JP2015158001A - Nickel powder production process - Google Patents

Nickel powder production process Download PDF

Info

Publication number
JP2015158001A
JP2015158001A JP2014034596A JP2014034596A JP2015158001A JP 2015158001 A JP2015158001 A JP 2015158001A JP 2014034596 A JP2014034596 A JP 2014034596A JP 2014034596 A JP2014034596 A JP 2014034596A JP 2015158001 A JP2015158001 A JP 2015158001A
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
slurry
wet
coarse particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014034596A
Other languages
Japanese (ja)
Other versions
JP6270035B2 (en
Inventor
潤志 石井
Junji Ishii
潤志 石井
貴広 植田
Takahiro Ueda
貴広 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014034596A priority Critical patent/JP6270035B2/en
Publication of JP2015158001A publication Critical patent/JP2015158001A/en
Application granted granted Critical
Publication of JP6270035B2 publication Critical patent/JP6270035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a nickel powder containing no coarse particles, and production process thereof, which is suitable for an internal electrode of thin layered multilayer ceramic capacitor; and specifically a process for producing a nickel powder in which the average particle size is 0.1 to 0.3 μm and in which the ratio of coarse particles having a particle size of 1.0 μm or more is 50 ppm or less of the total number of particles and in which the oxygen content is reduced.SOLUTION: The nickel powder production process is characterized in comprising: a step for forming a water slurry in which the raw material nickel powder is at high dispersion state in water, and wet classification treating the water slurry to form a nickel slurry; and a step for drying the nickel slurry obtained from the wet classification treatment step to form a nickel powder, and heat the nickel powder under a reduction atmosphere.

Description

本発明は、積層セラミックコンデンサ(multilayer ceramic capacitors:MLCC)の内部電極として好適に用いることができるニッケル粉末の製造方法に関する。   The present invention relates to a method for producing nickel powder that can be suitably used as an internal electrode of a multilayer ceramic capacitor (MLCC).

従来、ニッケル粉末は、厚膜導電体を作製するための導電ペーストの材料として使用されてきている。この厚膜導電体は、電気回路の形成、積層セラミックコンデンサ及び多層セラミック基板等の積層セラミック部品の電極等に用いられ、特に積層セラミックコンデンサでは、小型・高容量化の要求から高積層化が進み、そのために用いる導電ペーストの使用量も大幅に増加している。このため、導電ペーストに使用する金属粉末としては、高価な貴金属の使用を避け、安価なニッケルなどの卑金属が主流となっている。   Conventionally, nickel powder has been used as a material for a conductive paste for producing a thick film conductor. This thick film conductor is used for the formation of electric circuits, the electrodes of multilayer ceramic components such as multilayer ceramic capacitors and multilayer ceramic substrates, etc. Especially in multilayer ceramic capacitors, the increase in the number of layers is progressing due to the demand for smaller size and higher capacity. The amount of conductive paste used for that purpose has also increased significantly. For this reason, as the metal powder used for the conductive paste, the use of expensive noble metals is avoided, and inexpensive base metals such as nickel are mainly used.

この積層セラミックコンデンサは、例えば、次のような方法で製造される。
先ず、ニッケル粉末と、エチルセルロース等の樹脂と、ターピネオール等の有機溶剤等とを混練して得られた導電ペーストを、誘電体グリーンシート上にスクリーン印刷して内部電極を作製する。次に、印刷された内部電極が交互に重なるように誘電体グリーンシートを積層し、圧着する。その後、積層体を所定の大きさにカットし、有機バインダとして使用したエチルセルロース等の樹脂の燃焼除去を行うための脱バインダ処理を行った後、1300℃まで高温焼成してセラミック体を得る。そして、このセラミック体に外部電極を取り付け、積層セラミックコンデンサを悪性するものである。
This multilayer ceramic capacitor is manufactured, for example, by the following method.
First, a conductive paste obtained by kneading a nickel powder, a resin such as ethyl cellulose, and an organic solvent such as terpineol is screen-printed on a dielectric green sheet to produce an internal electrode. Next, dielectric green sheets are laminated and pressure bonded so that the printed internal electrodes are alternately overlapped. Thereafter, the laminate is cut into a predetermined size, subjected to a binder removal treatment for removing the resin such as ethyl cellulose used as an organic binder, and then fired at a high temperature to 1300 ° C. to obtain a ceramic body. And an external electrode is attached to this ceramic body, and a multilayer ceramic capacitor is malignant.

ところで、内部電極となる導電ペースト中の金属粉末は、上記のように、貴金属よりもニッケルなどの卑金属が主流となってきていることから、積層体の脱バインダ処理では、ニッケル粉末などが酸化しないように、酸素含有量を極めて微量にした雰囲気下にて行われている。   By the way, as described above, the base powder such as nickel is more prevalent than the precious metal in the metal powder in the conductive paste to be the internal electrode. Therefore, the nickel powder or the like is not oxidized in the binder removal treatment of the laminate. Thus, it is performed in an atmosphere in which the oxygen content is extremely small.

さらに近年、小型化及び大容量化が求められている積層セラミックコンデンサにおいて、その小型化及び大容量化を達成するために、積層セラミックコンデンサを構成する内部電極及び誘電体共に、薄層化が進められている。特に、内部電極に使用されるニッケル粉末の粒径は、0.5μm以下が主流となっている。   Further, in recent years, in multilayer ceramic capacitors that have been required to be downsized and increased in capacity, in order to achieve the reduction in size and capacity, both internal electrodes and dielectrics constituting the multilayer ceramic capacitor have been made thinner. It has been. In particular, the particle diameter of nickel powder used for the internal electrode is mainly 0.5 μm or less.

この内部電極に使用されるニッケル粉末にはさまざまな特性が求められているが、その一つに粗大粒子を含まないことが重要となっている。その理由とは、粗大粒子を含むと、内部電極層から粗大粒子が突き出してしまい、別の内部電極層と接触して短絡を起こしてしまうからである。   The nickel powder used for the internal electrode is required to have various characteristics, but it is important that one of them does not contain coarse particles. The reason is that if coarse particles are included, the coarse particles protrude from the internal electrode layer, and contact with another internal electrode layer causes a short circuit.

