JP2005240164A - Nickel powder and manufacturing method therefor - Google Patents

Nickel powder and manufacturing method therefor Download PDF

Info

Publication number
JP2005240164A
JP2005240164A JP2004055258A JP2004055258A JP2005240164A JP 2005240164 A JP2005240164 A JP 2005240164A JP 2004055258 A JP2004055258 A JP 2004055258A JP 2004055258 A JP2004055258 A JP 2004055258A JP 2005240164 A JP2005240164 A JP 2005240164A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
nickel powder
mass
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055258A
Other languages
Japanese (ja)
Inventor
Toshihiro Kato
敏弘 加藤
Shuji Okada
修二 岡田
Kenya Ito
研哉 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004055258A priority Critical patent/JP2005240164A/en
Publication of JP2005240164A publication Critical patent/JP2005240164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel powder which is inexpensive, has superior weatherability, has low electric resistance in a state of having been kneaded with a resin, has reduced electrical resistance at the beginning of and during use, can be stably used for a long period, and is suitable as a conductive particle used in a conductive paste and a conductive resin, and to provide a manufacturing method therefor. <P>SOLUTION: The nickel powder comprises 1-20 mass% cobalt and the balance nickel with unavoidable impurities; is composed of secondary particles made of aggregated primary particles; and includes 0.8 mass% or less oxygen. The nickel powder preferably contains cobalt only on the surface layer part of the secondary particles, and the cobalt content in the surface layer part is preferably 1 to 40 mass%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電ペースト用および導電樹脂用の導電性粒子として好適なニッケル粉およびその製造方法に関する。   The present invention relates to nickel powder suitable as conductive particles for conductive paste and conductive resin, and a method for producing the same.

従来、電子機器の接続にはSn−Pb系はんだが用いられていたが、近年ではPbフリー化に対応して導電ペーストの使用が検討されている。また、近年においては、導電樹脂を利用したデバイスが広く用いられるようになってきている。   Conventionally, Sn—Pb-based solder has been used for connecting electronic devices, but in recent years, the use of conductive paste has been studied in response to the Pb-free. In recent years, devices using conductive resins have been widely used.

これらの用途に使用される導電ペーストは、導電性粒子と各種の樹脂を混練したものであり、また導電樹脂は該導電ペーストを硬化させた成形体である。   The conductive paste used for these applications is obtained by kneading conductive particles and various resins, and the conductive resin is a molded body obtained by curing the conductive paste.

導電性粒子に求められる特性としては、粒子そのものの導電性が高く、前記各種の樹脂と混練して得たペーストやこれを硬化した成形体の電気抵抗が低いこと、耐マイグレーション性が高いこと、耐候性に優れること等が挙げられる。   The properties required of the conductive particles include high conductivity of the particles themselves, low electrical resistance of a paste obtained by kneading with the various resins and a molded product obtained by curing the paste, high migration resistance, It is excellent in weather resistance.

現在、導電性粒子としては、金属粉もしくはカーボン粉が用いられている。しかし、金属粉のうち、貴金属粉は導電性が高く、電気抵抗が低いが、高価であるという問題がある。また、ニッケルあるいは銅などに代表される卑金属粉は、コスト的に安価であり、かつ高い導電性を有しているが、耐候性に劣るため、導電ペーストや導電樹脂として長期にわたり使用すると、電気抵抗が上昇するという問題がある。一方、カーボン粉は、安価であり、かつ耐候性も高いが、導電性が低く、カーボン粉を用いた導電ペーストや導電樹脂の電気抵抗が高くなるという問題がある。   Currently, metal powder or carbon powder is used as the conductive particles. However, among the metal powders, noble metal powders have high conductivity and low electrical resistance, but there is a problem that they are expensive. In addition, base metal powders typified by nickel or copper are inexpensive and have high conductivity, but they have poor weather resistance. There is a problem that resistance increases. On the other hand, carbon powder is inexpensive and has high weather resistance, but has low conductivity, and there is a problem that the electrical resistance of a conductive paste or conductive resin using carbon powder is high.

これらの問題点を解決する方法として、ニッケル粒子や銅粒子の表面にAg等の貴金属を被覆した粉末が提案されている(特開2002−025345号公報、特開2002−075057号公報)。これらの粉末は、貴金属でニッケル粒子や銅粒子を被覆することで特性的な面は改善されるが、コスト的に高価となる。特に、Ag被覆した粉末では、導電ペーストや導電樹脂に耐マイグレーション性が求められる使用環境下での使用には適さない。   As a method for solving these problems, a powder in which the surface of nickel particles or copper particles is coated with a noble metal such as Ag has been proposed (Japanese Patent Laid-Open Nos. 2002-025345 and 2002-077507). These powders are improved in cost by coating nickel particles or copper particles with a noble metal, but are expensive in cost. In particular, Ag-coated powder is not suitable for use in a use environment in which migration resistance is required for a conductive paste or a conductive resin.

また、ニッケル粒子等の表面形状を変更すること、たとえば表面に半球状の小瘤を形成することにより、導電ペーストや導電樹脂の電気抵抗を下げる試みもなされている(特開2001−043734号公報、特表平7−507655号公報)。しかし、導電粒子の耐侯性が劣る点は改良されていないため、長期間使用での安定性を改善しているとは言えない。   In addition, attempts have been made to lower the electrical resistance of conductive paste and conductive resin by changing the surface shape of nickel particles or the like, for example, by forming a hemispherical nodule on the surface (Japanese Patent Laid-Open No. 2001-043734). JP, 7-507655, A). However, since the point that the weather resistance of the conductive particles is inferior is not improved, it cannot be said that the stability in long-term use is improved.

このような事情から、安価で、かつ耐侯性に優れ、導電ペーストや導電樹脂にした状態で電気抵抗が低く、長期間にわたり安定して使用できる導電性粒子の提供が望まれている。   Under such circumstances, it is desired to provide conductive particles that are inexpensive, have excellent weather resistance, have a low electrical resistance in a state of being made into a conductive paste or conductive resin, and can be used stably over a long period of time.

特開2002−025345号公報JP 2002-025345 A

特開2002−075057号公報JP 2002-075057 A

特開2001−043734号公報JP 2001-043734 A

特表平7−507655号公報JP 7-507655 Gazette

本発明は、前述の従来の事情に鑑み、安価で、かつ耐侯性に優れ、導電ペーストや導電樹脂にした状態で電気抵抗が低く、特に初期の電気抵抗を低減し、かつ、使用中の電気抵抗の上昇を抑制し、長期間にわたり安定して使用でき、導電ペーストおよび導電樹脂用の導電性粒子として好適なニッケル粉、およびその製造方法を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention is inexpensive and excellent in weather resistance, has a low electrical resistance in a state of being made into a conductive paste or a conductive resin, particularly reduces initial electrical resistance, and is in use An object of the present invention is to provide nickel powder that can be used stably over a long period of time while suppressing an increase in resistance, and that is suitable as conductive particles for conductive paste and conductive resin, and a method for producing the same.

本発明によるニッケル粉は、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子で主として構成されるニッケル粉であって、酸素含有量が0.8質量%以下であることを特徴とする。   The nickel powder according to the present invention is a nickel powder mainly containing secondary particles in which cobalt is contained in an amount of 1 to 20 mass%, the balance is nickel and inevitable impurities, and primary particles are aggregated, and the oxygen content is 0. .8% by mass or less.

ニッケル粉は、一次粒子が凝集した二次粒子からなっており、さらに二次粒子の表層部にある一次粒子にコバルト入りのニッケルがさらに析出・結晶成長して、該部分がニッケル粉の表層部を形成する。なお、ニッケル粉の内部、すなわち、表層部より内側の部分にもコバルトを含んでいてもよいが、表層部にのみ存在することが好ましい。   Nickel powder is composed of secondary particles in which primary particles are aggregated. Further, nickel containing cobalt is further precipitated and crystal is grown on the primary particles in the surface layer portion of the secondary particles, and this portion is the surface layer portion of the nickel powder. Form. In addition, although it may contain cobalt also in the inside of nickel powder, ie, the part inside a surface layer part, it is preferable to exist only in a surface layer part.

