JP2007146251A - Nickel powder, its production method and polymer-ptc element using the nickel powder - Google Patents

Nickel powder, its production method and polymer-ptc element using the nickel powder Download PDF

Info

Publication number
JP2007146251A
JP2007146251A JP2005344631A JP2005344631A JP2007146251A JP 2007146251 A JP2007146251 A JP 2007146251A JP 2005344631 A JP2005344631 A JP 2005344631A JP 2005344631 A JP2005344631 A JP 2005344631A JP 2007146251 A JP2007146251 A JP 2007146251A
Authority
JP
Japan
Prior art keywords
nickel powder
nickel
cobalt
aqueous solution
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005344631A
Other languages
Japanese (ja)
Other versions
JP4942333B2 (en
Inventor
Toshihiro Kato
敏弘 加藤
Kenya Ito
研哉 伊藤
Shuji Okada
修二 岡田
Arata Tanaka
新 田中
Keiichiro Nomura
圭一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Tyco Electronics Raychem KK
Original Assignee
Sumitomo Metal Mining Co Ltd
Tyco Electronics Raychem KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Tyco Electronics Raychem KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005344631A priority Critical patent/JP4942333B2/en
Priority to CN2006800446942A priority patent/CN101316673B/en
Priority to TW095144043A priority patent/TWI402116B/en
Priority to PCT/JP2006/323720 priority patent/WO2007063851A1/en
Priority to KR1020087015681A priority patent/KR101356377B1/en
Priority to EP06833524A priority patent/EP1974840A4/en
Publication of JP2007146251A publication Critical patent/JP2007146251A/en
Application granted granted Critical
Publication of JP4942333B2 publication Critical patent/JP4942333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06526Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nickel powder which is inexpensive, has low electric resistance in a state kneaded with a resin, also has excellent weatherability, and usable as electrically conductive particles for electrically conductive paste and electrically conductive particles for an electrically conductive resin over a long period. <P>SOLUTION: The nickel powder has a composition comprising 1 to 20 mass% cobalt, and the balance nickel with inevitable impurities, and is composed of secondary particles in which primary particles are flocculated. Further, the average primary particle diameter is 1.0 to 3.0 μm; the ratio between the standard deviation σ of the primary particle diameter and the average primary particle diameter d, σ/d is ≤0.4; the average secondary particle diameter is 5 to 60 μm; the tap density is 1.0 to 3.5 g/mL, and the specific surface area is ≤2.0 m<SP>2</SP>/g. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ニッケル粉およびその製造方法、ならびに該ニッケル粉を用いたポリマーPTC素子に関する。該ニッケル粉は、導電ペーストおよび導電樹脂用の導電性粒子として好適に用いることができ、特にポリマーPTC素子用の導電性フィラーとして好適に用いることができる。   The present invention relates to nickel powder, a method for producing the same, and a polymer PTC element using the nickel powder. The nickel powder can be suitably used as conductive particles for conductive paste and conductive resin, and can be particularly preferably used as a conductive filler for polymer PTC elements.

従来、電子機器の接続にはすず鉛(Sn−Pb)系はんだが用いられていたが、近年ではPbフリー化に対応して電子機器の接続に導電ペーストの使用が検討されている。また、近年においては、導電樹脂を利用したデバイスが広く用いられるようになってきている。   Conventionally, tin lead (Sn—Pb) -based solder has been used for connecting electronic devices, but in recent years, the use of conductive paste for connecting electronic devices has been studied in response to the Pb-free. In recent years, devices using conductive resins have been widely used.

導電ペーストは、導電性粒子と各種の樹脂を混練したペーストであり、導電樹脂は、これを硬化させた成形体である。導電性粒子に求められる特性としては、粒子そのものの導電性が高く、樹脂と混練した状態でも電気抵抗が低いこと、耐マイグレーション性が高いこと、耐候性に優れること等が挙げられる。現在、導電性粒子としては、金属粉もしくはカーボン粉が用いられている。   The conductive paste is a paste obtained by kneading conductive particles and various resins, and the conductive resin is a molded body obtained by curing this. The properties required for the conductive particles include high electrical conductivity of the particles themselves, low electrical resistance even when kneaded with a resin, high migration resistance, and excellent weather resistance. Currently, metal powder or carbon powder is used as the conductive particles.

金属粉のうち、貴金属粉は導電性が高く、電気抵抗が低いが、高価であるという問題がある。また、ニッケル(Ni)あるいは銅(Cu)などに代表される卑金属粉は、コスト的に安価であり、かつ、高い導電性を有しているが、耐候性に劣るため、樹脂と混練して導電ペーストや導電樹脂として長期にわたり使用すると、電気抵抗が上昇するという問題がある。   Among metal powders, noble metal powders have high conductivity and low electrical resistance, but are expensive. In addition, base metal powders typified by nickel (Ni) or copper (Cu) are inexpensive in cost and have high conductivity, but are inferior in weather resistance. When used as a conductive paste or conductive resin for a long period of time, there is a problem that the electrical resistance increases.

また、カーボン粉は、安価であり、かつ、耐候性も高いが、導電性が低く、樹脂と混練した時の電気抵抗が高くなるという問題がある。   In addition, carbon powder is inexpensive and has high weather resistance, but has a problem of low electrical conductivity and high electrical resistance when kneaded with a resin.

これらの問題点を解決すべく、特許文献1(特開2002−025345号公報)および特許文献2(特開2002−075057号公報)において、Ni粒子やCu粒子の表面に銀(Ag)等の貴金属を被覆した粉末が提案されている。これらの粉末は、貴金属でNi粒子やCu粒子を被覆しているので、特性的な面は全般的に改善されているが、耐マイグレーション性については問題がある。特に、Agで被覆した粉末については耐マイグレーション性が求められる使用環境下では、使用には適さない。また、貴金属でNi粒子やCu粒子を被覆することはコスト的に高価となる。   In order to solve these problems, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-025345) and Patent Document 2 (Japanese Patent Laid-Open No. 2002-0755057), the surface of Ni particles or Cu particles such as silver (Ag) is used. A powder coated with a noble metal has been proposed. Since these powders are coated with Ni particles or Cu particles with a noble metal, the characteristic aspects are generally improved, but there is a problem with migration resistance. In particular, the powder coated with Ag is not suitable for use in a use environment where migration resistance is required. Moreover, coating Ni particles and Cu particles with a noble metal is costly.

また、特許文献3(特開2001−043734号公報)では、Ni粒子等の表面形状を変更すること、例えば表面に半球状の小瘤を形成することにより、樹脂と混練した時の電気抵抗を下げる試みもなされている。しかし、粒子の耐侯性が劣る点はそのままであるため、長期間の使用における安定性を改善しているとは言えない。   Moreover, in patent document 3 (Unexamined-Japanese-Patent No. 2001-043734), by changing the surface shape of Ni particles etc., for example, forming a hemispherical nodule on the surface, the electrical resistance when kneaded with resin is increased. There are also attempts to lower it. However, since the point that the weather resistance of the particles is inferior remains, it cannot be said that the stability in long-term use is improved.

さらに、本発明者は、特定の形状を持ち、コバルト(Co)を添加することで導電性と耐候性を改善したNi粉を提案しているが(特許文献4参照。)、さらなる改善が期待されている。このような事情から、安価で、かつ、耐侯性に優れ、樹脂と混練した状態で低い電気抵抗を有し、長期間にわたり安定して使用できる導電性粒子の提供が望まれている。   Furthermore, although this inventor has proposed Ni powder which has specific shape and improved electroconductivity and weather resistance by adding cobalt (Co) (refer patent document 4), further improvement is anticipated. Has been. Under such circumstances, it is desired to provide conductive particles that are inexpensive, have excellent weather resistance, have low electrical resistance when kneaded with a resin, and can be used stably over a long period of time.

特開2002−25345号公報JP 2002-25345 A 特開2002−75057号公報JP 2002-75057 A 特開2001−43734号公報JP 2001-43734 A 国際公開第2005/023461号パンフレットInternational Publication No. 2005/023461 Pamphlet

本発明は、かかる問題点に鑑みてなされたものであって、安価であって、樹脂と混練した状態における電気抵抗が低く、かつ、耐侯性に優れ、長期間にわたり安定して、導電ペースト、導電樹脂、PTC素子用の導電性フィラー等に用いる導電性粒子として使用できるニッケル粉およびその製造方法を提供することを目的とする。   The present invention has been made in view of such problems, is inexpensive, has low electrical resistance in a state of being kneaded with a resin, has excellent weather resistance, is stable over a long period of time, a conductive paste, An object of the present invention is to provide nickel powder that can be used as conductive particles used for conductive resins, conductive fillers for PTC elements, and the like, and a method for producing the same.

本発明に係るニッケル粉は、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、平均一次粒子径が1.0〜3.0μm、一次粒子径の標準偏差σと平均一次粒子径d1の比σ/d1の値が0.4以下、平均二次粒子径が5〜60μm、タップ密度が1.0〜3.5g/mL、比表面積が2.0m2/g以下であることを特徴とする。 The nickel powder according to the present invention contains 1 to 20% by mass of cobalt, the remainder is composed of nickel and inevitable impurities, and is composed of secondary particles in which primary particles are aggregated, and the average primary particle diameter is 1. 0 to 3.0 μm, the ratio of the standard deviation σ of the primary particle diameter to the average primary particle diameter d 1 σ / d 1 is 0.4 or less, the average secondary particle diameter is 5 to 60 μm, and the tap density is 1.0. -3.5 g / mL, and a specific surface area is 2.0 m < 2 > / g or less, It is characterized by the above-mentioned.

前記平均一次粒子径d1と前記平均二次粒子径d2との比d2/d1の値が5〜60の範囲内であることが好ましい。 The ratio d 2 / d 1 between the average primary particle diameter d 1 and the average secondary particle diameter d 2 is preferably in the range of 5-60.

また、前記二次粒子の表層部に存在する一次粒子のコバルト含有量が、該表層部の全質量あたり1〜40質量%であることが好ましい。   Moreover, it is preferable that cobalt content of the primary particle which exists in the surface layer part of the said secondary particle is 1-40 mass% per the total mass of this surface layer part.

本発明に係るニッケル粉の製造方法は、還元剤を含有する水溶液に2価のニッケル塩を添加してニッケルを析出させる第1の還元析出工程と、第1の還元析出工程後の水溶液に少なくとも2価のニッケル塩を添加して、さらにニッケルを析出させる第2の還元析出工程とからなり、前記第1および第2の還元析出工程のうち、少なくとも第1の還元析出工程においてHLB値が10以下の低親水性の界面活性剤を添加するとともに、少なくとも第2の還元析出工程において、ニッケルを析出させる水溶液に2価のコバルト塩を添加してニッケルを析出させてニッケル粉を得て、さらに得られたニッケル粉を不活性雰囲気または真空中で80〜230℃で乾燥させるか、または、大気中で80〜150℃で乾燥させた後に還元雰囲気中で200〜400℃の熱処理をすることを特徴とする。   The method for producing nickel powder according to the present invention includes a first reduction precipitation step of depositing nickel by adding a divalent nickel salt to an aqueous solution containing a reducing agent, and at least an aqueous solution after the first reduction precipitation step. A second reduction precipitation step in which a divalent nickel salt is added and nickel is further precipitated. Among the first reduction precipitation steps, the HLB value is 10 in at least the first reduction precipitation step. In addition to adding the following low hydrophilic surfactant, at least in the second reduction precipitation step, a divalent cobalt salt is added to an aqueous solution for depositing nickel to precipitate nickel to obtain nickel powder. The obtained nickel powder is dried at 80 to 230 ° C. in an inert atmosphere or vacuum, or is dried in air at 80 to 150 ° C. and then reduced to 200 in a reducing atmosphere. Characterized by a heat treatment at 400 ° C..

前記第2の還元析出工程において2価のコバルト塩を添加した水溶液中のコバルトイオンの含有量が、該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜40質量%であり、かつ、該水溶液中のコバルトイオン濃度が前記第1の還元析出工程における水溶液中のコバルトイオン濃度より高く、さらに、前記第1および第2の還元析出工程を経て得られるニッケル粉はコバルトを1〜20質量%含有していることが好ましい。   The content of cobalt ions in the aqueous solution to which the divalent cobalt salt is added in the second reduction precipitation step is 1 to 40% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution, and The cobalt ion concentration in the aqueous solution is higher than the cobalt ion concentration in the aqueous solution in the first reduction precipitation step, and the nickel powder obtained through the first and second reduction precipitation steps contains 1 to 20 mass of cobalt. % Content is preferable.

また、前記第1の還元析出工程における水溶液に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜20質量%となるように2価のコバルト塩を添加するとともに、前記第2の還元析出工程における水溶液に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜20質量%となるように2価のコバルト塩を添加してもよい。   Further, the divalent cobalt salt is added to the aqueous solution in the first reduction precipitation step so that the cobalt ion content in the aqueous solution is 1 to 20% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution. Is added to the aqueous solution in the second reduction precipitation step so that the cobalt ion content in the aqueous solution is 1 to 20% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution. The cobalt salt may be added.

前記ニッケル粉をポリマーPTC素子に用いる場合には、前記二次粒子の表層部におけるコバルトの含有量が、該表層部の全質量当たり8〜20質量%であることが好ましく、ニッケル粉全体としてのコバルトの含有量が4〜10質量%であることが好ましく、ニッケル粉の内部におけるコバルトの含有量が、該内部の全質量当たり3〜6質量%であることが好ましい。さらに、タップ密度が2.3〜3.0g/mLであることが好ましく、d2/d1が8〜16であることが好ましい。 When using the said nickel powder for a polymer PTC element, it is preferable that content of cobalt in the surface layer part of the said secondary particle is 8-20 mass% per the total mass of this surface layer part, The content of cobalt is preferably 4 to 10% by mass, and the content of cobalt in the nickel powder is preferably 3 to 6% by mass with respect to the total mass of the inside. Furthermore, the tap density is preferably 2.3 to 3.0 g / mL, and d 2 / d 1 is preferably 8 to 16.

本発明に係るポリマーPTC素子は、導電性フィラーおよびポリマー材料を含んで成るポリマーPTC要素、ならびにポリマーPTC要素の少なくとも1つの表面に配置された金属電極を有して成るポリマーPTC素子であって、前記ニッケル粉ならびに前記方法によって製造されるニッケル粉のいずれかを導電性フィラーとして使用することを特徴とする。   A polymer PTC element according to the present invention is a polymer PTC element comprising a polymer PTC element comprising a conductive filler and a polymer material, and a metal electrode disposed on at least one surface of the polymer PTC element, Either the nickel powder or the nickel powder produced by the method is used as a conductive filler.

本発明に係るニッケル粉を樹脂と混練して樹脂成形体を作製すると、電気抵抗が著しく低い樹脂成形体を得ることができる。また、得られた樹脂成形体は優れた耐侯性を有しており、長期間安定して使用できる。したがって、本発明に係るニッケル粉は、導電ペーストおよび導電樹脂等に用いる導電性粒子として極めて好適に用いることができる。また、後述するように、本発明のニッケル粉は、ポリマーPTC素子の導電性フィラーとしても好適に使用できる。   When the nickel powder according to the present invention is kneaded with a resin to produce a resin molded body, a resin molded body with extremely low electrical resistance can be obtained. Moreover, the obtained resin molding has excellent weather resistance and can be used stably for a long period of time. Therefore, the nickel powder according to the present invention can be used very suitably as conductive particles used in conductive pastes, conductive resins, and the like. Moreover, as will be described later, the nickel powder of the present invention can also be suitably used as a conductive filler of a polymer PTC element.

さらに、本発明に係るニッケル粉は、高価な材料を使用しておらず、かつ、複雑な工程を要せずに得ることができるので、安価である。   Furthermore, the nickel powder according to the present invention is inexpensive because it does not use an expensive material and can be obtained without requiring a complicated process.

なお、特許文献4に係るニッケル粉も耐候性に優れるが、特許文献4に係るニッケル粉の平均一次粒子径0.2〜2.0μmに対して、本発明に係るニッケル粉の平均一次粒子径は1.0〜3.0μmであり、また、特許文献4に係るニッケル粉のタップ密度が0.5〜2.0g/mLに対して、本発明に係るニッケル粉のタップ密度が1.0〜3.5g/mLである。さらに、本発明に係るニッケル粉は、一次粒子径の標準偏差σと平均一次粒子径d1の比σ/d1を0.4以下、比表面積を2.0m2/g以下に規定している。このため、本発明に係るニッケル粉は特許文献4に係るニッケル粉よりも耐候性がより良好となっている。 In addition, although the nickel powder according to Patent Document 4 is also excellent in weather resistance, the average primary particle diameter of the nickel powder according to the present invention is 0.2 to 2.0 μm with respect to the average primary particle diameter of the nickel powder according to Patent Document 4. Is 1.0 to 3.0 μm, and the tap density of the nickel powder according to Patent Document 4 is 0.5 to 2.0 g / mL, whereas the tap density of the nickel powder according to the present invention is 1.0. ~ 3.5 g / mL. Furthermore, in the nickel powder according to the present invention, the ratio σ / d 1 between the standard deviation σ of the primary particle diameter and the average primary particle diameter d 1 is set to 0.4 or less, and the specific surface area is set to 2.0 m 2 / g or less. Yes. For this reason, the nickel powder according to the present invention has better weather resistance than the nickel powder according to Patent Document 4.

また、本発明に係るニッケル粉はポリマーPTC素子に好適に用いることができ、高温かつ乾燥条件(例えば夏の日の車中の環境)のような過酷な環境においても抵抗率の増加が小さいので、従来のPTC素子と比較して有用である。   Further, the nickel powder according to the present invention can be suitably used for a polymer PTC element, and since the increase in resistivity is small even in a severe environment such as a high temperature and a dry condition (for example, an environment in a car on a summer day). It is useful compared with the conventional PTC element.

本発明者らは、ニッケル粉が混練された樹脂の電気抵抗に関する研究を進めた結果、ニッケル粉の粒径およびタップ密度が、ニッケル粉が混練された樹脂を用いた成形体の電気抵抗に与える影響が大きく、ニッケル粉の粒径、タップ密度を特定の範囲に制御することで、前記成形体の電気抵抗を大きく下げることができることを見出した。   As a result of advancing research on the electrical resistance of a resin in which nickel powder is kneaded, the present inventors give the particle size and tap density of the nickel powder to the electrical resistance of a molded body using the resin in which nickel powder is kneaded. It has been found that the electrical resistance of the molded body can be greatly reduced by controlling the particle size and tap density of the nickel powder within a specific range.

また、少量のコバルトをニッケル粉に含有させること、特にニッケル粉の表層部にコバルトを含有させることにより、ニッケル粉の耐候性が改善されることを見出した。さらに、一次粒子径の変動を抑制すること、および比表面積を特定の値とすることで耐候性がより改善されることも見出した。   Moreover, it discovered that the weather resistance of nickel powder was improved by making a nickel powder contain a small amount of cobalt, especially by making a surface layer part of nickel powder contain cobalt. Furthermore, it has also been found that the weather resistance is further improved by suppressing the fluctuation of the primary particle diameter and setting the specific surface area to a specific value.

