部の大きさが0.05〜1μmであり、銀コートニッケル粒子中の銀の被覆率が50%以上である銀コートニッケル粒子(例えば、特許文献2参照)などが提案されている。 Such silver-coated nickel powder is composed of silver and nickel, contains 6 to 15 parts by mass of silver with respect to 100 parts by mass of silver and nickel in total, and has a powder resistance value of 0.1 at a pressure of 5.6 MPa. In silver-coated nickel powder having a thickness of ~ 0.5 Ω · mm (see, for example, Patent Document 1) or silver-coated nickel particles in which the surface of core particles containing nickel is coated with silver, the entire surface of the silver-coated nickel particles is covered. , A large number of convex portions are formed to form an uneven surface, the size of the convex portions in a plan view is 0.05 to 1 μm, and the coverage of silver in the silver-coated nickel particles is 50% or more. Coated nickel particles (see, for example, Patent Document 2) have been proposed.

特開2011−144441号公報(段落番号0012)Japanese Unexamined Patent Publication No. 2011-144441 (paragraph number 0012) 特開2014−218701号公報(段落番号0008)Japanese Unexamined Patent Publication No. 2014-218701 (paragraph number 0008)

しかし、特許文献1の銀被覆ニッケル粉末や特許文献2の銀コートニッケル粒子は、導電性が十分ではないという問題がある。 However, the silver-coated nickel powder of Patent Document 1 and the silver-coated nickel particles of Patent Document 2 have a problem of insufficient conductivity.

したがって、本発明は、このような従来の問題点に鑑み、導電性が良好で安価な銀被覆ニッケル粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, an object of the present invention is to provide an inexpensive silver-coated nickel powder having good conductivity and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究した結果、ニッケル粉末を水素雰囲気中で還元することによってニッケル粉末中の酸素含有量を低減させた後、この酸素含有量を低減させたニッケル粉末の表面を銀含有層により被覆することにより、導電性が良好で安価な銀被覆ニッケル粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors reduced the oxygen content in the nickel powder by reducing the nickel powder in a hydrogen atmosphere, and then reduced the oxygen content. By coating the surface of the nickel powder with a silver-containing layer, it has been found that an inexpensive silver-coated nickel powder having good conductivity can be produced, and the present invention has been completed.

すなわち、本発明による被覆ニッケル粉末の製造方法は、ニッケル粉末を水素雰囲気中で還元することによってニッケル粉末中の酸素含有量を低減させた後、この酸素含有量を低減させたニッケル粉末の表面を銀含有層により被覆することを特徴とする。 That is, in the method for producing a coated nickel powder according to the present invention, the oxygen content in the nickel powder is reduced by reducing the nickel powder in a hydrogen atmosphere, and then the surface of the nickel powder having the reduced oxygen content is treated. It is characterized by being coated with a silver-containing layer.

この銀被覆ニッケル粉末の製造方法において、ニッケル粉末中の酸素含有量を0.8質量%以下に低減させるのが好ましく、ニッケル粉末のBET比表面積に対する酸素含有量の比が2.0質量%・g/m以下になるようにニッケル粉末中の酸素含有量を低減させるのが好ましい。ニッケル粉末は、アトマイズ法により製造するのが好ましく、平均粒径が0.1〜15μmであるのが好ましい。銀含有層は、被覆量が3〜50質量%であるのが好ましく、銀または銀化合物からなる層であるのが好ましい。 In this method for producing silver-coated nickel powder, it is preferable to reduce the oxygen content in the nickel powder to 0.8% by mass or less, and the ratio of the oxygen content to the BET specific surface area of the nickel powder is 2.0% by mass. It is preferable to reduce the oxygen content in the nickel powder so that it is g / m 2 or less. The nickel powder is preferably produced by an atomizing method, and the average particle size is preferably 0.1 to 15 μm. The silver-containing layer preferably has a coating amount of 3 to 50% by mass, and is preferably a layer made of silver or a silver compound.

また、本発明による銀被覆ニッケル粉末は、表面が3〜50質量%の銀含有層により被覆され、酸素含有量が0.7質量%以下であり、色差(L)が48以上であることを特徴とする。 Further, the silver-coated nickel powder according to the present invention has a surface coated with a silver-containing layer of 3 to 50% by mass, an oxygen content of 0.7% by mass or less, and a color difference (L * ) of 48 or more. It is characterized by.

この銀被覆ニッケル粉末において、銀被覆ニッケル粉末のBET比表面積に対する酸素含有量の比が1.0質量%・g/m以下であるのが好ましく、銀被覆ニッケル粉末に5.6MPaの圧力を加えたときの体積抵抗率が0.1〜10mΩ・cmであるのが好ましい。また、銀被覆ニッケル粉末の色差(L)が50〜80であるのが好ましい。また、銀被覆ニッケル粉末の平均粒径が0.1〜15μmであるのが好ましく、銀被覆ニッケル粉末のBET比表面積が0.1〜5m/gであるのが好ましい。また、銀被覆ニッケル粉末中の塩素含有量が100ppm未満であるのが好ましく、銀含有層が銀または銀化合物からなる層であるのが好ましい。 In this silver-coated nickel powder, the ratio of the oxygen content to the BET specific surface area of the silver-coated nickel powder is preferably 1.0% by mass · g / m 2 or less, and a pressure of 5.6 MPa is applied to the silver-coated nickel powder. The volume resistivity when added is preferably 0.1 to 10 mΩ · cm. Further, the color difference (L * ) of the silver-coated nickel powder is preferably 50 to 80. The average particle size of the silver-coated nickel powder is preferably 0.1 to 15 μm, and the BET specific surface area of the silver-coated nickel powder is preferably 0.1 to 5 m 2 / g. Further, the chlorine content in the silver-coated nickel powder is preferably less than 100 ppm, and the silver-containing layer is preferably a layer made of silver or a silver compound.

なお、本明細書中において、「平均粒径」とは、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)をいう。 In this specification, the "average particle diameter" refers to a (by Heroes method) 50% cumulative particle diameter on a volume basis as measured by a laser diffraction type particle size distribution measuring apparatus (D 50 diameter).

本発明によれば、導電性が良好で安価な銀被覆ニッケル粉末を製造することができる。 According to the present invention, a silver-coated nickel powder having good conductivity and inexpensive can be produced.

本発明による銀被覆ニッケル粉末の製造方法の実施の形態では、ニッケル粉末を水素雰囲気中で還元することによってニッケル粉末中の酸素含有量を低減させた後、この酸素含有量を低減させたニッケル粉末の表面を銀含有層により被覆する。 In the embodiment of the method for producing a silver-coated nickel powder according to the present invention, the oxygen content in the nickel powder is reduced by reducing the nickel powder in a hydrogen atmosphere, and then the nickel powder in which the oxygen content is reduced is reduced. The surface of is covered with a silver-containing layer.

原料となるニッケル粉末は、ニッケルを溶解温度以上で溶解し、タンディッシュ下部から落下させながら高圧ガスまたは高圧水を衝突させて急冷凝固させることにより微粉末とする、(ガスアトマイズ法、水アトマイズ法などの)所謂アトマイズ法により製造するのが好ましい。特に、高圧水を吹き付ける、所謂水アトマイズ法により製造すると、粒子径が小さいニッケル粉末を得ることができるので、銀被覆ニッケル粉末を導電性ペーストに使用した際に粒子間の接触点の増加による導電性の向上を図ることができる。 Nickel powder, which is the raw material, melts nickel at a melting temperature or higher, and drops it from the bottom of the tundish while colliding it with high-pressure gas or high-pressure water to quench and solidify it into fine powder (gas atomization method, water atomization method, etc.). It is preferable to manufacture by the so-called atomizing method. In particular, when manufactured by the so-called water atomization method in which high-pressure water is sprayed, nickel powder having a small particle size can be obtained. Therefore, when silver-coated nickel powder is used as a conductive paste, conductivity is increased due to an increase in contact points between particles. It is possible to improve the sex.