すなわち、別の態様によるニッケル粉は、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子からなり、酸素含有量が0.8質量%以下で、該二次粒子の表面に存在する一次粒子がさらに結晶成長している表層部を有し、前記表層部のコバルト含有量が40質量%以下で、ニッケル粉の内部に存在するコバルト含有量より多くなるようにする。   That is, the nickel powder according to another embodiment contains 1 to 20% by mass of cobalt, the remainder consists of nickel and inevitable impurities, and consists of secondary particles in which primary particles are aggregated, and the oxygen content is 0.8% by mass or less. The primary particles existing on the surface of the secondary particles further have a surface layer part in which crystals are grown, and the cobalt content of the surface layer part is 40% by mass or less, and the cobalt content is present inside the nickel powder. Try to be more.

さらに好ましくは、該ニッケル粉が、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子からなり、酸素含有量が0.8質量%以下で、該二次粒子の表面に存在する一次粒子がさらに結晶成長している表層部を有し、前記表層部にのみコバルトを含有し、該表層部におけるコバルト含有量が1〜40質量%となるようにする。   More preferably, the nickel powder contains 1 to 20% by mass of cobalt, the remainder consists of nickel and inevitable impurities, and consists of secondary particles in which primary particles are aggregated, and the oxygen content is 0.8% by mass or less. The primary particles present on the surface of the secondary particles further have a surface layer part in which crystals are grown, cobalt is contained only in the surface layer part, and the cobalt content in the surface layer part is 1 to 40% by mass. Like that.

これら本発明によるニッケル粉は、走査電子顕微鏡(SEM)観察による平均一次粒子径が0.2〜2.0μmであり、レーザ流動分布測定による平均二次粒子径(D50)が8〜50μmであり、タップ密度が0.5〜2.0g/mlであることが好ましい。   These nickel powders according to the present invention have an average primary particle diameter of 0.2 to 2.0 [mu] m by observation with a scanning electron microscope (SEM), and an average secondary particle diameter (D50) of 8 to 50 [mu] m by laser flow distribution measurement. The tap density is preferably 0.5 to 2.0 g / ml.

本発明によるニッケル粉の製造方法は、2価のニッケル塩を含有する水溶液に還元剤を添加してニッケルを析出させる第1段の還元析出工程と、その水溶液に少なくとも2価のニッケル塩溶液を添加して、さらにニッケルを析出させる第2段の還元析出工程とからなり、前記第1段および第2段の還元析出工程のうち少なくとも第2段において、水溶液に2価のコバルト塩を添加した状態でニッケル粉を析出させるニッケル粉の製造方法であって、得られたニッケル粉を還元雰囲気中において100〜500℃の温度で熱処理することを特徴とする。   The method for producing nickel powder according to the present invention includes a first reduction precipitation step in which a reducing agent is added to an aqueous solution containing a divalent nickel salt to precipitate nickel, and at least a divalent nickel salt solution is added to the aqueous solution. And a second-stage reduction precipitation step for further depositing nickel, and at least in the second-stage reduction precipitation step, a divalent cobalt salt is added to the aqueous solution. A nickel powder manufacturing method for depositing nickel powder in a state, wherein the obtained nickel powder is heat-treated at a temperature of 100 to 500 ° C. in a reducing atmosphere.

なお、第1段の還元析出工程において、結晶成長した結晶粒である一次粒子およびその凝集した二次粒子が形成され、第2段の還元析出工程において、主として前記二次粒子の表面にある一次粒子上に、コバルト入りのニッケルが析出し、該一次粒子を結晶成長させる。これにより、ニッケル粉の表層部が形成される。   In the first-stage reduction and precipitation step, primary particles that are crystal grains grown and secondary particles aggregated therewith are formed. In the second-stage reduction and precipitation step, the primary particles mainly on the surface of the secondary particles are formed. Cobalt nickel is deposited on the particles, and the primary particles are crystal-grown. Thereby, the surface layer part of nickel powder is formed.

したがって、第2段の還元析出工程においてのみコバルトを添加することにより、ニッケル粉の表層部にのみコバルトを存在させることができる。   Therefore, cobalt can be present only in the surface layer portion of the nickel powder by adding cobalt only in the second reduction deposition step.

前記第1段および第2段の還元析出工程における水溶液に2価のコバルト塩を添加する場合は、該2価のコバルト塩の量が、ニッケルとコバルトの合計に対しコバルトが1〜20質量%となるようにすることが好ましい。   When a divalent cobalt salt is added to the aqueous solution in the first and second reduction precipitation processes, the amount of the divalent cobalt salt is 1 to 20% by mass of cobalt with respect to the total of nickel and cobalt. It is preferable that

前記第2段の還元析出工程における水溶液に添加する2価のコバルト塩の量が、第1段の還元析出工程における水溶液に添加する2価のコバルト塩の量より多くすることが好ましい。   It is preferable that the amount of the divalent cobalt salt added to the aqueous solution in the second stage reduction precipitation step is larger than the amount of the divalent cobalt salt added to the aqueous solution in the first stage reduction precipitation step.

さらに、前記第2段の還元析出工程においてのみ2価のコバルト塩を添加し、かつ、水溶液に添加する2価のコバルト塩の量が、ニッケルとコバルトの合計に対しコバルトが1〜40質量%となるようにすることが好ましい。   Further, the divalent cobalt salt is added only in the second reduction precipitation step, and the amount of the divalent cobalt salt added to the aqueous solution is 1 to 40% by mass of cobalt with respect to the total of nickel and cobalt. It is preferable that

本発明のニッケル粉により、安価であって、樹脂と混練して得た導電ペーストや導電樹脂は、電気抵抗が著しく低く、かつ使用初期から、使用中までの上昇を抑制でき、かつ優れた耐侯性を有しており、長期間安定して使用できる。従って、本発明のニッケル粉は、安価であって、導電ペーストおよび導電樹脂用の導電性粒子として極めて好適である。   The nickel powder of the present invention is inexpensive, and the conductive paste or conductive resin obtained by kneading with the resin has an extremely low electrical resistance, can suppress the rise from the initial use to the in-use, and has excellent weather resistance It can be used stably for a long time. Therefore, the nickel powder of the present invention is inexpensive and extremely suitable as conductive particles for conductive paste and conductive resin.

本発明者らは、ニッケル粉を樹脂と混練して得た導電性ペーストや導電樹脂の電気抵抗に関する研究を進めた結果、コバルトを含有させたニッケル粉の酸素含有量を特定値以下にすることにより、導電ペーストや導電樹脂の電気抵抗が大きく下がるとともに、耐候性の改善に効果があること、特に、ニッケル粉の表層部のコバルト含有量が電気抵抗および耐侯性の改善の上で重要であることを見出した。   As a result of advancing research on the electrical resistance of conductive paste obtained by kneading nickel powder with resin and conductive resin, the inventors have made the oxygen content of nickel powder containing cobalt below a specific value. As a result, the electrical resistance of the conductive paste and the conductive resin is greatly reduced and the weather resistance is improved. In particular, the cobalt content in the surface layer of nickel powder is important in improving the electrical resistance and weather resistance. I found out.

また、本発明者らは、導電ペーストや導電樹脂の電気抵抗に与える影響が大きいニッケル粉の粒径およびタップ密度が特定の範囲に制御された状態で酸素含有量を低下させることで、導電ペーストや導電樹脂の電気抵抗が大きく下がり、優れた耐候性を有することを見出した。   In addition, the present inventors reduced the oxygen content in a state in which the particle size and tap density of nickel powder having a large influence on the electrical resistance of the conductive paste and conductive resin were controlled within a specific range, so that the conductive paste It has been found that the electrical resistance of the conductive resin and the conductive resin is greatly reduced and has excellent weather resistance.

すなわち、本発明のニッケル粉は、一態様では、コバルトを1〜20質量%含有し、不可避不純物およびニッケルからなるニッケル粉において、一次粒子が凝集した二次粒子で構成され、酸素含有量が0.8質量%以下である。   That is, in one aspect, the nickel powder of the present invention contains 1 to 20% by mass of cobalt, and is composed of secondary particles in which primary particles are aggregated in nickel powder composed of inevitable impurities and nickel, and has an oxygen content of 0. 0.8 mass% or less.