本発明は、かかる知見に基づき完成されたものである。以下、本発明に係るニッケル粉について詳細に説明するとともに、本発明に係るニッケル粉の製造方法についても説明する。   The present invention has been completed based on such findings. Hereinafter, the nickel powder according to the present invention will be described in detail, and the method for producing the nickel powder according to the present invention will also be described.

本発明に係るニッケル粉は、コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、平均一次粒子径が1.0〜3.0μm、一次粒子径の標準偏差σと平均一次粒子径d1の比σ/d1の値が0.4以下、平均二次粒子径が5〜60μm、タップ密度が1.0〜3.5g/mL、比表面積が2.0m2/g以下である。 The nickel powder according to the present invention contains 1 to 20% by mass of cobalt, the remainder is composed of nickel and inevitable impurities, and is composed of secondary particles in which primary particles are aggregated, and the average primary particle diameter is 1. 0 to 3.0 μm, the ratio of the standard deviation σ of the primary particle diameter to the average primary particle diameter d 1 σ / d 1 is 0.4 or less, the average secondary particle diameter is 5 to 60 μm, and the tap density is 1.0. -3.5 g / mL, and a specific surface area is 2.0 m < 2 > / g or less.

「平均一次粒子径、一次粒子径の標準偏差」
一次粒子径は、凝集している個々の粒子の粒径のことであり、SEM観察によって測定する。具体的には、ニッケル粉をサンプルホルダーに導電性両面テープによって固定し、日本電子株式会社製JSM−6360LAにて加速電圧20kV、倍率2500倍で観察する。そして、得られたSEM像に、前記装置に付属している画像処理ソフト(SmileView)を適用し、粒子が重なり粒子径が判別できないものを除き、200個以上の一次粒子について粒子径を測定して、一次粒子の平均粒子径d1を求める。また、得られたデータから一次粒子径の標準偏差も算出する。
"Average primary particle size, standard deviation of primary particle size"
The primary particle size is the particle size of each aggregated particle, and is measured by SEM observation. Specifically, nickel powder is fixed to a sample holder with a conductive double-sided tape, and observed with JSM-6360LA manufactured by JEOL Ltd. at an acceleration voltage of 20 kV and a magnification of 2500 times. Then, the image processing software (SmileView) attached to the apparatus is applied to the obtained SEM image, and the particle diameters of 200 or more primary particles are measured except for particles that overlap and the particle diameter cannot be determined. Thus, the average particle diameter d 1 of the primary particles is obtained. In addition, the standard deviation of the primary particle diameter is also calculated from the obtained data.

平均一次粒子径を1.0〜3.0μmの範囲とすることで、ニッケル粉は適度に凝集し、鎖状などの複雑な形状の二次粒子となる。このような二次粒子とすることにより、樹脂との混練によって得られる樹脂成形体において、ニッケル粉は互いに絡み合ってネットワークを構成し、該樹脂成形体は著しく低い電気抵抗を示すとともに、優れた耐候性を示すこととなる。   By setting the average primary particle diameter in the range of 1.0 to 3.0 μm, the nickel powder is appropriately aggregated to form secondary particles having a complicated shape such as a chain. By forming such secondary particles, in the resin molded body obtained by kneading with the resin, the nickel powders are entangled with each other to form a network, and the resin molded body exhibits extremely low electrical resistance and excellent weather resistance. Will show gender.

これに対し、特許文献4(国際公開第2005/023461号パンフレット)に係るニッケル粉の平均一次粒子径は0.2〜2.0μmである。ニッケル粉の平均一次粒子径が0.2μm以上1.0μm未満であっても、コバルトが全体として1〜20質量%含有されていればニッケル粉の耐候性は良好である。しかし、ニッケル粉の平均一次粒子径が0.2μm以上1.0μm未満の場合は、ニッケル粉の表面の酸化の影響がニッケル粉の平均一次粒子径が1.0〜3.0μmの場合よりも大きくなり、樹脂との混練によって得られる成形体の耐候性は、平均一次粒子径が1.0〜3.0μmの場合よりは悪くなる。したがって、ニッケル粉の平均一次粒子径は1.0μm以上であることが好ましい。   On the other hand, the average primary particle diameter of the nickel powder according to Patent Document 4 (International Publication No. 2005/023461 pamphlet) is 0.2 to 2.0 μm. Even if the average primary particle diameter of the nickel powder is 0.2 μm or more and less than 1.0 μm, the weather resistance of the nickel powder is good if 1 to 20 mass% of cobalt is contained as a whole. However, when the average primary particle diameter of the nickel powder is 0.2 μm or more and less than 1.0 μm, the influence of oxidation on the surface of the nickel powder is more than the case where the average primary particle diameter of the nickel powder is 1.0 to 3.0 μm. The weather resistance of the molded product obtained by kneading with the resin becomes worse than when the average primary particle size is 1.0 to 3.0 μm. Therefore, it is preferable that the average primary particle diameter of nickel powder is 1.0 μm or more.

一方、ニッケル粉の平均一次粒子径が3.0μmを超えると、樹脂との混練によって得られる成形体において、ニッケル粉間の接点が減少し成形体の抵抗が上昇してしまう。平均一次粒子径がさらに大きくなると、ニッケル粉自体の凝集が少なくなり、単分散の状態に近くなり、ニッケル粉間の接点がさらに減少してしまい、成形体の抵抗はさらに上昇してしまう。   On the other hand, when the average primary particle diameter of the nickel powder exceeds 3.0 μm, in the molded body obtained by kneading with the resin, the contacts between the nickel powders decrease and the resistance of the molded body increases. When the average primary particle size is further increased, the aggregation of the nickel powder itself is reduced, becoming close to a monodispersed state, the number of contacts between the nickel powders is further decreased, and the resistance of the molded body is further increased.

一次粒子径の標準偏差σと平均一次粒子径d1との比σ/d1は、一次粒子径の変動の程度を示す。σ/d1を0.4以下とすることで、一次粒子径が小さい粒子が大幅に減少し、一次粒子径が平均値程度以上である粒子の存在数が変わらなくても、平均一次粒子径が大きくなる。これにより、従来よりも大きな平均一次粒子径を有するニッケル粉であっても凝集が可能となる。また、平均一次粒子径が大きくなることで、従来より多量のニッケル粉を樹脂と混練することが可能となり、耐候性が向上する。さらに、酸化しやすい細かな一次粒子が減少することでも、ニッケル粉の酸化が抑制され、耐候性が大幅に向上する。 The ratio σ / d 1 between the standard deviation σ of the primary particle diameter and the average primary particle diameter d 1 indicates the degree of fluctuation of the primary particle diameter. By setting σ / d 1 to 0.4 or less, particles having a small primary particle size are greatly reduced, and even if the number of particles having a primary particle size of about the average value or more is not changed, the average primary particle size is not changed. Becomes larger. Thereby, even if it is nickel powder which has a larger average primary particle diameter than before, aggregation is attained. Further, since the average primary particle size is increased, a larger amount of nickel powder can be kneaded with the resin than before, and weather resistance is improved. Furthermore, the reduction of fine primary particles that are easily oxidized also suppresses the oxidation of the nickel powder and greatly improves the weather resistance.

「平均二次粒子径」
ニッケル粉が凝集すると、二次粒子を形成する。二次粒子の粒径はレーザー粒度分布測定により測定する。具体的には、日機装株式会社製のMICROTRAC HRA MODEL 9320−X100を用い、ニッケル粉をヘキサメタリン酸ナトリウム0.2質量%水溶液中に投入し、300Wで10分間の超音波撹拌を行った後、FRAモードで平均粒子寸法(D50)を測定し、これを平均二次粒子径d2とする。
"Average secondary particle size"
When the nickel powder aggregates, secondary particles are formed. The particle size of the secondary particles is measured by laser particle size distribution measurement. Specifically, using MICROTRAC HRA MODEL 9320-X100 manufactured by Nikkiso Co., Ltd., nickel powder was put into a 0.2% by mass aqueous solution of sodium hexametaphosphate, and after ultrasonic stirring at 300 W for 10 minutes, FRA the average particle size (D50) measured by mode, to do this the average secondary particle diameter d 2.

平均二次粒子径を5〜60μmの範囲とすることで、樹脂との混練後にニッケル粉同士が接触する箇所が多くなり、樹脂成形体の電気抵抗が著しく低下する。しかし、平均二次粒子径が5μm未満では、凝集が少ないため絡み合う箇所が減少し、樹脂との混練後の抵抗値が高くなる。また、平均二次粒子径が60μmを超えると、樹脂中でのニッケル粉の分散が不均一となるおそれがあるため、好ましくない。   By setting the average secondary particle diameter in the range of 5 to 60 μm, the number of locations where the nickel powders come into contact with each other after kneading with the resin increases, and the electrical resistance of the resin molded product is significantly reduced. However, when the average secondary particle size is less than 5 μm, the number of entangled portions decreases because of less aggregation, and the resistance value after kneading with the resin increases. Moreover, when the average secondary particle diameter exceeds 60 μm, the dispersion of the nickel powder in the resin may be non-uniform, which is not preferable.

「タップ密度」
ニッケル粉のタップ密度は、樹脂中でのニッケル粉の分散度に影響する。タップ密度の測定には、株式会社蔵持科学器械製作所製の振とう比重測定器KRS−409を用いる。ニッケル粉15gを秤量して20mLメスシリンダー内に入れ、タップ速度を120回/分とし、タップ高さ20mmで500回のタップを行う。その後、ニッケル粉の容積をメスシリンダーの目盛りから読み取り、ニッケル粉の質量(g)を読み取った容積で除して算出する。
"Tap density"
The tap density of the nickel powder affects the degree of dispersion of the nickel powder in the resin. For the measurement of the tap density, a shaking specific gravity measuring device KRS-409 manufactured by Kuramochi Scientific Instruments Co., Ltd. is used. 15 g of nickel powder is weighed and placed in a 20 mL graduated cylinder, the tap speed is 120 times / minute, and the tap is carried out 500 times at a tap height of 20 mm. Thereafter, the volume of the nickel powder is read from the scale of the graduated cylinder, and the mass (g) of the nickel powder is divided by the read volume.

タップ密度を1.0〜3.5g/mLの範囲とすることにより、樹脂中にニッケル粉が均一に分散し、樹脂成形体の電気抵抗は著しく低くなる。   By setting the tap density in the range of 1.0 to 3.5 g / mL, nickel powder is uniformly dispersed in the resin, and the electric resistance of the resin molded product is significantly reduced.

これに対し、特許文献4に係るニッケル粉のタップ密度は0.5〜2.0g/mLである。ニッケル粉のタップ密度が0.5g/mL以上1.0g/mL未満であっても、コバルトが全体として1〜20質量%含有されていればニッケル粉の耐候性は良好である。しかし、樹脂成形体の耐候性を改善するには混練するニッケル粉を多くすることが有効である。タップ密度が0.5g/mL以上1.0g/mL未満の場合は、樹脂へ混練するニッケル粉を多くすることが困難となるので、耐候性がタップ密度1.0g/mLの場合より低下してしまう。したがって、ニッケル粉のタップ密度は1.0g/mL以上であることが好ましい。   On the other hand, the tap density of the nickel powder according to Patent Document 4 is 0.5 to 2.0 g / mL. Even if the tap density of the nickel powder is 0.5 g / mL or more and less than 1.0 g / mL, the weather resistance of the nickel powder is good as long as 1 to 20% by mass of cobalt is contained. However, in order to improve the weather resistance of the resin molded body, it is effective to increase the amount of nickel powder to be kneaded. When the tap density is 0.5 g / mL or more and less than 1.0 g / mL, it is difficult to increase the amount of nickel powder kneaded into the resin, so that the weather resistance is lower than that when the tap density is 1.0 g / mL. End up. Therefore, the tap density of the nickel powder is preferably 1.0 g / mL or more.

一方、ニッケル粉のタップ密度が3.5g/mLを超えると、樹脂中でニッケル粉が偏在してしまい、相互の接触が減少し、樹脂成形体の電気抵抗が大きくなってしまう。   On the other hand, when the tap density of the nickel powder exceeds 3.5 g / mL, the nickel powder is unevenly distributed in the resin, the mutual contact is reduced, and the electric resistance of the resin molded body is increased.

「比表面積」
比表面積はニッケル粉の耐候性に大きく影響する。比表面積の測定には、ユアサアイオニクス社製のマルチソーブ16を用いる。脱気温度200℃、脱気時間15分の窒素ガスによる脱気後、窒素30%−アルゴン混合ガス吸着によるBET1点法で測定する。
"Specific surface area"
The specific surface area greatly affects the weather resistance of the nickel powder. For the measurement of the specific surface area, a multisorb 16 manufactured by Yuasa Ionics is used. After degassing with nitrogen gas at a degassing temperature of 200 ° C. and a degassing time of 15 minutes, measurement is performed by the BET one-point method using nitrogen 30% -argon mixed gas adsorption.

比表面積が2.0m2/g以下になると表面のマイクロポアが減少して表面の酸化が抑制され耐候性が大幅に向上する。比表面積が1.2m2/g以下であると、耐候性の向上効果はより大きくなり好ましい。 When the specific surface area is 2.0 m 2 / g or less, the surface micropores are reduced, the surface oxidation is suppressed, and the weather resistance is greatly improved. When the specific surface area is 1.2 m 2 / g or less, the effect of improving weather resistance is further increased, which is preferable.

「コバルト含有量」
本発明に係るニッケル粉は、ニッケル粉の全体の合計質量を基準として、コバルトを1〜20質量%含有しており、このコバルトにより、ニッケル粉の耐候性は著しく向上する。コバルトはニッケルよりわずかに卑であり、コバルトが優先的に腐食することに加えて、腐食したコバルトが導電性を有するからである。しかしながら、コバルトの含有量がニッケル粉全体の1質量%未満では耐侯性向上の効果がなく、20質量%を超えて添加してもコスト的に高価となり好ましくない。
"Cobalt content"
The nickel powder according to the present invention contains 1 to 20 mass% of cobalt based on the total mass of the nickel powder, and the weather resistance of the nickel powder is remarkably improved by this cobalt. This is because cobalt is slightly less basic than nickel and in addition to preferential corrosion of cobalt, the corroded cobalt is conductive. However, if the cobalt content is less than 1% by mass of the entire nickel powder, there is no effect of improving weather resistance, and even if it exceeds 20% by mass, it is not preferred because it is expensive in cost.

「二次粒子の表層部に存在する一次粒子のコバルト含有量」
コバルト含有量をなるべく少なくしつつ、十分な耐侯性を確保するためには、ニッケル粉の二次粒子の表層部に多くのコバルトを含有させることが好ましい。ここで、ニッケル粉の二次粒子の表層部とは、ニッケル粉を二段階の還元析出工程により作製する場合において、二段階目の還元析出工程により析出した部位のことである。
"Cobalt content of primary particles present in the surface layer of secondary particles"
In order to ensure sufficient weather resistance while reducing the cobalt content as much as possible, it is preferable to contain a large amount of cobalt in the surface layer portion of the secondary particles of nickel powder. Here, the surface layer portion of the secondary particles of nickel powder refers to a portion deposited by the second stage reduction deposition process when the nickel powder is produced by a two stage reduction deposition process.

該表層部におけるコバルト含有量は、該表層部の全質量あたり1〜40質量%の範囲とすることが好ましい。必要な耐侯性を得るためには、該表層部に1質量%以上のコバルトを含有させることが必要である。しかし、該表層部に40質量%を超えて添加しても、耐候性をさらに向上させることは難しい。また、該表層部に40質量%を超えて添加すると、ニッケル粉が強磁性を帯びるようになり、電子部品等に使用する場合に好ましくない。なお、上述の説明から明らかなように、本発明は、ニッケル粉の内部にもコバルトが含まれている態様を排除するものではない。すなわち、ニッケル粉の表層部に加えて内部にもコバルトが含まれていてもよく、そのような場合が好ましいこともある。例えば、後述するポリマーPTC素子にニッケル粉を使用する場合がそうである。   The cobalt content in the surface layer part is preferably in the range of 1 to 40% by mass with respect to the total mass of the surface layer part. In order to obtain the required weather resistance, it is necessary for the surface layer portion to contain 1% by mass or more of cobalt. However, it is difficult to further improve the weather resistance even if it is added to the surface layer in excess of 40% by mass. Moreover, when it adds exceeding 40 mass% to this surface layer part, nickel powder will become ferromagnetism and it is not preferable when using it for an electronic component etc. As is apparent from the above description, the present invention does not exclude an aspect in which cobalt is also contained in the nickel powder. That is, in addition to the surface layer portion of the nickel powder, cobalt may be contained inside, and such a case may be preferable. For example, this is the case when nickel powder is used for the polymer PTC element described below.

「平均二次粒子径d2/平均一次粒子径d1の値」
さらに、本発明に係るニッケル粉においては、平均二次粒子径d2/平均一次粒子径d1の値が5〜60の範囲にあることが好ましい。平均二次粒子径d2/平均一次粒子径d1の値が5〜60の範囲にある時、樹脂と混練したニッケル粉同士の接触が起きやすくなり、得られる樹脂成形体の電気抵抗は小さくなる。しかし、この比が5未満の場合はニッケル粉同士の接触が起きにくくなり好ましくない。また、60を超えると凝集が大きくなるため、樹脂中での分散が不均一となり好ましくない。
“Average secondary particle diameter d 2 / average primary particle diameter d 1
Furthermore, in the nickel powder according to the present invention, the average secondary particle diameter d 2 / average primary particle diameter d 1 is preferably in the range of 5-60. When the value of average secondary particle diameter d 2 / average primary particle diameter d 1 is in the range of 5 to 60, contact between the resin and the kneaded nickel powder is likely to occur, and the resulting resin molded body has a small electric resistance. Become. However, when this ratio is less than 5, it is difficult to cause contact between nickel powders. Moreover, since aggregation will become large when it exceeds 60, dispersion | distribution in resin becomes non-uniform and is not preferable.

「ニッケル粉の製造方法」
次に、本発明に係るニッケル粉の製造方法について説明する。本発明に係るニッケル粉は、2段階の還元析出工程および乾燥・加熱工程により製造する。
"Production method of nickel powder"
Next, the nickel powder manufacturing method according to the present invention will be described. The nickel powder according to the present invention is produced by a two-stage reduction precipitation process and a drying / heating process.

まず第1の還元析出工程において、還元剤を含有する水溶液(還元剤を過剰に含有させることが一般的である。)に、2価のニッケル塩を含有する水溶液を添加してニッケルをほぼ全て析出させる。そして、引き続き第2の還元析出工程において、第1の還元析出工程により析出したニッケル粉を含む水溶液に、必要に応じて還元剤を添加するとともに、2価のニッケル塩水溶液も添加してニッケルをさらに析出させる。 First, in the first reduction precipitation step, an aqueous solution containing a divalent nickel salt is added to an aqueous solution containing a reducing agent (generally containing an excessive reducing agent) to add almost all of the nickel. Precipitate. Then, in the second reduction precipitation step, a reducing agent is added to the aqueous solution containing the nickel powder precipitated in the first reduction precipitation step as needed, and a divalent nickel salt aqueous solution is also added to add nickel. Precipitate further.