このようにして得られたニッケル粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、1〜10μmであるのがさらに好ましく、2〜5μmであるのが最も好ましい。体積基準の累積50%粒子径(D50径)が0.1μm未満では、銀被覆ニッケル粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。なお、ニッケル粉末をアトマイズ法により製造する場合、ニッケル溶湯に脱酸剤として少量のリン(P)を添加することにより、0.001〜1質量%のPを含むニッケル粉末を製造して、ニッケル粉末として使用してもよい。 The particle size of the nickel powder thus obtained has a volume-based cumulative 50% particle size (D50 size) measured by a laser diffraction particle size distribution measuring device (by the Heros method) of 0.1 to 15 μm. It is preferably 1 to 10 μm, more preferably 2 to 5 μm, and most preferably 2 to 5 μm. If the cumulative 50% particle diameter (D 50 diameter) based on the volume is less than 0.1 μm, it adversely affects the conductivity of the silver-coated nickel powder, which is not preferable. On the other hand, if it exceeds 15 μm, it becomes difficult to form fine wiring, which is not preferable. When nickel powder is produced by the atomizing method, nickel powder containing 0.001 to 1% by mass of P is produced by adding a small amount of phosphorus (P) as a deoxidizing agent to the molten nickel to produce nickel. It may be used as a powder.

ニッケル粉末中の酸素含有量の低減は、ニッケル粉末を水素雰囲気中で還元することによって行う。ニッケル粉末を水素雰囲気中で還元することによって、ニッケル粉末の(主に表面に存在する)酸素が除去される。また、ニッケル粉末を水素雰囲気中で還元することによって、ニッケル粉末の表面が銀含有層により被覆され易い状態になると考えられる。ニッケル粉末中の酸素含有量を低減させるために、ニッケル粉末を酸洗した場合、このように酸洗したニッケル粉末の表面を銀含有層で被覆しても、導電性が良好な銀被覆ニッケル粉末を得ることができない。 The oxygen content in the nickel powder is reduced by reducing the nickel powder in a hydrogen atmosphere. By reducing the nickel powder in a hydrogen atmosphere, the oxygen (mainly present on the surface) of the nickel powder is removed. Further, it is considered that by reducing the nickel powder in a hydrogen atmosphere, the surface of the nickel powder is easily covered with the silver-containing layer. When the nickel powder is pickled in order to reduce the oxygen content in the nickel powder, even if the surface of the nickel powder pickled in this way is coated with a silver-containing layer, the silver-coated nickel powder has good conductivity. Cannot be obtained.

水素雰囲気は、還元することができる程度の水素が存在する雰囲気であればよく、水素雰囲気中の水素濃度が5体積%以上であるのが好ましく、50体積%以上であるのがさらに好ましい。ニッケル粉末の水素雰囲気中における還元は、ニッケル粉末を水素雰囲気中において加熱することによって行うのが好ましく、ニッケル粉末を十分に還元するために、加熱の温度が100〜400℃であるのが好ましく、加熱の時間が1〜20時間であるのが好ましい。 The hydrogen atmosphere may be an atmosphere in which hydrogen that can be reduced is present, and the hydrogen concentration in the hydrogen atmosphere is preferably 5% by volume or more, and more preferably 50% by volume or more. The reduction of the nickel powder in a hydrogen atmosphere is preferably carried out by heating the nickel powder in a hydrogen atmosphere, and the heating temperature is preferably 100 to 400 ° C. in order to sufficiently reduce the nickel powder. The heating time is preferably 1 to 20 hours.

銀被覆ニッケル粉末の導電性を向上させるために、ニッケル粉末中の酸素含有量の低減により、酸素含有量が0.8質量%以下になるのが好ましく、0.5質量%以下になるのがさらに好ましい。また、銀被覆ニッケル粉末の導電性を向上させるために、ニッケル粉末のBET比表面積に対する酸素含有量の比が2.0質量%・g/m以下になるのが好ましく、1.0質量%・g/m以下になるのがさらに好ましい。 In order to improve the conductivity of the silver-coated nickel powder, the oxygen content is preferably 0.8% by mass or less, preferably 0.5% by mass or less, by reducing the oxygen content in the nickel powder. More preferred. Further, in order to improve the conductivity of the silver-coated nickel powder, the ratio of the oxygen content to the BET specific surface area of the nickel powder is preferably 2.0% by mass · g / m 2 or less, preferably 1.0% by mass. -It is more preferable that it is g / m 2 or less.

銀含有層は、銀または銀化合物からなる層であるのが好ましい。銀被覆ニッケル粉末に対する銀含有層の被覆量は、3〜50質量%であるのが好ましく、4〜40質量%であるのがさらに好ましい。銀含有層の被覆量が3質量%未満では、銀被覆ニッケル粉末の導電性に悪影響を及ぼすので好ましくない。一方、50質量%を超えると、銀の使用量の増加によってコストが高くなるので好ましくない。 The silver-containing layer is preferably a layer made of silver or a silver compound. The coating amount of the silver-containing layer with respect to the silver-coated nickel powder is preferably 3 to 50% by mass, more preferably 4 to 40% by mass. If the coating amount of the silver-containing layer is less than 3% by mass, the conductivity of the silver-coated nickel powder is adversely affected, which is not preferable. On the other hand, if it exceeds 50% by mass, the cost increases due to the increase in the amount of silver used, which is not preferable.

ニッケル粉末を銀含有層で被覆する方法として、ニッケルと銀の置換反応を利用した置換法や、還元剤を用いる還元法により、ニッケル粉末の表面に銀または銀化合物を析出させる方法を使用することができ、例えば、溶媒中にニッケル粉末と銀または銀化合物を含む溶液を攪拌しながらニッケル粉末の表面に銀または銀化合物を析出させる方法や、溶媒中にニッケル粉末および有機物を含む溶液と溶媒中に銀または銀化合物および有機物を含む溶液とを混合して攪拌しながらニッケル粉末の表面に銀または銀化合物を析出させる方法などを使用することができる。 As a method of coating the nickel powder with a silver-containing layer, a method of precipitating silver or a silver compound on the surface of the nickel powder by a substitution method using a substitution reaction between nickel and silver or a reduction method using a reducing agent is used. For example, a method of precipitating silver or a silver compound on the surface of a nickel powder while stirring a solution containing the nickel powder and a silver or a silver compound in a solvent, or a solution containing a nickel powder and an organic substance in the solvent and a solvent. A method of precipitating the silver or the silver compound on the surface of the nickel powder while mixing the mixture with the silver or the silver compound and the solution containing the organic substance and stirring the mixture can be used.

この溶媒としては、水、有機溶媒またはこれらを混合した溶媒を使用することができる。水と有機溶媒を混合した溶媒を使用する場合には、室温(20〜30℃)において液体になる有機溶媒を使用する必要があるが、水と有機溶媒の混合比率は、使用する有機溶媒により適宜調整することができる。また、溶媒として使用する水は、不純物が混入するおそれがなければ、蒸留水、イオン交換水、工業用水などを使用することができる。 As the solvent, water, an organic solvent, or a solvent obtained by mixing these can be used. When using a solvent in which water and an organic solvent are mixed, it is necessary to use an organic solvent that becomes liquid at room temperature (20 to 30 ° C.), but the mixing ratio of water and the organic solvent depends on the organic solvent used. It can be adjusted as appropriate. Further, as the water used as the solvent, distilled water, ion-exchanged water, industrial water and the like can be used as long as there is no risk of impurities being mixed.