別の態様では、一次粒子が凝集した二次粒子で構成され、該二次粒子の表面に存在する一次粒子がさらに結晶成長している表層部を有し、表層部のコバルト含有量が40質量%以下で、ニッケル粉の内部、すなわち、該表層部より内側の部分のコバルト含有量より多いことが好ましい。 In another embodiment, consists of secondary particles formed by aggregation of primary particles, has a surface layer portion of the primary particles present on the surface of the secondary particles are further grown, the cobalt content of the surface layer portion 40 It is preferable that the content is less than or equal to mass% and is greater than the cobalt content in the nickel powder, that is, in the portion inside the surface layer portion.

詳細には、主としてニッケル粉の表面に存在する一次粒子上にコバルト入りのニッケルがさらに析出し、結晶成長させることにより、ニッケル粉の表層部が形成される。   Specifically, nickel containing cobalt is further deposited on primary particles mainly existing on the surface of the nickel powder, and crystal growth is performed, whereby a surface layer portion of the nickel powder is formed.

また、本発明のニッケル粉は、別の態様では、ニッケル粉の内部に存在するコバルト含有量が0質量%であって、表層部が、コバルトを1〜40質量%含有するニッケルで被覆されており、酸素含有量が0.8質量%以下であることが好ましい。   Moreover, in another aspect, the nickel powder of the present invention has a cobalt content of 0% by mass inside the nickel powder, and the surface layer portion is coated with nickel containing 1 to 40% by mass of cobalt. The oxygen content is preferably 0.8% by mass or less.

さらに、該ニッケル粉は、走査電子顕微鏡(SEM)観察による平均一次粒子径が0.2〜2.0μmであり、レーザー粒度分布測定による平均二次粒子径(D50)が8〜50μmであり、タップ密度が0.5〜2.0g/mlであることが望ましい。ここで、平均二次粒子径(D50)は、レーザー粒度分布測定により累積体積が50%となる粒子径である。   Further, the nickel powder has an average primary particle size of 0.2 to 2.0 μm by observation with a scanning electron microscope (SEM), an average secondary particle size (D50) of 8 to 50 μm by laser particle size distribution measurement, It is desirable that the tap density is 0.5 to 2.0 g / ml. Here, the average secondary particle diameter (D50) is a particle diameter at which the cumulative volume is 50% by laser particle size distribution measurement.

また、本発明のニッケル粉の製造方法は、2価のニッケル塩を含有する水溶液から、2段階の還元析出工程により製造する。すなわち、第1段の還元析出工程で、2価のニッケル塩を含有する水溶液に還元剤を添加(一般的に過剰に添加)してニッケルをほぼ全て析出させ、結晶成長した結晶粒である一次粒子およびその凝集した二次粒子を形成させ、引き続き第2段の還元析出工程において、第1段の還元析出工程が終了し析出したニッケル粉を含む水溶液に2価のニッケル塩溶液を添加し、必要に応じて更に還元剤を添加することにより、ニッケルを該二次粒子の表面に存在する一次粒子上にさらに析出・結晶成長させることにより、前記二次粒子の表面を被覆させる。上記方法により製造されたニッケル粉を原料として、還元雰囲気中において100〜500℃の温度で、好ましくは200〜450℃、さらに好ましくは300〜400℃の温度で、熱処理を行なう。   Moreover, the manufacturing method of the nickel powder of this invention manufactures from the aqueous solution containing a bivalent nickel salt by a two-step reduction precipitation process. That is, in the first stage of the reduction precipitation step, a reducing agent is added to an aqueous solution containing a divalent nickel salt (generally excessively added) to precipitate almost all of the nickel, and the primary grains which are crystal grown Particles and their aggregated secondary particles are formed, and subsequently, in the second reduction precipitation step, the first reduction reduction step is completed, and a divalent nickel salt solution is added to the aqueous solution containing the precipitated nickel powder, If necessary, a reducing agent is further added, so that nickel is further precipitated and crystal-grown on the primary particles existing on the surface of the secondary particles, thereby covering the surfaces of the secondary particles. Heat treatment is performed at a temperature of 100 to 500 ° C., preferably 200 to 450 ° C., more preferably 300 to 400 ° C. in a reducing atmosphere, using nickel powder produced by the above method as a raw material.

本発明のニッケル粉は、一次粒子が強く凝集した形態の二次粒子からなっていて、1〜20質量%のコバルトを添加含有することにより、ニッケル粉の耐候性が著しく改善向上するとともに、さらに、酸素含有量を0.8質量%以下に低減することで、使用初期の表面電気抵抗値が下げられ、かつ、使用中の表面電気抵抗値の上昇が抑制され、0.8質量%以下に酸素含有量を低減することで、抵抗となるニッケル粉表面の酸化皮膜が薄くなり、使用初期の表面電気抵抗値が低減する。   The nickel powder of the present invention is composed of secondary particles in a form in which primary particles are strongly agglomerated, and by adding 1 to 20% by mass of cobalt, the weather resistance of the nickel powder is significantly improved and further improved. By reducing the oxygen content to 0.8% by mass or less, the surface electrical resistance value at the initial stage of use is lowered, and the increase in the surface electrical resistance value during use is suppressed, and is reduced to 0.8% by mass or less. By reducing the oxygen content, the oxide film on the surface of the nickel powder that becomes resistance becomes thin, and the surface electrical resistance value at the initial stage of use decreases.

導電ペーストや導電樹脂の使用で、コバルト(Co)はニッケル(Ni)より電位が僅かに卑であることから、コバルトが優先的に酸化すると考えられる。酸素含有量が低い場合、すなわち、使用初期の表面層にニッケル酸化物が少ない場合は、酸素含有量が高い場合と比較すると、使用中に生成されるコバルト酸化生成物のニッケル酸化生成物に対する相対量が多くなると考えられる。この意味で、ニッケル粉をその二次粒子表面にある一次粒子をコバルト入りのニッケルによりさらに結晶成長させることで、二次粒子の表面を被覆する表層部を形成させた二重構造として、当該表層部のコバルト含有量を多くすることが好ましい。   It is considered that cobalt is preferentially oxidized because cobalt (Co) has a slightly lower potential than nickel (Ni) by using a conductive paste or conductive resin. When the oxygen content is low, that is, when the surface layer in the initial stage of use has a small amount of nickel oxide, the cobalt oxidation product produced during use is relative to the nickel oxidation product compared to the case where the oxygen content is high. The amount is thought to increase. In this sense, the primary layer on the surface of the secondary particles of nickel powder is further crystal-grown with nickel containing cobalt, thereby forming a surface layer portion covering the surface of the secondary particles as a dual structure, the surface layer. It is preferable to increase the cobalt content of the part.

コバルトの酸化生成物としては酸化物や水酸化物等があるが、これらはニッケル酸化物よりも導電性があり、使用中の表面電気抵抗値上昇を抑制すると考えられる。また、コバルトは、ニッケルよりも優先的に酸化することで、ニッケルの耐候性そのものが向上する効果もあると考えられる。   The oxidation products of cobalt include oxides and hydroxides, but these are more conductive than nickel oxides, and are considered to suppress an increase in surface electrical resistance during use. In addition, cobalt is considered to have an effect of improving the weather resistance of nickel itself by oxidizing preferentially over nickel.

しかしながら、酸素含有量が0.8質量%を超えると、これらの効果が得られず、コバルト含有量がニッケル粉全体の1質量%未満では、耐侯性向上の効果がない。一方、全体的コバルト含有量が20質量%を超えて添加しても、コスト的に高価となり好ましくない。   However, when the oxygen content exceeds 0.8% by mass, these effects cannot be obtained, and when the cobalt content is less than 1% by mass of the entire nickel powder, there is no effect of improving weather resistance. On the other hand, even if the total cobalt content exceeds 20% by mass, it is not preferable because it is expensive in cost.