前記製造の際、少なくとも第1の還元析出工程においては、低親水性の界面活性剤を添加する。例えば、変性シリコンオイル系界面活性剤であれば、下記数式1で示されるHLB値が10以下のものを添加する。低親水性の界面活性剤を添加することで、反応中のニッケルイオン濃度を抑制して過剰な核生成を防ぎ、微細なニッケル一次粒子の発生を抑えて、適度な大きさの一次粒子に成長させることができる。   In the production, a low hydrophilic surfactant is added at least in the first reduction precipitation step. For example, in the case of a modified silicone oil-based surfactant, one having an HLB value represented by the following formula 1 of 10 or less is added. By adding a low-hydrophilic surfactant, the nickel ion concentration during the reaction is suppressed to prevent excessive nucleation, and the generation of fine nickel primary particles is suppressed to grow into primary particles of an appropriate size. Can be made.

界面活性剤を添加しない場合は、過剰な核生成が生じ、微細なニッケル一次粒子が発生する。また、適度な大きさの一次粒子に成長しないため、一次粒子径のバラツキも大きくなる。   When no surfactant is added, excessive nucleation occurs and fine primary nickel particles are generated. Further, since the primary particles do not grow to an appropriate size, the primary particle size varies greatly.

界面活性剤を添加しても、添加する界面活性剤のHLB値が10を上回る場合は、一次粒子径のバラツキは抑えられるものの、微細なニッケル一次粒子が発生し、平均一次粒子径が小さくなってしまう。   Even if a surfactant is added, if the HLB value of the surfactant to be added exceeds 10, the dispersion of the primary particle diameter can be suppressed, but fine nickel primary particles are generated, and the average primary particle diameter becomes small. End up.

なお、還元剤を含有する水溶液には、酒石酸などの多価カルボン酸、エチレンジアミンなどの通常使用されている錯化剤、pH調整用の水酸化ナトリウム等を添加することができる。また、還元剤としては、ニッケルを還元析出し得るものであれば特に制限はないが、ヒドラジン系の還元剤が適する。   The aqueous solution containing the reducing agent may be added with a polyvalent carboxylic acid such as tartaric acid, a commonly used complexing agent such as ethylenediamine, sodium hydroxide for pH adjustment, or the like. The reducing agent is not particularly limited as long as it can reduce and precipitate nickel, but a hydrazine-based reducing agent is suitable.

前記製造方法において、第1の還元析出工程により、析出したニッケル粒子は一次粒子が適度に凝集した二次粒子となり、ニッケル粉の内部を構成するが、その凝集力は弱く、反応済溶液との分離操作あるいは樹脂との混錬の際に、容易に分離して単独の粒子となってしまう。ところが、第2の還元析出工程を引続いて行なうことによって、さらに析出したニッケルにより凝集が強固となり、その後の操作でも分離することなく適度な凝集を維持できる。第2の還元析出工程で析出したニッケルは、第1の還元析出工程で析出したニッケル二次粒子の外側に凝集してニッケル粉の表層部を形成し、ネットワークを構造的につなぎ、強度の高いニッケル粉を形成するものと考えられる。こうして得たニッケル粉と樹脂との混錬による成形体の電気抵抗は著しく低い。   In the production method, the nickel particles precipitated by the first reduction precipitation step become secondary particles in which primary particles are appropriately aggregated and constitute the inside of the nickel powder, but the aggregation force is weak, In the separation operation or kneading with the resin, it is easily separated and becomes a single particle. However, by continuing the second reduction precipitation step, the agglomeration is further strengthened by the deposited nickel, and an appropriate agglomeration can be maintained without separation even in subsequent operations. The nickel deposited in the second reduction deposition step aggregates outside the nickel secondary particles deposited in the first reduction deposition step to form a surface layer portion of the nickel powder, structurally connects the networks, and has high strength. It is thought to form nickel powder. The electric resistance of the molded body obtained by kneading the nickel powder and resin thus obtained is extremely low.

上記の2段階の還元析出工程を経させるとともに、ニッケル塩や還元剤の濃度、水溶液の温度その他の条件を調整して製造することにより、以上述べてきた粉体特性(一次粒子が凝集した二次粒子で構成され、平均一次粒子径が1.0〜3.0μm、一次粒子径の標準偏差σと平均一次粒子径d1の比σ/d1が0.4以下、平均二次粒子径が5〜60μm、タップ密度が1.0〜3.5g/mL、比表面積が2.0m2/g以下)を有するニッケル粉を得ることができる。 By passing through the above-described two-stage reduction precipitation process and adjusting the concentration of nickel salt and reducing agent, the temperature of the aqueous solution, and other conditions, the above-mentioned powder characteristics (secondary particles aggregated) It consists of the following particles, average primary particle diameter of 1.0 to 3.0 m, the ratio sigma / d 1 of the standard deviation sigma of the primary particle diameter average primary particle diameter d 1 is 0.4 or less, an average secondary particle diameter 5 to 60 μm, a tap density of 1.0 to 3.5 g / mL, and a specific surface area of 2.0 m 2 / g or less) can be obtained.

このニッケル粉にコバルトを含有させるには、上記した2段階の還元析出工程のうち、第2の還元析出工程のみ、または第1の還元析出工程および第2の還元析出工程の両方において、水溶液に2価のコバルト塩を添加した状態でニッケルを析出させればよい。内部も含めたニッケル粉全体にコバルトを含有させる場合には、第1および第2の還元析出工程のそれぞれにおいて、水溶液に2価のコバルト塩を添加した状態でニッケルを析出させればよく、水溶液中のコバルトイオンの含有量をいずれの工程においても水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜20質量%とすればよい。ニッケル粉の内部よりも表層部にコバルトを多く含有させる場合には、第1の還元析出工程よりも第2の還元析出工程において、水溶液中に2価のコバルト塩を多く添加し、最終的にニッケル粉全体のコバルト含有量が1〜20質量%となるように調整すればよい。   In order to contain cobalt in the nickel powder, the aqueous solution is added to the aqueous solution only in the second reduction precipitation step or in both the first reduction precipitation step and the second reduction precipitation step. What is necessary is just to precipitate nickel in the state which added the bivalent cobalt salt. In the case where cobalt is contained in the entire nickel powder including the inside, nickel may be precipitated in a state where a divalent cobalt salt is added to the aqueous solution in each of the first and second reduction precipitation steps. What is necessary is just to make content of cobalt ion in 1-20 mass% with respect to the total amount of nickel ion and cobalt ion in aqueous solution in any process. When more cobalt is contained in the surface layer portion than inside the nickel powder, more divalent cobalt salt is added to the aqueous solution in the second reduction precipitation step than in the first reduction precipitation step. What is necessary is just to adjust so that the cobalt content of the whole nickel powder may be 1-20 mass%.

また、ニッケル粉の内部にはコバルトを含有させず、表層部にのみコバルトを含有させる場合には、第1の還元析出工程ではコバルト塩を水溶液に添加せず、第2の還元析出工程においてのみ、水溶液に2価のコバルト塩を添加すればよい。その際のコバルト塩の添加量は、水溶液中のコバルトイオンの含有量が、水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜40質量%となるようにすればよく、これによりニッケル粉の表層部におけるコバルト含有量を1〜40質量%にすることができる。   Further, when cobalt is not contained in the nickel powder and cobalt is contained only in the surface layer portion, the cobalt salt is not added to the aqueous solution in the first reduction precipitation step, and only in the second reduction precipitation step. A divalent cobalt salt may be added to the aqueous solution. In this case, the cobalt salt may be added so that the content of cobalt ions in the aqueous solution is 1 to 40% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution. The cobalt content in the surface layer of can be 1 to 40% by mass.

以上のようにして2段階の還元工程で得られたニッケル粉を、不活性雰囲気または真空中で80〜230℃で加熱し、乾燥させることにより、表面のニッケル原子が拡散してマイクロポアがさらに消滅し、比表面積が小さくなる。乾燥温度が80℃未満では、マイクロポアの消滅が十分ではなく、比表面積が2.0m2/gを超えてしまう。一方、230℃を超えると表面を不動態化している水酸化ニッケルが分解してしまい、乾燥後に酸化が進行し、樹脂混練時の抵抗が高くなってしまう。乾燥温度は、マイクロポアを十分に消滅させる点で、120〜230℃とすることがより好ましい。 The nickel powder obtained by the two-step reduction process as described above is heated at 80 to 230 ° C. in an inert atmosphere or vacuum and dried, so that nickel atoms on the surface diffuse and micropores are further formed. It disappears and the specific surface area becomes smaller. When the drying temperature is less than 80 ° C., the disappearance of the micropores is not sufficient, and the specific surface area exceeds 2.0 m 2 / g. On the other hand, when the temperature exceeds 230 ° C., nickel hydroxide passivating the surface is decomposed, oxidation proceeds after drying, and resistance during resin kneading increases. The drying temperature is more preferably 120 to 230 ° C. from the viewpoint of sufficiently eliminating the micropores.

また、前記2段階の還元工程で得られたニッケル粉を大気中で80〜150℃で乾燥した後、還元雰囲気中で200〜400℃で加熱することによっても、マイクロポアを十分に消滅させることができる。大気中で乾燥させると、表面に多量の水酸化物が生成して比表面積が大きくなるとともに、樹脂混練後の抵抗値が大幅に上昇してしまうが、乾燥後に還元雰囲気中で加熱することで、少量の水酸化ニッケルが残る以外は分解することができ、比表面積を小さくすることができる。還元雰囲気中での加熱が200℃未満では、水酸化ニッケルの分解が不十分で、比表面積が大きく、樹脂混練後の抵抗値も高くなってしまう。400℃を超えると水酸化ニッケルが分解しすぎるばかりかニッケル粉同士が焼結してしまう。   In addition, after the nickel powder obtained in the two-stage reduction process is dried at 80 to 150 ° C. in the air, the micropores are sufficiently extinguished by heating at 200 to 400 ° C. in a reducing atmosphere. Can do. When dried in the air, a large amount of hydroxide is generated on the surface and the specific surface area increases, and the resistance value after kneading the resin increases significantly. It can be decomposed except that a small amount of nickel hydroxide remains, and the specific surface area can be reduced. When heating in a reducing atmosphere is less than 200 ° C., the decomposition of nickel hydroxide is insufficient, the specific surface area is large, and the resistance value after resin kneading becomes high. When it exceeds 400 ° C., nickel hydroxide is not only decomposed too much but also nickel powders are sintered.

このように、本発明に係るニッケル粉の製造方法では、貴金属等の高価な材料は使用しておらず、かつ、複雑な工程は要しない。したがって、本発明に係るニッケル粉は安価に得ることができる。   Thus, the nickel powder manufacturing method according to the present invention does not use an expensive material such as a noble metal and does not require a complicated process. Therefore, the nickel powder according to the present invention can be obtained at low cost.

「ポリマーPTC素子」
以上、本発明に係るニッケル粉およびその製造方法について説明したが、本発明は、さらに上述又は後述の本発明のニッケル粉を導電性フィラーとして用いたポリマーPTC素子をも提供する。以下、該ポリマーPTC素子について説明するが、ポリマーPTC素子自体は周知であり、ポリマーPTC素子自体についての説明は省略する。
"Polymer PTC element"
As mentioned above, although the nickel powder which concerns on this invention, and its manufacturing method were demonstrated, this invention also provides the polymer PTC element which used the nickel powder of the above-mentioned or below-mentioned this invention as an electroconductive filler. Hereinafter, the polymer PTC element will be described, but the polymer PTC element itself is well known, and the description of the polymer PTC element itself is omitted.

本発明に係るPTC素子は、具体的には、(A)(a1)導電性フィラー、および(a2)ポリマー材料を含んで成るポリマーPTC要素、ならびに(B)ポリマーPTC要素の少なくとも1つの表面に配置された金属電極を有して成り、導電性フィラーとして本発明に係るニッケル粉を使用する。なお、上述の成形体におけるニッケル粉の物性についての考察、特に耐候性、導電性等に与える影響についての考察は、ポリマーPTC素子における導電性フィラーとしてのニッケル粉にも同様に当てはまる。   Specifically, the PTC element according to the present invention includes (A) (a1) a conductive filler, and (a2) a polymer PTC element comprising a polymer material, and (B) at least one surface of the polymer PTC element. The nickel powder according to the present invention is used as a conductive filler. In addition, the consideration about the physical property of nickel powder in the above-mentioned molded object, especially the consideration about the influence which it has on a weather resistance, electroconductivity, etc. are similarly applied to the nickel powder as the electroconductive filler in a polymer PTC element.

本発明に係るポリマーPTC素子において使用するポリマー材料は、PTC特性をもたらす、常套のポリマーPTC素子に使用されている既知のポリマー材料であってよい。そのようなポリマー材料は、熱可塑性の結晶性ポリマーであり、例えば、ポリエチレン、エチレン共重合体、フッ素含有ポリマー、ポリアミドおよびポリエステルを例示でき、これらを単独で、または組み合わせて使用してよい。   The polymeric material used in the polymeric PTC device according to the present invention may be a known polymeric material used in conventional polymeric PTC devices that provides PTC properties. Such polymeric materials are thermoplastic crystalline polymers, which can include, for example, polyethylene, ethylene copolymers, fluorine-containing polymers, polyamides and polyesters, which may be used alone or in combination.

より具体的には、ポリエチレンとしては、高密度ポリエチレン、低密度ポリエチレン等を使用でき;エチレン共重合体としては、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、エチレン−ビニルアセテート共重合体、エチレン−ポリオキシメチレン共重合体等を使用でき;フッ素含有ポリマーとしては、ポリフッ化ビニリデン、2フッ化エチレン−4フッ化エチレン−6フッ化プロピレン共重合体等を使用でき;ポリアミドとしては、6−ナイロン、6,6−ナイロン、12−ナイロン等を使用でき;また、ポリエステルとしてはポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等を使用できる。   More specifically, high-density polyethylene, low-density polyethylene, etc. can be used as polyethylene; ethylene copolymers include ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer. Polymers, ethylene-polyoxymethylene copolymers, etc. can be used; as fluorine-containing polymers, polyvinylidene fluoride, difluoroethylene-4 fluoroethylene-6 fluoropropylene copolymers, etc. can be used; 6-nylon, 6,6-nylon, 12-nylon and the like can be used; and as the polyester, polybutylene terephthalate (PBT), polyethylene terephthalate (PET) and the like can be used.

本発明に係るポリマーPTC素子に用いる金属電極は、常套のポリマーPTC素子に使用されているいずれの既知の金属材料で構成してよい。金属電極は、例えばプレートまたは箔の形態であってよい。本発明が目的とするPTC素子を得ることができる限り、金属電極は特に制限されるものではない。具体的には粗面化金属プレート、粗面化金属箔等を例示できる。粗面化されている金属電極を使用する場合、粗面化面がPTC要素に接触する。例えば市販の電着銅箔、ニッケルメッキ電着銅箔を使用することができる。   The metal electrode used in the polymer PTC element according to the present invention may be composed of any known metal material used in conventional polymer PTC elements. The metal electrode may be in the form of a plate or foil, for example. The metal electrode is not particularly limited as long as the target PTC element of the present invention can be obtained. Specifically, a roughened metal plate, a roughened metal foil, etc. can be illustrated. When using a roughened metal electrode, the roughened surface contacts the PTC element. For example, a commercially available electrodeposited copper foil or nickel-plated electrodeposited copper foil can be used.

このような「金属電極」は、PTC要素の主表面の少なくとも1つに配置され、好ましくはPTC要素の対向する2つの主表面に配置される。金属電極の配置は、PTC素子の常套の製造方法と同様に実施してよい。例えば、押出成形により得られたプレート状またはシート状のPTC要素に金属電極を熱圧着することによって配置してよい。別の態様では、ポリマー材料と導電性フィラーの混合物金属電極上に押出成形してよい。その後、必要に応じて切断することによってより小さい形態のPTC素子としてもよい。   Such a “metal electrode” is disposed on at least one of the major surfaces of the PTC element, and preferably on two opposing major surfaces of the PTC element. The metal electrode may be arranged in the same manner as a conventional method for manufacturing a PTC element. For example, you may arrange | position by thermocompression-bonding a metal electrode to the plate-shaped or sheet-shaped PTC element obtained by extrusion molding. In another embodiment, a mixture of polymeric material and conductive filler may be extruded onto a metal electrode. Then, it is good also as a PTC element of a smaller form by cut | disconnecting as needed.

加えて、本発明は、上述の本発明のPTC素子の少なくとも一方の金属電極に金属リードが電気的に接続されているPTCデバイスを提供し、更に、そのようなPTCデバイスが配線または電子部品に電気的に接続されている電気装置(例えば携帯電話)をも提供する。   In addition, the present invention provides a PTC device in which a metal lead is electrically connected to at least one metal electrode of the above-described PTC element of the present invention, and further, such a PTC device is used as a wiring or an electronic component. An electrically connected electrical device (eg, a mobile phone) is also provided.

本発明のPTC素子において使用するのが特に好ましい本発明のニッケル粉は、例えば次のようなものである:
(コバルトの含有量)
ニッケル粉の全体の合計質量を基準として、コバルトを2〜20質量%、好ましくは3〜18質量%、より好ましくは3〜15質量%、例えば4〜10質量%、特に5〜7質量%(例えば6質量%)含む。
The nickel powder of the present invention particularly preferred for use in the PTC element of the present invention is, for example, as follows:
(Cobalt content)
Based on the total mass of the nickel powder, cobalt is 2 to 20% by mass, preferably 3 to 18% by mass, more preferably 3 to 15% by mass, for example 4 to 10% by mass, especially 5 to 7% by mass ( For example, 6% by mass).

また、ニッケル粉の表層部においては、該表層部の全質量を基準として、コバルトを3〜40質量%、好ましくは8〜30質量%、より好ましくは8〜20質量%、例えば9〜15質量%、特に10質量%含む。   Moreover, in the surface layer part of nickel powder, cobalt is 3-40 mass% on the basis of the total mass of this surface layer part, Preferably it is 8-30 mass%, More preferably, 8-20 mass%, For example, 9-15 mass %, Especially 10% by mass.

さらに、PTC素子に用いるのが好ましいニッケル粉は、表層部に加えてその内側である内部にもコバルトを含んでもよく、それが好ましいが、内部にコバルトを含む必要は必ずしもない。内部にコバルトが含まれる場合、内部のコバルトの量は、内部の全質量を基準として、例えば2〜7質量%(特に3〜6質量%)であることが好ましい。   Further, the nickel powder preferably used for the PTC element may contain cobalt in the inside which is in addition to the surface layer portion, and it is preferable, but it is not always necessary to contain cobalt in the inside. When cobalt is contained inside, the amount of cobalt inside is preferably 2 to 7% by mass (particularly 3 to 6% by mass) based on the total mass of the inside.

本発明に係るPTC素子において使用するために特に好ましい本発明に係るニッケル粉の具体例としては、上述の3種のコバルト含有量の範囲で構成される種々の組み合わせのいずれかであり、例えば次のようなものを例示できる:全体としてのコバルトの量は5〜7質量%、表層部のコバルトの量は9〜12質量%、内部のコバルトの量は4〜5質量%。   A specific example of the nickel powder according to the present invention that is particularly preferable for use in the PTC element according to the present invention is any one of various combinations constituted by the above-described three types of cobalt content. The amount of cobalt as a whole is 5 to 7% by mass, the amount of cobalt in the surface layer is 9 to 12% by mass, and the amount of cobalt inside is 4 to 5% by mass.