さらに、酸素を多く含むニッケル粉、即ち酸素含有量が多いと、還元雰囲気下での焼成時にニッケル粉末の体積収縮が大きくなり、電極の連続性が保てないことや、酸化物の還元によるガス発生にてコンデンサ内にクラックやデラミネーションを発生させ、結果としてコンデンサの容量低下を引き起こすために、酸素含有量も少ないことが求められている。   Furthermore, nickel powder containing a large amount of oxygen, that is, if the oxygen content is high, the volumetric shrinkage of the nickel powder increases during firing in a reducing atmosphere, and the continuity of the electrode cannot be maintained. In order to generate cracks and delamination in the capacitor due to the occurrence, resulting in a decrease in the capacity of the capacitor, a low oxygen content is required.

このような特性を希求されるニッケル粉において、先ず粗大粒子の除去方法として、水を媒体としニッケル粉をスラリー化し、このスラリーを液体サイクロンにて分級することで、2μm以上の粗粒を100万分の100部以下に抑える方法が提案されている(特許文献1)。
この方法では2μm以上の粗粒を除去することには効果的であるが、1μmから2μmオーダーの粗粒を除去するには不十分である。また、水中で処理を行うためニッケル表面の水酸化物等が増加し、結果としてニッケルの酸素含有量が増加するという問題がある。
In the nickel powder that requires such characteristics, first, as a method for removing coarse particles, the nickel powder is slurried using water as a medium, and the slurry is classified with a hydrocyclone, whereby 1 μm of coarse particles of 2 μm or more are obtained Has been proposed (Patent Document 1).
This method is effective for removing coarse particles of 2 μm or more, but is insufficient for removing coarse particles of the order of 1 μm to 2 μm. Further, since the treatment is performed in water, there is a problem in that the amount of hydroxide and the like on the nickel surface increases, and as a result, the oxygen content of nickel increases.

そこで、ニッケル表面の水酸化物や炭酸塩を除去する方法として、ニッケル粉の各粒子表面に特定条件下で脂肪酸の金属塩を形成した後、熱処理をする方法が提案されている(特許文献2)が、この方法では、熱処理時の粒子同士の焼結進行を抑制し、粗大粒子増加を抑制することには効果的であるが、元々存在する粗大粒子については言及されていない。   Therefore, as a method for removing hydroxide or carbonate on the nickel surface, a method of forming a fatty acid metal salt on the surface of each particle of nickel powder under specific conditions and then heat-treating has been proposed (Patent Document 2). However, this method is effective in suppressing the progress of sintering between particles during heat treatment and suppressing the increase in coarse particles, but does not mention the coarse particles originally present.

特開2001−62332号公報JP 2001-62332 A 特開2003−129105号公報JP 2003-129105 A

本発明は、かかる問題点に鑑みてなされたものであって、薄層化された積層セラミックコンデンサの内部電極を作製するために、好適なニッケル粉末およびその製造方法を提供することを目的とする。
具体的には、平均粒径が0.1〜0.3μmであり、1.0μm以上の粗大粒子の個数が全粒子個数の50ppm以下であり、かつ酸素含有量が低減されたニッケル粉末の製造方法を提供することを目的とする。
The present invention has been made in view of such problems, and it is an object of the present invention to provide a suitable nickel powder and a method for manufacturing the same in order to produce a thin-layered multilayer ceramic capacitor internal electrode. .
Specifically, production of nickel powder having an average particle size of 0.1 to 0.3 μm, the number of coarse particles of 1.0 μm or more being 50 ppm or less of the total number of particles, and a reduced oxygen content It aims to provide a method.

本発明者らは、ニッケル粉末が水スラリー中で高分散状態を形成し、その状態から湿式分級を施し、その後還元雰囲気下での加熱を経て形成される薄膜化された積層セラミックコンデンサの内部電極を形成する好適なニッケル粉末が得られることを見出し、本発明の完成に至ったものである。   The inventors of the present invention have made it possible to form an internal electrode of a thin-film multilayer ceramic capacitor in which nickel powder forms a highly dispersed state in a water slurry, is subjected to wet classification from that state, and then is heated through a reducing atmosphere. The present inventors have found that a suitable nickel powder that forms can be obtained, and have completed the present invention.

すなわち本発明の第1の発明は、原料ニッケル粉末が水中で高分散状態となる水スラリーを形成し、その水スラリーを湿式分級処理してニッケルスラリーを形成する工程と、湿式分級処理により得られたニッケルスラリーを乾燥してニッケル粉末を形成し、還元雰囲気下でニッケル粉末を加熱する工程とを含むことを特徴とするニッケル粉末の製造方法である。   That is, the first invention of the present invention is obtained by forming a water slurry in which the raw material nickel powder is highly dispersed in water, subjecting the water slurry to a wet classification process to form a nickel slurry, and a wet classification process. The nickel slurry is dried to form nickel powder, and the nickel powder is heated in a reducing atmosphere.

本発明の第2の発明は、第1の発明における原料ニッケル粉末が、湿式還元法を用いて生成されたニッケル粉であることを特徴とするニッケル粉末の製造方法である。   According to a second aspect of the present invention, there is provided a nickel powder manufacturing method, wherein the raw material nickel powder in the first aspect is nickel powder produced by a wet reduction method.

本発明の第3の発明は、第2の発明における原料ニッケル粉末が、ニッケル塩水溶液と、還元剤と、パラジウムと銀とを含むアルカリ性コロイド溶液とからニッケル粉末を晶析させる湿式還元法を用いて生成されたニッケル粉末であることを特徴とするニッケル粉末の製造方法である。   The third invention of the present invention uses a wet reduction method in which the raw material nickel powder in the second invention crystallizes nickel powder from an aqueous nickel salt solution, a reducing agent, and an alkaline colloidal solution containing palladium and silver. A nickel powder production method, characterized in that the nickel powder is produced.

本発明の第4の発明は、第1から第3の発明における還元雰囲気が、1〜50体積%の水素を含む不活性ガス雰囲気であることを特徴とするニッケル粉末の製造方法である。   According to a fourth aspect of the present invention, there is provided a nickel powder manufacturing method characterized in that the reducing atmosphere in the first to third aspects is an inert gas atmosphere containing 1 to 50% by volume of hydrogen.