従って、表層部のコバルトを40質量%まで増加し、その分、内部のコバルト含有量を下げることが好ましい。さらに、少ないコバルト含有量で十分な耐侯性を確保するためには、ニッケル粉の表層部のみにコバルトを含有させることが好ましい。これらの場合、ニッケル粉の表層部は、二段階の還元析出工程によるニッケル粉製造方法において、第2段の還元析出工程で形成される部分であって、二次粒子の表面に存在する一次粒子上にさらに析出したコバルト入りのニッケルで構成される。なお、第2段では、前記二次粒子の表面にある一次粒子を結晶成長させる方が、要求されるエネルギーが低いため、新たな一次粒子はほとんど発生しない。   Therefore, it is preferable to increase the cobalt in the surface layer part to 40% by mass and lower the internal cobalt content accordingly. Furthermore, in order to ensure sufficient weather resistance with a small cobalt content, it is preferable to contain cobalt only in the surface layer portion of the nickel powder. In these cases, the surface layer part of the nickel powder is a part formed in the second reduction precipitation process in the nickel powder production method by the two-stage reduction precipitation process, and is present on the surface of the secondary particles. Further, it is composed of nickel with cobalt deposited thereon. In the second stage, since the energy required for crystal growth of the primary particles on the surface of the secondary particles is lower, new primary particles are hardly generated.

表層部におけるコバルト含有量は、40質量%以下の範囲とすることが好ましい。40質量%を超えて添加しても耐候性のさらなる向上が得難いばかりか、ニッケル粉が強磁性を帯びるようになり、電子部品等に使用する場合に好ましくない。   The cobalt content in the surface layer is preferably in the range of 40% by mass or less. Even if it exceeds 40 mass%, it is difficult to obtain further improvement in weather resistance, and nickel powder becomes ferromagnetism, which is not preferable when used for electronic parts and the like.

さらに、本発明のニッケル粉では、走査電子顕微鏡観察による平均一次粒子径を0.2〜2.0μm、レーザー粒度分布測定による平均二次粒子径(D50)を8〜50μm、タップ密度を0.5〜2.0g/mlでの範囲とすることが望ましい。これにより、酸素含有量を確実に制御できる。ここで、D50の意味に関し、平均二次粒子径(D50)は、レーザー粒度分布測定により累積体積が50%となる粒子径である。また、SEM観察による平均一次粒子径は、凝集している個々の粒子の粒径を示し、走査電子顕微鏡(SEM)5000倍写真の視野において100個の粒子径を計測し、その平均を求める。さらに、タップ密度は、Ni粉10gをストローク長20mmで500回タッピングした後にその体積を計測して求める。   Furthermore, in the nickel powder of the present invention, the average primary particle diameter by scanning electron microscope observation is 0.2 to 2.0 μm, the average secondary particle diameter (D50) by laser particle size distribution measurement is 8 to 50 μm, and the tap density is 0.00. A range of 5 to 2.0 g / ml is desirable. Thereby, oxygen content can be controlled reliably. Here, regarding the meaning of D50, the average secondary particle diameter (D50) is a particle diameter at which the cumulative volume is 50% by laser particle size distribution measurement. Moreover, the average primary particle diameter by SEM observation shows the particle diameter of the aggregated individual particle | grains, and measures 100 particle diameters in the visual field of a scanning electron microscope (SEM) 5000 time photograph, and calculates | requires the average. Further, the tap density is obtained by measuring the volume after tapping 10 g of Ni powder with a stroke length of 20 mm for 500 times.

SEM観察による平均一次粒子径を0.2〜2.0μmの範囲とすることで、ニッケル粉一次粒子が適度に凝集して鎖状などの複雑な形状の二次粒子となり、樹脂との混練後の導電ペーストや導電樹脂では、該二次粒子が互いに絡み合ってネットワークを構成するため、電気抵抗が著しく低い。しかし、この平均一次粒子径が0.2μm未満では、一次粒子の凝集が激しくなり過ぎ、凝集後の二次粒子形状が極めて大きな塊状もしくは球状となるため好ましくない。また、この平均一次粒子径が2.0μmを超えると、一次粒子の凝集が少なく、一次粒子が分散した状態に近いままとなってしまい電気抵抗が高くなり好ましくない。   By setting the average primary particle diameter in the range of 0.2 to 2.0 μm by SEM observation, the nickel powder primary particles are appropriately aggregated to form secondary particles having a complicated shape such as a chain, and after kneading with the resin In the conductive paste or conductive resin, the secondary particles are entangled with each other to form a network, and thus the electrical resistance is remarkably low. However, when the average primary particle diameter is less than 0.2 μm, the primary particles are too agglomerated and the secondary particle shape after aggregation becomes extremely large lump or sphere, which is not preferable. On the other hand, when the average primary particle diameter exceeds 2.0 μm, the aggregation of the primary particles is small, and the primary particles remain close to the dispersed state, and the electric resistance becomes high, which is not preferable.

レーザー粒度分布測定による二次粒子径は、一次粒子が凝集した二次粒子の粒径を示す。このレーザー粒度分布測定による平均二次粒子径(D50)を8〜50μmの範囲とすることで、樹脂との混練後にニッケル粉同士が接触する箇所が多くなり、得られる成形体の表面電気抵抗が著しく低下する。しかし、この平均二次粒子径(D50)が8μm未満では、凝集が少ないため絡み合う箇所が減少し、導電ペーストや導電樹脂の表面電気抵抗値が高くなる。また、平均二次粒子径(D50)が50μmを超えると、導電ペーストや導電樹脂中でのニッケル粉の分散が不均一となり、導電ペーストや導電樹脂の表面電気抵抗値が高くなるため好ましくない。   The secondary particle size by laser particle size distribution measurement indicates the particle size of secondary particles in which primary particles are aggregated. By setting the average secondary particle diameter (D50) by laser particle size distribution measurement to be in the range of 8 to 50 μm, the number of locations where nickel powders come into contact with each other after kneading with the resin increases, and the surface electrical resistance of the resulting molded body is It drops significantly. However, when the average secondary particle diameter (D50) is less than 8 μm, the number of entangled portions decreases because of less aggregation, and the surface electrical resistance value of the conductive paste or conductive resin increases. Moreover, when the average secondary particle diameter (D50) exceeds 50 μm, the dispersion of nickel powder in the conductive paste or conductive resin becomes non-uniform, and the surface electrical resistance value of the conductive paste or conductive resin becomes high, which is not preferable.

また、ニッケル粉のタップ密度は、樹脂中での分散度に影響する。タップ密度を0.5〜2.0g/mlの範囲とすることにより、導電ペーストや導電樹脂中にニッケル粉が均一に分散し、表面電気抵抗値は著しく低い。しかしながら、タップ密度が2.0g/mlを超えると、導電ペーストや導電樹脂中でニッケル粉が偏在して、相互の接触が減少し、逆に0.5g/ml未満では、樹脂との混練が困難となり、成形体が得られない。   Further, the tap density of the nickel powder affects the degree of dispersion in the resin. By setting the tap density in the range of 0.5 to 2.0 g / ml, nickel powder is uniformly dispersed in the conductive paste or conductive resin, and the surface electrical resistance value is remarkably low. However, if the tap density exceeds 2.0 g / ml, nickel powder is unevenly distributed in the conductive paste or conductive resin, reducing mutual contact. Conversely, if the tap density is less than 0.5 g / ml, kneading with the resin is not possible. It becomes difficult and a molded body cannot be obtained.

次に、本発明のニッケル粉の製造方法について説明する。本発明のニッケル粉は、2価のニッケル塩を含有する水溶液から、2段階の還元析出工程により製造する。すなわち、第1段の還元析出工程で、2価のニッケル塩を含有する水溶液に還元剤を添加(一般的に過剰に添加)してニッケルをほぼ全て析出させ、一次粒子およびその凝集した二次粒子を形成させ、引き続き第2段の還元析出工程において、第1段の還元析出工程が終了し析出したニッケル粉を含む水溶液に2価のニッケル塩溶液を添加し、必要に応じて更に還元剤を添加することにより、ニッケルを、さらに二次粒子の表面に存在する一次粒子上に、析出させ、該一次粒子を結晶成長させ、前記二次粒子の表面を被覆させる。このニッケル粉にコバルトを含有させるには、上記した2段階の還元析出工程のうち、第2段のみ、または第1段および第2段の両方において、水溶液に2価のコバルト塩を添加した状態でニッケルを析出させればよい。その際、2価のニッケル塩を含有する水溶液には、酒石酸などの多価カルボン酸やエチレンジアミンなどの通常使用されている錯化剤、pH調整用の水酸化ナトリウム等を添加することができる。また、還元剤としては、ニッケルを還元析出し得るものであれば特に制限はないが、ヒドラジン系の還元剤を好適に使用することができる。   Next, the manufacturing method of the nickel powder of this invention is demonstrated. The nickel powder of the present invention is produced from an aqueous solution containing a divalent nickel salt by a two-step reduction precipitation process. That is, in the first reduction precipitation step, a reducing agent is added to an aqueous solution containing a divalent nickel salt (generally in excess) to precipitate almost all of the nickel, and primary particles and their aggregated secondary In the second stage of the reduction and precipitation process, the divalent nickel salt solution is added to the aqueous solution containing the nickel powder that has been deposited after the first stage of the reduction and precipitation process. Is further deposited on the primary particles existing on the surface of the secondary particles, the primary particles are crystal-grown, and the surface of the secondary particles is coated. In order to make this nickel powder contain cobalt, the divalent cobalt salt is added to the aqueous solution only in the second stage or in both the first stage and the second stage in the two-stage reduction and precipitation process described above. And nickel may be deposited. At that time, a polyvalent carboxylic acid such as tartaric acid, a commonly used complexing agent such as ethylenediamine, sodium hydroxide for adjusting pH, and the like can be added to the aqueous solution containing the divalent nickel salt. The reducing agent is not particularly limited as long as nickel can be deposited by reduction, but a hydrazine-based reducing agent can be preferably used.