(タップ密度)
例えば2.0〜3.5g/mL、好ましくは2.3〜3.0g/mL。
(Tap density)
For example, 2.0 to 3.5 g / mL, preferably 2.3 to 3.0 g / mL.

(一次粒子径)
例えば1.5〜2.5μm、好ましくは1.7〜2.2μm。
(Primary particle size)
For example, 1.5 to 2.5 μm, preferably 1.7 to 2.2 μm.

(一次粒子径の標準偏差/一次粒子径)
例えば0.3以下、好ましくは0.25以下。
(Standard deviation of primary particle size / Primary particle size)
For example, 0.3 or less, preferably 0.25 or less.

(二次粒子径)
例えば10〜40μm、好ましくは15〜30μm。
(Secondary particle size)
For example, 10 to 40 μm, preferably 15 to 30 μm.

(二次粒子径/一次粒子径)
例えば5〜20、好ましくは8〜16、より好ましくは10〜15。
(Secondary particle size / primary particle size)
For example, 5-20, preferably 8-16, more preferably 10-15.

(比表面積)
例えば2以下、好ましくは1.7以下。
(Specific surface area)
For example, 2 or less, preferably 1.7 or less.

本発明のポリマーPTC素子のポリマーPTC要素において、ポリマー材料と導電性フィラーとの割合は、所定のPTC素子としての機能を発揮する限り、いずれの適当な割合であってもよい。例えば、質量基準で導電性フィラーが65〜90質量%、好ましくは70〜85質量%である。   In the polymer PTC element of the polymer PTC element of the present invention, the ratio between the polymer material and the conductive filler may be any suitable ratio as long as the function as a predetermined PTC element is exhibited. For example, the conductive filler is 65 to 90% by mass, preferably 70 to 85% by mass on a mass basis.

上述のような本発明に係るニッケル粉を含む、本発明に係るPTC素子では、高温・乾燥状態にさらされ得る環境下で長期間にわたって使用する場合であっても、従来のPTC素子と比較した場合、抵抗値の増加が大幅に抑制される。   The PTC element according to the present invention including the nickel powder according to the present invention as described above is compared with the conventional PTC element even when used over a long period of time in an environment where it can be exposed to a high temperature and a dry state. In this case, the increase in resistance value is greatly suppressed.

以下、実施例および比較例により本発明をさらに説明する。ニッケル粉に係る実施例および比較例は、実施例1〜12および比較例1〜6であり、ポリマーPTC素子に係る実施例および比較例は、実施例A〜Dおよび比較例AおよびBである。   The present invention will be further described below with reference to examples and comparative examples. Examples and comparative examples relating to nickel powder are Examples 1 to 12 and Comparative Examples 1 to 6, and Examples and comparative examples relating to polymer PTC elements are Examples A to D and Comparative Examples A and B. .

「ニッケル粉に係る実施例および比較例(実施例1〜12および比較例1〜6)」
(実施例1)
純水138Lに25%水酸化ナトリウム水溶液37.8Lおよび酒石酸1209gを添加し、撹拌しながら70℃まで加温した。この水溶液に、60%水加ヒドラジン28.8LおよびHLB値が9の変性シリコンオイル系界面活性剤を加え、さらに塩化コバルト水溶液および塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し5質量%となるように混合した水溶液)をNi+Co換算質量で3.7kg加え、第1の還元析出工程によりニッケル粉を析出させた。次に、この第1の還元析出工程によるニッケル粉の析出終了後の水溶液に、60%水加ヒドラジン4.8L、および塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液)をNi+Co換算質量(水溶液中に含有される塩を金属に換算したNiとCoの合計の質量)で3.7kg加えて、第2の還元析出工程によりさらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥させてニッケル粉を得た。
"Examples and comparative examples relating to nickel powder (Examples 1 to 12 and Comparative Examples 1 to 6)"
Example 1
To 138 L of pure water, 37.8 L of 25% aqueous sodium hydroxide solution and 1209 g of tartaric acid were added, and the mixture was heated to 70 ° C. with stirring. To this aqueous solution was added 60% hydrogenated hydrazine 28.8L and a modified silicone oil surfactant having an HLB value of 9, and further mixed with a cobalt chloride aqueous solution and a nickel chloride aqueous solution (Co content was 5% relative to the Ni + Co amount). 3.7 kg of Ni + Co equivalent mass) was added, and nickel powder was precipitated by the first reduction precipitation step. Next, 4.8 L of 60% hydrated hydrazine and an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution are mixed with the aqueous solution after the completion of the nickel powder precipitation by the first reduction precipitation step (the Co content is reduced to the Ni + Co amount). 3.7 kg of Ni + Co equivalent mass (total mass of Ni and Co in which the salt contained in the aqueous solution is converted to metal) is added to the second reduction precipitation step. Further, nickel powder was precipitated. Then, after filtering and washing with water, it was made to dry at 80 degreeC in the vacuum, and nickel powder was obtained.

得られたニッケル粉のCo含有量は6.6質量%であった。その粉体特性を下記表1に示す。ただし、ニッケル粉全体におけるCo含有量は分析値であるが、表層部のCo含有量は、第2の還元析出工程における水溶液中の塩をNi換算およびCo換算した値から算出したものである。具体的には、前記Ni換算した値と前記Co換算した値との合計値に対する、前記Co換算した値の割合として算出した。   The resulting nickel powder had a Co content of 6.6% by mass. The powder characteristics are shown in Table 1 below. However, although the Co content in the entire nickel powder is an analytical value, the Co content in the surface layer portion is calculated from the Ni-converted and Co-converted values of the salt in the aqueous solution in the second reduction precipitation step. Specifically, it was calculated as a ratio of the Co-converted value to the total value of the Ni-converted value and the Co-converted value.

表1中のd1は平均一次粒子径を意味し、SEM観察により測定した。具体的には、ニッケル粉をサンプルホルダーに導電性両面テープによって固定し、日本電子株式会社製JSM−6360LAにて加速電圧20kV、倍率2500倍で観察した。そして、得られたSEM像に、前記装置に付属している画像処理ソフト(SmileView)を適用し、粒子が重なり粒子径が判別できないものを除き、200個以上の一次粒子について粒子径を測定して、一次粒子の平均粒子径d1を求めた。また、得られたデータから一次粒子径の標準偏差も算出した。 D 1 in Table 1 means an average primary particle diameter, and was measured by SEM observation. Specifically, nickel powder was fixed to a sample holder with a conductive double-sided tape, and observed with JSM-6360LA manufactured by JEOL Ltd. at an acceleration voltage of 20 kV and a magnification of 2500 times. Then, the image processing software (SmileView) attached to the apparatus is applied to the obtained SEM image, and the particle diameters of 200 or more primary particles are measured except for particles that overlap and the particle diameter cannot be determined. Thus, the average particle diameter d 1 of the primary particles was obtained. Further, the standard deviation of the primary particle size was also calculated from the obtained data.

表1中のd2は平均二次粒子径を意味し、二次粒子の粒径はレーザー粒度分布測定により測定した。具体的には、日機装株式会社製のMICROTRAC HRA MODEL 9320−X100を用い、ニッケル粉をヘキサメタリン酸ナトリウム0.2質量%水溶液中に投入し、300Wで10分間の超音波撹拌を行った後、FRAモードで平均粒子寸法(D50)を測定し、これを平均二次粒子径d2とした。 Table d 2 in 1 means average secondary particle diameter, the particle size of secondary particles measured by a laser particle size distribution measurement. Specifically, using MICROTRAC HRA MODEL 9320-X100 manufactured by Nikkiso Co., Ltd., nickel powder was put into a 0.2% by mass aqueous solution of sodium hexametaphosphate, and after ultrasonic stirring at 300 W for 10 minutes, FRA the average particle size (D50) is measured in the mode, which was used as a mean secondary particle diameter d 2.

表1中のσは平均一次粒子径d1の標準偏差を表し、σ/d1は一次粒子径の標準偏差σと平均一次粒子径d1との比を表す。 In Table 1, σ represents the standard deviation of the average primary particle diameter d 1 , and σ / d 1 represents the ratio between the standard deviation σ of the primary particle diameter and the average primary particle diameter d 1 .

表1中のタップ密度の測定には株式会社蔵持科学器械製作所製の振とう比重測定器KRS−409を用いた。ニッケル粉15gを秤量して20mLメスシリンダー内に入れ、タップ速度を120回/分とし、タップ高さ20mmで500回のタップを行った。その後、ニッケル粉の容積をメスシリンダーの目盛りから読み取り、ニッケル粉の質量(g)を読み取った容積で除して算出した。   For the measurement of the tap density in Table 1, a shaking specific gravity measuring device KRS-409 manufactured by Kuramochi Scientific Instruments Ltd. was used. 15 g of nickel powder was weighed and placed in a 20 mL graduated cylinder, the tap speed was 120 times / minute, and 500 taps were performed at a tap height of 20 mm. Thereafter, the volume of the nickel powder was read from the scale of the graduated cylinder, and the mass (g) of the nickel powder was divided by the read volume.

表1中の比表面積の測定にはユアサアイオニクス社製のマルチソーブ16を用いた。脱気温度200℃、脱気時間15分の窒素ガスによる脱気後、窒素30%−アルゴン混合ガス吸着によるBET1点法で測定した。   For the measurement of the specific surface area in Table 1, a multisorb 16 manufactured by Yuasa Ionics was used. After degassing with nitrogen gas at a degassing temperature of 200 ° C. and a degassing time of 15 minutes, measurement was performed by a BET one-point method using nitrogen 30% -argon mixed gas adsorption.

次に、上記のニッケル粉とポリエチレン樹脂を、ニッケル粉含有量がニッケル粉+ポリエチレン樹脂に対して35容量%および43容量%となるように混合し、ポリエチレン樹脂の融点以上の温度で混練して、シート状に成形した。   Next, the nickel powder and the polyethylene resin are mixed so that the nickel powder content is 35% by volume and 43% by volume with respect to the nickel powder + polyethylene resin, and kneaded at a temperature equal to or higher than the melting point of the polyethylene resin. The sheet was formed into a sheet shape.

成形したシート状試料を25W×60Lに切り出して、表面抵抗率をJIS K 7194にしたがって測定したところ、35容量%混練品の初期の表面抵抗率は0.209Ω/□であり、43容量%混練品では0.036Ω/□であった。なお、この測定には、低抵抗率計(ロレスタ-GP、株式会社ダイアインスツルメンツ製)を用いた。   The molded sheet-like sample was cut out to 25W × 60L, and the surface resistivity was measured according to JIS K 7194. The initial surface resistivity of the 35% by volume kneaded product was 0.209Ω / □, and 43% by volume kneaded. The product was 0.036Ω / □. For this measurement, a low resistivity meter (Loresta-GP, manufactured by Dia Instruments Co., Ltd.) was used.

さらに、耐侯性を評価するため、シート状試料を、85℃−85%RHに設定した恒温恒湿槽中に168時間保持する耐湿試験を行なった後、上記と同様に表面抵抗率を測定した。35容量%混練品では0.217Ω/□を示し、43容量%混練品では0.033Ω/□を示した。これらの結果を表2に示す。   Furthermore, in order to evaluate the weather resistance, after performing a moisture resistance test in which the sheet-like sample was held in a constant temperature and humidity chamber set at 85 ° C. to 85% RH for 168 hours, the surface resistivity was measured in the same manner as described above. . The 35% by volume kneaded product showed 0.217Ω / □, and the 43% by volume kneaded product showed 0.033Ω / □. These results are shown in Table 2.

(実施例2)
実施例1と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。純水138Lに25%水酸化ナトリウム水溶液25.2Lおよび酒石酸806gを添加し、撹拌しながら70℃まで加温した。この水溶液に、60%水加ヒドラジン19.2LおよびHLB値が9の変性シリコンオイル系界面活性剤を加えた。この水溶液には塩化コバルト水溶液を添加せず、塩化ニッケル水溶液のみをNi換算質量で2.5kg添加して、第1の還元析出工程を行わせた。次に、この第1の還元析出工程によるニッケル粉の析出終了後の水溶液に、塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液)をNi+Co換算質量で2.5kg添加して、第2の還元析出工程によりさらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥させてニッケル粉を得た。
(Example 2)
Similarly to Example 1, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step. To 138 L of pure water, 25.2 L of 25% aqueous sodium hydroxide solution and 806 g of tartaric acid were added and heated to 70 ° C. with stirring. To this aqueous solution, 19.2 L of 60% hydrazine hydrate and a modified silicone oil surfactant having an HLB value of 9 were added. To this aqueous solution, no cobalt chloride aqueous solution was added, and only 2.5 kg of nickel chloride aqueous solution was added in terms of Ni to perform the first reduction precipitation step. Next, an aqueous solution obtained by mixing an aqueous solution of cobalt chloride and an aqueous solution of nickel chloride with the aqueous solution after completion of the precipitation of nickel powder in the first reduction precipitation step (mixed so that the Co content is 10% by mass with respect to the Ni + Co amount). The aqueous solution was added in an amount of 2.5 kg in terms of Ni + Co, and nickel powder was further precipitated by the second reduction precipitation step. Then, after filtering and washing with water, it was made to dry at 80 degreeC in the vacuum, and nickel powder was obtained.

得られたニッケル粉は表層部にのみCoを含有しており、全体としてのCo含有量は5.0質量%であった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、35容量%混練品の初期の表面抵抗率は0.711Ω/□であり、43容量%混練品では0.194Ω/□であった。さらに、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品では0.706Ω/□を示し、43容量%混練品では0.160Ω/□を示した。これらの結果を表2に示す。   The obtained nickel powder contained Co only in the surface layer portion, and the overall Co content was 5.0% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.711Ω / □, and that of the 43% by volume kneaded product was 0.194Ω / □. there were. Furthermore, when the surface resistivity after the moisture resistance test was measured, it was 0.706Ω / □ for the 35% by volume kneaded product and 0.160Ω / □ for the 43% by volume kneaded product. These results are shown in Table 2.

(実施例3)
純水2280mLに水酸化ナトリウム94.8gおよび酒石酸12.6gを添加し、撹拌しながら65℃まで加温した。この水溶液にヒドラジン180mLおよびHLB値が9の変性シリコンオイル系界面活性剤を加え、さらに塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し1質量%となるように混合した水溶液)をNi+Co換算質量で39gを加えて、第1の還元析出工程によりニッケル粉を析出させた。次に、この第1の還元析出工程終了後の水溶液に、ヒドラジン45mLおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し1.5質量%となるように混合した水溶液)をNi+Co換算質量で39g加えて、第2の還元析出工程により、さらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥させてニッケル粉を得た。
(Example 3)
To 2280 mL of pure water, 94.8 g of sodium hydroxide and 12.6 g of tartaric acid were added and heated to 65 ° C. with stirring. To this aqueous solution, 180 mL of hydrazine and a modified silicone oil surfactant having an HLB value of 9 were added, and an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution were mixed (mixed so that the Co content was 1% by mass with respect to the Ni + Co amount). 39 g of Ni + Co equivalent mass was added, and nickel powder was precipitated by the first reduction precipitation step. Next, an aqueous solution obtained by mixing 45 mL of hydrazine and an aqueous cobalt chloride solution and an aqueous nickel chloride solution (mixed so that the Co content is 1.5% by mass with respect to the Ni + Co content) is added to the aqueous solution after the completion of the first reduction precipitation step. 39 g of Ni + Co equivalent mass was added, and nickel powder was further precipitated by the second reduction precipitation step. Then, after filtering and washing with water, it was made to dry at 80 degreeC in the vacuum, and nickel powder was obtained.

得られたニッケル粉の全体としてのCo含有量は1.2質量%であった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、35容量%混練品の初期の表面抵抗率は0.725Ω/□であり、43容量%混練品では0.203Ω/□であった。さらに、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品では0.720Ω/□を示し、43容量%混練品では0.173Ω/□を示した。これらの結果を表2に示す。   The total nickel content of the obtained nickel powder was 1.2% by mass. The powder characteristics are shown in Table 1. Moreover, when this nickel powder was evaluated in the same manner as in Example 1, the initial surface resistivity of the 35% by volume kneaded product was 0.725Ω / □, and that of the 43% by volume kneaded product was 0.203Ω / □. there were. Furthermore, when the surface resistivity after the moisture resistance test was measured, it was 0.720Ω / □ for the 35% by volume kneaded product and 0.173Ω / □ for the 43% by volume kneaded product. These results are shown in Table 2.

(実施例4)
実施例3と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。実施例3では65℃までの加温であるが、実施例4では60℃までの加温とし、第1の還元析出工程と第2の還元析出工程の両方において、塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し20質量%となるように混合した水溶液(実施例3では、第1の還元析出工程ではCo含有量がNi+Co量に対し1質量%、第2の還元析出工程ではCo含有量がNi+Co量に対し1.5質量%。))をNi+Co換算質量で39g添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥してニッケル粉を得た。
Example 4
In the same manner as in Example 3, two-stage reduction precipitation of nickel was performed by a two-stage reduction precipitation process. In Example 3, the heating is up to 65 ° C., but in Example 4, the heating is up to 60 ° C., and both the cobalt chloride aqueous solution and the nickel chloride aqueous solution are used in both the first reduction precipitation step and the second reduction precipitation step. (In Example 3, in the first reduction precipitation step, the Co content is 1% by mass with respect to the Ni + Co content, and the second aqueous solution in which the Co content is 20% by mass with respect to the Ni + Co content. In the reductive precipitation step, Co content was 1.5% by mass with respect to the Ni + Co amount.)) 39) was added in terms of Ni + Co equivalent mass to precipitate nickel powder. Then, after filtering and washing with water, it dried at 80 degreeC in the vacuum, and obtained nickel powder.

得られたニッケル粉の全体としてのCo含有量は19.4質量%であった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、35容量%混練品の初期の表面抵抗率は0.097Ω/□であり、43容量%混練品では0.033Ω/□であった。さらに、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品では0.115Ω/□を示し、43容量%混練品では0.035Ω/□を示した。これらの結果を表2に示す。   The overall nickel content of the obtained nickel powder was 19.4% by mass. The powder characteristics are shown in Table 1. Further, when this nickel powder was evaluated in the same manner as in Example 1, the initial surface resistivity of the 35% by volume kneaded product was 0.097Ω / □, and that of the 43% by volume kneaded product was 0.033Ω / □. there were. Furthermore, when the surface resistivity after the moisture resistance test was measured, it was 0.115Ω / □ for the 35% by volume kneaded product and 0.035Ω / □ for the 43% by volume kneaded product. These results are shown in Table 2.

(実施例5)
実施例3と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。第1の還元析出工程において添加する水溶液には塩化コバルト水溶液を添加せず、塩化ニッケル水溶液のみをNi換算質量で39g添加して、第1の還元析出工程を行わせた。第2の還元析出工程においては、塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し40質量%となるように混合した水溶液(実施例3では、Co含有量がNi+Co量に対し1.5質量%。))をNi+Co換算質量で39g添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥してニッケル粉を得た。
(Example 5)
In the same manner as in Example 3, two-stage reduction precipitation of nickel was performed by a two-stage reduction precipitation process. The aqueous solution to be added in the first reduction precipitation step was not added with the cobalt chloride aqueous solution, but only 39 g of the nickel chloride aqueous solution was added in terms of Ni to perform the first reduction precipitation step. In the second reduction precipitation step, an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution are mixed (an aqueous solution in which the Co content is 40% by mass with respect to the Ni + Co amount (in Example 3, the Co content is Ni + Co 1.5 mass% with respect to the quantity.)) 39g was added by Ni + Co conversion mass, and nickel powder was deposited. Then, after filtering and washing with water, it dried at 80 degreeC in the vacuum, and obtained nickel powder.