銀含有層をより均一に形成するために、溶液中にキレート化剤を添加してもよい。キレート化剤としては、銀イオンと金属ニッケルとの置換反応により副生するニッケルイオンなどが再析出しないように、ニッケルイオンなどに対して錯安定度定数が高いキレート化剤を使用するのが好ましい。特に、銀被覆ニッケル粉末のコアとなるニッケル粉末は主構成要素としてニッケルを含んでいるので、ニッケルとの錯安定度定数に留意してキレート化剤を選択するのが好ましい。具体的には、キレート化剤として、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ジエチレントリアミン、トリエチレンジアミンおよびこれらの塩からなる群から選ばれたキレート化剤を使用することができる。 A chelating agent may be added to the solution to form the silver-containing layer more uniformly. As the chelating agent, it is preferable to use a chelating agent having a high complex stability constant with respect to nickel ions and the like so that nickel ions and the like produced as a by-product due to the substitution reaction between silver ions and metallic nickel do not reprecipitate. .. In particular, since nickel powder, which is the core of silver-coated nickel powder, contains nickel as a main component, it is preferable to select a chelating agent while paying attention to the illusion stability constant with nickel. Specifically, as the chelating agent, a chelating agent selected from the group consisting of ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, diethylenetriamine, triethylenediamine and salts thereof can be used.

銀被覆反応の際には、銀塩を添加する前に溶液中にニッケル粉末を入れて攪拌し、ニッケル粉末が溶液中に十分に分散している状態で、銀塩を含む溶液を添加するのが好ましい。この銀塩を含む溶液は、一挙に(好ましくは40秒以下の短時間で)添加してもよいし、反応速度を制御するために、連続的に(好ましくは10分間以上の時間で)添加してもよい。この銀被覆反応の際の反応温度は、反応液が凝固または蒸発する温度でなければよいが、好ましくは40〜95℃、さらに好ましくは60〜90℃の範囲で設定する。また、反応時間は、銀または銀化合物の被覆量や反応温度によって異なるが、1分〜5時間の範囲で設定することができる。 In the silver coating reaction, nickel powder is put in the solution and stirred before adding the silver salt, and the solution containing the silver salt is added with the nickel powder sufficiently dispersed in the solution. Is preferable. The solution containing the silver salt may be added all at once (preferably in a short time of 40 seconds or less), or continuously (preferably in a time of 10 minutes or more) to control the reaction rate. You may. The reaction temperature at the time of this silver coating reaction may not be the temperature at which the reaction solution solidifies or evaporates, but is preferably set in the range of 40 to 95 ° C, more preferably 60 to 90 ° C. The reaction time varies depending on the coating amount of silver or the silver compound and the reaction temperature, but can be set in the range of 1 minute to 5 hours.

上述した銀被覆ニッケル粉末の製造方法の実施の形態により、本発明による銀被覆ニッケル粉末の実施の形態を製造することができる。 According to the embodiment of the method for producing silver-coated nickel powder described above, the embodiment of silver-coated nickel powder according to the present invention can be produced.

本発明による銀被覆ニッケル粉末の実施の形態では、表面が3〜50質量%(好ましくは4〜40質量%)の銀含有層により被覆され、酸素含有量が0.7質量%以下(好ましくは0.6質量%以下)であり、色差(L)が48以上(好ましくは50〜80)である。 In the embodiment of the silver-coated nickel powder according to the present invention, the surface is coated with a silver-containing layer of 3 to 50% by mass (preferably 4 to 40% by mass), and the oxygen content is 0.7% by mass or less (preferably). It is 0.6% by mass or less), and the color difference (L * ) is 48 or more (preferably 50 to 80).

この銀被覆ニッケル粉末の導電性を向上させるために、銀被覆ニッケル粉末のBET比表面積に対する酸素含有量の比が、1.0質量%・g/m以下であるのが好ましく、0.8質量%・g/m以下であるのがさらに好ましい。また、銀被覆ニッケル粉末に5.6MPaの圧力を加えたときの体積抵抗率が、0.1〜10mΩ・cmであるのが好ましく、0.1〜5mΩ・cmであるのがさらに好ましく0.1〜2mΩ・cmであるのが最も好ましい。また、銀被覆ニッケル粉末に10MPaの圧力を加えたときの体積抵抗率が、0.05〜6mΩ・cmであるのが好ましく、0.08〜3mΩ・cmであるのがさらに好ましく0.1〜1.2mΩ・cmであるのが最も好ましい。 In order to improve the conductivity of the silver-coated nickel powder, the ratio of the oxygen content to the BET specific surface area of the silver-coated nickel powder is preferably 1.0% by mass · g / m 2 or less, preferably 0.8. It is more preferably mass% · g / m 2 or less. Further, the volume resistivity when a pressure of 5.6 MPa is applied to the silver-coated nickel powder is preferably 0.1 to 10 mΩ · cm, and more preferably 0.1 to 5 mΩ · cm. Most preferably, it is 1 to 2 mΩ · cm. The volume resistivity of the silver-coated nickel powder when a pressure of 10 MPa is applied is preferably 0.05 to 6 mΩ · cm, more preferably 0.08 to 3 mΩ · cm. Most preferably, it is 1.2 mΩ · cm.

上述した銀被覆ニッケル粉末の製造方法の実施の形態では、ニッケル粉末を水素雰囲気中で還元することによって予めニッケル粉末中の酸素含有量を低減させており、このように酸素含有量を低減させることによって、ニッケル粉末の表面を銀含有層により均一に被覆することができ、このようにニッケル粉末の表面を銀含有層により均一に被覆することによって、銀被覆ニッケル粉末の色差(L*)の値が高くなり、銀被覆ニッケル粉末に圧力を加えたときの体積抵抗率も低くなる。なお、上述した銀被覆ニッケル粉末の製造方法の実施の形態では、銀被覆ニッケル粉末の色差(L*)の値を80まで高くすることができ、銀被覆ニッケル粉末の導電性を向上させるために、銀被覆ニッケル粉末の色差(L*)の値が50〜80であるのが好ましい。 In the embodiment of the method for producing silver-coated nickel powder described above, the oxygen content in the nickel powder is reduced in advance by reducing the nickel powder in a hydrogen atmosphere, and thus the oxygen content is reduced. Therefore, the surface of the nickel powder can be uniformly coated with the silver-containing layer, and by uniformly coating the surface of the nickel powder with the silver-containing layer in this way, the value of the color difference (L *) of the silver-coated nickel powder. And the volume resistivity when pressure is applied to the silver-coated nickel powder is also low. In the embodiment of the method for producing silver-coated nickel powder described above, the value of the color difference (L *) of the silver-coated nickel powder can be increased to 80, in order to improve the conductivity of the silver-coated nickel powder. , The value of the color difference (L *) of the silver-coated nickel powder is preferably 50 to 80.

また、銀被覆ニッケル粉末の粒子径は、(ヘロス法によって)レーザー回折式粒度分布測定装置により測定した体積基準の累積50%粒子径(D50径)が0.1〜15μmであるのが好ましく、1〜10μmであるのがさらに好ましく、2〜7μmであるのが最も好ましい。体積基準の累積50%粒子径(D50径)が0.1μm未満では、銀被覆ニッケル粉末の導電性に悪影響を及ぼすので好ましくない。一方、15μmを超えると、微細な配線の形成が困難になるので好ましくない。 The particle diameter of the silver-coated nickel powder is preferably from 50% cumulative particle diameter on a volume basis as measured by (Heroes method by) a laser diffraction type particle size distribution measuring apparatus (D 50 diameter) 0.1~15μm It is more preferably 1 to 10 μm, and most preferably 2 to 7 μm. If the cumulative 50% particle diameter (D 50 diameter) based on the volume is less than 0.1 μm, it adversely affects the conductivity of the silver-coated nickel powder, which is not preferable. On the other hand, if it exceeds 15 μm, it becomes difficult to form fine wiring, which is not preferable.