上記製造方法においては、まず、第1段の還元析出工程により、析出したニッケル粒子は一次粒子が適度に凝集した二次粒子となるが、その凝集力は弱く、反応済溶液との分離操作あるいは樹脂との混練の際に、容易に分離して単独の粒子となってしまう。ところが、引き続いて第2段の還元析出工程を行なうことによって、さらに析出したニッケルにより被覆されて、その凝集が強固となり、その後の操作でも分離することなく適度な凝集状態を維持でき、こうして得たニッケル粉と樹脂との混練による成形体の電気抵抗も著しく低い。なお、第2段の還元析出工程で析出したニッケルは、第1段の還元析出工程で析出し凝集したニッケル二次粒子の表面に存在する一次粒子上に析出し、該一次粒子を結晶成長させて表面層を形成し、新たに析出したニッケルが二次粒子の表層部をネットワーク構造的につなぎ、強度の高いニッケル粉を形成するものと考えられる。   In the above production method, first, the nickel particles precipitated in the first reduction precipitation step become secondary particles in which the primary particles are appropriately aggregated, but the cohesive force is weak, and the separation operation from the reacted solution or When kneading with the resin, it is easily separated into individual particles. However, by subsequently performing the second stage reduction deposition step, it was further coated with the deposited nickel, and the agglomeration became strong, and an appropriate agglomerated state could be maintained without separation even in the subsequent operation, thus obtained. The electrical resistance of the molded body by kneading nickel powder and resin is also extremely low. The nickel deposited in the second reduction deposition step is deposited on the primary particles present on the surface of the aggregated nickel secondary particles deposited in the first reduction deposition step, and the primary particles are crystal-grown. The surface layer is formed, and the newly deposited nickel connects the surface layer portions of the secondary particles in a network structure to form a high strength nickel powder.

かかる2段階の還元析出工程を経て製造されたニッケル粉は、ニッケル塩や還元剤の濃度、水溶液の温度その他の条件を調整することによって、上記した粉体特性、すなわち、走査電子顕微鏡観察による平均一次粒子径が0.2〜2.0μm、レーザー粒度分布測定による平均二次粒子径が8〜50μm、タップ密度が0.5〜2.0g/mlの範囲とすることができる。   The nickel powder produced through the two-step reduction precipitation process is adjusted by adjusting the concentration of nickel salt and reducing agent, the temperature of the aqueous solution, and other conditions, so that the above-mentioned powder characteristics, that is, the average by observation with a scanning electron microscope The primary particle diameter can be in the range of 0.2 to 2.0 μm, the average secondary particle diameter by laser particle size distribution measurement is 8 to 50 μm, and the tap density is in the range of 0.5 to 2.0 g / ml.

このニッケル粉にコバルトを含有させるには、上記した2段階の還元析出工程のうち、第2段のみ、または第1段および第2段の両方において、水溶液に2価のコバルト塩を添加した状態でニッケルを析出させればよい。特に、ニッケル粉の内部にはコバルトを含有させず、表層部にのみコバルトを含有させる場合には、第1段の還元析出工程ではコバルトを添加せず、第2段の還元析出工程において水溶液に2価のコバルト塩を添加する。その際のコバルト塩の添加量は、水溶液中のニッケルとコバルトの合計量に対し1〜40重量%とし、これによりニッケル粉表層部におけるコバルト含有量が1〜40重量%にすることができる。   In order to make this nickel powder contain cobalt, the divalent cobalt salt is added to the aqueous solution only in the second stage or in both the first stage and the second stage in the two-stage reduction and precipitation process described above. And nickel may be deposited. In particular, when nickel is not contained in the nickel powder and cobalt is contained only in the surface layer portion, cobalt is not added in the first reduction deposition process, and the aqueous solution is added in the second reduction deposition process. Add divalent cobalt salt. In this case, the addition amount of the cobalt salt is 1 to 40% by weight with respect to the total amount of nickel and cobalt in the aqueous solution, whereby the cobalt content in the surface portion of the nickel powder can be 1 to 40% by weight.

また、表層部だけでなく、内部も含めたニッケル粉全体にコバルトを含有させる場合には、第1段および第2段の還元析出工程において、それぞれの水溶液中に2価のコバルト塩を添加する。その際のコバルト塩の添加量は、第1段および第2段の還元析出工程のそれぞれにおいて、水溶液中のニッケルとコバルトの合計量に対し1〜20重量%とするか、もしくは第2段の還元析出工程のコバルト塩の添加量を第1段より多くし、最終的にニッケル粉全体のコバルト含有量が1〜20重量%となるように調整すればよい。   In addition, when cobalt is contained not only in the surface layer but also in the entire nickel powder including the inside, a divalent cobalt salt is added to each aqueous solution in the first and second reduction and precipitation processes. . In this case, the addition amount of the cobalt salt is set to 1 to 20% by weight with respect to the total amount of nickel and cobalt in the aqueous solution in each of the first and second reduction precipitation processes, or the second stage What is necessary is just to adjust so that the addition amount of the cobalt salt of a reduction | restoration precipitation process may be increased from the 1st stage, and the cobalt content of the whole nickel powder may finally become 1 to 20 weight%.

本発明のニッケルは、上述の製造方法で得られたニッケル粉を大気中で80〜100℃の条件で、または真空中で乾燥させる。さらに、得られたニッケル粉を還元雰囲気中において100〜500℃の温度で、好ましくは200〜450℃、さらに好ましくは300〜400℃の温度で、熱処理を行なう。すなわち、還元雰囲気中で熱処理を行なうことにより、ニッケル粉表面の酸化物もしくは水酸化物が還元されるとともに有機物等が分解され、酸素含有量が0.8質量%以下のニッケル粉が得られる。また、還元雰囲気は特に制限はなく、ニッケルおよびコバルトが還元可能な水素ガス雰囲気、水素窒素混合ガス雰囲気、およびその他の還元雰囲気が使用できる。本発明のニッケル粉の製造法は、酸素含有量が多い湿式法で製造されたニッケル粉に対して、特に好適である。   The nickel of the present invention is obtained by drying the nickel powder obtained by the above-described production method in the atmosphere at 80 to 100 ° C. or in vacuum. Furthermore, the obtained nickel powder is heat-treated in a reducing atmosphere at a temperature of 100 to 500 ° C., preferably 200 to 450 ° C., more preferably 300 to 400 ° C. That is, by performing heat treatment in a reducing atmosphere, oxides or hydroxides on the surface of the nickel powder are reduced and organic substances are decomposed to obtain nickel powder having an oxygen content of 0.8% by mass or less. The reducing atmosphere is not particularly limited, and a hydrogen gas atmosphere in which nickel and cobalt can be reduced, a hydrogen-nitrogen mixed gas atmosphere, and other reducing atmospheres can be used. The method for producing nickel powder of the present invention is particularly suitable for nickel powder produced by a wet method having a high oxygen content.