得られたニッケル粉は表層部にのみCoを含有しており、得られたニッケル粉の全体としてのCo含有量は18.7質量%であった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、35容量%混練品の初期の表面抵抗率は0.539Ω/□であり、43容量%混練品では0.178Ω/□であった。さらに、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品では0.609Ω/□を示し、43容量%混練品では0.176Ω/□を示した。これらの結果を表2に示す。   The obtained nickel powder contained Co only in the surface layer portion, and the Co content as a whole of the obtained nickel powder was 18.7% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.539Ω / □, and that of the 43% by volume kneaded product was 0.178Ω / □. there were. Furthermore, when the surface resistivity after the moisture resistance test was measured, it was 0.609Ω / □ for the 35% by volume kneaded product and 0.176Ω / □ for the 43% by volume kneaded product. These results are shown in Table 2.

(実施例6)
実施例1と同様にして、2段階の還元析出工程により2段階のニッケルの還元析出を行い、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて150℃で乾燥させてニッケル粉を得た。本実施例6は、真空中の乾燥温度が150℃(実施例1は80℃)である点のみが実施例1と異なる。
(Example 6)
In the same manner as in Example 1, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step to deposit nickel powder. Then, after filtering and washing with water, it was made to dry at 150 degreeC in vacuum, and nickel powder was obtained. Example 6 is different from Example 1 only in that the drying temperature in vacuum is 150 ° C. (Example 1 is 80 ° C.).

得られたニッケル粉の全体としてのCo含有量は6.5質量%であり、比表面積は0.94m2/gであった。その粉体特性を表1に示す。 The total nickel content of the obtained nickel powder was 6.5% by mass, and the specific surface area was 0.94 m 2 / g. The powder characteristics are shown in Table 1.

次に、実施例1と同様に表面抵抗率を測定したところ、初期の表面抵抗率は0.147Ω/□であり、耐湿試験後の表面抵抗率は0.112Ω/□を示した。これらの結果を表2に示す。   Next, when the surface resistivity was measured in the same manner as in Example 1, the initial surface resistivity was 0.147Ω / □, and the surface resistivity after the moisture resistance test was 0.112Ω / □. These results are shown in Table 2.

(実施例7)
実施例1と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。第1の還元析出工程においては塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し4質量%となるように混合した水溶液(実施例1では、Co含有量がNi+Co量に対し5質量%。))をNi+Co換算質量で3.7kg添加してニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程において60%水加ヒドラジンの添加を開始してから35分経過後に、さらに60%水加ヒドラジンおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液。)を添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて200℃で乾燥させてニッケル粉を得た。
(Example 7)
Similarly to Example 1, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step. In the first reduction precipitation step, an aqueous solution in which an aqueous cobalt chloride solution and an aqueous nickel chloride solution are mixed (an aqueous solution in which the Co content is 4% by mass with respect to the Ni + Co content (in Example 1, the Co content is Ni + Co content). 5% by mass with respect to Ni. Co.) in terms of Ni + Co was added to precipitate nickel powder. Next, in the second reduction precipitation step, 35 minutes after the start of the addition of 60% hydrazine in the first reduction precipitation step, a further 60% hydrazine, cobalt chloride aqueous solution and nickel chloride aqueous solution are added. An aqueous solution in which (Co content was mixed so that the Co content was 10% by mass with respect to the Ni + Co amount) was added to precipitate nickel powder. Then, after filtering and washing with water, it was made to dry at 200 degreeC in vacuum, and nickel powder was obtained.

得られたニッケル粉の全体としてのCo含有量は6.2質量%であり、比表面積は0.65m2/gであった。その粉体特性を下記表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.151Ω/□であり、耐湿試験後の表面抵抗率は、0.122Ω/□であった。これらの結果を表2に示す。 The total nickel content of the obtained nickel powder was 6.2% by mass, and the specific surface area was 0.65 m 2 / g. The powder characteristics are shown in Table 1 below. Further, when this nickel powder was evaluated in the same manner as in Example 1, the initial surface resistivity was 0.151 Ω / □, and the surface resistivity after the moisture resistance test was 0.122 Ω / □. These results are shown in Table 2.

(実施例8)
実施例1と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。純水138Lに25%水酸化ナトリウム水溶液25.2Lおよび酒石酸806gを添加し、撹拌しながら75℃まで加温した。この水溶液に、60%水加ヒドラジン19.2Lを加え、さらに第1の還元析出工程においては塩化コバルト水溶液は添加せず、塩化ニッケル水溶液のみをNi換算質量で2.5kg添加してニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程において60%水加ヒドラジンの添加を開始してから50分経過後に、さらに60%水加ヒドラジンおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液)をNi+Co換算質量で2.5kg添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて220℃で乾燥させてニッケル粉を得た。
(Example 8)
Similarly to Example 1, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step. To 138 L of pure water, 25.2 L of 25% aqueous sodium hydroxide and 806 g of tartaric acid were added and heated to 75 ° C. with stirring. To this aqueous solution, 19.2 L of 60% hydrazine hydrate was added, and in the first reduction precipitation process, no cobalt chloride aqueous solution was added, and only 2.5 kg of nickel chloride aqueous solution in terms of Ni was added to obtain nickel powder. Precipitated. Next, in the second reduction precipitation step, 50 minutes after the start of the addition of 60% hydrazine in the first reduction precipitation step, 60% hydrazine, cobalt chloride aqueous solution and nickel chloride aqueous solution are further added. An aqueous solution (mixed so that the Co content was 10% by mass with respect to the Ni + Co content) was added in an amount of 2.5 kg in terms of Ni + Co to precipitate nickel powder. Then, after filtering and washing with water, it was made to dry at 220 degreeC in vacuum, and nickel powder was obtained.

得られたニッケル粉は表層部にのみCoを含有し、全体としてのCo含有量は4.6質量%であり、比表面積は0.97m2/gであった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.209Ω/□であり、耐湿試験後の表面抵抗率は、0.190Ω/□であった。これらの結果を表2に示す。 The obtained nickel powder contained Co only in the surface layer portion, the Co content as a whole was 4.6% by mass, and the specific surface area was 0.97 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.209 Ω / □, and the surface resistivity after the moisture resistance test was 0.190 Ω / □. These results are shown in Table 2.

(実施例9)
実施例1と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。第1の還元析出工程においては、純水138Lに25%水酸化ナトリウム水溶液25.2Lおよび酒石酸806gを添加し、撹拌しながら70℃まで加温した。この水溶液に、60%水加ヒドラジン19.2Lを加え、さらに第1の還元析出工程においては塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し1.5質量%となるように混合した水溶液)をNi+Co換算質量で2.5kg添加してニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程において60%水加ヒドラジンの添加を開始してから40分経過後に、さらに60%水加ヒドラジンおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し1.5質量%となるように混合した水溶液)をNi+Co換算質量で2.5kg添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて120℃で乾燥させてニッケル粉を得た。
Example 9
Similarly to Example 1, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step. In the first reduction precipitation step, 25.2 L of 25% aqueous sodium hydroxide and 806 g of tartaric acid were added to 138 L of pure water and heated to 70 ° C. with stirring. To this aqueous solution, 19.2 L of 60% hydrazine hydrate was added, and in the first reduction precipitation step, an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution were mixed (the Co content was 1.5% by mass with respect to the Ni + Co amount). 2.5 kg of Ni + Co equivalent mass was added to precipitate nickel powder. Next, in the second reduction precipitation step, 40 minutes after the start of the addition of 60% hydrazine in the first reduction precipitation step, 60% hydrazine, cobalt chloride aqueous solution and nickel chloride aqueous solution are further added. An aqueous solution (mixed so that the Co content is 1.5% by mass with respect to the Ni + Co content) was added in an amount of 2.5 kg in terms of Ni + Co, thereby precipitating nickel powder. Then, after filtering and washing with water, it was made to dry at 120 degreeC in vacuum, and nickel powder was obtained.

得られたニッケル粉の全体としてのCo含有量は1.3質量%であり、比表面積は0.85m2/gであった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.361Ω/□であり、耐湿試験後の表面抵抗率は、0.318Ω/□であった。これらの結果を表2に示す。 The total nickel content of the obtained nickel powder was 1.3% by mass, and the specific surface area was 0.85 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.361Ω / □, and the surface resistivity after the moisture resistance test was 0.318Ω / □. These results are shown in Table 2.

(実施例10)
純水2280mLに水酸化ナトリウム94.8gおよび酒石酸12.6gを添加し、撹拌しながら55℃まで加温した。この水溶液にヒドラジン180mLおよびHLB値が9の変性シリコンオイル系界面活性剤を加え、さらに塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し20質量%となるように混合した水溶液)をNi+Co換算質量で39gの塩化ニッケル水溶液を加えて、第1の還元析出工程によりニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程においてヒドラジンの添加を開始してから30分経過後に、さらにヒドラジン45mLおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し20質量%となるように混合した水溶液)をNi+Co換算質量で39g加えて、さらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて200℃で乾燥させてニッケル粉を得た。
(Example 10)
Sodium hydroxide 94.8g and tartaric acid 12.6g were added to pure water 2280mL, and it heated to 55 degreeC, stirring. To this aqueous solution, 180 mL of hydrazine and a modified silicone oil surfactant having an HLB value of 9 were added, and an aqueous solution in which an aqueous cobalt chloride solution and an aqueous nickel chloride solution were mixed (mixed so that the Co content was 20% by mass with respect to the Ni + Co content). In addition, 39 g of nickel chloride aqueous solution in terms of Ni + Co equivalent mass was added, and nickel powder was precipitated by the first reduction precipitation step. Next, in the second reduction precipitation step, 30 minutes after the start of the addition of hydrazine in the first reduction precipitation step, 45 mL of hydrazine, a cobalt chloride aqueous solution and a nickel chloride aqueous solution are further mixed (Co-containing solution). 39 g of an aqueous solution mixed so that the amount becomes 20% by mass with respect to the Ni + Co amount) was added in terms of Ni + Co equivalent mass, and nickel powder was further precipitated. Then, after filtering and washing with water, it was made to dry at 200 degreeC in vacuum, and nickel powder was obtained.

得られたニッケル粉の全体としてのCo含有量は18.8質量%であり、比表面積は1.09m2/gであった。その粉体特性を下記表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.085Ω/□であり、耐湿試験後の表面抵抗率は0.081Ω/□を示した。これらの結果を表2に示す。 The total nickel content of the obtained nickel powder was 18.8% by mass, and the specific surface area was 1.09 m 2 / g. The powder characteristics are shown in Table 1 below. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.085Ω / □, and the surface resistivity after the moisture resistance test was 0.081Ω / □. These results are shown in Table 2.

(実施例11)
実施例10と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行ったが、加温を70℃まで行った。第1の還元析出工程においては、塩化コバルト水溶液は添加せず、塩化ニッケル水溶液のみをNi換算質量で39g添加してニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程においてヒドラジンの添加を開始してから45分経過後に、さらにヒドラジン45mLおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し40質量%となるように混合した水溶液)をNi+Co換算質量で39g加えて、さらにニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて220℃で乾燥してニッケル粉を得た。
(Example 11)
In the same manner as in Example 10, two-stage reduction and precipitation of nickel was performed by a two-stage reduction and precipitation process, but the heating was performed up to 70 ° C. In the first reduction precipitation process, no cobalt chloride aqueous solution was added, and 39 g of nickel chloride aqueous solution alone was added in terms of Ni to precipitate nickel powder. Next, in the second reduction precipitation step, 45 minutes after the start of the addition of hydrazine in the first reduction precipitation step, 45 mL of hydrazine, a cobalt chloride aqueous solution and a nickel chloride aqueous solution are further mixed (Co-containing solution). 39 g of an aqueous solution mixed in an amount of 40% by mass with respect to the amount of Ni + Co) was added in terms of Ni + Co equivalent to further precipitate nickel powder. Then, after filtering and washing with water, it dried at 220 degreeC in the vacuum, and obtained nickel powder.

得られたニッケル粉は表層部にのみCoを含有し、全体としてのCo含有量は19.1質量%であり、比表面積は1.15m2/gであった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.406Ω/□であり、耐湿試験後の表面抵抗率は0.369Ω/□を示した。これらの結果を下記表2に示す。 The obtained nickel powder contained Co only in the surface layer portion, the Co content as a whole was 19.1% by mass, and the specific surface area was 1.15 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.406 Ω / □, and the surface resistivity after the moisture resistance test was 0.369 Ω / □. These results are shown in Table 2 below.

(実施例12)
実施例7と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。その後、ろ過および水洗した後、大気中で110℃で乾燥し、さらに窒素−10%水素中350℃の温度で2時間加熱した。得られたニッケル粉の全体としてのCo含有量は5.9質量%であり、比表面積は0.35m2/gと小さかった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.205Ω/□であり、耐湿試験後の表面抵抗率は0.196Ω/□であった。これらの結果を表2に示す。
(Example 12)
Similarly to Example 7, two-step reduction precipitation of nickel was performed by a two-step reduction precipitation step. Then, after filtering and washing with water, it dried at 110 degreeC in air | atmosphere, and also heated at the temperature of 350 degreeC in nitrogen -10% hydrogen for 2 hours. The total nickel content of the obtained nickel powder was 5.9% by mass, and the specific surface area was as small as 0.35 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.205 Ω / □, and the surface resistivity after the moisture resistance test was 0.196 Ω / □. These results are shown in Table 2.

(比較例1)
実施例2と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行ったが、第1の還元析出工程においては、HLB値が11の変性シリコンオイル系界面活性剤を添加してニッケル粉を得た。
(Comparative Example 1)
As in Example 2, two-stage reduction and precipitation of nickel was performed by a two-stage reduction and precipitation process. In the first reduction and precipitation process, a modified silicone oil surfactant having an HLB value of 11 was added. Nickel powder was obtained.

得られたニッケル粉は表層部にのみCoを含有しており、Co含有量は4.8質量%であった。その粉体特性を下記表1に示す。HLB値が11の変性シリコンオイル系界面活性剤を使用したため、平均一次粒子径d1が小さくなった。また、このニッケル粉について、実施例1と同様の評価をしたところ、35容量%混練品の初期の表面抵抗率は0.043Ω/□であったが、ニッケル粉を43容量%混練した場合には、ニッケル粉間に樹脂が吸収されてしまい混練は不可能であった。さらに、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品は0.059Ω/□を示した。これらの結果を、表2に示す。 The obtained nickel powder contained Co only in the surface layer portion, and the Co content was 4.8% by mass. The powder characteristics are shown in Table 1 below. Since a modified silicone oil-based surfactant having an HLB value of 11 was used, the average primary particle diameter d 1 was reduced. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 0.043Ω / □, but when the nickel powder was kneaded by 43% by volume. Kneading was impossible because the resin was absorbed between the nickel powders. Furthermore, when the surface resistivity after the moisture resistance test was measured, the 35% by volume kneaded product showed 0.059Ω / □. These results are shown in Table 2.

(比較例2)
真空乾燥後に粉砕処理を行なってニッケル粉を得た以外は、実施例2と同様にして、2段階の還元析出工程により2段階のニッケルの還元析出を行ってニッケル粉を得た。粉砕処理を行なったため、タップ密度が3.61g/mLと大きくなった。
(Comparative Example 2)
Except that the nickel powder was obtained by pulverizing after vacuum drying, the nickel powder was obtained by performing the two-stage reduction precipitation of nickel by the two-stage reduction precipitation process in the same manner as in Example 2. Since the pulverization process was performed, the tap density increased to 3.61 g / mL.

得られたニッケル粉は表層部にのみCoを含有しており、Co含有量は4.6質量%であった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様の評価をしたところ、35容量%混練品の初期の表面抵抗率は356Ω/□であり、43容量%混練品では129Ω/□であった。初期の表面抵抗率が高かったため、これらの試料については耐湿試験を行なわなかった。これらの結果を、表2に示す。   The obtained nickel powder contained Co only in the surface layer portion, and the Co content was 4.6% by mass. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity of the 35% by volume kneaded product was 356Ω / □, and that of the 43% by volume kneaded product was 129Ω / □. Due to the high initial surface resistivity, these samples were not subjected to a moisture resistance test. These results are shown in Table 2.

(比較例3)
純水3800mLに水酸化ナトリウム164gおよびエチレンジアミン21gを添加し、撹拌しながら85℃まで加温した。この水溶液にヒドラジン300mLとNi換算質量で130gの塩化ニッケル水溶液を加え(塩化コバルト水溶液は加えていない。)、1段階のみの還元析出工程によりニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥してニッケル粉を得た。
(Comparative Example 3)
To 3800 mL of pure water, 164 g of sodium hydroxide and 21 g of ethylenediamine were added and heated to 85 ° C. with stirring. To this aqueous solution, 300 mL of hydrazine and 130 g of nickel chloride aqueous solution in terms of Ni were added (no cobalt chloride aqueous solution was added), and nickel powder was precipitated by a single-step reduction precipitation process. Then, after filtering and washing with water, it dried at 80 degreeC in the vacuum, and obtained nickel powder.

得られたニッケル粉はCoを含有していない。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にしてポリエチレン樹脂と混練したところ、ニッケル粉を35容量%混練した場合においても、ニッケル粉間に樹脂が吸収されてしまい不可能であった。   The obtained nickel powder does not contain Co. The powder characteristics are shown in Table 1. Further, when this nickel powder was kneaded with a polyethylene resin in the same manner as in Example 1, even when the nickel powder was kneaded at 35% by volume, the resin was absorbed between the nickel powders, which was impossible.

(比較例4)
導電ペーストおよび導電樹脂用の導電性粒子として市販されている代表的なフィラー状ニッケル粉(INCO社製)について、その粉体特性を表1に示す。このニッケル粉はCoを含有していない。
(Comparative Example 4)
Table 1 shows the powder characteristics of typical filler-like nickel powder (manufactured by INCO) commercially available as conductive particles for conductive paste and conductive resin. This nickel powder does not contain Co.

このニッケル粉について、実施例1と同様にして評価したところ、35容量%混練品の初期の表面抵抗率は0.124Ω/□であり、43容量%混練品では0.043Ω/□であった。更に、耐湿試験後の表面抵抗率を測定したところ、35容量%混練品では0.406Ω/□であり、43容量%混練品では0.068Ω/□であった。これらの結果を、表2に示す。   When this nickel powder was evaluated in the same manner as in Example 1, the initial surface resistivity of the 35% by volume kneaded product was 0.124Ω / □, and that of the 43% by volume kneaded product was 0.043Ω / □. . Furthermore, when the surface resistivity after the moisture resistance test was measured, it was 0.406Ω / □ for the 35% by volume kneaded product and 0.068Ω / □ for the 43% by volume kneaded product. These results are shown in Table 2.