また、銀被覆ニッケル粉末のBET比表面積は、0.1〜5m/gであるのが好ましく、0.1〜2m/gであるのがさらに好ましく、0.1〜1m/gであるのが最も好ましい。BET比表面積が0.1m/g未満では、微細な配線の形成が困難になるので好ましくない。一方、5m/gを超えると、銀被覆ニッケル粉末を導電性ペーストに使用した際に粘度が高くなり過ぎるので好ましくない。 Further, BET specific surface area of the silver-coated nickel powder is preferably from 0.1 to 5 m 2 / g, more preferably from 0.1~2m 2 / g, with 0.1 to 1 m 2 / g Most preferably. If the BET specific surface area is less than 0.1 m 2 / g, it becomes difficult to form fine wiring, which is not preferable. On the other hand, if it exceeds 5 m 2 / g, the viscosity becomes too high when the silver-coated nickel powder is used for the conductive paste, which is not preferable.

なお、銀被覆ニッケル粉末中の塩素含有量は、100ppm未満であるのが好ましく、50ppm未満であるのがさらに好ましく、10ppm未満であるのが最も好ましい。塩素含有量が100ppm以上になると、銀被覆ニッケル粉末を導電性ペーストに使用して配線を形成した際に、配線が腐食して導電性が悪化し易くなる。このように塩素含有量が少ない銀被覆ニッケル粉末は、アトマイズ法で製造したニッケル粉末を銀含有層により被覆することによって得ることができる。 The chlorine content in the silver-coated nickel powder is preferably less than 100 ppm, more preferably less than 50 ppm, and most preferably less than 10 ppm. When the chlorine content is 100 ppm or more, when the silver-coated nickel powder is used for the conductive paste to form the wiring, the wiring is easily corroded and the conductivity is easily deteriorated. The silver-coated nickel powder having such a low chlorine content can be obtained by coating the nickel powder produced by the atomizing method with a silver-containing layer.

以下、本発明による銀被覆ニッケル粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the silver-coated nickel powder according to the present invention and the method for producing the same will be described in detail.

[実施例1]
純度99.99%のニッケル15kgを1600℃に加熱して溶解した溶湯をタンディッシュ下部から落下させながら、大気雰囲気中において水圧150MPaで高圧水を吹き付けて急冷凝固させ、得られたスラリーを固液分離し、固形分を水洗し、乾燥し、解砕し、分級して、ニッケル粉末を得た。
[Example 1]
While 15 kg of nickel with a purity of 99.99% was heated to 1600 ° C. and the molten metal dissolved was dropped from the lower part of the tundish, high-pressure water was sprayed at a water pressure of 150 MPa to quench and solidify the obtained slurry. The solids were separated, washed with water, dried, crushed and classified to give a nickel powder.

このようにして水アトマイズ法により得られたニッケル粉末を、水素雰囲気(水素100体積%)中において200℃で10時間加熱して熱処理を行い、水素還元したニッケル粉末を得た。 The nickel powder thus obtained by the water atomization method was heated at 200 ° C. for 10 hours in a hydrogen atmosphere (100% by volume of hydrogen) and heat-treated to obtain a hydrogen-reduced nickel powder.

このように水素還元したニッケル粉末(銀被覆前のニッケル粉末)について、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求めた。 For the nickel powder thus hydrogen-reduced (nickel powder before silver coating), the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution were determined.

BET比表面積は、測定器内に105℃で20分間窒素ガスを流して脱気した後、BET比表面積測定器(ユアサアイオニクス株式会社製の4ソーブUS)を使用し、測定器内に105℃で20分間窒素ガスを流して脱気した後、30体積%の窒素と70体積%のヘリウムの混合ガスを流しながら、BET1点法により測定した。その結果、BET比表面積は0.45m/gであった。 The BET specific surface area was degassed by flowing nitrogen gas into the measuring instrument at 105 ° C. for 20 minutes, and then using a BET specific surface area measuring instrument (4 Sorb US manufactured by Yuasa Ionics Co., Ltd.), the BET specific surface area was 105 in the measuring instrument. After degassing by flowing nitrogen gas at ° C. for 20 minutes, the measurement was carried out by the BET 1-point method while flowing a mixed gas of 30% by volume nitrogen and 70% by volume helium. As a result, the BET specific surface area was 0.45 m 2 / g.

タップ密度(TAP)は、ニッケル粉末0.5gを内径6mmの有底円筒形のダイに充填してニッケル粉末層を形成し、このニッケル粉末層の上面に0.16N/mの圧力を均一に加えた後、ニッケル粉末粉層の高さを測定し、このニッケル粉末層の高さの測定値と、充填されたニッケル粉末の重量とから、ニッケル粉末の密度を求めて、ニッケル粉末のタップ密度とした。その結果、タップ密度は4.3g/cmであった。 The tap density (TAP) is such that 0.5 g of nickel powder is filled in a bottomed cylindrical die having an inner diameter of 6 mm to form a nickel powder layer, and a pressure of 0.16 N / m 2 is uniformly applied to the upper surface of the nickel powder layer. After adding to, measure the height of the nickel powder layer, determine the density of the nickel powder from the measured value of the height of this nickel powder layer and the weight of the filled nickel powder, and tap the nickel powder. The density was set. As a result, the tap density was 4.3 g / cm 3 .

酸素含有量は、酸素・窒素・水素分析装置(株式会社堀場製作所製のEMGA−920)により測定した。その結果、酸素含有量は0.37質量%であった。なお、BET比表面積に対する酸素含有量は0.82質量%・g/mになる。 The oxygen content was measured with an oxygen / nitrogen / hydrogen analyzer (EMGA-920 manufactured by HORIBA, Ltd.). As a result, the oxygen content was 0.37% by mass. The oxygen content with respect to the BET specific surface area is 0.82% by mass · g / m 2 .

炭素含有量は、炭素・硫黄分析装置(株式会社堀場製作所製のEMIA−220V)により測定した。その結果、炭素含有量は0.01質量%であった。 The carbon content was measured with a carbon / sulfur analyzer (EMIA-220V manufactured by HORIBA, Ltd.). As a result, the carbon content was 0.01% by mass.

粒度分布は、レーザー回折式粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール))を使用して、分散圧5barで測定した。その結果、累積10%粒子径(D10)は1.1μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は7.0μmであった。 The particle size distribution was measured at a dispersion pressure of 5 bar using a laser diffraction type particle size distribution measuring device (a Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module)) manufactured by SYMPATEC). As a result, the cumulative total was 10%. The particle size (D 10 ) was 1.1 μm, the cumulative 50% particle size (D 50 ) was 2.9 μm, and the cumulative 90% particle size (D 90 ) was 7.0 μm.

また、EDTA−2Na二水和物 119.0gと炭酸アンモニウム119.0gを純水1385.0gに溶解して70℃まで昇温した溶液(溶液1)と、EDTA−2Na二水和物554.1gと炭酸アンモニウム277.1gを純水2207.2gに溶解して70℃まで昇温した溶液に、30%硝酸銀水溶液192.4gを純水185.3gに溶解した溶液を加えて得られた溶液(溶液2)を用意した。 Further, a solution (solution 1) in which 119.0 g of EDTA-2Na dihydrate and 119.0 g of ammonium carbonate were dissolved in 1385.0 g of pure water and heated to 70 ° C., and EDTA-2Na dihydrate 554. A solution obtained by dissolving 1 g and 277.1 g of ammonium carbonate in 2207.2 g of pure water and raising the temperature to 70 ° C., and adding a solution of 192.4 g of a 30% silver nitrate aqueous solution in 185.3 g of pure water. (Solution 2) was prepared.

次に、窒素雰囲気下において、上記の水素還元したニッケル粉末250gを溶液1に加えて攪拌し、この水素還元したニッケル粉末が分散した溶液に溶液2を30分間かけて添加して攪拌した後、固液分離し、水洗し、真空中において70℃で10時間乾燥し、解砕し、篩分して、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。 Next, in a nitrogen atmosphere, 250 g of the above hydrogen-reduced nickel powder was added to solution 1 and stirred, and solution 2 was added to the solution in which the hydrogen-reduced nickel powder was dispersed over 30 minutes and stirred. The mixture was solid-liquid separated, washed with water, dried in vacuum at 70 ° C. for 10 hours, crushed and sieved to obtain a silver-coated nickel powder (silver-coated nickel powder).

このようにして得られた銀被覆ニッケル粉末について、上記と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求めるとともに、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content and particle size distribution are determined by the same method as described above, and the silver coating amount and color difference (L * ,) are obtained. a * , b * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.62m/g、タップ密度は4.4g/cm、酸素含有量は0.36質量%、BET比表面積に対する酸素含有量は0.58質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は3.3μm、累積90%粒子径(D90)は8.1μmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.62 m 2 / g, the tap density was 4.4 g / cm 3 , the oxygen content was 0.36% by mass, and the oxygen content with respect to the BET specific surface area was 0.58. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 3.3 μm, cumulative 90 The% particle size (D 90 ) was 8.1 μm.

銀被覆ニッケル粉末の銀被覆量は、銀被覆ニッケル粉末を硝酸で溶解した後、塩酸を添加して生成した塩化銀(AgCl)の沈殿を乾燥し、重量を測定することにより求めた。その結果、銀被覆ニッケル粉末中の銀含有量(銀被覆量)は20.8質量%であった。 The silver coating amount of the silver-coated nickel powder was determined by dissolving the silver-coated nickel powder with nitric acid, drying the precipitate of silver chloride (AgCl) produced by adding hydrochloric acid, and measuring the weight. As a result, the silver content (silver coating amount) in the silver-coated nickel powder was 20.8% by mass.

銀被覆ニッケル粉末の色差は、測定試料として銀被覆ニッケル粉末5gを秤量して直径30mmの丸セルに入れ、10回タッピングして表面を平らにし、色差計(日本電色工業株式会社製のSpectro Color Meter SQ2000)を使用して、SCE(正反射光除去)モードで測定した。その結果、銀被覆ニッケル粉末の色差L、aおよびbはそれぞれ58.1、0.0および6.1であった。 For the color difference of silver-coated nickel powder, weigh 5 g of silver-coated nickel powder as a measurement sample, put it in a round cell with a diameter of 30 mm, tap it 10 times to flatten the surface, and use a color difference meter (Specuro manufactured by Nippon Denshoku Industries Co., Ltd.). Color Meter SQ2000) was used to measure in SCE (Specular Elimination) mode. As a result, the color differences L * , a * and b * of the silver-coated nickel powder were 58.1, 0.0 and 6.1, respectively.

銀被覆ニッケル粉末の圧粉体抵抗として、銀被覆ニッケル粉末6.0gを粉体抵抗測定システムの測定容器(三菱化学アナリテック株式会社製のMCP−PD51型)内に詰めた後に加圧を開始して、それぞれ5.6MPaおよび10MPaの荷重がかかった時点の(圧粉体の)体積抵抗率を測定した。その結果、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ0.27mΩ・cmおよび0.19mΩ・cmであった。 As the green compact resistance of silver-coated nickel powder, pressurization is started after 6.0 g of silver-coated nickel powder is packed in the measuring container of the powder resistivity measurement system (MCP-PD51 type manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Then, the volume resistivity (of the green compact) at the time when the loads of 5.6 MPa and 10 MPa were applied, respectively, was measured. As a result, the volume resistivity of the green compact of the silver-coated nickel powder was 0.27 mΩ · cm and 0.19 mΩ · cm, respectively.

[実施例2]
EDTA−2Na二水和物 238.0gと炭酸アンモニウム238.0gを純水2770.0gに溶解して70℃まで昇温した溶液(溶液1)と、EDTA−2Na二水和物248.7gと炭酸アンモニウム124.3gを純水990.5gに溶解して70℃まで昇温した溶液に、30%硝酸銀水溶液86.3gを純水86.2gに溶解した溶液を加えて得られた溶液(溶液2)を使用し、実施例1と同様の水素還元したニッケル粉末500gを使用した以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Example 2]
A solution (solution 1) in which 238.0 g of EDTA-2Na dihydrate and 238.0 g of ammonium carbonate were dissolved in 2770.0 g of pure water and heated to 70 ° C., and 248.7 g of EDTA-2Na dihydrate. A solution (solution) obtained by adding a solution of 86.3 g of a 30% silver nitrate aqueous solution in 86.2 g of pure water to a solution of 124.3 g of ammonium carbonate dissolved in 990.5 g of pure water and heated to 70 ° C. 2) was used, and a silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that 500 g of the same hydrogen-reduced nickel powder as in Example 1 was used.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.74m/g、タップ密度は4.6g/cm、酸素含有量は0.55質量%、BET比表面積に対する酸素含有量は0.74質量%・g/m、炭素含有量は0.03質量%であり、累積10%粒子径(D10)は1.1μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は14.1μmであった。また、銀含有量(銀被覆量)は5.2質量%であり、色差L、aおよびbはそれぞれ52.1、0.2および5.9であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1.6mΩ・cmおよび0.9mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.74 m 2 / g, the tap density was 4.6 g / cm 3 , the oxygen content was 0.55% by mass, and the oxygen content with respect to the BET specific surface area was 0.74. Mass% · g / m 2 , carbon content is 0.03 mass%, cumulative 10% particle size (D 10 ) is 1.1 μm, cumulative 50% particle size (D 50 ) is 3.0 μm, cumulative 90 The% particle size (D 90 ) was 14.1 μm. The silver content (silver coating amount) was 5.2% by mass, and the color differences L * , a * and b * were 52.1, 0.2 and 5.9, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1.6 mΩ · cm and 0.9 mΩ · cm, respectively.

[実施例3]
EDTA−2Na二水和物166.6gと炭酸アンモニウム166.6gを純水1939.0gに溶解して70℃まで昇温した溶液(溶液1)と、EDTA−2Na二水和物367.5gと炭酸アンモニウム183.7gを純水1463.7gに溶解して70℃まで昇温した溶液に、30%硝酸銀水溶液127.6gを純水122.9gに溶解した溶液を加えて得られた溶液(溶液2)を使用し、実施例1と同様の水素還元したニッケル粉末350gを使用した以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Example 3]
A solution (solution 1) in which 166.6 g of EDTA-2Na dihydrate and 166.6 g of ammonium carbonate were dissolved in 1939.0 g of pure water and heated to 70 ° C., and 367.5 g of EDTA-2Na dihydrate. A solution (solution) obtained by dissolving 183.7 g of ammonium carbonate in 1463.7 g of pure water and raising the temperature to 70 ° C., and adding a solution of 127.6 g of a 30% silver nitrate aqueous solution in 122.9 g of pure water. 2) was used, and a silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that 350 g of the same hydrogen-reduced nickel powder as in Example 1 was used.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.84m/g、タップ密度は4.5g/cm、酸素含有量は0.54質量%、BET比表面積に対する酸素含有量は0.64質量%・g/m、炭素含有量は0.03質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は3.1μm、累積90%粒子径(D90)は8.0μmであった。また、銀含有量(銀被覆量)は10.1質量%であり、色差L、aおよびbはそれぞれ51.8、0.2および5.6であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1.1mΩ・cmおよび0.66mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.84 m 2 / g, the tap density was 4.5 g / cm 3 , the oxygen content was 0.54% by mass, and the oxygen content with respect to the BET specific surface area was 0.64. Mass% · g / m 2 , carbon content is 0.03 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 3.1 μm, cumulative 90 The% particle size (D 90 ) was 8.0 μm. The silver content (silver coating amount) was 10.1% by mass, and the color differences L * , a * and b * were 51.8, 0.2 and 5.6, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1.1 mΩ · cm and 0.66 mΩ · cm, respectively.

[実施例4]
EDTA−2Na二水和物142.8gと炭酸アンモニウム142.8gを純水1662.0gに溶解して70℃まで昇温した溶液(溶液1)と、EDTA−2Na二水和物480.7gと炭酸アンモニウム240.4gを純水1914.9gに溶解して70℃まで昇温した溶液に、30%硝酸銀水溶液166.9gを純水160.8gに溶解した溶液を加えて得られた溶液(溶液2)を使用し、実施例1と同様の水素還元したニッケル粉末300gを使用した以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Example 4]
A solution (solution 1) in which 142.8 g of EDTA-2Na dihydrate and 142.8 g of ammonium carbonate were dissolved in 1662.0 g of pure water and heated to 70 ° C., and 480.7 g of EDTA-2Na dihydrate A solution (solution) obtained by adding a solution of 166.9 g of a 30% silver nitrate aqueous solution in 160.8 g of pure water to a solution in which 240.4 g of ammonium carbonate was dissolved in 1914.9 g of pure water and the temperature was raised to 70 ° C. 2) was used, and a silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that 300 g of the same hydrogen-reduced nickel powder as in Example 1 was used.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.80m/g、タップ密度は4.4g/cm、酸素含有量は0.52質量%、BET比表面積に対する酸素含有量は0.65質量%・g/m、炭素含有量は0.03質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は3.1μm、累積90%粒子径(D90)は7.7μmであった。また、銀含有量(銀被覆量)は15.5質量%であり、色差L、aおよびbはそれぞれ55.3、0.2および5.7であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1.2mΩ・cmおよび0.7mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.80 m 2 / g, the tap density was 4.4 g / cm 3 , the oxygen content was 0.52% by mass, and the oxygen content with respect to the BET specific surface area was 0.65. Mass% · g / m 2 , carbon content is 0.03 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 3.1 μm, cumulative 90 The% particle size (D 90 ) was 7.7 μm. The silver content (silver coating amount) was 15.5% by mass, and the color differences L * , a * and b * were 55.3, 0.2 and 5.7, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1.2 mΩ · cm and 0.7 mΩ · cm, respectively.

[実施例5]
EDTA−2Na二水和物88.1gと炭酸アンモニウム88.1gを純水1024.9gに溶解して70℃まで昇温した溶液(溶液1)と、EDTA−2Na二水和物731.5gと炭酸アンモニウム365.7gを純水2913.6gに溶解して70℃まで昇温した溶液に、30%硝酸銀水溶液254.0gを純水244.6gに溶解した溶液を加えて得られた溶液(溶液2)を使用し、実施例1と同様の水素還元したニッケル粉末185gを使用した以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Example 5]
A solution (solution 1) in which 88.1 g of EDTA-2Na dihydrate and 88.1 g of ammonium carbonate were dissolved in 1024.9 g of pure water and heated to 70 ° C., and 731.5 g of EDTA-2Na dihydrate A solution (solution) obtained by adding a solution of 254.0 g of a 30% silver nitrate aqueous solution in 244.6 g of pure water to a solution in which 365.7 g of ammonium carbonate was dissolved in 2913.6 g of pure water and the temperature was raised to 70 ° C. 2) was used, and a silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that 185 g of the same hydrogen-reduced nickel powder as in Example 1 was used.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.70m/g、タップ密度は4.1g/cm、酸素含有量は0.34質量%、BET比表面積に対する酸素含有量は0.49質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.4μm、累積50%粒子径(D50)は3.8μm、累積90%粒子径(D90)は10.2μmであった。また、銀含有量(銀被覆量)は34.0質量%であり、色差L、aおよびbはそれぞれ59.4、−0.1および6.4であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1.8mΩ・cmおよび0.13mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.70 m 2 / g, the tap density was 4.1 g / cm 3 , the oxygen content was 0.34% by mass, and the oxygen content with respect to the BET specific surface area was 0.49. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.4 μm, cumulative 50% particle size (D 50 ) is 3.8 μm, cumulative 90 The% particle size (D 90 ) was 10.2 μm. The silver content (silver coating amount) was 34.0% by mass, and the color differences L * , a * and b * were 59.4, −0.1 and 6.4, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1.8 mΩ · cm and 0.13 mΩ · cm, respectively.

[実施例6]
溶液2を30分間かけて添加する代わりに5秒間で一挙に添加した以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Example 6]
A silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that the solution 2 was added all at once in 5 seconds instead of being added over 30 minutes.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.53m/g、タップ密度は4.7g/cm、酸素含有量は0.38質量%、BET比表面積に対する酸素含有量は0.72質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は3.4μm、累積90%粒子径(D90)は7.8μmであった。また、銀含有量(銀被覆量)は21.3質量%であり、色差L、aおよびbはそれぞれ56.6、−0.1および5.2であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1.0mΩ・cmおよび0.61mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.53 m 2 / g, the tap density was 4.7 g / cm 3 , the oxygen content was 0.38% by mass, and the oxygen content with respect to the BET specific surface area was 0.72. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 3.4 μm, cumulative 90 The% particle size (D 90 ) was 7.8 μm. The silver content (silver coating amount) was 21.3% by mass, and the color differences L * , a * and b * were 56.6, −0.1 and 5.2, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1.0 mΩ · cm and 0.61 mΩ · cm, respectively.

[比較例1]
水素還元を行わなかった以外は、実施例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。なお、銀被覆前のニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量および粒度分布を求めたところ、BET比表面積は0.44m/g、タップ密度は5.0g/cm、酸素含有量は0.96質量%、BET比表面積に対する酸素含有量は2.18質量%・g/m、炭素含有量は0.01質量%であり、累積10%粒子径(D10)は1.1μm、累積50%粒子径(D50)は2.7μm、累積90%粒子径(D90)は6.5μmであった。
[Comparative Example 1]
A silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Example 1 except that hydrogen reduction was not performed. The BET specific surface area, tap density, oxygen content, carbon content, and particle size distribution of the nickel powder before silver coating were determined by the same method as in Example 1. As a result, the BET specific surface area was 0.44 m 2 /. g, tap density is 5.0 g / cm 3 , oxygen content is 0.96 mass%, oxygen content with respect to BET specific surface area is 2.18 mass% · g / m 2 , carbon content is 0.01 mass%. The cumulative 10% particle size (D 10 ) was 1.1 μm, the cumulative 50% particle size (D 50 ) was 2.7 μm, and the cumulative 90% particle size (D 90 ) was 6.5 μm.

得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the obtained silver-coated nickel powder, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a * , b *) were carried out in the same manner as in Example 1. ) And powder compaction resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.66m/g、タップ密度は4.7g/cm、酸素含有量は0.77質量%、BET比表面積に対する酸素含有量は1.17質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は3.0μm、累積90%粒子径(D90)は7.6μmであった。また、銀含有量(銀被覆量)は19.6質量%であり、色差L、aおよびbはそれぞれ45.6、0.2および8.4であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ36mΩ・cmおよび18mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.66 m 2 / g, the tap density was 4.7 g / cm 3 , the oxygen content was 0.77% by mass, and the oxygen content with respect to the BET specific surface area was 1.17. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 3.0 μm, cumulative 90 The% particle size (D 90 ) was 7.6 μm. The silver content (silver coating amount) was 19.6% by mass, and the color differences L * , a * and b * were 45.6, 0.2 and 8.4, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 36 mΩ · cm and 18 mΩ · cm, respectively.

[比較例2]
溶液2を30分間かけて添加する代わりに5秒間で一挙に添加した以外は、比較例1と同様の方法により、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Comparative Example 2]
A silver-coated nickel powder (silver-coated nickel powder) was obtained by the same method as in Comparative Example 1 except that the solution 2 was added all at once in 5 seconds instead of being added over 30 minutes.

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.72m/g、タップ密度は4.7g/cm、酸素含有量は0.80質量%、BET比表面積に対する酸素含有量は1.11質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.1μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は7.3μmであった。また、銀含有量(銀被覆量)は20.4質量%であり、色差L、aおよびbはそれぞれ46.9、0.1および8.9であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ1100mΩ・cmおよび310mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.72 m 2 / g, the tap density was 4.7 g / cm 3 , the oxygen content was 0.80% by mass, and the oxygen content with respect to the BET specific surface area was 1.11. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.1 μm, cumulative 50% particle size (D 50 ) is 2.9 μm, cumulative 90 The% particle size (D 90 ) was 7.3 μm. The silver content (silver coating amount) was 20.4% by mass, and the color differences L * , a * and b * were 46.9, 0.1 and 8.9, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 1100 mΩ · cm and 310 mΩ · cm, respectively.

また、実施例1〜6および比較例1〜2の銀被覆ニッケル粉末中の塩素含有量を求めたところ、いずれも10ppm未満であった。なお、銀被覆ニッケル粉末中の塩素含有量は、銀被覆ニッケル粉末1gと超純水10mLを秤量してフッ素樹脂製の容器に入れ、125℃で20時間抽出して得られた抽出液を採取し、この抽出液を使用して、イオンクロマトグラフ(東ソー株式会社製のIC−2010)により測定した。 Moreover, when the chlorine content in the silver-coated nickel powder of Examples 1 to 6 and Comparative Examples 1 and 2 was determined, it was less than 10 ppm in each case. Regarding the chlorine content in the silver-coated nickel powder, 1 g of the silver-coated nickel powder and 10 mL of ultrapure water were weighed and placed in a fluororesin container, and the extract obtained by extracting at 125 ° C. for 20 hours was collected. Then, using this extract, measurement was performed by an ion chromatograph (IC-2010 manufactured by Tosoh Corporation).

[比較例3]
水素還元を行わなかった以外は、実施例1と同様の方法により、ニッケル粉末を得た。このニッケル粉末260gを、4Lの純水が入った5Lのステンレスタンクに入れ、さらに51.4mLの希硝酸を加えて撹拌することにより、ニッケル粉末を酸洗した。この水溶液は、ニッケルの溶解により、薄い緑色になった。その後、薄い緑色の上澄みを除去し、純水でデカンテーションして、ニッケル粉末を洗浄して、乾燥させずに水中で保持し、ニッケル分散液とした。
このニッケル分散液を実施例1と同様の溶液1に加えて撹拌し、この溶液に実施例1と同様の溶液2を30分間かけて添加して攪拌した後、固液分離し、水洗し、真空中において70℃で10時間乾燥し、解砕し、篩分して、銀により被覆されたニッケル粉末(銀被覆ニッケル粉末)を得た。
[Comparative Example 3]
Nickel powder was obtained by the same method as in Example 1 except that hydrogen reduction was not performed. 260 g of this nickel powder was placed in a 5 L stainless steel tank containing 4 L of pure water, and 51.4 mL of dilute nitric acid was further added and stirred to pickle the nickel powder. This aqueous solution turned pale green due to the dissolution of nickel. Then, the pale green supernatant was removed, decanted with pure water, the nickel powder was washed and held in water without drying to obtain a nickel dispersion.
This nickel dispersion is added to the same solution 1 as in Example 1 and stirred, and the same solution 2 as in Example 1 is added to this solution over 30 minutes and stirred, then solid-liquid separated, washed with water, and then washed. It was dried in vacuum at 70 ° C. for 10 hours, crushed and sieved to obtain a silver-coated nickel powder (silver-coated nickel powder).

このようにして得られた銀被覆ニッケル粉末について、実施例1と同様の方法により、BET比表面積、タップ密度、酸素含有量、炭素含有量、粒度分布、銀被覆量、色差(L、a、b)および圧粉体抵抗を求めた。 With respect to the silver-coated nickel powder thus obtained, the BET specific surface area, tap density, oxygen content, carbon content, particle size distribution, silver coating amount, and color difference (L * , a) were obtained by the same method as in Example 1. * , B * ) and powder resistance were determined.

その結果、銀被覆ニッケル粉末のBET比表面積は0.90m/g、タップ密度は4.0g/cm、酸素含有量は0.80質量%、BET比表面積に対する酸素含有量は0.89質量%・g/m、炭素含有量は0.02質量%であり、累積10%粒子径(D10)は1.2μm、累積50%粒子径(D50)は2.9μm、累積90%粒子径(D90)は7.2μmであった。また、銀含有量(銀被覆量)は20.7質量%であり、色差L、aおよびbはそれぞれ42.0、0.3および8.7であった。また、圧粉体抵抗として、銀被覆ニッケル粉末の圧粉体の体積抵抗率はそれぞれ2.2mΩ・cmおよび1.5mΩ・cmであった。 As a result, the BET specific surface area of the silver-coated nickel powder was 0.90 m 2 / g, the tap density was 4.0 g / cm 3 , the oxygen content was 0.80% by mass, and the oxygen content with respect to the BET specific surface area was 0.89. Mass% · g / m 2 , carbon content is 0.02 mass%, cumulative 10% particle size (D 10 ) is 1.2 μm, cumulative 50% particle size (D 50 ) is 2.9 μm, cumulative 90 The% particle size (D 90 ) was 7.2 μm. The silver content (silver coating amount) was 20.7% by mass, and the color differences L * , a * and b * were 42.0, 0.3 and 8.7, respectively. As the green compact resistance, the volume resistivity of the green compact of silver-coated nickel powder was 2.2 mΩ · cm and 1.5 mΩ · cm, respectively.

これらの実施例および比較例の銀被覆ニッケル粉末の製造条件および銀被覆前後のニッケル粉末の特性を表1〜表3に示す。 Tables 1 to 3 show the production conditions of the silver-coated nickel powders of these Examples and Comparative Examples and the characteristics of the nickel powders before and after the silver coating.

Figure 0006846969
Figure 0006846969

Figure 0006846969
Figure 0006846969

Figure 0006846969
Figure 0006846969

Claims (12)

ニッケル粉末を水素雰囲気中で還元することによってニッケル粉末中の酸素含有量を低減させた後、この酸素含有量を低減させたニッケル粉末の表面を銀からなる層により被覆して、銀からなる層の被覆量が4〜40質量%である銀被覆ニッケルを製造することを特徴とする、銀被覆ニッケル粉末の製造方法。 After reducing the oxygen content in the nickel powder by reducing the nickel powder in a hydrogen atmosphere, the surface of the nickel powder with the reduced oxygen content is coated with a layer made of silver to form a layer made of silver. A method for producing silver-coated nickel powder, which comprises producing silver-coated nickel having a coating amount of 4 to 40% by mass. 前記ニッケル粉末中の酸素含有量を0.8質量%以下に低減させることを特徴とする、請求項1に記載の銀被覆ニッケル粉末の製造方法。 The method for producing a silver-coated nickel powder according to claim 1, wherein the oxygen content in the nickel powder is reduced to 0.8% by mass or less. 前記ニッケル粉末のBET比表面積に対する酸素含有量の比が2.0質量%・g/m以下になるように前記ニッケル粉末中の酸素含有量を低減させることを特徴とする、請求項1または2に記載の銀被覆ニッケル粉末の製造方法。 1 or claim 1, wherein the oxygen content in the nickel powder is reduced so that the ratio of the oxygen content to the BET specific surface area of the nickel powder is 2.0% by mass · g / m 2 or less. 2. The method for producing a silver-coated nickel powder according to 2. 前記ニッケル粉末をアトマイズ法により製造することを特徴とする、請求項1乃至3のいずれかに記載の銀被覆ニッケル粉末の製造方法。 The method for producing a silver-coated nickel powder according to any one of claims 1 to 3, wherein the nickel powder is produced by an atomizing method. 前記ニッケル粉末の平均粒径が0.1〜15μmであることを特徴とする、請求項1乃至4のいずれかに記載の銀被覆ニッケル粉末の製造方法。 The method for producing a silver-coated nickel powder according to any one of claims 1 to 4, wherein the nickel powder has an average particle size of 0.1 to 15 μm. 表面が銀からなる層により被覆された銀被覆ニッケル粉末において銀被覆ニッケル粉末に対する銀からなる層の被覆量が4〜40質量%であり、酸素含有量が0.7質量%以下であり、5.6MPaの圧力を加えたときの体積抵抗率が0.1〜10mΩ・cmであることを特徴とする、銀被覆ニッケル粉末。 Surface in the silver-coated nickel powder coated with a layer which is composed of silver, the coating amount of the layer composed of silver to silver-coated nickel powder is 4 to 40 wt%, an oxygen content of not more than 0.7 mass%, A silver-coated nickel powder having a volume resistivity of 0.1 to 10 mΩ · cm when a pressure of 5.6 MPa is applied. 前記銀被覆ニッケル粉末のBET比表面積に対する酸素含有量の比が1.0質量%・g/m以下であることを特徴とする、請求項に記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to claim 6 , wherein the ratio of the oxygen content to the BET specific surface area of the silver-coated nickel powder is 1.0% by mass · g / m 2 or less. 前記銀被覆ニッケル粉末に5.6MPaの圧力を加えたときの体積抵抗率が0.1〜mΩ・cmであることを特徴とする、請求項またはに記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to claim 6 or 7 , wherein the volume resistivity when a pressure of 5.6 MPa is applied to the silver-coated nickel powder is 0.1 to 2 mΩ · cm. 前記銀被覆ニッケル粉末の平均粒径が0.1〜15μmであることを特徴とする、請求項乃至のいずれかに記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to any one of claims 6 to 8 , wherein the silver-coated nickel powder has an average particle size of 0.1 to 15 μm. 銀被覆ニッケル粉末のBET比表面積が0.1〜5m/gであることを特徴とする、請求項乃至のいずれかに記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to any one of claims 6 to 9 , wherein the silver-coated nickel powder has a BET specific surface area of 0.1 to 5 m 2 / g. 銀被覆ニッケル粉末中の塩素含有量が100ppm未満であることを特徴とする、請求項乃至10のいずれかに記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to any one of claims 6 to 10 , wherein the chlorine content in the silver-coated nickel powder is less than 100 ppm. 前記銀被覆ニッケル粉末の色差(L)が48以上であることを特徴とする、請求項乃至11のいずれかに記載の銀被覆ニッケル粉末。 The silver-coated nickel powder according to any one of claims 6 to 11 , wherein the color difference (L * ) of the silver-coated nickel powder is 48 or more.
JP2017060625A 2016-03-31 2017-03-27 Silver-coated nickel powder and its manufacturing method Active JP6846969B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070667 2016-03-31
JP2016070667 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186661A JP2017186661A (en) 2017-10-12
JP6846969B2 true JP6846969B2 (en) 2021-03-24

Family

ID=60043990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060625A Active JP6846969B2 (en) 2016-03-31 2017-03-27 Silver-coated nickel powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6846969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066262A1 (en) * 2018-09-26 2020-04-02 パナソニックIpマネジメント株式会社 Method for producing nickel particles, method for producing nickel sulfate, and method for producing positive electrode active material for secondary batteries

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073001A (en) * 1999-08-31 2001-03-21 Toho Titanium Co Ltd Production of nickel powder and nickel powder
JP4223754B2 (en) * 2002-07-19 2009-02-12 三井金属鉱業株式会社 Silver-coated copper powder and method for producing the same
CN1188544C (en) * 2002-12-13 2005-02-09 西安理工大学 High temperature antioxidant base metal composition and its production process
JP2010043345A (en) * 2008-08-18 2010-02-25 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
JP5764294B2 (en) * 2010-01-18 2015-08-19 ナミックス株式会社 Silver-coated nickel powder and method for producing the same
US10056505B2 (en) * 2013-03-15 2018-08-21 Inkron Ltd Multi shell metal particles and uses thereof
JP6210723B2 (en) * 2013-05-08 2017-10-11 三井金属鉱業株式会社 Silver-coated nickel particles and method for producing the same
JP6135935B2 (en) * 2014-03-28 2017-05-31 住友金属鉱山株式会社 Method for producing wet nickel powder

Also Published As

Publication number Publication date
JP2017186661A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN104801710B (en) Silver microparticle powder, method for producing said powder, silver paste using said powder, and method for using said paste
JP6154507B2 (en) Silver-coated copper alloy powder and method for producing the same
JP7042945B2 (en) Silver-coated metal powder and its manufacturing method
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
US20020050185A1 (en) Tantalum powder for capacitors
JP6224933B2 (en) Silver-coated copper alloy powder and method for producing the same
EP2311586A1 (en) Metal microparticle containing composition and process for production of the same
CN105728714B (en) Preparation method, device and the application of silver-metallic oxide electrical contact material
KR101251567B1 (en) Nickel powder, process for producing the same, and conductive paste
KR102404788B1 (en) Phosphorus-containing copper powder and manufacturing method thereof
JP6846969B2 (en) Silver-coated nickel powder and its manufacturing method
WO2015096048A1 (en) Capacitor grade high specific volume tantalum powder improving electrical performance and preparation method therefor
CN105798319B (en) Preparation method of silver-tungsten electrical contact material, electrical contact material and electrical contact
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP2016153361A (en) Stannous oxide powder, and manufacturing method of stannous oxide powder
JP4756652B2 (en) Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP6365395B2 (en) Method for producing nickel sulfate
JP6577316B2 (en) Copper powder for conductive paste and method for producing the same
JP2009242225A (en) Tin-doped indium oxide particles and their manufacturing method
JP2020196928A (en) Silver-coated alloy powder, alloy powder, metal-powder producing method, silver-coated metal powder producing method, conductive paste, and conductive-paste producing method
JP2019186225A (en) Copper powder for conductive paste and manufacturing method therefor
JP2010037653A (en) Copper powder for conductive paste, and conductive paste
JP2018076597A (en) Silver coated copper powder and conductive paste, as well as production method thereof
JP2017190483A (en) Silver-coated copper powder and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6846969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250