本発明の第5の発明は、第1から第4の発明における還元雰囲気下でニッケル粉末を加熱する工程の加熱温度が、150〜350℃であることを特徴とするニッケル粉末の製造方法である。   According to a fifth aspect of the present invention, there is provided the nickel powder manufacturing method, wherein the heating temperature in the step of heating the nickel powder in the reducing atmosphere according to the first to fourth aspects is 150 to 350 ° C. .

本発明の第6の発明は、第1〜第5の発明における還元雰囲気下でニッケル粉末を加熱する工程により生成されたニッケル粉末における1.0μm以上の粒径を有する粗大粒子の量が、全粒子量の50ppm以下であることを特徴とするニッケル粉末の製造方法である。   In a sixth aspect of the present invention, the amount of coarse particles having a particle diameter of 1.0 μm or more in the nickel powder produced by the step of heating the nickel powder under the reducing atmosphere in the first to fifth aspects is The nickel powder production method is characterized in that the amount of particles is 50 ppm or less.

本発明の第7の発明は、第6の発明におけるニッケル粉末の酸素含有量が、1.4質量%以下であることを特徴とするニッケル粉末の製造方法である。   A seventh invention of the present invention is the nickel powder manufacturing method according to the sixth invention, wherein the oxygen content of the nickel powder is 1.4% by mass or less.

本発明の第8の発明は、第6又は第7の発明における平均粒径が、0.1〜0.3μmであることを特徴とするニッケル粉末の製造方法である。   An eighth invention of the present invention is the nickel powder manufacturing method according to the sixth or seventh invention, wherein the average particle size is 0.1 to 0.3 μm.

本発明に係るニッケル粉末の製造方法によれば、平均粒径が0.1〜0.3μm、1.0μm以上の粗大粒子の個数が全粒子個数の50ppm以下、且つ酸素含有量が1.4質量%以下のニッケル粒子を製造可能である。
そのため、薄膜化された積層セラミックコンデンサの内部電極に用いれば、粗大粒子や酸素含有量に起因するコンデンサの容量低下を引き起こすことがなく、工業上顕著な効果を奏するものである。
According to the method for producing nickel powder according to the present invention, the number of coarse particles having an average particle size of 0.1 to 0.3 μm, 1.0 μm or more is 50 ppm or less of the total number of particles, and the oxygen content is 1.4. Nickel particles having a mass% or less can be produced.
Therefore, if it is used for the internal electrode of a thin-film multilayer ceramic capacitor, the capacity of the capacitor is not reduced due to coarse particles or oxygen content, and an industrially significant effect is achieved.

本発明の製造方法では、ニッケル粉末を水スラリーにして高分散状態とした後に湿式分級処理を行い、分級された水スラリーを乾燥後還元雰囲気下で加熱処理を行う。   In the production method of the present invention, the nickel powder is made into a water slurry to obtain a highly dispersed state, and then wet classification is performed, and the classified water slurry is dried and then heated in a reducing atmosphere.

なお、本発明以外の粗粒除去を行う処理工程としては、得られたニッケル粉末を一度乾式分級しニッケル粉末を得る方法が考えられる。しかしながら得られたニッケル粉末を一度乾式分級しニッケル粉末を得る方法では、粗粒が十分なレベルにまで除去できていないことが多く、粗粒除去の信頼性が低い状態となる。   As a processing step for removing coarse particles other than the present invention, a method of obtaining a nickel powder by once dry-classifying the obtained nickel powder can be considered. However, in the method of obtaining the nickel powder by once dry-classifying the obtained nickel powder, the coarse particles are often not removed to a sufficient level, and the reliability of removing the coarse particles is low.

<ニッケル粉の製造方法>
以下、本発明の詳細な説明を行う。
本発明は、湿式還元法、CVD法やプラズマ法などの気相法、噴霧熱分解法等、種々の方式により得られたニッケル粉末を原料ニッケル粉末として用いることができるが、湿式分級前に水スラリーとすることから、容易に水スラリーとすることができる湿式還元法により得られたニッケル粉末に適用するのが好適である。以下に湿式還元法にて得られたニッケル粉末を原料ニッケル粉末の具体例として説明するが、もちろんこれに限定されることはない。
<Manufacturing method of nickel powder>
Hereinafter, the present invention will be described in detail.
In the present invention, nickel powder obtained by various methods such as a wet reduction method, a gas phase method such as a CVD method or a plasma method, or a spray pyrolysis method can be used as a raw material nickel powder. Since it is made into a slurry, it is suitable to apply to the nickel powder obtained by the wet reduction method which can be easily made into a water slurry. The nickel powder obtained by the wet reduction method will be described below as a specific example of the raw material nickel powder, but is not limited to this.

湿式還元法によってニッケル粉末を得る工程は、公知の方法を用いればよく、還元剤とニッケル塩水溶液と必要に応じて錯化剤や分散剤を添加してニッケル粉末を晶析させる。
本発明では平均粒径が0.1〜0.3μmの原料ニッケル粉末を得るために、特許第4957172号公報に記載されているパラジウムと銀とを含むアルカリ性コロイド溶液をさらに添加することが望ましい。
The step of obtaining the nickel powder by the wet reduction method may use a known method, and the nickel powder is crystallized by adding a reducing agent, an aqueous nickel salt solution and, if necessary, a complexing agent or a dispersing agent.
In the present invention, it is desirable to further add an alkaline colloidal solution containing palladium and silver described in Japanese Patent No. 4957172 in order to obtain raw material nickel powder having an average particle size of 0.1 to 0.3 μm.