(比較例5)
実施例2と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行ったが、加温を70℃まで行った。第1の還元析出工程においては、HLB値が11の変性シリコンオイル系界面活性剤を添加してニッケル粉を得た。次に、第2の還元析出工程においては、第1の還元析出工程において60%水加ヒドラジンの添加を開始してから25分経過後に、さらに60%水加ヒドラジンおよび塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液)をNi+Co換算質量で2.5kg添加して、ニッケル粉を析出させた。その後、ろ過および水洗した後、真空中にて80℃で乾燥させてニッケル粉を得た。
(Comparative Example 5)
In the same manner as in Example 2, two-stage reduction and precipitation of nickel was performed by a two-stage reduction and precipitation process, but the heating was performed up to 70 ° C. In the first reduction deposition step, a modified silicone oil surfactant having an HLB value of 11 was added to obtain nickel powder. Next, in the second reduction precipitation step, 60 minutes of hydrazine, cobalt chloride aqueous solution and nickel chloride aqueous solution are further added after 25 minutes from the start of the addition of 60% hydrazine in the first reduction precipitation step. An aqueous solution (mixed so that the Co content was 10% by mass with respect to the Ni + Co content) was added in an amount of 2.5 kg in terms of Ni + Co to precipitate nickel powder. Then, after filtering and washing with water, it was made to dry at 80 degreeC in the vacuum, and nickel powder was obtained.

得られたニッケル粉は表層部にのみCoを含有し、Co含有量は5.0質量%であり、比表面積は2.26m2/gであった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.039Ω/□であり、耐湿試験後の表面抵抗率は0.051Ω/□であった。これらの結果を、表2に示す。 The obtained nickel powder contained Co only in the surface layer portion, the Co content was 5.0% by mass, and the specific surface area was 2.26 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.039Ω / □, and the surface resistivity after the moisture resistance test was 0.051Ω / □. These results are shown in Table 2.

(比較例6)
実施例2と同様に、2段階の還元析出工程により2段階のニッケルの還元析出を行った。純水160Lに25%水酸化ナトリウム水溶液32.9Lおよび酒石酸1617gを添加し、撹拌しながら60℃まで加温した。この水溶液に、60%水加ヒドラジン38.5Lを加え、さらに第1の還元析出工程においては塩化コバルト水溶液は添加せず、塩化ニッケル水溶液のみをNi換算質量で4.8kg添加してニッケル粉を析出させた。次に、第2の還元析出工程においては、第1の還元析出工程において60%水加ヒドラジンの添加を開始してから30分経過後に、さらに塩化コバルト水溶液と塩化ニッケル水溶液を混合した水溶液(Co含有量がNi+Co量に対し10質量%となるように混合した水溶液)をNi+Co換算質量で4.8kg添加して、さらにニッケルを析出させた。その後、ろ過および水洗した後、大気中にて100℃で乾燥させ、さらに、窒素−10%水素中350℃で2時間の熱処理を行い、ニッケル粉を得た。
(Comparative Example 6)
In the same manner as in Example 2, two-stage reduction precipitation of nickel was performed by a two-stage reduction precipitation process. To 160 L of pure water, 32.9 L of 25% aqueous sodium hydroxide and 1617 g of tartaric acid were added, and the mixture was heated to 60 ° C. with stirring. To this aqueous solution, 38.5 L of 60% hydrazine hydrate was added, and in the first reduction precipitation process, no cobalt chloride aqueous solution was added, and only 4.8 kg of nickel chloride aqueous solution was added in terms of Ni to obtain nickel powder. Precipitated. Next, in the second reduction precipitation step, 30 minutes after the start of the addition of 60% hydrazine in the first reduction precipitation step, an aqueous solution in which a cobalt chloride aqueous solution and a nickel chloride aqueous solution are further mixed (Co 4.8 kg of Ni + Co equivalent mass was added so that the content was 10% by mass with respect to the Ni + Co content, and nickel was further precipitated. Then, after filtering and washing with water, it was dried at 100 ° C. in the atmosphere, and further heat-treated at 350 ° C. in nitrogen-10% hydrogen for 2 hours to obtain nickel powder.

得られたニッケル粉は表層部にのみCoを含有し、Co含有量は5.0質量%であり、比表面積は1.13m2/gであった。その粉体特性を表1に示す。また、このニッケル粉について、実施例1と同様にして評価したところ、初期の表面抵抗率は0.046Ω/□であり、耐湿試験後の表面抵抗率は0.066Ω/□を示した。これらの結果を、表2に示す。 The obtained nickel powder contained Co only in the surface layer portion, the Co content was 5.0% by mass, and the specific surface area was 1.13 m 2 / g. The powder characteristics are shown in Table 1. The nickel powder was evaluated in the same manner as in Example 1. As a result, the initial surface resistivity was 0.046Ω / □, and the surface resistivity after the moisture resistance test was 0.066Ω / □. These results are shown in Table 2.

本発明の範囲内の実施例1〜5は、Ni粉の混練比率が35容量%であっても43容量%であっても、ポリエチレン樹脂との混練が可能で、実施例6〜12はNi粉の混練比率が35容量%でポリエチレン樹脂との混練が可能であった。また、本発明の範囲内の実施例1〜12では、樹脂混練後に成形したシート状試料の表面抵抗率は、耐湿試験の前後のいずれにおいても0.8Ω/□以下と小さかった。さらに、耐湿試験の前後での該表面抵抗率の上昇率(耐湿試験後の表面抵抗率/耐湿試験前の表面抵抗率)は最大でも1.19であり、本発明の範囲内の実施例1〜12は、耐候性にも優れ、長期間にわたり安定して使用できると考えられる。   In Examples 1 to 5 within the scope of the present invention, kneading with a polyethylene resin is possible regardless of whether the Ni powder kneading ratio is 35% by volume or 43% by volume. The powder kneading ratio was 35% by volume and kneading with polyethylene resin was possible. Moreover, in Examples 1-12 within the scope of the present invention, the surface resistivity of the sheet-like sample molded after resin kneading was as small as 0.8Ω / □ or less before and after the moisture resistance test. Furthermore, the rate of increase of the surface resistivity before and after the moisture resistance test (surface resistivity after the moisture resistance test / surface resistivity before the moisture resistance test) is 1.19 at the maximum, and Example 1 within the scope of the present invention. -12 is also excellent in weather resistance, and can be used stably over a long period of time.

これに対し、比較例1では、HLB値が11の変性シリコンオイル系界面活性剤を添加したため、平均一次粒子径が0.9μmと本発明の下限値である1.0μmを下回っているため、Ni粉の混練比率が43容量%の場合にポリエチレン樹脂との混練が不可能であった。Ni粉の混練比率が35容量%の場合はポリエチレン樹脂との混練を行うことができたが、Ni粉の比表面積が2.03m2/gであり、本発明の上限値である2.0m2/gを上回っているため、耐湿試験の前後での表面抵抗率の上昇率(耐湿試験後の表面抵抗率/耐湿試験前の表面抵抗率)が、1.36(Ni粉の混練比率が35容量%)と大きく、耐候性が劣っている。 On the other hand, in Comparative Example 1, since the modified silicone oil-based surfactant having an HLB value of 11 was added, the average primary particle diameter was 0.9 μm, which is lower than the lower limit of 1.0 μm of the present invention. When the Ni powder kneading ratio was 43% by volume, kneading with polyethylene resin was impossible. When the Ni powder kneading ratio was 35% by volume, kneading with polyethylene resin could be carried out, but the Ni powder specific surface area was 2.03 m 2 / g, which is the upper limit of 2.0 m of the present invention. 2 / g, the rate of increase in surface resistivity before and after the moisture resistance test (surface resistivity after the moisture resistance test / surface resistivity before the moisture resistance test) is 1.36 (the mixing ratio of Ni powder is 35% by volume) and the weather resistance is poor.

比較例2はタップ密度が3.61g/mLと本発明の上限値である3.5g/mLを上回っているため、樹脂中でニッケル粉が偏在して相互の接触が減少していると考えられ、Ni粉の混練比率が35容量%の場合は表面抵抗率の初期値が356Ω/□となり、Ni粉の混練比率が43容量%の場合は表面抵抗率の初期値が129Ω/□となり、いずれの場合も樹脂混練後に成形したシート状試料の表面抵抗率が極めて大きくなった。   Since Comparative Example 2 has a tap density of 3.61 g / mL, which exceeds the upper limit of 3.5 g / mL of the present invention, it is considered that nickel powder is unevenly distributed in the resin and mutual contact is reduced. When the Ni powder kneading ratio is 35% by volume, the initial value of the surface resistivity is 356Ω / □, and when the Ni powder kneading ratio is 43% by volume, the initial value of the surface resistivity is 129Ω / □, In any case, the surface resistivity of the sheet-like sample molded after the resin kneading became extremely large.

比較例3はタップ密度が0.61g/mLと本発明の下限値である1.0g/mLを下回っているため、樹脂へ混練するニッケル粉を多くすることが困難となり、Ni粉の混練比率が35容量%であってもポリエチレン樹脂との混練が不可能であった。   Since Comparative Example 3 has a tap density of 0.61 g / mL, which is lower than the lower limit of 1.0 g / mL of the present invention, it is difficult to increase the amount of nickel powder kneaded into the resin, and the Ni powder kneading ratio However, kneading with a polyethylene resin was impossible even when the content was 35% by volume.

比較例4は、Coを含まないNi粉であるため、耐湿試験の前後での表面抵抗率の上昇率(耐湿試験後の表面抵抗率/耐湿試験前の表面抵抗率)が、3.28(Ni粉の混練比率が35容量%)および1.59(Ni粉の混練比率が43容量%)と大きく、耐候性が劣っている。   Since Comparative Example 4 is Ni powder containing no Co, the rate of increase in surface resistivity before and after the moisture resistance test (surface resistivity after the moisture resistance test / surface resistivity before the moisture resistance test) is 3.28 ( Ni powder kneading ratio is 35% by volume) and 1.59 (Ni powder kneading ratio is 43% by volume), and the weather resistance is inferior.

比較例5は、平均一次粒子径が本発明を下回り、一次粒子径の標準偏差も大きく、かつ比表面積が大きいため、表面抵抗率の上昇率が1.31と大きく、耐候性に劣っている。   In Comparative Example 5, the average primary particle diameter is lower than that of the present invention, the standard deviation of the primary particle diameter is large, and the specific surface area is large. Therefore, the increase rate of the surface resistivity is as large as 1.31, and the weather resistance is poor. .

比較例6は、比表面積は本発明の範囲であるが、平均一次粒子径が本発明を下回り、一次粒子径の標準偏差も大きいため、表面抵抗率の上昇率が1.43と大きく、耐候性に劣っている。   In Comparative Example 6, the specific surface area is in the range of the present invention, but the average primary particle diameter is lower than that of the present invention, and the standard deviation of the primary particle diameter is large. Inferior.

また、図1(a)、(b)に実施例1で得られたニッケル粉の走査型電子顕微鏡(SEM)による写真を示し、図2(a)、(b)に比較例2で得られたニッケル粉の走査型電子顕微鏡(SEM)による写真を示す。   Moreover, the photograph by the scanning electron microscope (SEM) of the nickel powder obtained in Example 1 is shown to FIG. 1 (a), (b), FIG. 2 (a), (b) is obtained by the comparative example 2. FIG. The photograph by the scanning electron microscope (SEM) of the nickel powder was shown.

図1(a)、(b)からわかるように、実施例1で得られたニッケル粉は1.8μm前後に一次粒子径が揃っている。これに対し、図2(a)、(b)からわかるように、比較例2で得られたニッケル粉には、一次粒径の大きさが不揃いの粒子が混在しており、耐候性を悪化させる原因と考えられる細かな一次粒子が多く存在している。   As can be seen from FIGS. 1 (a) and 1 (b), the nickel powder obtained in Example 1 has a primary particle diameter of about 1.8 μm. On the other hand, as can be seen from FIGS. 2 (a) and 2 (b), the nickel powder obtained in Comparative Example 2 contains particles having irregular primary particle sizes, which deteriorates the weather resistance. There are many fine primary particles that are considered to be the cause.

「ポリマーPTC素子に係る実施例および比較例(実施例A〜Dおよび比較例AおよびB)」
次に、本発明に係るニッケル粉を用いて本発明に係るPTC素子を製造した実施例を説明する。また、比較のための比較例も説明する。
“Examples and Comparative Examples of Polymer PTC Devices (Examples A to D and Comparative Examples A and B)”
Next, the Example which manufactured the PTC element which concerns on this invention using the nickel powder which concerns on this invention is described. A comparative example for comparison will also be described.

(1)導電性フィラー
導電性フィラーとしてはニッケル−コバルト合金フィラー(即ち、本発明のニッケル粉または比較のためのニッケル粉)を、ポリマー材料としては高密度ポリエチレンを、また、金属電極としては粗面化ニッケル箔(福田金属箔工業株式会社製、厚さ:約25μm)を用いてPTC素子を製造した。
(1) Conductive filler Nickel-cobalt alloy filler (that is, nickel powder of the present invention or nickel powder for comparison) is used as the conductive filler, high-density polyethylene is used as the polymer material, and rough metal is used as the metal electrode. A PTC element was manufactured using surface nickel foil (made by Fukuda Metal Foil Industry Co., Ltd., thickness: about 25 μm).

使用したニッケル粉は、前記実施例1、実施例6、実施例7および実施例12において製造したものであり、これらを使用してPTC素子を製造した。これらのPTC素子をそれぞれ実施例A、実施例B、実施例Cおよび実施例DのPTC素子と呼ぶ。また、比較のため前記比較例6および比較例5のニッケル粉を導電性フィラーとして用いた。これらのPTC素子をそれぞれ比較例Aおよび比較例BのPTC素子と呼ぶ。   The nickel powder used was manufactured in Example 1, Example 6, Example 7 and Example 12, and a PTC element was manufactured using these. These PTC elements are called PTC elements of Example A, Example B, Example C, and Example D, respectively. For comparison, the nickel powders of Comparative Examples 6 and 5 were used as conductive fillers. These PTC elements are called PTC elements of Comparative Example A and Comparative Example B, respectively.

使用したニッケル粉の内部のCo含有量は以下の表3の通りである。   The Co content inside the used nickel powder is as shown in Table 3 below.

なお、Co含有量は、製造に用いた水溶液のニッケル塩およびコバルト塩が実質的に全部析出したものとして算出した。   The Co content was calculated on the assumption that substantially all of the nickel salt and cobalt salt of the aqueous solution used for the production were precipitated.

(2)ポリマー材料
ポリマー材料としては、市販の高密度ポリエチレン(EQUISTAR社製、PETROTHENE LB832、密度:0.957−0.964g/ml、メルトインデックス:0.23−0.30g/10分、融点135±3℃)を使用した。
(2) Polymer material As the polymer material, commercially available high-density polyethylene (Equistar, PETROTHENE LB832, density: 0.957-0.964 g / ml, melt index: 0.23-0.30 g / 10 min, melting point 135 ± 3 ° C.) was used.

(3)金属電極
金属電極としては、ニッケル金属箔(福田金属箔粉工業製、電解ニッケル箔、厚さ:約25μm)を使用した。
(3) Metal electrode As a metal electrode, nickel metal foil (the Fukuda metal foil powder industry make, electrolytic nickel foil, thickness: about 25 micrometers) was used.

(4)PTC素子の製造
(4−1)PTC組成物の製造
粉末状のポリマー材料にカップリング剤(KENRICH PETROCHEMICALS社製、NZ−33)をポリエチレン質量に対して2質量%添加し、それらをキッチンブレンダー(サン株式会社製、MILL MIXER MODEL FM−50)にて30秒間混合してポリマーブレンドを得た。これに、ニッケル粉とMg(OH)2(アルベマール社製、H10)を以下の表4に示す量で加え、キッチンブレンダーで30秒間混合して導電性ポリマー組成物を得た。
(4) Manufacture of a PTC element (4-1) Manufacture of a PTC composition 2% by mass of a coupling agent (KENRICH PETROCHEMICALS, NZ-33) is added to a polymer material in powder form with respect to the mass of polyethylene. A polymer blend was obtained by mixing for 30 seconds in a kitchen blender (Sun Corporation, MILL MIXER MODEL FM-50). To this, nickel powder and Mg (OH) 2 (manufactured by Albemarle, H10) were added in the amounts shown in Table 4 below, and mixed with a kitchen blender for 30 seconds to obtain a conductive polymer composition.

得られた導電性ポリマー組成物45mLを、ミル(東洋精機製作所製、ラボプラストミル 型式50C150、ブレードR60B)に投入し、設定温度160℃およびブレード回転数60RPMで15分間混練してPTC組成物を得た。   45 mL of the obtained conductive polymer composition was put into a mill (manufactured by Toyo Seiki Seisakusho, Lab Plast Mill Model 50C150, Blade R60B), and kneaded at a preset temperature of 160 ° C. and a blade rotation speed of 60 RPM for 15 minutes to obtain a PTC composition. Obtained.

(4−2)PTC要素原板の調製
(4−1)にて得られたPTC組成物を、鉄板/テフロン(登録商標)シート/厚み調整スペーサー(厚さ0.5mmのSUS製)+PTC組成物/テフロン(登録商標)シート/鉄板というサンドイッチ構造にしてこれらを重ね、熱圧力プレス機(東邦プレス製作所製、油圧成形機:型式T−1)にて、温度180〜200℃、圧力0.5MPaで3分間予備プレスした後、圧力5MPaにて4分間本プレスを行った。その後、チラーにて設定温度22℃の水を循環させた冷却プレス機(東邦プレス製作所製、油圧成形機:型式T−1)を使用して0.5MPaにて4分間プレスを行い、シート状のポリマーPTC要素(PTC要素原板)を作製した。
(4-2) Preparation of PTC Element Master Plate The PTC composition obtained in (4-1) was prepared by using an iron plate / Teflon (registered trademark) sheet / thickness adjusting spacer (made of SUS having a thickness of 0.5 mm) + PTC composition. / Teflon (registered trademark) sheet / steel plate in a sandwich structure, and these are stacked. Using a hot-pressure press (manufactured by Toho Press, hydraulic molding machine: model T-1), the temperature is 180 to 200 ° C., the pressure is 0.5 MPa. Was pre-pressed for 3 minutes, and then this press was performed for 4 minutes at a pressure of 5 MPa. Then, using a cooling press machine (manufactured by Toho Press Mfg. Co., Ltd., hydraulic molding machine: model T-1) in which water at a set temperature of 22 ° C. was circulated with a chiller, the sheet was pressed at 0.5 MPa for 4 minutes. The polymer PTC element (PTC element original plate) was prepared.