前記製造方法においては、熱処理温度を100℃〜500℃としている。100℃未満では、還元が十分に行なわれないばかりか、有機物等の蒸発あるいは分解も少なく、酸素含有量の低減が不十分で、所望の酸素含有量ニッケル粉が得られない。500℃を超えると、酸素含有量の低減は行なえるが、ニッケル粉が焼結してしまい、導電性粒子としての利用が困難となる。   In the said manufacturing method, the heat processing temperature is 100 to 500 degreeC. Below 100 ° C., not only the reduction is not sufficiently performed, but also the evaporation or decomposition of organic substances is small, the oxygen content is not sufficiently reduced, and the desired oxygen content nickel powder cannot be obtained. When the temperature exceeds 500 ° C., the oxygen content can be reduced, but the nickel powder is sintered, making it difficult to use as conductive particles.

(実施例1)
純水306リットルに水酸化ナトリウムおよび酒石酸を添加し、撹拌しながら65℃まで加温した。この水溶液に、60%水加ヒドラジン39リットルと、ニッケル当量で5kgの塩化ニッケル水溶液とを加え、第1段の還元反応によりニッケルを析出させた。次に、この第1段の還元析出終了後の水溶液に、塩化コバルト水溶液と塩化ニッケル水溶液をコバルト含有量がNi+Co量に対し10質量%となるように混合した水溶液を、Ni+Co当量で5kg加えて、第2段の還元反応によりさらにニッケルを析出させた。その後、ろ過および水洗した後、大気中にて100℃で乾燥してニッケル粉を得た。さらに、得られたニッケル粉に対して、4%水素−窒素混合ガス中350℃で1時間の熱処理を行った。
(Example 1)
Sodium hydroxide and tartaric acid were added to 306 liters of pure water and heated to 65 ° C. with stirring. To this aqueous solution, 39 liters of 60% hydrazine hydrate and 5 kg of nickel chloride aqueous solution with a nickel equivalent amount were added, and nickel was precipitated by the first reduction reaction. Next, an aqueous solution obtained by mixing a cobalt chloride aqueous solution and a nickel chloride aqueous solution so that the cobalt content is 10% by mass with respect to the Ni + Co amount is added to the aqueous solution after completion of the reduction precipitation in the first stage by adding 5 kg in terms of Ni + Co equivalent. Further, nickel was precipitated by the second-stage reduction reaction. Then, after filtering and washing with water, it dried at 100 degreeC in air | atmosphere, and obtained nickel powder. Furthermore, the obtained nickel powder was heat-treated at 350 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.4質量%であった。その粉体特性を、表1に示した。ただし、全体のコバルト含有量は分析値であるが、表層部のコバルト含有量は、第2段の還元析出工程における水溶液中のNi+Co量に対するコバルト量から計算した値である。また、表1中のSEM径は、SEM観察による平均一次粒子径、およびD50は、レーザー粒度分布測定による平均二次粒子径を意味する。

Figure 2005240164
The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.4% by mass. The powder characteristics are shown in Table 1. However, although the total cobalt content is an analytical value, the cobalt content in the surface layer portion is a value calculated from the cobalt content relative to the Ni + Co content in the aqueous solution in the second stage reduction precipitation step. Moreover, the SEM diameter in Table 1 means the average primary particle diameter by SEM observation, and D50 means the average secondary particle diameter by laser particle size distribution measurement.
Figure 2005240164

次に、前記の条件にて得られたニッケル粉2.4gを、熱硬化性樹脂(フェノール樹脂)3gと混練し、シート状に成形して硬化させた。硬化させたシート状試料の体積抵抗率を、低抵抗率計(ダイアインスツルメンツ製、ロレスタ−GP)で測定したところ、初期体積抵抗率は0.051Ω・cmであった。さらに、耐侯性を評価するため、同じニッケル粉を、85℃−85%RHに設定した恒温恒湿槽中に40時間保持する耐湿試験を行った後、前述と同様に熱硬化樹脂(フェノール樹脂)と混練して得られたシートの体積抵抗率を測定したところ、0.120Ω・cmを示した。これらの結果を、表2にまとめて示した。なお、Ω・cmは、単位体積あたりの抵抗すなわち体積抵抗率(JIS K 6911)を意味する。

Figure 2005240164
Next, 2.4 g of the nickel powder obtained under the above conditions was kneaded with 3 g of a thermosetting resin (phenol resin), and formed into a sheet and cured. When the volume resistivity of the cured sheet sample was measured with a low resistivity meter (manufactured by Dia Instruments, Loresta GP), the initial volume resistivity was 0.051 Ω · cm. Furthermore, in order to evaluate the weather resistance, after performing a moisture resistance test in which the same nickel powder was held in a constant temperature and humidity chamber set at 85 ° C. to 85% RH for 40 hours, a thermosetting resin (phenolic resin) was used in the same manner as described above. ) And the volume resistivity of the sheet obtained by kneading were measured to show 0.120 Ω · cm. These results are summarized in Table 2. In addition, Ω · cm means a resistance per unit volume, that is, a volume resistivity (JIS K 6911).
Figure 2005240164

(実施例2)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理温度のみ変更し、4%水素−窒素混合ガス中210℃で1時間の熱処理を行った。
(Example 2)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, only the heat treatment temperature was changed, and heat treatment was performed at 210 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.5質量%であった。その粉体特性を、表1に示した。また、得られたニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.049Ω・cm、耐湿試験後体積抵抗率が0.510Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.5% by mass. The powder characteristics are shown in Table 1. Further, when the obtained nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.049 Ω · cm, and the volume resistivity after the moisture resistance test was 0.510 Ω · cm. These results are summarized in Table 2.

(実施例3)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理温度のみ変更し、4%水素−窒素混合ガス中450℃で1時間の熱処理を行った。
(Example 3)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, only the heat treatment temperature was changed, and heat treatment was performed at 450 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.2質量%であった。その粉体特性を、表1に示した。また、得られたニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.036Ω・cm、耐湿試験後体積抵抗率が0.414Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.2% by mass. The powder characteristics are shown in Table 1. Further, when the obtained nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.036 Ω · cm, and the volume resistivity after the moisture resistance test was 0.414 Ω · cm. These results are summarized in Table 2.

(実施例4)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理条件を変更し、2%水素−窒素混合ガス中350℃で2時間の熱処理を行った。
Example 4
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, heat treatment conditions were changed, and heat treatment was performed at 350 ° C. for 2 hours in a 2% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.6質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.029Ω・cm、耐湿試験後体積抵抗率が0.111Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.6% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.029 Ω · cm, and the volume resistivity after the moisture resistance test was 0.111 Ω · cm. These results are summarized in Table 2.

(実施例5)
純水3800mlに水酸化ナトリウムおよび酒石酸を添加し、撹拌しながら80℃まで加温した。この水溶液にヒドラジン300mlと塩化コバルト水溶液と塩化ニッケル水溶液をコバルト含有量がNi+Co量に対し2質量%となるように混合した水溶液を、Ni+Co当量で65g加えて、第1段の還元反応によりニッケル粉を析出させた。次に、この第1段の還元析出終了後の水溶液に、第1段の添加と同様の塩化コバルトと塩化ニッケルの混合溶液をNi+Co当量で65g加えて、第2段の還元反応によりさらにニッケル粉を析出させた。その後、ろ過および水洗した後、大気中にて100℃で乾燥してニッケル粉を得た。さらに、4%水素−窒素混合ガス中300℃で1時間の熱処理を行った。
(Example 5)
Sodium hydroxide and tartaric acid were added to 3800 ml of pure water and heated to 80 ° C. with stirring. To this aqueous solution, an aqueous solution obtained by mixing 300 ml of hydrazine, an aqueous solution of cobalt chloride and an aqueous solution of nickel chloride so that the cobalt content is 2% by mass with respect to the amount of Ni + Co is added in an amount of Ni + Co equivalent of 65 g. Was precipitated. Next, 65 g of a mixed solution of cobalt chloride and nickel chloride, which is the same as the addition in the first stage, is added to the aqueous solution after the completion of the reduction precipitation in the first stage in an equivalent amount of Ni + Co. Was precipitated. Then, after filtering and washing with water, it dried at 100 degreeC in air | atmosphere, and obtained nickel powder. Further, heat treatment was performed for 1 hour at 300 ° C. in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、全体(内部および表層部)にコバルトを含有しており、酸素含有量は0.4質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.069Ω・cm、耐湿試験後体積抵抗率が1.41Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt in the whole (inside and on the surface layer portion), and the oxygen content was 0.4% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.069 Ω · cm, and the volume resistivity after the moisture resistance test was 1.41 Ω · cm. These results are summarized in Table 2.

(実施例6)
純水3800mlに水酸化ナトリウムおよび酒石酸を添加し、撹拌しながら80℃まで加温した。第1段の還元析出時には、前記水溶液にヒドラジン300mlと塩化ニッケル水溶液をニッケル当量で65g添加し、第2段での還元析出時にのみ、塩化コバルト水溶液と塩化ニッケル水溶液をコバルト含有量がNi+Co量に対し35質量%となるように混合した水溶液をNi+Co当量で65g添加して、各々還元反応によりニッケル粉を析出させた。その後、ろ過および水洗した後、大気中にて100℃で乾燥してニッケル粉を得た。さらに、4%水素−窒素混合ガス中250℃で1時間の熱処理を行った。
(Example 6)
Sodium hydroxide and tartaric acid were added to 3800 ml of pure water and heated to 80 ° C. with stirring. At the first stage of reduction precipitation, 300 ml of hydrazine and nickel chloride aqueous solution are added to the aqueous solution in an equivalent amount of 65 g. Only at the time of reduction precipitation at the second stage, the cobalt chloride aqueous solution and the nickel chloride aqueous solution have a cobalt content of Ni + Co. On the other hand, 65 g of an aqueous solution mixed so as to be 35% by mass was added at a Ni + Co equivalent, and nickel powder was precipitated by a reduction reaction. Then, after filtering and washing with water, it dried at 100 degreeC in air | atmosphere, and obtained nickel powder. Further, heat treatment was performed for 1 hour at 250 ° C. in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.8質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.095Ω・cm、耐湿試験後体積低効率が1.04Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.8% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial volume resistivity was 0.095 Ω · cm, and the low volume efficiency after the moisture resistance test was 1.04 Ω · cm. These results are summarized in Table 2.

(実施例7)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、真空乾燥を行ってニッケル粉を得た。さらに、熱処理条件を変更し、10%水素−窒素混合ガス中150℃で2時間の熱処理を行った。
(Example 7)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by vacuum drying to obtain nickel powder. Furthermore, heat treatment conditions were changed, and heat treatment was performed at 150 ° C. for 2 hours in a 10% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.6質量%であった。その粉体特性を、表1に示した。また、ニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.047Ω・cm、耐湿試験後体積抵抗率が1.61Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.6% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial volume resistivity was 0.047 Ω · cm, and the volume resistivity after the moisture resistance test was 1.61 Ω · cm. These results are summarized in Table 2.

(実施例8)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理温度のみ変更し、4%水素−窒素混合ガス中300℃で1時間の熱処理を行った。
(Example 8)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, only the heat treatment temperature was changed, and heat treatment was performed at 300 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.6質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.045Ω・cm、耐湿試験後体積抵抗率が0.161Ω・cmであった。これらの結果を、表2にまとめて示した。
(実施例9)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理温度のみ変更し、4%水素−窒素混合ガス中400℃で1時間の熱処理を行った。
The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.6% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.045 Ω · cm, and the volume resistivity after the moisture resistance test was 0.161 Ω · cm. These results are summarized in Table 2.
Example 9
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, only the heat treatment temperature was changed, and heat treatment was performed at 400 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は0.5質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.050Ω・cm、耐湿試験後体積抵抗率が0.254Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder after the heat treatment contained cobalt only in the surface layer portion, and the oxygen content was 0.5% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.050 Ω · cm, and the volume resistivity after the moisture resistance test was 0.254 Ω · cm. These results are summarized in Table 2.

(比較例1)
実施例5と同様に2段階のニッケルの還元析出を行ったが、第1段および第2段の還元析出時とも塩化コバルト水溶液を添加しなかった。ろ過および水洗した後、100℃で大気乾燥を行ってニッケル粉を得た。ただし、熱処理は行わなかった。なお、塩化ニッケル水溶液は、第1段の還元析出時にニッケル当量で13g添加し、第2段の還元析出時にはニッケル当量で5g添加した。
(Comparative Example 1)
In the same manner as in Example 5, two-stage nickel reduction precipitation was performed, but no cobalt chloride aqueous solution was added during the first-stage and second-stage reduction precipitation. After filtration and washing with water, air drying was performed at 100 ° C. to obtain nickel powder. However, no heat treatment was performed. The nickel chloride aqueous solution was added in an amount of 13 g with a nickel equivalent at the first stage of reduction precipitation, and 5 g with a nickel equivalent at the second stage of reduction precipitation.

ニッケル粉は、コバルトを含まず、酸素含有量は0.8質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.073Ω・cm、耐湿試験後体積抵抗率が9.56Ω・cmであった。これらの結果を、表2にまとめて示した。   The nickel powder did not contain cobalt, and the oxygen content was 0.8% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.073 Ω · cm, and the volume resistivity after the moisture resistance test was 9.56 Ω · cm. These results are summarized in Table 2.

(比較例2)
導電ペーストおよび導電樹脂用の導電性粒子として市販されている代表的なフィラー状ニッケル粉について、その粉体特性を、表1に示した。酸素含有量は0.2質量%であった。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.073Ω・cm、耐湿試験後体積抵抗率が5.31Ω・cmであった。これらの結果を、表2にまとめて示した。
(Comparative Example 2)
Table 1 shows the powder characteristics of typical filler-like nickel powder commercially available as conductive particles for conductive paste and conductive resin. The oxygen content was 0.2% by mass. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial volume resistivity was 0.073 Ω · cm, and the volume resistivity after the moisture resistance test was 5.31 Ω · cm. These results are summarized in Table 2.

(比較例3)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。ただし、熱処理は行わなかった。得られたニッケル粉は、表層部にのみコバルトを含有しており、酸素含有量は1.0質量%であった。その粉体特性を、表1に示した。また、このニッケル粉について、実施例1と同様にして評価したところ、初期体積抵抗率が0.237Ω・cm、耐湿試験後体積抵抗率が5.31Ω・cmであった。これらの結果を、表2にまとめて示した。
(Comparative Example 3)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. However, no heat treatment was performed. The obtained nickel powder contained cobalt only in the surface layer portion, and the oxygen content was 1.0% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial volume resistivity was 0.237 Ω · cm, and the volume resistivity after the moisture resistance test was 5.31 Ω · cm. These results are summarized in Table 2.

(比較例4)
実施例1と同様に2段階のニッケルの還元析出を行い、水洗およびろ過後、100℃で大気乾燥を行ってニッケル粉を得た。さらに、熱処理温度のみ変更し、4%水素−窒素混合ガス中550℃で1時間の熱処理を行った。
(Comparative Example 4)
In the same manner as in Example 1, two-stage nickel reduction precipitation was performed, followed by washing with water and filtration, followed by air drying at 100 ° C. to obtain nickel powder. Furthermore, only the heat treatment temperature was changed, and heat treatment was performed at 550 ° C. for 1 hour in a 4% hydrogen-nitrogen mixed gas.

熱処理後のニッケル粉の酸素含有量は0.2質量%であったが、焼結が進んでおり、導電粒子としての使用が不可能な状態であり、体積抵抗率の測定は行わなかった。
Although the oxygen content of the nickel powder after the heat treatment was 0.2% by mass, sintering was progressing, and it was impossible to use as conductive particles, and volume resistivity was not measured.

Claims (8)

コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子で主として構成されるニッケル粉であって、酸素含有量が0.8質量%以下であることを特徴とするニッケル粉。   Cobalt is contained in 1 to 20% by mass, the remainder is nickel and inevitable impurities, nickel powder mainly composed of secondary particles in which primary particles are aggregated, and the oxygen content is 0.8% by mass or less Nickel powder characterized by that. コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子からなり、酸素含有量が0.8質量%以下で、該二次粒子の表面に存在する一次粒子がさらに結晶成長している表層部を有し、前記表層部のコバルト含有量が40質量%以下で、ニッケル粉の内部に存在するコバルト含有量より多いことを特徴とするニッケル粉。   Cobalt is contained in an amount of 1 to 20% by mass, the balance is made of nickel and inevitable impurities, and the primary particles are agglomerated secondary particles. The oxygen content is 0.8% by mass or less and exists on the surface of the secondary particles. A nickel powder, wherein the primary particles further have a surface layer part in which crystals are grown, and the cobalt content of the surface layer part is 40% by mass or less and is higher than the cobalt content present inside the nickel powder. コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、一次粒子が凝集した二次粒子からなり、酸素含有量が0.8質量%以下で、該二次粒子の表面に存在する一次粒子がさらに結晶成長している表層部を有し、前記表層部にのみコバルトを含有し、該表層部におけるコバルト含有量が1〜40質量%であることを特徴とするニッケル粉。   Cobalt is contained in an amount of 1 to 20% by mass, the balance is made of nickel and inevitable impurities, and the primary particles are agglomerated secondary particles. The oxygen content is 0.8% by mass or less and exists on the surface of the secondary particles. A nickel powder characterized in that the primary particles further have a surface layer part in which crystals are grown, cobalt is contained only in the surface layer part, and the cobalt content in the surface layer part is 1 to 40% by mass. 走査電子顕微鏡(SEM)観察による平均一次粒子径が0.2〜2.0μmであり、レーザ流動分布測定による平均二次粒子径(D50)が8〜50μmであり、タップ密度が0.5〜2.0g/mlであることを特徴とする請求項1〜3のいずれかに記載のニッケル粉。   The average primary particle diameter by scanning electron microscope (SEM) observation is 0.2 to 2.0 μm, the average secondary particle diameter (D50) by laser flow distribution measurement is 8 to 50 μm, and the tap density is 0.5 to The nickel powder according to claim 1, wherein the nickel powder is 2.0 g / ml. 2価のニッケル塩を含有する水溶液に還元剤を添加してニッケルを析出させる第1段の還元析出工程と、その水溶液に少なくとも2価のニッケル塩溶液を添加して、さらにニッケルを析出させる第2段の還元析出工程とからなり、前記第1段および第2段の還元析出工程のうち少なくとも第2段において、水溶液に2価のコバルト塩を添加した状態でニッケル粉を析出させるニッケル粉の製造方法であって、得られたニッケル粉を還元雰囲気中において100〜500℃の温度で熱処理することを特徴とするニッケル粉の製造方法。   A first-stage reduction-precipitation step of depositing nickel by adding a reducing agent to an aqueous solution containing a divalent nickel salt, and adding at least a divalent nickel salt solution to the aqueous solution to further precipitate nickel A nickel powder for depositing nickel powder in a state in which a divalent cobalt salt is added to an aqueous solution in at least the second stage of the first and second stage reduction deposition processes. It is a manufacturing method, Comprising: The nickel powder obtained is heat-processed at the temperature of 100-500 degreeC in reducing environment, The manufacturing method of the nickel powder characterized by the above-mentioned. 前記第1段および第2段の還元析出工程における水溶液に添加する2価のコバルト塩の量が、ニッケルとコバルトの合計に対しコバルトが1〜20質量%となるようにすることを特徴とする請求項4に記載のニッケル粉の製造方法。   The amount of the divalent cobalt salt added to the aqueous solution in the first and second reduction and precipitation steps is such that cobalt is 1 to 20% by mass with respect to the total of nickel and cobalt. The manufacturing method of the nickel powder of Claim 4. 第2段の還元析出工程における水溶液に添加する2価のコバルト塩の量が、第1段の還元析出工程における水溶液に添加する2価のコバルト塩の量より多いことを特徴とする請求項6に記載のニッケル粉の製造方法。   The amount of the divalent cobalt salt added to the aqueous solution in the second stage reduction precipitation step is larger than the amount of the divalent cobalt salt added to the aqueous solution in the first stage reduction precipitation step. The manufacturing method of the nickel powder as described in 2. 前記第2段の還元析出工程においてのみ2価のコバルト塩を添加し、かつ、水溶液に添加する2価のコバルト塩の量が、ニッケルとコバルトの合計に対しコバルトが1〜40質量%となるようにすることを特徴とする請求項4に記載のニッケル粉の製造方法。
The divalent cobalt salt is added only in the second reduction precipitation step, and the amount of the divalent cobalt salt added to the aqueous solution is 1 to 40% by mass of cobalt with respect to the total of nickel and cobalt. The method for producing nickel powder according to claim 4, wherein:
JP2004055258A 2004-02-27 2004-02-27 Nickel powder and manufacturing method therefor Pending JP2005240164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055258A JP2005240164A (en) 2004-02-27 2004-02-27 Nickel powder and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055258A JP2005240164A (en) 2004-02-27 2004-02-27 Nickel powder and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005240164A true JP2005240164A (en) 2005-09-08

Family

ID=35022199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055258A Pending JP2005240164A (en) 2004-02-27 2004-02-27 Nickel powder and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005240164A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1974840A1 (en) * 2005-11-29 2008-10-01 Tyco Electronics Raychem K.K. Nickel powder, method for producing same, and polymer ptc device using such nickel powder
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2011149080A (en) * 2010-01-25 2011-08-04 Sumitomo Metal Mining Co Ltd Nickel powder and production method therefor
WO2015115427A1 (en) 2014-01-30 2015-08-06 国立大学法人高知大学 Manufacturing method for nickel powder
JP2015158000A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
JP2015158001A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
US9700942B2 (en) 2014-02-17 2017-07-11 Sumitomo Metal Mining Co., Ltd. Method for producing seed crystals used for producing hydrogen-reduced nickel powder
WO2019123972A1 (en) 2017-12-21 2019-06-27 住友金属鉱山株式会社 Method for producing nickel powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1974840A1 (en) * 2005-11-29 2008-10-01 Tyco Electronics Raychem K.K. Nickel powder, method for producing same, and polymer ptc device using such nickel powder
EP1974840A4 (en) * 2005-11-29 2011-11-09 Tyco Electronics Raychem Kk Nickel powder, method for producing same, and polymer ptc device using such nickel powder
KR101356377B1 (en) 2005-11-29 2014-01-27 타이코 일렉트로닉스 레이켐 케이. 케이. Nickel powder, method for producing same, and polymer ptc device using such nickel powder
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2011149080A (en) * 2010-01-25 2011-08-04 Sumitomo Metal Mining Co Ltd Nickel powder and production method therefor
WO2015115427A1 (en) 2014-01-30 2015-08-06 国立大学法人高知大学 Manufacturing method for nickel powder
US10118224B2 (en) 2014-01-30 2018-11-06 Kochi University, National University Corporation Method for producing nickel powder
US9700942B2 (en) 2014-02-17 2017-07-11 Sumitomo Metal Mining Co., Ltd. Method for producing seed crystals used for producing hydrogen-reduced nickel powder
JP2015158000A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
JP2015158001A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
WO2019123972A1 (en) 2017-12-21 2019-06-27 住友金属鉱山株式会社 Method for producing nickel powder

Similar Documents

Publication Publication Date Title
JP4942333B2 (en) Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
KR101236253B1 (en) Method of producing copper powder and copper powder
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
US20130164553A1 (en) Copper powder, copper paste and method for preparing copper powder
KR20010061982A (en) Copper powder and process for producing copper powder
WO2016091216A1 (en) Silver-metal oxide electrical contact tip material preparation method, device and application
JP2016176093A (en) Silver-covered metal powder and method for producing the same
JP4490305B2 (en) Copper powder
JP2005240164A (en) Nickel powder and manufacturing method therefor
CN108025366B (en) Method for producing noble metal powder
JP4135014B2 (en) Nickel powder and method for producing the same
KR20150032030A (en) Preparing method of metal complex having excellent surface properties
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP4163987B2 (en) Flaked copper powder, method for producing flaky copper powder and conductive paste
JP2008111175A (en) Composite metal powder, its production method, and electrically conductive paste
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
JP5942791B2 (en) Method for producing nickel powder
JP2014189798A (en) Sulfur-containing nickel powder and method for manufacturing the same
JP6179423B2 (en) Method for producing sulfur-containing nickel powder
JP2005298927A (en) Nickel powder and its production method
JP2018131665A (en) Nickel coat copper powder, manufacturing method thereof and conductive paste
JPH05190240A (en) Manufacture of electric brush and copper powder material for manufacturing electric brush
JP4660784B2 (en) Conductive paste
TW201609558A (en) Solder ball and method of making the same