本発明の製造方法では先ず、上記方法により得られたニッケル粉末を原料ニッケル粉末として用い、その原料ニッケル粉末を水スラリーにして高分散状態とした後に、湿式分級する工程を行う。
この工程では、湿式還元法によって得られたニッケル粉末(原料ニッケル粉末)と反応溶液とを、公知の方法で固液分離し、その固相成分に純水を添加し、ニッケル粉末を純水中で高分散させた水スラリーを形成し、その水スラリーを湿式分級機で分級させる方法が望ましく、湿式還元法以外の方法で得られたニッケル粉末の場合は、固液分離を経ずに直接純水を添加して水スラリーとすればよい。また水スラリーとする前に不純物成分を除去するために洗浄を加えてもよい。
In the production method of the present invention, first, the nickel powder obtained by the above method is used as the raw material nickel powder, and after the raw nickel powder is made into a water slurry and highly dispersed, a wet classification step is performed.
In this step, the nickel powder (raw material nickel powder) obtained by the wet reduction method and the reaction solution are solid-liquid separated by a known method, pure water is added to the solid phase component, and the nickel powder is removed from the pure water. It is desirable to form a water slurry that has been highly dispersed in and then classify the water slurry with a wet classifier. In the case of nickel powder obtained by a method other than the wet reduction method, it is directly purified without solid-liquid separation. Water may be added to form a water slurry. In addition, washing may be added to remove the impurity component before forming the water slurry.

高分散させる方法としては、湿式カウンタージェットミル、攪拌槽の内壁とほぼ同径の径の攪拌羽根が高速回転することによりスラリー中の粉末粒子表面を磨砕する湿式粉砕機、例えばアルティマイザー(スギノマシン株式会社製)やTKフィルミックス(特殊機化工業株式会社製)等を使用して処理すると、後工程の湿式分級処理において分級可能な程度の分散状態が容易に得られる。また、湿式粉砕機の別の手段としては、ポンプにより加圧したスラリーを段階的に狭くした流路に通して加速し、ダイヤモンドの固いプレートに衝突させて磨砕する装置、例えば、マイクロフルイダイザー(みずほ工業株式会社製)やナノマイザー(吉田機械工業株式会社製)等を用いることができる。
例えば、アルティマイザー(スギノマシン株式会社製)を用いた場合、固形分濃度30重量%の水スラリーを、2000気圧で加圧し15回対向衝突させる条件で高分散スラリーを得る事ができる。またこの操作を複数回繰り返すことで、さらに分散性を高めることができる。
As a high dispersion method, a wet counter jet mill, a wet pulverizer that grinds the surface of the powder particles in the slurry by rotating a stirring blade having the same diameter as the inner wall of the stirring vessel at high speed, for example, an optimizer (Sugino) When processed using Machine Co., Ltd., TK Fillmix (made by Tokushu Kika Kogyo Co., Ltd.) or the like, a dispersion state that can be classified in a wet-classification process in a subsequent process can be easily obtained. In addition, as another means of the wet pulverizer, an apparatus for accelerating the slurry pressurized by a pump through a narrowed flow path and colliding with a hard diamond plate, for example, a microfluidizer (Mizuho Industry Co., Ltd.), Nanomizer (Yoshida Machine Industry Co., Ltd.), etc. can be used.
For example, when an optimizer (manufactured by Sugino Machine Co., Ltd.) is used, a highly dispersed slurry can be obtained under the condition that a water slurry having a solid content concentration of 30% by weight is pressurized at 2000 atm and collided 15 times. Moreover, dispersibility can be further improved by repeating this operation a plurality of times.

湿式による分級には、サイクロン方式、遠心分離方式による装置、例えば、ハイドロサイクロン(日本化学機械製造株式会社製)、LCSS(株式会社CMS社製)、ナノカット/マイクロカット(Krettek社製)等を用いることができる。   For the wet classification, an apparatus using a cyclone system or a centrifugal system, for example, a hydrocyclone (manufactured by Nippon Chemical Machinery Co., Ltd.), LCSS (manufactured by CMS Co., Ltd.), nano cut / micro cut (manufactured by Krettek) or the like is used. be able to.

次に、分級後の水スラリーを固液分離して得た固相成分を乾燥して生成したニッケル粉末を、還元雰囲気下で加熱する工程である。
本工程では高分散状態の水スラリーの形成から湿式分級までに形成されたニッケル粉末表面の過剰な酸化物や水酸化物を除去するものである。
Next, the nickel powder produced by drying the solid phase component obtained by solid-liquid separation of the classified water slurry is heated in a reducing atmosphere.
In this step, excess oxides and hydroxides on the surface of the nickel powder formed from the formation of the highly dispersed water slurry to the wet classification are removed.

湿式分級後の乾燥は公知の方法を用いればよく、この乾燥後に得られたニッケル粉末の還元雰囲気での加熱の条件は、用いる還元雰囲気として水素濃度が1〜50体積%となる量の水素ガスと不活性ガスからなる混合ガスを用い、加熱炉に供給するのが望ましい。
水素ガス濃度が1体積%未満であると、ニッケルの表面酸化物、表面水酸化物等の除去が十分に進行せず、効果が明確に現れない。一方、水素ガス濃度が50体積%より多くても、その効果に変わりはない。
不活性ガスは特に限定されず、窒素ガス、アルゴンガスなどが使用できる。
The drying after the wet classification may be performed using a known method, and the heating conditions of the nickel powder obtained after the drying in a reducing atmosphere are as follows: the amount of hydrogen gas in which the hydrogen concentration is 1 to 50% by volume as the reducing atmosphere to be used It is desirable to use a mixed gas consisting of an inert gas and supply it to the heating furnace.
When the hydrogen gas concentration is less than 1% by volume, removal of nickel surface oxide, surface hydroxide, etc. does not proceed sufficiently, and the effect does not appear clearly. On the other hand, even if the hydrogen gas concentration is higher than 50% by volume, the effect is not changed.
The inert gas is not particularly limited, and nitrogen gas, argon gas, or the like can be used.

さらに、加熱温度は150〜350℃であることが望ましい。加熱温度が150℃未満であると、ニッケル粉末表面の水酸化物等の除去が十分に進行せず、効果が明確に現れない。加熱温度が350℃より高い場合、ニッケル粉末同士のネッキング、焼結による粗大粒子の発生が生じてしまうので望ましくない。
加熱に用いる炉は、還元雰囲気で使用できるものであれば特に限定されず、バッチ炉、ローラーハース炉またはプッシャー炉などを用いることが出来る。
Furthermore, the heating temperature is desirably 150 to 350 ° C. When the heating temperature is less than 150 ° C., the removal of hydroxide and the like on the surface of the nickel powder does not proceed sufficiently, and the effect does not appear clearly. When the heating temperature is higher than 350 ° C., coarse particles are generated due to necking and sintering of nickel powders, which is not desirable.
The furnace used for heating is not particularly limited as long as it can be used in a reducing atmosphere, and a batch furnace, a roller hearth furnace, a pusher furnace, or the like can be used.

<本発明によるニッケル粉の特性>
[粗大粒子の数]
本発明に係るニッケル粉末の特徴は、粒径が1.0μm以上の粗大粒子の個数が、全粒子個数の50ppm以下であることにある。粗大粒子の個数が50ppmを超えると、薄層化された積層セラミックコンデンサの内部電極に用いると、内部電極層から粗大粒子が突き出してしまい、別の内部電極層と接触し短絡することがある。なお粒径は走査型電子顕微鏡(SEM)の画像から計測された直径である。
<Characteristics of nickel powder according to the present invention>
[Number of coarse particles]
A feature of the nickel powder according to the present invention is that the number of coarse particles having a particle size of 1.0 μm or more is 50 ppm or less of the total number of particles. When the number of coarse particles exceeds 50 ppm, when used for the internal electrode of a laminated ceramic capacitor having a thin layer, coarse particles may protrude from the internal electrode layer, and may contact and short-circuit with another internal electrode layer. The particle diameter is a diameter measured from a scanning electron microscope (SEM) image.

[平均粒子径]
さらにニッケル粉末は、平均粒径が0.1〜0.3μmとするのが好ましい。
平均粒径が0.1μm未満のニッケル粉末は凝集により二次粒子を形成しやすくなり、分級効率が低下する。一方、平均粒径が0.3μmを超えると、薄層化された積層セラミックコンデンサの内部電極に用いると、内部電極各層に含まれるニッケル粉末の個数が減少して、電極層の連続性が保てなくなることがある。
[Average particle size]
Further, the nickel powder preferably has an average particle size of 0.1 to 0.3 μm.
Nickel powder having an average particle size of less than 0.1 μm is liable to form secondary particles due to aggregation, and the classification efficiency is lowered. On the other hand, when the average particle size exceeds 0.3 μm, the number of nickel powders contained in each layer of the internal electrode is reduced and the continuity of the electrode layer is maintained when used for the internal electrode of the thin-layered multilayer ceramic capacitor. May disappear.

[酸素含有量]
ニッケル粉末の酸素含有量は1.4質量%以下であるのが好ましい。酸素含有量が1.4質量%を超えると、積層セラミックコンデンサの還元雰囲気下での焼成時にニッケル粉末の体積収縮が大きくなり、電極の連続性が保てないことや、酸化物の還元によるガス発生にてコンデンサ内にクラックやデラミネーションを発生させ、結果としてコンデンサの容量低下を引き起こすからである。
[Oxygen content]
The oxygen content of the nickel powder is preferably 1.4% by mass or less. If the oxygen content exceeds 1.4% by mass, the volumetric shrinkage of the nickel powder increases during firing of the multilayer ceramic capacitor in a reducing atmosphere, and the continuity of the electrode cannot be maintained, and the gas due to oxide reduction This is because generation of cracks and delamination in the capacitor causes a decrease in the capacitance of the capacitor.

以下に、本発明の実施例を用いて詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。なお、ニッケル粉末の評価は以下のようにして行なった。   Hereinafter, the present invention will be described in detail using examples, but the present invention is not limited to these examples. The nickel powder was evaluated as follows.

[平均粒径]
走査型電子顕微鏡(SEM、JSM−5510、日本電子株式会社製)を用い、倍率10000倍のSEM像(視野:縦9.6μm×横12.8μm)の写真を得た。このSEM像を画像解析ソフト(Mac−View、株式会社マウンテック製)を用いて像内の粒子形状の全様が見える粒子の面積と個数を計測し、これらから各粒子の直径を求め平均値により算出した。
[Average particle size]
A scanning electron microscope (SEM, JSM-5510, manufactured by JEOL Ltd.) was used to obtain a photograph of an SEM image (field of view: vertical 9.6 μm × horizontal 12.8 μm) at a magnification of 10,000. This SEM image is measured using image analysis software (Mac-View, manufactured by Mountec Co., Ltd.) to measure the area and number of particles in which the entire shape of the particle shape can be seen, and from these, the diameter of each particle is obtained and averaged. Calculated.

[粗大粒子の数]
走査型電子顕微鏡を用い、倍率5000倍のSEM像(視野:縦19.2μm×横25.6μm)の写真を20視野得る。この20視野のSEM像を、画像解析ソフトを用いて像内の粒子形状の全様が見える粒子の面積と個数を計測し、これらから各粒子の直径を求め、直径が1.0μm以上のものを粗大粒子としてカウントした。
[Number of coarse particles]
Using a scanning electron microscope, 20 views of a SEM image (field of view: length 19.2 μm × width 25.6 μm) at a magnification of 5000 times are obtained. This SEM image of 20 fields of view is measured using the image analysis software to measure the area and number of particles in which the entire shape of the particles can be seen, and from these, the diameter of each particle is obtained. Were counted as coarse particles.

[ニッケル粉の酸素含有量]
ニッケル粉の酸素含有量は、分析装置(LECO社製、TC436AR)にて測定した。
[Oxygen content of nickel powder]
The oxygen content of nickel powder was measured with an analyzer (manufactured by LECO, TC436AR).

[原料ニッケル粉末の作製]
以下に、湿式還元法を用いた原料ニッケル粉末作製の詳細を示す。
パラジウムと微量の銀とゼラチンからなるアルカリ性コロイド溶液に、アルカリ性のヒドラジン溶液を混合し、ニッケルを還元するためのアルカリ性コロイド溶液を作製した。
作製したアルカリ性コロイド溶液におけるパラジウム、銀、ゼラチンの含有量は、始液となるニッケル塩水溶液中のニッケルの全質量に対して、パラジウム:10質量ppm、銀:0.1質量ppm、ゼラチン:1質量%とした。なお、溶液中のパラジウムおよび銀の含有量は、ICP発光分光分析法により分析した。
[Production of raw material nickel powder]
Below, the detail of raw material nickel powder preparation using the wet reduction method is shown.
An alkaline hydrazine solution was mixed with an alkaline colloidal solution composed of palladium, a small amount of silver and gelatin to prepare an alkaline colloidal solution for reducing nickel.
The content of palladium, silver, and gelatin in the prepared alkaline colloidal solution is palladium: 10 mass ppm, silver: 0.1 mass ppm, gelatin: 1 with respect to the total mass of nickel in the nickel salt aqueous solution as the starting solution. It was set as mass%. The contents of palladium and silver in the solution were analyzed by ICP emission spectroscopic analysis.

上記ニッケルを還元するためのアルカリ性コロイド溶液の作製は、具体的には、次のように行った。
先ず、純水300Lに所定量のゼラチンを溶解させた後、ヒドラジンの濃度が0.02g/Lとなるようにヒドラジンを混合し、ゼラチンとヒドラジンを含む溶液を作製した。
次に、純水と所定量のパラジウム塩と銀塩の10Lの混合溶液を作製し、先に作製したゼラチンとヒドラジンを含む溶液に滴下して、コロイド溶液を得た。
The production of the alkaline colloid solution for reducing the nickel was specifically performed as follows.
First, after a predetermined amount of gelatin was dissolved in 300 L of pure water, hydrazine was mixed so that the concentration of hydrazine was 0.02 g / L to prepare a solution containing gelatin and hydrazine.
Next, a 10 L mixed solution of pure water, a predetermined amount of palladium salt and silver salt was prepared, and dropped into the previously prepared solution containing gelatin and hydrazine to obtain a colloidal solution.

このコロイド溶液に、水酸化ナトリウム水溶液を添加し、pHを10以上とした後、さらにヒドラジンをニッケル重量:ヒドラジン重量が1:3.75となるまで添加して、パラジウムと微量の銀からなる複合コロイド粒子が混合されたアルカリ性ヒドラジン溶液を作製し、ニッケルを還元するためのアルカリ性コロイド溶液とした。なお、この時点で、全溶液量は、400Lとなるように純水を更に添加した。   A sodium hydroxide aqueous solution is added to this colloidal solution to adjust the pH to 10 or more, and hydrazine is further added until the nickel weight: hydrazine weight becomes 1: 3.75, so that the composite composed of palladium and a small amount of silver is added. An alkaline hydrazine solution mixed with colloidal particles was prepared and used as an alkaline colloid solution for reducing nickel. At this time, pure water was further added so that the total solution amount was 400 L.

そして、このアルカリ性コロイド溶液に、ニッケル塩水溶液としてニッケル濃度が100g/Lの塩化ニッケル水溶液を25L滴下して、ニッケルの還元を行い、原料ニッケル粉末を得た。   And 25 L of nickel chloride aqueous solution whose nickel concentration is 100 g / L was dripped at this alkaline colloid solution as nickel salt aqueous solution, nickel was reduced, and raw material nickel powder was obtained.

得られた原料ニッケル粉末を、水スラリーとして水中で高分散状態にし、湿式分級する工程は、以下のとおりである。
得られたニッケル粉末と湿式還元反応後液とを分離し、ニッケル粉末のケーキに6L純水を添加し、羽根攪拌型の攪拌機で懸濁させた。次に、アルティマイザー(スギノマシン株式会社製)により、2000気圧で対向衝突させる処理、得られた水スラリーを静置、上澄み液をデカンテーションにより除去することを10回繰り返し、ニッケル粉分散水スラリーとした。
The process of making the obtained raw material nickel powder highly dispersed in water as a water slurry and performing wet classification is as follows.
The obtained nickel powder was separated from the solution after the wet reduction reaction, 6 L pure water was added to the nickel powder cake, and suspended with a blade stirring type stirrer. Next, the process of opposing collision at 2000 atmospheric pressure by an optimizer (manufactured by Sugino Machine Co., Ltd.), the obtained water slurry is allowed to stand, and the supernatant liquid is removed by decantation is repeated 10 times to obtain a nickel powder dispersed water slurry. It was.

次に、ハイドロサイクロン(NHC−1型(日本化学機械製造株式会社製))の使用圧力1.2MPa、流体を純水とした処理量200L/hrになるように調整し、ニッケル粉分散水スラリーを処理した。その後、固液分離と真空乾燥を行い、ニッケル粉末を得た。   Next, the operating pressure of hydrocyclone (NHC-1 type (manufactured by Nippon Chemical Machinery Co., Ltd.)) was adjusted to 1.2 MPa, the treatment volume was 200 L / hr with pure fluid, and nickel powder dispersed water slurry Processed. Thereafter, solid-liquid separation and vacuum drying were performed to obtain nickel powder.

乾燥したニッケル粉末を還元雰囲気下で加熱する工程においては、得られたニッケル粉末について、水素濃度1.4体積%の水素−窒素混合ガス雰囲気で、加熱温度180℃、加熱時間60分の処理を行った。   In the step of heating the dried nickel powder in a reducing atmosphere, the obtained nickel powder is treated in a hydrogen-nitrogen mixed gas atmosphere having a hydrogen concentration of 1.4% by volume at a heating temperature of 180 ° C. and a heating time of 60 minutes. went.

得られた試料の平均粒径、粗大粒子数、酸素含有量を評価した結果を表1に示す。
得られた試料の平均粒径は0.18μmであり、1.0μm以上の粗大粒子の個数は、全粒子個数の31ppmであった。また、ニッケル粉の酸素含有量は1.2質量%であった。
Table 1 shows the results of evaluating the average particle size, the number of coarse particles, and the oxygen content of the obtained sample.
The average particle diameter of the obtained sample was 0.18 μm, and the number of coarse particles of 1.0 μm or more was 31 ppm of the total number of particles. The oxygen content of the nickel powder was 1.2% by mass.

(比較例1)
実施例1における湿式還元法により得られた原料ニッケル粉末を、水中で高分散状態とし湿式分級する工程と、還元雰囲気下で加熱する工程を入れ替えた以外は、実施例1と同一条件にてニッケル粉末を作製した。
すなわち、ニッケル粉末を生成させ、固液分離、真空乾燥した後、水素含有ガス雰囲気下で加熱し、水中で高分散状態にし、湿式分級を行い、固液分離後に固相成分の真空乾燥を行った。この試料の平均粒径、粗大粒子数、酸素含有量を評価した結果を表1に示す。
(Comparative Example 1)
Nickel under the same conditions as in Example 1 except that the raw nickel powder obtained by the wet reduction method in Example 1 was placed in a highly dispersed state in water and the wet classification step and the heating step in a reducing atmosphere were replaced. A powder was prepared.
In other words, nickel powder is generated, solid-liquid separated, vacuum dried, heated in a hydrogen-containing gas atmosphere, made highly dispersed in water, wet-classified, and solid-phase components vacuum dried after solid-liquid separation. It was. Table 1 shows the results of evaluating the average particle size, the number of coarse particles, and the oxygen content of this sample.

(比較例2)
実施例1における湿式還元法により得られたニッケル粉末を、水中で高分散状態とし湿式分級する工程を省略した以外は、実施例1と同一条件にてニッケル粉末を作製した。
すなわちニッケル粉末を生成させ、固液分離、真空乾燥したものを、水素含有ガス雰囲気下で加熱した。この試料の平均粒径、粗大粒子数、酸素含有量を評価した結果を表1に示す。
(Comparative Example 2)
A nickel powder was produced under the same conditions as in Example 1, except that the step of wet-classifying the nickel powder obtained by the wet reduction method in Example 1 into a highly dispersed state in water was omitted.
That is, a nickel powder was produced, solid-liquid separated, and vacuum dried, and heated in a hydrogen-containing gas atmosphere. Table 1 shows the results of evaluating the average particle size, the number of coarse particles, and the oxygen content of this sample.

(比較例3)
実施例1における湿式還元法によりニッケル粉末を、還元雰囲気下で加熱する工程を省略した以外は、実施例1と同一条件にてニッケル粉末を作製した。
すなわち、ニッケル粉末を生成させ、水中で高分散状態にし、湿式分級した後、固液分離し真空乾燥した。この試料の平均粒径、粗大粒子数、酸素含有量を評価した結果を表1に示す。
(Comparative Example 3)
A nickel powder was produced under the same conditions as in Example 1 except that the step of heating the nickel powder in a reducing atmosphere by the wet reduction method in Example 1 was omitted.
That is, nickel powder was produced, made highly dispersed in water, wet-classified, solid-liquid separated, and vacuum-dried. Table 1 shows the results of evaluating the average particle size, the number of coarse particles, and the oxygen content of this sample.

Figure 2015158001
Figure 2015158001

表1より、実施例1では1.0μm以上の粗大粒子の個数が全粒子個数の50ppm以下であり、酸素含有量が1.4質量%以下であることから、粗大粒子と酸素含有量の少ないニッケル粉が得られていることがわかる。   From Table 1, in Example 1, since the number of coarse particles of 1.0 μm or more is 50 ppm or less of the total number of particles and the oxygen content is 1.4 mass% or less, the coarse particles and the oxygen content are small. It can be seen that nickel powder is obtained.

一方、比較例1では粗大粒子の個数が全粒子個数の50ppm以下に抑えられているが、還元雰囲気下での加熱後に湿式分級を行っているため、酸素含有量が増加し、酸素含有量が1.4質量%以下となっていない。
また、比較例2では、酸素含有量は1.4質量%以下に抑えられているが、湿式分級を行っていないため粗大粒子の個数が全粒子個数の50ppmよりも多くなっており、粗大粒子を低減できていないことがわかる。
On the other hand, in Comparative Example 1, the number of coarse particles is suppressed to 50 ppm or less of the total number of particles. However, since wet classification is performed after heating in a reducing atmosphere, the oxygen content increases and the oxygen content increases. It is not less than 1.4% by mass.
In Comparative Example 2, the oxygen content is suppressed to 1.4% by mass or less, but since the wet classification is not performed, the number of coarse particles is larger than 50 ppm of the total number of particles. It turns out that it is not able to reduce.

さらに、比較例3では粗大粒子の個数が全粒子個数の50ppm以下に抑えられているが、湿式分級後に還元雰囲気下で加熱処理を行っていないため酸素含有量が2.1質量%であり、ニッケル粉の酸素含有量を低減できていないことがわかる。   Furthermore, in Comparative Example 3, the number of coarse particles is suppressed to 50 ppm or less of the total number of particles, but since the heat treatment is not performed in a reducing atmosphere after wet classification, the oxygen content is 2.1% by mass, It turns out that the oxygen content of nickel powder has not been reduced.

Claims (8)

原料ニッケル粉末が水中で高分散状態となる水スラリーを形成し、前記水スラリーを湿式分級処理してニッケルスラリーを形成する工程と、
前記湿式分級処理により得られた前記ニッケルスラリーを乾燥してニッケル粉末を形成し、還元雰囲気下で前記ニッケル粉末を加熱する工程と
を含むことを特徴とするニッケル粉末の製造方法。
Forming a water slurry in which the raw material nickel powder is highly dispersed in water, and wet-classifying the water slurry to form a nickel slurry;
Drying the nickel slurry obtained by the wet classification process to form nickel powder, and heating the nickel powder in a reducing atmosphere.
前記原料ニッケル粉末が、湿式還元法を用いて生成されたニッケル粉であることを特徴とする請求項1に記載のニッケル粉末の製造方法。   The method for producing nickel powder according to claim 1, wherein the raw material nickel powder is nickel powder produced by a wet reduction method. 前記原料ニッケル粉末が、ニッケル塩水溶液と、還元剤と、パラジウムと銀とを含むアルカリ性コロイド溶液とからニッケル粉末を晶析させる湿式還元法を用いて生成されたニッケル粉末であることを特徴とする請求項2に記載のニッケル粉末の製造方法。   The raw material nickel powder is a nickel powder produced by a wet reduction method in which nickel powder is crystallized from an aqueous nickel salt solution, a reducing agent, and an alkaline colloidal solution containing palladium and silver. The manufacturing method of the nickel powder of Claim 2. 前記還元雰囲気が、1〜50体積%の水素を含む不活性ガス雰囲気であることを特徴とする請求項1〜3項のいずれか1項に記載のニッケル粉末の製造方法。   The said reducing atmosphere is an inert gas atmosphere containing 1-50 volume% hydrogen, The manufacturing method of the nickel powder of any one of Claims 1-3 characterized by the above-mentioned. 前記還元雰囲気下でニッケル粉末を加熱する工程の加熱温度が、150〜350℃であることを特徴とする請求項1〜4項のいずれか1項に記載のニッケル粉末の製造方法。   The method for producing nickel powder according to any one of claims 1 to 4, wherein a heating temperature in the step of heating the nickel powder in the reducing atmosphere is 150 to 350 ° C. 前記還元雰囲気下でニッケル粉末を加熱する工程により生成されたニッケル粉末における1.0μm以上の粒径を有する粗大粒子の個数が、全粒子個数の50ppm以下であることを特徴とする請求項1〜5のいずれか1項に記載のニッケル粉末の製造方法。   The number of coarse particles having a particle diameter of 1.0 μm or more in the nickel powder produced by the step of heating the nickel powder in the reducing atmosphere is 50 ppm or less of the total number of particles. 6. The method for producing nickel powder according to any one of 5 above. 前記ニッケル粉末の酸素含有量が、1.4質量%以下であることを特徴とする請求項6に記載のニッケル粉末の製造方法。   The method for producing nickel powder according to claim 6, wherein the oxygen content of the nickel powder is 1.4 mass% or less. 前記ニッケル粉末の平均粒径が、0.1〜0.3μmであることを特徴とする請求項6又は7のいずれか1項に記載のニッケル粉末の製造方法。   The nickel powder production method according to claim 6, wherein an average particle diameter of the nickel powder is 0.1 to 0.3 μm.
JP2014034596A 2014-02-25 2014-02-25 Method for producing nickel powder Active JP6270035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014034596A JP6270035B2 (en) 2014-02-25 2014-02-25 Method for producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014034596A JP6270035B2 (en) 2014-02-25 2014-02-25 Method for producing nickel powder

Publications (2)

Publication Number Publication Date
JP2015158001A true JP2015158001A (en) 2015-09-03
JP6270035B2 JP6270035B2 (en) 2018-01-31

Family

ID=54182205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014034596A Active JP6270035B2 (en) 2014-02-25 2014-02-25 Method for producing nickel powder

Country Status (1)

Country Link
JP (1) JP6270035B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062332A (en) * 1999-08-31 2001-03-13 Toho Titanium Co Ltd Classification method of nickel powder
JP2004292950A (en) * 2003-03-12 2004-10-21 Jfe Mineral Co Ltd Nickel-based ultrafine powder
JP2005240164A (en) * 2004-02-27 2005-09-08 Sumitomo Metal Mining Co Ltd Nickel powder and manufacturing method therefor
JP2007146251A (en) * 2005-11-29 2007-06-14 Sumitomo Metal Mining Co Ltd Nickel powder, its production method and polymer-ptc element using the nickel powder
JP2011149080A (en) * 2010-01-25 2011-08-04 Sumitomo Metal Mining Co Ltd Nickel powder and production method therefor
JP2011156520A (en) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd Method of classifying metal fine powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062332A (en) * 1999-08-31 2001-03-13 Toho Titanium Co Ltd Classification method of nickel powder
JP2004292950A (en) * 2003-03-12 2004-10-21 Jfe Mineral Co Ltd Nickel-based ultrafine powder
JP2005240164A (en) * 2004-02-27 2005-09-08 Sumitomo Metal Mining Co Ltd Nickel powder and manufacturing method therefor
JP2007146251A (en) * 2005-11-29 2007-06-14 Sumitomo Metal Mining Co Ltd Nickel powder, its production method and polymer-ptc element using the nickel powder
JP2011149080A (en) * 2010-01-25 2011-08-04 Sumitomo Metal Mining Co Ltd Nickel powder and production method therefor
JP2011156520A (en) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd Method of classifying metal fine powder

Also Published As

Publication number Publication date
JP6270035B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5574154B2 (en) Nickel powder and method for producing the same
JP6135935B2 (en) Method for producing wet nickel powder
KR20160035094A (en) Metal powder paste and method for producing same
JP2010043345A (en) Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
KR100480873B1 (en) Nickel powder and conductive paste
JP2009079239A (en) Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
JP2009024197A (en) Method for producing nickel powder
JP5843820B2 (en) Method for producing surface-treated metal powder
WO2001034327A1 (en) Nickel powder, method for preparation thereof and conductive paste
JP2004330247A (en) Nickel powder, conductive paste, laminate ceramic electronic component
JP5843819B2 (en) Method for producing surface-treated metal powder
JP6727922B2 (en) Silver powder, method for producing the same, and conductive paste
JPWO2014162821A1 (en) Method for producing metal powder, method for producing conductive paste, and method for producing multilayer ceramic electronic component
JP6630208B2 (en) Method for producing metal powder paste, screen printing method for metal powder paste, method for producing electrodes, method for producing chip multilayer ceramic capacitor, and metal powder paste
JP6539520B2 (en) Nickel fine particle containing composition and method for producing the same
JP5756694B2 (en) Flat metal particles
JP6270035B2 (en) Method for producing nickel powder
JP6136017B2 (en) Method for producing nickel powder
JP2008261054A (en) Heat treating method for metal powder
JP5986046B2 (en) Surface-treated metal powder and method for producing the same
JP2001266652A (en) Nickel powder and conductive paste
JP3280372B2 (en) Nickel powder and conductive paste
JP6065699B2 (en) Method for producing nickel powder
JP2015040329A (en) Nickel power and method for producing the same, and nickel paste using the same
JP5459951B2 (en) Method for producing ceramic slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171220

R150 Certificate of patent or registration of utility model

Ref document number: 6270035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150