(4−3)ポリマーPTC素子プラック原板の製造
次に、(4−2)にて作製したPTC要素原板と金属電極を用いて、鉄板/テフロン(登録商標)シート/シリコンラバー/テフロン(登録商標)シート/金属電極/厚み調整スペーサー(厚さ0.5mmのSUS製)+PTC要素原板/金属電極/テフロン(登録商標)シート/シリコンラバー/テフロン(登録商標)シート/鉄板というサンドイッチ構造にしてこれらを重ね、上記熱圧力プレス機にて温度220〜230℃、プレス圧力9MPaで4分間本プレスした。その後、チラーにて設定温度22℃の水を循環させた上記冷却プレス機を使用して9MPaにて4分間冷却プレスを行い、ポリマーPTC要素(PTC要素原板)の両側の主表面に金属電極を熱圧着したポリマーPTC素子プラック原板(切断前のPCT素子の集合体)を作製した。
(4-3) Production of polymer PTC element plaque original plate Next, using the PTC element original plate and metal electrode prepared in (4-2), iron plate / Teflon (registered trademark) sheet / silicon rubber / Teflon (registered trademark) ) Sheet / metal electrode / thickness adjusting spacer (made of SUS having a thickness of 0.5 mm) + PTC element original plate / metal electrode / Teflon (registered trademark) sheet / silicon rubber / Teflon (registered trademark) sheet / iron plate The main press was performed for 4 minutes at a temperature of 220 to 230 ° C. and a press pressure of 9 MPa with the above-mentioned hot-pressing machine. Then, using the above cooling press machine in which water at a set temperature of 22 ° C. was circulated with a chiller, a cooling press was performed at 9 MPa for 4 minutes, and metal electrodes were placed on the main surfaces on both sides of the polymer PTC element (PTC element original plate). A polymer PTC element plaque original plate (an assembly of PCT elements before cutting) subjected to thermocompression bonding was produced.

(4−4)PTC素子の製造
(4−3)にて作製したポリマーPTC素子プラック原板に対して、1000kGyの電子線を照射し、その後、3×4mmに手動パンチ器により打抜いてポリマーPTC素子の試験片を得た。
(4-4) Manufacture of PTC Element The polymer PTC element plaque original plate prepared in (4-3) is irradiated with an electron beam of 1000 kGy, and then punched into a 3 × 4 mm by a manual punch device to form a polymer PTC. A test piece of the device was obtained.

(4−5)PTCデバイスの製造
(4−4)にて打ち抜いた3×4mmの試験片の両面に、厚さ0.125mm、硬度1/4H、4mm×5.2mmの純Niリード片をハンダ付けして、全体としてストラップ形状のPTCデバイスを試験サンプルとして得た。ハンダ付けには、ペースト半田(千住金属工業株式会社製、M705−728C)を片面に対して約2.0mg使用し、窒素雰囲気下でリフロー炉(日本アビオニクス社製、型式TCW−118N、補助ヒーター温調360℃、プリヒート温調250℃、リフロー温調(1)240℃、リフロー温調(2)370℃、ベルトスピード370mm/分)を用いた。
(4-5) Manufacture of PTC device Pure Ni lead pieces having a thickness of 0.125 mm, a hardness of 1/4 H, and a 4 mm x 5.2 mm are formed on both sides of the 3 x 4 mm test piece punched in (4-4). By soldering, an overall strap-shaped PTC device was obtained as a test sample. For soldering, paste solder (M705-728C, manufactured by Senju Metal Industry Co., Ltd.) is used in an amount of about 2.0 mg per side, and a reflow furnace (manufactured by Nippon Avionics Co., Ltd., model TCW-118N, auxiliary heater) is used in a nitrogen atmosphere. A temperature control of 360 ° C., preheat temperature control of 250 ° C., reflow temperature control (1) 240 ° C., reflow temperature control (2) 370 ° C., belt speed of 370 mm / min) were used.

(5)初期抵抗値の測定
得られた試験サンプルについて、製造の2日後、抵抗値(2つのリード間の抵抗値)を測定した。この抵抗値は、リードの抵抗値がPTC素子の抵抗値と比べてはるかに小さいので、PTC素子の初期抵抗値と呼ぶことができる。なお、初期抵抗値および後述するように種々の条件下におけるPTC素子の抵抗値の測定には、ミリオームメーター(HEWLETT PACKARD社製、4263A)を用いた。初期抵抗値の測定結果(単位:Ω)を表5に示す。
(5) Measurement of initial resistance value About the obtained test sample, the resistance value (resistance value between two leads) was measured two days after production. This resistance value can be called the initial resistance value of the PTC element because the resistance value of the lead is much smaller than the resistance value of the PTC element. Note that a milliohm meter (4263A manufactured by HEWLETT PACKARD) was used to measure the initial resistance value and the resistance value of the PTC element under various conditions as described later. Table 5 shows the measurement results (unit: Ω) of the initial resistance value.

この結果から、実施例の試験サンプルの方が抵抗値が若干低いが、比較例のサンプルも含め、いずれの試験サンプルも、通常のように低い抵抗値を有することがわかる。   From this result, it can be seen that although the resistance value of the test sample of the example is slightly lower, all the test samples including the sample of the comparative example have a low resistance value as usual.

(6)PTC特性の確認
次に、実施例および比較例の試験サンプル各5個について、抵抗−温度特性を測定することによってR(抵抗)−T(温度)試験を実施した。試験温度範囲は20℃〜150℃とし、試験サンプルの周囲湿度は、60%以下であった。試験サンプルの周囲温度を5℃ずつ上昇させ、その温度雰囲気で10分間保持した後、PTC素子抵抗値を測定した。各温度にて測定された抵抗値の初期温度(21℃)における抵抗値に対する比(即ち、抵抗変化の割合)を、図3に示す。
(6) Confirmation of PTC characteristics Next, an R (resistance) -T (temperature) test was performed by measuring resistance-temperature characteristics for each of five test samples of Examples and Comparative Examples. The test temperature range was 20 ° C. to 150 ° C., and the ambient humidity of the test sample was 60% or less. After the ambient temperature of the test sample was raised by 5 ° C. and held in that temperature atmosphere for 10 minutes, the PTC element resistance value was measured. FIG. 3 shows the ratio of the resistance value measured at each temperature to the resistance value at the initial temperature (21 ° C.) (that is, the ratio of resistance change).

図3の結果から、実施例および比較例の素子については約120℃〜130℃の範囲に閾温度(PTC素子の温度が室温から上昇してトリップ温度(trip temperature)とも呼ばれるPTC素子の抵抗が急激に増加する温度)を有し、いずれの素子についても、そのような範囲の後の抵抗値は、前の抵抗値の少なくとも約1015倍以上となっており、従って、いずれの試験サンプルもPTC素子としてのスイッチング機能を有することが明らかである。なお、一般的には抵抗値が少なくとも約103倍以上大きくなると、PTC素子としての機能を有すると考えてよい。 From the results of FIG. 3, the resistance of the PTC element, also called the trip temperature (trip temperature) when the temperature of the PTC element rises from room temperature, is about 120 ° C. to 130 ° C. For any element, the resistance value after such a range is at least about 10 15 times greater than the previous resistance value, so any test sample It is clear that it has a switching function as a PTC element. In general, when the resistance value is increased by at least about 10 3 times or more, it may be considered to have a function as a PTC element.

(7)高温・乾燥条件下での抵抗値の経時変化の測定
実施例および比較例の試験サンプルを85℃±3℃、相対湿度10%以下の高温・乾燥条件下に管理された恒温オーブン(ヤマト製 恒温オーブンDK600)に入れて保存し、24時間、165時間、502時間および1336時間の保存時間の経過後に、各実施例および比較例の試験サンプルを5個ずつ恒温オーブンより取り出して室温にて1時間放置後、ミリオームメーターにて抵抗値(トリップ前抵抗値)を測定した。抵抗値測定後、直流安定化電源(菊水電子工業製、PAD35−60L)を使用し、6V/50Aの設定にて5分間の電圧印加を行い、素子をトリップさせた。その後、同じく室温にて1時間放置した後、ミリオームメーターにて素子の抵抗値(トリップ後抵抗値)を測定した。測定結果を以下の表6および表7に示す。また、この結果を保存時間に対して図4(85℃保存抵抗値)および図5(85℃保存トリップジャンプ)に示す。なお、表6中の数値はトリップ前の抵抗値であり、単位はmΩである。表7は、85℃での保存時間が0時間でトリップ前における抵抗値に対する各時間経過後のトリップ後の抵抗値の割合、すなわち抵抗変化率を示す。
(7) Measurement of time-dependent change in resistance value under high temperature / dry conditions The test samples of the examples and comparative examples were controlled at a high temperature / dry condition of 85 ° C. ± 3 ° C. and a relative humidity of 10% or less. In a constant temperature oven DK600 manufactured by Yamato), and after the storage time of 24 hours, 165 hours, 502 hours and 1336 hours, five test samples of each example and comparative example were taken out of the constant temperature oven and brought to room temperature. After standing for 1 hour, the resistance value (resistance value before trip) was measured with a milliohm meter. After measuring the resistance value, a DC stabilized power supply (PAD35-60L, manufactured by Kikusui Electronics Co., Ltd.) was used, voltage was applied for 5 minutes at a setting of 6 V / 50 A, and the device was tripped. Thereafter, the device was allowed to stand at room temperature for 1 hour, and then the resistance value of the element (resistance value after trip) was measured with a milliohm meter. The measurement results are shown in Table 6 and Table 7 below. The results are shown in FIG. 4 (85 ° C. storage resistance value) and FIG. 5 (85 ° C. storage trip jump) with respect to the storage time. The numerical values in Table 6 are resistance values before tripping, and the unit is mΩ. Table 7 shows the ratio of the resistance value after trip after each time to the resistance value before trip when the storage time at 85 ° C. is 0 hour, that is, the resistance change rate.

高温・乾燥条件下では、トリップ前の抵抗値について、実施例および比較例のサンプルのいずれについても経時変化はそれほど大きくないが、トリップ後の抵抗値については、比較例のサンプルの方が明らかに抵抗値の増加率が大きくなっている。   Under high-temperature and dry conditions, the resistance value before tripping does not change much over time in both the example and comparative example samples, but the resistance value after tripping is evident in the comparative example sample. The increasing rate of the resistance value is large.

(8)常温・通常湿度条件下での抵抗値の経時変化の測定
実施例および比較例の試験サンプルを、23±5℃、相対湿度20〜60%(湿度を制御しない場合の一般的な湿度に相当)に管理された室温内にて保存されたPTC素子に対して上記(7)と同様の試験を実施した。但し、使用したサンプル数は各20個であり、1002時間後、1863時間の保存時間の経過後に各5個ずつ抜き取って抵抗値(トリップ前抵抗値)を測定した。また、トリップ後の抵抗値も同様に測定した。測定結果を以下の表8および表9に示す。また、この結果を保存時間に対して図6(常温保存抵抗値)および図7(常温保存トリップジャンプ)に示す。なお、表8中の数値はトリップ前の抵抗値であり、単位はmΩである。表9は、常温での保存時間が0時間でトリップ前における抵抗値に対する、各時間経過後のトリップ後の抵抗値の割合、すなわち抵抗変化率を示す。
(8) Measurement of resistance change with time under normal temperature and normal humidity conditions The test samples of the examples and comparative examples were measured at 23 ± 5 ° C. and a relative humidity of 20 to 60% (general humidity when the humidity was not controlled). The same test as in the above (7) was carried out on the PTC element stored at room temperature controlled to correspond to However, the number of samples used was 20 each, and after 1002 hours and after the storage time of 1863 hours, 5 samples were taken out and resistance values (resistance values before tripping) were measured. Moreover, the resistance value after a trip was measured similarly. The measurement results are shown in Table 8 and Table 9 below. The results are shown in FIG. 6 (room temperature storage resistance value) and FIG. 7 (room temperature storage trip jump) with respect to the storage time. The numerical values in Table 8 are resistance values before tripping, and the unit is mΩ. Table 9 shows the ratio of the resistance value after the trip after each elapsed time, that is, the resistance change rate, to the resistance value before the trip when the storage time at room temperature is 0 hour.

常温・通常湿度条件下では、トリップ前の抵抗値についても、また、トリップ後の抵抗値についても、実施例および比較例のサンプルのいずれについても経時的な影響はそれほど大きくないが、比較例のサンプルの方が比較的トリップ後の抵抗値の増加率が大きい。   Under normal temperature and normal humidity conditions, both the resistance value before tripping and the resistance value after tripping, both in the example and the comparative sample, are not so affected over time. The rate of increase in resistance after tripping is relatively large for the sample.

(9)加圧下での酸化加速試験
圧力容器内に試験サンプルを投入し、そこに圧縮空気を供給して40気圧の加圧雰囲気とし、PTC素子の導電性フィラーの酸化を加速し得る条件を設定した。この加圧雰囲気内で14日間および28日間試験サンプルを保存した後、大気・室温雰囲気にて1時間保持した後、先と同様に抵抗値を測定した(これらの測定値は、図8に、それぞれ「2week」および「4week」として図示している。なお、保存前については[initial」として図示している。)。また、その後、先と同様に、PTC素子をトリップさせ、その後、同じく室温にて1時間放置して抵抗値を測定した。測定結果を以下の表10および表11に示す。また、この結果を保存時間に対して図8(40気圧加圧試験後抵抗値)および図9(40気圧加圧試験後トリップジャンプ)に示す。なお、表10中の数値はトリップ前の抵抗値であり、単位はmΩである。表11は、40気圧での保存時間が0時間でトリップ前における抵抗値に対する、各時間経過後のトリップ後の抵抗値の割合、即ち、抵抗変化率で示している。
(9) Oxidation accelerated test under pressure A test sample is placed in a pressure vessel, and compressed air is supplied to the pressurized atmosphere at 40 atm to accelerate the oxidation of the conductive filler of the PTC element. Set. After storing the test samples for 14 days and 28 days in this pressurized atmosphere, after holding them in the atmosphere at room temperature for 1 hour, resistance values were measured in the same manner as above (these measured values are shown in FIG. These are illustrated as “2week” and “4week”, respectively, and are illustrated as “initial” before storage.) Thereafter, the PTC element was tripped in the same manner as described above, and then left at room temperature for 1 hour to measure the resistance value. The measurement results are shown in Table 10 and Table 11 below. The results are shown in FIG. 8 (resistance value after 40 atm pressurization test) and FIG. 9 (trip jump after 40 atm pressurization test) with respect to the storage time. In addition, the numerical value in Table 10 is the resistance value before the trip, and the unit is mΩ. Table 11 shows the ratio of the resistance value after the trip after each lapse of time to the resistance value before the trip when the storage time at 40 atmospheres is 0 hour, that is, the resistance change rate.

これらの結果から、加圧条件下では、トリップ前の抵抗値については、実施例および比較例のサンプルのいずれについても経時的な影響はそれほど大きくない。しかしながら、トリップ後の抵抗値については、比較例のサンプルの方が、時間が経過すると、抵抗値の増加が顕著になることが分かる。特に実施例Aおよび実施例Bのサンプルについては、トリップ後の抵抗値の増加に関して特に良好な結果が得られている。   From these results, under pressure conditions, the resistance value before tripping has little influence over time for both the example and comparative sample. However, with respect to the resistance value after the trip, it can be seen that the increase in the resistance value becomes more remarkable with the passage of time in the sample of the comparative example. Especially for the samples of Example A and Example B, particularly good results have been obtained with respect to the increase in resistance value after tripping.

(10)トリップ・サイクル試験
実施例および比較例のサンプルについて、室温にてミリオームメーターを使用して試験前抵抗値を測定した。その後、これらのサンプルをトリップサイクル試験機にセットした。この試験機では、供給電源として菊水電子製MODEL PAD 35−60Lを使用し、電圧6Vdc、試験電流50A制限に設定した。
(10) Trip cycle test About the sample of an Example and a comparative example, the resistance value before a test was measured using the milliohm meter at room temperature. Thereafter, these samples were set in a trip cycle tester. In this testing machine, MODEL PAD 35-60L manufactured by Kikusui Electronics was used as the power supply, and the voltage was set to 6 Vdc and the test current was limited to 50 A.

各サンプルには50Aの電流を6秒間印加した。この印加時間内にサンプルがトリップし、その残りの時間はサンプルに6Vの電圧を印加した。   A 50 A current was applied to each sample for 6 seconds. The sample tripped within this application time, and a voltage of 6 V was applied to the sample for the remaining time.

6秒間の印加時間が終了すると電流・電圧印加を解除し、54秒間の無印加状態とした。この電流・電圧印加のOn/OFFはシーケンサーにて制御されており、これを1サイクルと定義し、各サンプルについてトリップを200サイクル実施した。   When the application time of 6 seconds was finished, the current / voltage application was canceled and no application was applied for 54 seconds. On / OFF of the current / voltage application is controlled by a sequencer, which is defined as one cycle, and tripping was performed for each sample for 200 cycles.

なお、所定数のサイクルが終了した後、試験機からサンプルをいったん外して、その所定数のサイクル終了後、1時間経過した後に、サンプルの抵抗値を測定し、その後、サンプルを再び試験機にセットしてトリップサイクル試験を継続した。なお、サイクルの所定数は、50サイクル、100サイクルおよび200サイクルとした。この抵抗値の測定結果を、表12および図10に示す。なお、表および図の数値は、初期値(0サイクル)における抵抗値に対する各サイクル終了後の抵抗値の割合、すなわち抵抗変化率で示している。   After the predetermined number of cycles, the sample is once removed from the testing machine, and after the predetermined number of cycles, after 1 hour, the resistance value of the sample is measured, and then the sample is returned to the testing machine. The trip cycle test was continued after setting. The predetermined number of cycles was 50 cycles, 100 cycles, and 200 cycles. The measurement results of this resistance value are shown in Table 12 and FIG. The numerical values in the tables and figures are shown as the ratio of the resistance value after the end of each cycle to the resistance value at the initial value (0 cycle), that is, the resistance change rate.

比較例Aのサンプルについては200サイクル終了後には、抵抗値が相当増加していた反面、実施例のサンプルについては抵抗値の増加がそれほどでもなかった。   For the sample of Comparative Example A, the resistance value increased considerably after the end of 200 cycles, whereas for the sample of the Example, the resistance value did not increase much.

上述のPTC素子に関する実施例および比較例の結果から、実施例のサンプル、特に実施例Aおよび実施例Bのサンプルは、比較例のサンプルと比べ、高温・乾燥保存条件、常温・通常湿度保存条件、加速雰囲気下での保存条件およびトリップサイクル試験のいずれにおいても良好な性能を保持することが確認された。従って、そのようなサンプルを製造するために用いた本発明のニッケル粉を導電性フィラーとして用いると、好ましいPTC素子を製造することができる。このことは、本発明のニッケル粉が、コバルトを含むニッケル粉の中から特定の特徴を有するものとして選択されているからであると推定される。即ち、Coを含むニッケル粉そのものの特性に加え、よりコントロールされた1次粒子径分布および2次粒子径のモルフォロジー(形態)的な観点から特定の範囲のものを選択することに起因しているものと考えられる。   From the results of the examples and comparative examples relating to the PTC element described above, the samples of the examples, particularly the samples of Example A and Example B, were compared with the samples of the comparative examples at high temperature / dry storage conditions, normal temperature / normal humidity storage conditions. It was confirmed that good performance was maintained both in the storage conditions under the accelerated atmosphere and in the trip cycle test. Therefore, when the nickel powder of the present invention used for producing such a sample is used as a conductive filler, a preferable PTC element can be produced. This is presumed to be because the nickel powder of the present invention is selected from nickel powder containing cobalt as having specific characteristics. That is, in addition to the characteristics of the nickel powder itself containing Co, it is caused by selecting a specific range from the viewpoint of a more controlled primary particle size distribution and secondary particle size morphology. It is considered a thing.

特に着目すべき点は、PTC素子が高温・乾燥条件に長時間さらされると、トリップ後の抵抗値が増加するが、本発明のPTC素子の場合、その増加する割合が比較的小さい。従来、PTC素子の評価は、常温・通常湿度条件で実施されていた。このような評価では、図6および図7の結果からもわかるように素子の抵抗値の増加は顕著ではない。しかしながら、高温・乾燥条件での評価では、PTC素子の抵抗値の増加の差異が明らかとなる。PTC素子が使用される環境は種々異なり、高温かつ乾燥条件(例えば夏の日の車中の環境)で使用される場合がある。本発明のPTC素子は、そのような過酷な環境においても抵抗率の増加が小さいので、従来のPTC素子と比較して有用である。   Of particular note is that when the PTC element is exposed to high temperature / dry conditions for a long time, the resistance value after the trip increases, but in the case of the PTC element of the present invention, the increasing rate is relatively small. Conventionally, evaluation of PTC elements has been performed under normal temperature and normal humidity conditions. In such an evaluation, as can be seen from the results of FIGS. 6 and 7, the increase in the resistance value of the element is not remarkable. However, in the evaluation under the high temperature / dry conditions, the difference in the increase in the resistance value of the PTC element becomes clear. The environment in which the PTC element is used varies, and may be used at high temperatures and in dry conditions (for example, the environment in a car on a summer day). The PTC element of the present invention is more useful than the conventional PTC element because the increase in resistivity is small even in such a severe environment.

本発明に係るニッケル粉は、導電ペーストおよび導電樹脂用の導電性粒子として、また、ポリマーPTC素子の導電性フィラーとして好適に用いることができる。   The nickel powder according to the present invention can be suitably used as conductive particles for conductive paste and conductive resin, and as a conductive filler for polymer PTC elements.

また、本発明に係るPTC素子は、ニッケルのみを含むニッケル粉を導電性フィラーとして用いるPTC素子と同等のスイッチング性能を有し、さらに、長期の経時変化に対してはより向上した性能を示すので、従来のPTC素子と同様に電気装置等において幅広く、より長い期間にわたって使用できる。   In addition, the PTC element according to the present invention has a switching performance equivalent to that of a PTC element using nickel powder containing only nickel as a conductive filler, and further shows improved performance against long-term changes over time. Like a conventional PTC element, it can be used for a longer period of time in an electric device or the like.

実施例1で得られたニッケル粉の走査型電子顕微鏡(SEM)による写真である。(b)の拡大率は(a)の拡大率よりも大きくなっている。2 is a photograph of the nickel powder obtained in Example 1 taken with a scanning electron microscope (SEM). The enlargement rate of (b) is larger than the enlargement rate of (a). 比較例2で得られたニッケル粉の走査型電子顕微鏡(SEM)による写真である。(b)の拡大率は(a)の拡大率よりも大きくなっている。It is the photograph by the scanning electron microscope (SEM) of the nickel powder obtained by the comparative example 2. The enlargement rate of (b) is larger than the enlargement rate of (a). 実施例および比較例のPTC素子の抵抗−温度曲線を示すグラフである。It is a graph which shows the resistance-temperature curve of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の高温・乾燥条件下での抵抗値の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the resistance value on the high temperature and dry conditions of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の高温・乾燥条件下でのトリップ後の抵抗値の変化率の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the change rate of the resistance value after the trip under high temperature and dry conditions of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の室温・通常湿度条件下での抵抗値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the resistance value on room temperature and normal humidity conditions of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の室温・通常湿度条件下でのトリップ後の抵抗値の変化率の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the change rate of the resistance value after the trip on the room temperature and normal humidity conditions of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の酸化加速条件下での抵抗値の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the resistance value on the oxidation acceleration conditions of the PTC element of an Example and a comparative example. 実施例および比較例のPTC素子の酸化加速条件下でのトリップ後の抵抗値の変化率の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the resistance value change rate after the trip under the oxidation acceleration conditions of the PTC element of an Example and a comparative example. トリップサイクル試験による抵抗値の変化率を示すグラフである。It is a graph which shows the change rate of the resistance value by a trip cycle test.

Claims (12)

コバルトを1〜20質量%含有し、残部がニッケルおよび不可避不純物からなり、かつ、一次粒子が凝集した二次粒子で構成され、さらに、平均一次粒子径が1.0〜3.0μm、一次粒子径の標準偏差σと平均一次粒子径d1の比σ/d1の値が0.4以下、平均二次粒子径が5〜60μm、タップ密度が1.0〜3.5g/mL、比表面積が2.0m2/g以下であることを特徴とするニッケル粉。 Cobalt is contained in an amount of 1 to 20% by mass, the balance is made of nickel and inevitable impurities, and the primary particles are composed of secondary particles. The primary particles have an average primary particle size of 1.0 to 3.0 μm. The ratio σ / d 1 of the standard deviation σ of the diameter and the average primary particle diameter d 1 is 0.4 or less, the average secondary particle diameter is 5 to 60 μm, the tap density is 1.0 to 3.5 g / mL, the ratio Nickel powder having a surface area of 2.0 m 2 / g or less. 前記平均一次粒子径d1と前記平均二次粒子径d2との比d2/d1の値が5〜60の範囲内であることを特徴とする請求項1に記載のニッケル粉。 2. The nickel powder according to claim 1 , wherein the value of the ratio d 2 / d 1 between the average primary particle diameter d 1 and the average secondary particle diameter d 2 is in the range of 5-60. 前記二次粒子の表層部に存在する一次粒子のコバルト含有量が、該表層部の全質量あたり1〜40質量%であることを特徴とする請求項1または2に記載のニッケル粉。   The nickel powder according to claim 1 or 2, wherein the cobalt content of the primary particles present in the surface layer portion of the secondary particles is 1 to 40 mass% per total mass of the surface layer portion. 還元剤を含有する水溶液に2価のニッケル塩を添加してニッケルを析出させる第1の還元析出工程と、第1の還元析出工程後の水溶液に少なくとも2価のニッケル塩を添加して、さらにニッケルを析出させる第2の還元析出工程とからなり、前記第1および第2の還元析出工程のうち、少なくとも第1の還元析出工程においてHLB値が10以下の低親水性の界面活性剤を添加するとともに、少なくとも第2の還元析出工程において、ニッケルを析出させる水溶液に2価のコバルト塩を添加してニッケルを析出させてニッケル粉を得て、さらに得られたニッケル粉を不活性雰囲気または真空中で80〜230℃で乾燥させるか、または、大気中で80〜150℃で乾燥させた後に還元雰囲気中で200〜400℃の熱処理をすることを特徴とするニッケル粉の製造方法。   Adding a divalent nickel salt to an aqueous solution containing a reducing agent to precipitate nickel; adding at least a divalent nickel salt to the aqueous solution after the first reducing precipitation step; and A second reduction precipitation step for precipitating nickel, and adding a low hydrophilic surfactant having an HLB value of 10 or less in at least the first reduction precipitation step among the first and second reduction precipitation steps In addition, at least in the second reduction precipitation step, a divalent cobalt salt is added to an aqueous solution for depositing nickel to precipitate nickel to obtain nickel powder, and the obtained nickel powder is further subjected to inert atmosphere or vacuum. It is characterized by drying at 80 to 230 ° C. in the atmosphere, or drying at 80 to 150 ° C. in the air and then heat treatment at 200 to 400 ° C. in a reducing atmosphere. Method of manufacturing that nickel powder. 前記第2の還元析出工程において2価のコバルト塩を添加した水溶液中のコバルトイオンの含有量が、該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜40質量%であり、かつ、該水溶液中のコバルトイオン濃度が前記第1の還元析出工程における水溶液中のコバルトイオン濃度より高く、さらに、前記第1および第2の還元析出工程を経て得られるニッケル粉はコバルトを1〜20質量%含有していることを特徴とする請求項4に記載のニッケル粉の製造方法。   The content of cobalt ions in the aqueous solution to which the divalent cobalt salt is added in the second reduction precipitation step is 1 to 40% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution, and The cobalt ion concentration in the aqueous solution is higher than the cobalt ion concentration in the aqueous solution in the first reduction precipitation step, and the nickel powder obtained through the first and second reduction precipitation steps contains 1 to 20 mass of cobalt. % Nickel content, The manufacturing method of the nickel powder of Claim 4 characterized by the above-mentioned. 前記第1の還元析出工程における水溶液に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜20質量%となるように2価のコバルト塩を添加するとともに、前記第2の還元析出工程における水溶液に、該水溶液中のコバルトイオン含有量が該水溶液中のニッケルイオンとコバルトイオンの合計量に対し1〜20質量%となるように2価のコバルト塩を添加することを特徴とする請求項4に記載のニッケル粉の製造方法。   A divalent cobalt salt is added to the aqueous solution in the first reduction precipitation step so that the cobalt ion content in the aqueous solution is 1 to 20% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution. In addition, the divalent cobalt is added to the aqueous solution in the second reduction precipitation step so that the cobalt ion content in the aqueous solution is 1 to 20% by mass with respect to the total amount of nickel ions and cobalt ions in the aqueous solution. The method for producing nickel powder according to claim 4, wherein a salt is added. 前記二次粒子の表層部におけるコバルトの含有量が、該表層部の全質量当たり8〜20質量%であることを特徴とする請求項3に記載のニッケル粉。   The nickel powder according to claim 3, wherein the content of cobalt in the surface layer portion of the secondary particles is 8 to 20 mass% with respect to the total mass of the surface layer portion. ニッケル粉全体としてのコバルトの含有量が4〜10質量%であることを特徴とする請求項1〜3および請求項7のいずれかに記載のニッケル粉。   The nickel powder according to any one of claims 1 to 3 and claim 7, wherein the content of cobalt as a whole of the nickel powder is 4 to 10% by mass. ニッケル粉の内部におけるコバルトの含有量が、該内部の全質量当たり3〜6質量%であることを特徴とする請求項1〜3ならびに請求項7および8のいずれかに記載のニッケル粉。   The nickel powder according to any one of claims 1 to 3 and claims 7 and 8, wherein the content of cobalt in the nickel powder is 3 to 6% by mass based on the total mass of the nickel powder. タップ密度が2.3〜3.0g/mLであることを特徴とする請求項1〜3および請求項7〜9のいずれかに記載のニッケル粉。   The nickel powder according to any one of claims 1 to 3 and claims 7 to 9, wherein a tap density is 2.3 to 3.0 g / mL. 前記比d2/d1の値が8〜16の範囲内であることを特徴とする請求項1〜3および請求項7〜10のいずれかに記載のニッケル粉。 Nickel powder according to any one of claims 1 to 3 and claims 7 to 10 values of the ratio d 2 / d 1 is equal to or is in the range of 8-16. (A)(a1)導電性フィラー、および
(a2)ポリマー材料
を含んで成るポリマーPTC要素、ならびに
(B)ポリマーPTC要素の少なくとも1つの表面に配置された金属電極
を有して成るポリマーPTC素子であって、請求項1〜3および請求項7〜11に記載のニッケル粉ならびに請求項4〜6に記載の方法によって製造されるニッケル粉のいずれかを導電性フィラーとして使用することを特徴とするポリマーPTC素子。
(A) (a1) a conductive filler, and (a2) a polymer PTC element comprising a polymer material, and (B) a polymer PTC element comprising a metal electrode disposed on at least one surface of the polymer PTC element The nickel powder according to any one of claims 1 to 3 and claims 7 to 11 and the nickel powder produced by the method according to claims 4 to 6 are used as a conductive filler. Polymer PTC element.
JP2005344631A 2005-11-29 2005-11-29 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder Expired - Fee Related JP4942333B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005344631A JP4942333B2 (en) 2005-11-29 2005-11-29 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
CN2006800446942A CN101316673B (en) 2005-11-29 2006-11-28 Nickel powder, method for producing same, and polymer PTC device using such nickel powder
TW095144043A TWI402116B (en) 2005-11-29 2006-11-28 Nickel powder and its production process, and polymer ptc device using said nickel powder
PCT/JP2006/323720 WO2007063851A1 (en) 2005-11-29 2006-11-28 Nickel powder, method for producing same, and polymer ptc device using such nickel powder
KR1020087015681A KR101356377B1 (en) 2005-11-29 2006-11-28 Nickel powder, method for producing same, and polymer ptc device using such nickel powder
EP06833524A EP1974840A4 (en) 2005-11-29 2006-11-28 Nickel powder, method for producing same, and polymer ptc device using such nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005344631A JP4942333B2 (en) 2005-11-29 2005-11-29 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder

Publications (2)

Publication Number Publication Date
JP2007146251A true JP2007146251A (en) 2007-06-14
JP4942333B2 JP4942333B2 (en) 2012-05-30

Family

ID=38092184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005344631A Expired - Fee Related JP4942333B2 (en) 2005-11-29 2005-11-29 Nickel powder, method for producing the same, and polymer PTC element using the nickel powder

Country Status (6)

Country Link
EP (1) EP1974840A4 (en)
JP (1) JP4942333B2 (en)
KR (1) KR101356377B1 (en)
CN (1) CN101316673B (en)
TW (1) TWI402116B (en)
WO (1) WO2007063851A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013482A (en) * 2007-07-06 2009-01-22 Ist Corp Nickel powder or nickel alloy powder, and production method therefor
JP2014241280A (en) * 2013-05-14 2014-12-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015138915A (en) * 2014-01-23 2015-07-30 住友金属鉱山株式会社 Nickel-based alloy fine particle for laminate capacitors, and method for manufacturing the same
JP2015158001A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
JP2018154870A (en) * 2017-03-16 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5429299B2 (en) * 2009-10-05 2014-02-26 株式会社村田製作所 Method for producing flat Ni particles
CN101728039B (en) * 2009-12-31 2016-02-24 上海长园维安电子线路保护有限公司 Over-current protecting element
CN102489718A (en) * 2011-12-14 2012-06-13 丹阳市博高新材料技术有限公司 Method for preparing submicron flaky superfine nickel powder
JP6471015B2 (en) * 2014-03-31 2019-02-13 Dowaエレクトロニクス株式会社 Fe-Co alloy powder and antenna, inductor and EMI filter
KR102278500B1 (en) * 2017-07-05 2021-07-15 도호 티타늄 가부시키가이샤 Metal powder and its manufacturing method
WO2019075685A1 (en) * 2017-10-19 2019-04-25 Littelfuse, Inc. Surface mounted fuse device having positive temperature coefficient body
JP7374932B2 (en) * 2019-01-28 2023-11-07 三井金属鉱業株式会社 Metal particles, magnetic paste using the same, powder magnetic core and inductor, and method for producing metal particles
CN112630110B (en) * 2020-12-14 2023-04-25 百尔罗赫塑料添加剂(江苏)有限公司 Zinc oxide powder particle size testing method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048191A (en) * 1992-06-05 2005-02-24 Raychem Corp Conductive polymer composition
WO2005023461A1 (en) * 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. Nickel powder and process for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502754C2 (en) * 1994-03-31 1995-12-18 Sandvik Ab Ways to make coated hardened powder
SE502931C2 (en) * 1994-06-10 1996-02-26 Sandvik Ab Method for producing powder for WC hard material
CN1060982C (en) * 1997-11-17 2001-01-24 北京有色金属研究总院 Preparation of ultrafine metal powders
JP4301646B2 (en) 1999-07-28 2009-07-22 Dowaホールディングス株式会社 Nickel powder manufacturing method
KR100330919B1 (en) * 2000-04-08 2002-04-03 권문구 Electrical device including ptc conductive composites
JP2002025345A (en) 2000-07-05 2002-01-25 Nisshin Steel Co Ltd Conductive particle with excellent migration resistance property
JP2002043734A (en) 2000-07-24 2002-02-08 Senju Metal Ind Co Ltd Method and apparatus for soldering printed circuit board
JP4864195B2 (en) 2000-08-30 2012-02-01 三井金属鉱業株式会社 Coated copper powder
CN1272128C (en) * 2003-09-24 2006-08-30 中南大学 Method for preparing fibred cobalt nickel powder and composite oxides powder of cobalt nicker
JP2005240164A (en) 2004-02-27 2005-09-08 Sumitomo Metal Mining Co Ltd Nickel powder and manufacturing method therefor
EP1768135A4 (en) * 2004-06-08 2009-11-25 Tyco Electronics Raychem Kk Polymer ptc device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005048191A (en) * 1992-06-05 2005-02-24 Raychem Corp Conductive polymer composition
WO2005023461A1 (en) * 2003-08-29 2005-03-17 Sumitomo Metal Mining Co., Ltd. Nickel powder and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013482A (en) * 2007-07-06 2009-01-22 Ist Corp Nickel powder or nickel alloy powder, and production method therefor
JP2014241280A (en) * 2013-05-14 2014-12-25 積水化学工業株式会社 Conductive particle, conductive material and connection structure
JP2015138915A (en) * 2014-01-23 2015-07-30 住友金属鉱山株式会社 Nickel-based alloy fine particle for laminate capacitors, and method for manufacturing the same
JP2015158001A (en) * 2014-02-25 2015-09-03 住友金属鉱山株式会社 Nickel powder production process
JP2018154870A (en) * 2017-03-16 2018-10-04 住友金属鉱山株式会社 Method for producing a nickel powder

Also Published As

Publication number Publication date
TW200734086A (en) 2007-09-16
WO2007063851A1 (en) 2007-06-07
JP4942333B2 (en) 2012-05-30
EP1974840A1 (en) 2008-10-01
CN101316673B (en) 2011-11-09
KR101356377B1 (en) 2014-01-27
CN101316673A (en) 2008-12-03
KR20080072081A (en) 2008-08-05
TWI402116B (en) 2013-07-21
EP1974840A4 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4942333B2 (en) Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
JP4734593B2 (en) Polymer PTC element
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
JP5156328B2 (en) Copper alloy powder for conductive material paste
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
US10280279B2 (en) Conductive polymer composition, conductive polymer sheet, electrical device, and their preparation methods
US6686045B2 (en) Composite fine particles, conductive paste, and conductive film
JP5124734B2 (en) Electrode material for vacuum circuit breaker and manufacturing method thereof
TW200940213A (en) Copper powder for conductive paste and conductive paste
WO2008059789A1 (en) Silver-plated fine copper powder, conductive paste produced from silver-plated fine copper powder, and process for producing silver-plated fine copper powder
JP2004332047A (en) Linked metal powder, its manufacturing method, and electroconductivity-imparting material using the powder
JP2009046708A (en) Silver powder
US7186289B2 (en) Nickel powder and production method therefor
JP2005240164A (en) Nickel powder and manufacturing method therefor
JP5942791B2 (en) Method for producing nickel powder
JP2015004079A (en) Nickel powder and production method of the same
JPS6387703A (en) Ptc device
JP2014210970A (en) Nickel powder and method for producing the same
JP2015017314A (en) Nickel powder and production method of the same
Alejandrino et al. Development of low-cost adhesive conductive carbon ink for electronic printed circuit board
JPH1187106A (en) Manufacture of ptc element
JP2005298927A (en) Nickel powder and its production method
JP2022180322A (en) Copper powder and conductive composition comprising the same, and wiring structure comprising the same and method for producing conductive member using the same
JP2015081377A (en) Method of producing nickel powder including method of coating surface of nickel particle with cobalt-containing nickel layer and nickel powder using the method
JPH04267012A (en) Electric contact material and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20120724

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees