JP2009013482A - Nickel powder or nickel alloy powder, and production method therefor - Google Patents

Nickel powder or nickel alloy powder, and production method therefor Download PDF

Info

Publication number
JP2009013482A
JP2009013482A JP2007178114A JP2007178114A JP2009013482A JP 2009013482 A JP2009013482 A JP 2009013482A JP 2007178114 A JP2007178114 A JP 2007178114A JP 2007178114 A JP2007178114 A JP 2007178114A JP 2009013482 A JP2009013482 A JP 2009013482A
Authority
JP
Japan
Prior art keywords
nickel
powder
alloy powder
aqueous solution
nickel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007178114A
Other languages
Japanese (ja)
Other versions
JP2009013482A5 (en
Inventor
Yasuaki Takeda
泰昭 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IST Corp Japan
Original Assignee
IST Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IST Corp Japan filed Critical IST Corp Japan
Priority to JP2007178114A priority Critical patent/JP2009013482A/en
Publication of JP2009013482A publication Critical patent/JP2009013482A/en
Publication of JP2009013482A5 publication Critical patent/JP2009013482A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal powder of a nickel powder or a nickel alloy powder, which can be produced with a simple production method and in which particles having average primary particle sizes of 50 nm to 1 μm are three-dimensionally combined with each other, and to provide a production method therefor. <P>SOLUTION: The production method includes the steps of: forming precipitates containing nickel and boron by reacting an aqueous nickel salt solution containing at least a nickel salt and an aqueous solution of a reducing agent, which is an aqueous solution containing at least a boron hydride compound; separating and cleaning the precipitate; and heating the separated precipitate at 70°C to 1,000°C under a reduced pressure of 5×10<SP>4</SP>Pa or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉とその製造方法に関するものである。   The present invention relates to nickel powder or nickel alloy powder in which particles having an average primary particle diameter of 50 nm to 1 μm are three-dimensionally connected and a method for producing the same.

導電性を有するニッケル等の微粉末は、混練性やペースト性状が優秀で、また薄層化が可能であることから、導電性フィラーとして、塗料、樹脂、ゴム、ペースト、接着剤やインクなど幅広い用途に使用されている。   Conductive nickel and other fine powders are excellent in kneading and pasting properties and can be made into thin layers. Therefore, a wide range of conductive fillers such as paints, resins, rubbers, pastes, adhesives and inks can be used. Used for applications.

ニッケル粉の製造方法の物理的方法として、金属を機械的に粉砕する方法、溶融金属を噴霧冷却するアトマイズ法などがあるが、いずれも微粉末を得るのは難しい。金属を加熱蒸発させ、金属蒸気を凝集させ、金属微粉末を合成するアーク放電法などもあるが、設備が高価で生産性が低いという問題点があった。   As a physical method for producing nickel powder, there are a method of mechanically pulverizing a metal, an atomizing method of spraying and cooling molten metal, and it is difficult to obtain a fine powder. There is an arc discharge method in which metal is heated and evaporated, metal vapor is aggregated, and fine metal powder is synthesized. However, there is a problem that equipment is expensive and productivity is low.

化学的方法としては、加熱揮発させた金属塩を還元する気相法があるが、これも設備が高価で生産性が低いという問題点があった。また、塩基性炭酸ニッケルや水酸化ニッケルを還元剤により還元する液相法(特許文献1及び特許文献2)では、これら難溶性のニッケル塩を還元する場合、還元反応に要する時間が長くなるという問題があった。   As a chemical method, there is a gas phase method in which a metal salt which is volatilized by heating is reduced. However, this also has a problem that the equipment is expensive and the productivity is low. Moreover, in the liquid phase method (patent documents 1 and 2) which reduces basic nickel carbonate and nickel hydroxide with a reducing agent, when these poorly soluble nickel salts are reduced, the time required for the reduction reaction is increased. There was a problem.

また、物理的方法、化学的方法である気相法、液相法では、ナノ粒子が三次元的に連結したニッケル系金属粉の合成は困難であった。   Further, in the vapor phase method and the liquid phase method, which are physical methods and chemical methods, it is difficult to synthesize nickel-based metal powders in which nanoparticles are three-dimensionally connected.

一方、金属塩の水溶液に還元剤を添加して還元する湿式還元法では、ニッケル粉は、通常、球状、楕円形、あるいは、フレーク状をしており、多量に添加しないと上記材料に安定した導電性を付与することができなかった。   On the other hand, in the wet reduction method in which a reducing agent is added to an aqueous solution of a metal salt for reduction, the nickel powder is usually spherical, elliptical, or flaky, and stable to the above materials unless added in a large amount. Electrical conductivity could not be imparted.

多量の添加は、ニッケル粉によるコストアップだけでなく、上記材料例えば樹脂やゴムの性能を著しく低下させたり、接着性を低下させたり、塗膜にクラックを生じさせるなど副作用的弊害が大きい。   Addition of a large amount not only raises the cost due to nickel powder, but also has serious side effects such as significantly reducing the performance of the above-mentioned materials such as resin and rubber, lowering the adhesion, and causing cracks in the coating film.

これら問題点を解決するために、特許文献3では、連鎖状の金属粉が提案されている。特許文献4では、ニッケルとアルミニウムの合金から製造するスポンジニッケルが提案されている。
特開昭53−095165号公報 特開平05−051610号公報 特開2004−332047号公報 特開2001−192701号公報
In order to solve these problems, Patent Document 3 proposes a chain-like metal powder. Patent Document 4 proposes sponge nickel produced from an alloy of nickel and aluminum.
JP-A-53-095165 JP 05-051610 A JP 2004-332047 A JP 2001-192701 A

しかしながら、連鎖状のニッケル粉の製造には、3価チタンイオン、4価チタンイオンなど特殊な還元剤が必要で、また前記チタンイオンの錯化剤が必要となる場合もある。また、スポンジニッケルの製造では、ニッケルとアルミニウムの合金から合金粉末を作製し、300度Cから800度Cの温度に保持して均質化し、次いで、合金粉末をアルカリ水溶液に投入して、アルミニウムを溶出させるという多数の工程からなり、決して簡単な製造方法ではない。   However, the production of the chain-like nickel powder requires a special reducing agent such as trivalent titanium ion or tetravalent titanium ion, and may require a complexing agent of the titanium ion. In the manufacture of sponge nickel, an alloy powder is prepared from an alloy of nickel and aluminum, is kept at a temperature of 300 ° C. to 800 ° C. and homogenized, and then the alloy powder is put into an alkaline aqueous solution to obtain aluminum. It consists of a number of steps of elution and is not a simple manufacturing method.

本発明の目的は、簡単な製造方法によって製造できる、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉の金属粉とその製造方法を提供することにある。   An object of the present invention is to provide a metal powder of nickel powder or nickel alloy powder in which particles having an average primary particle size of 50 nm or more and 1 μm or less can be three-dimensionally connected and can be manufactured by a simple manufacturing method, and a manufacturing method thereof. is there.

本発明は、少なくともニッケル塩を含む水溶液と、少なくとも水素化ホウ素化合物を含む還元剤水溶液を反応させる還元反応工程と、生成した沈殿物を分離する沈殿分離工程と、分離した沈殿物を減圧下で加熱する減圧加熱工程を備える、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉とその製造方法に関するものである。   The present invention includes a reduction reaction step of reacting an aqueous solution containing at least a nickel salt with an aqueous reducing agent solution containing at least a borohydride compound, a precipitation separation step of separating the produced precipitate, and the separated precipitate under reduced pressure. The present invention relates to a nickel powder or nickel alloy powder in which particles having an average primary particle diameter of 50 nm or more and 1 μm or less are connected three-dimensionally, and a method for producing the same.

本発明の減圧加熱工程における減圧度は、5×10Pa以下であり、かつ加熱温度は、70度C以上1,000度C以下である。 The degree of reduced pressure in the reduced pressure heating step of the present invention is 5 × 10 4 Pa or less, and the heating temperature is 70 ° C. or more and 1,000 ° C. or less.

本発明の、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉の製造方法は、プロセスが簡単で、かつ、ニッケル塩が効率よく還元されるため、収率が高く経済的である。また、本発明のニッケル粉又はニッケル合金粉は、ナノ粒子が三次元的に連結しているため、例えば、導電性フィラーとして、塗料、樹脂、ゴム、ペースト、接着剤やインクなど幅広い用途に使用することができる。また、本発明のニッケル系金属粉は、スポンジ状ニッケル触媒としても期待できる。   The method for producing nickel powder or nickel alloy powder in which particles having an average primary particle diameter of 50 nm or more and 1 μm or less are three-dimensionally connected according to the present invention is simple in process and the nickel salt is efficiently reduced. High yield and economical. In addition, the nickel powder or nickel alloy powder of the present invention is used in a wide range of applications such as paint, resin, rubber, paste, adhesive and ink as the conductive filler because the nanoparticles are three-dimensionally connected. can do. The nickel-based metal powder of the present invention can also be expected as a sponge nickel catalyst.

本発明の製造方法は、少なくともニッケル塩を含むニッケル塩水溶液と、少なくとも水素化ホウ素化合物を含む水溶液である還元剤水溶液を反応させる工程により、ニッケル及びホウ素を含む沈殿物を生成させ、この沈殿物を分離及び洗浄工程を経た後、5×10Pa以下の減圧下で70度C以上1,000度C以下の温度で加熱する工程により、一次粒子径が50nm以上1μm以下の粒子が融着して三次元的に連結した構造を有するニッケル粉又はニッケル合金粉の製造方法である。 In the production method of the present invention, a nickel salt aqueous solution containing at least a nickel salt and a reducing agent aqueous solution that is an aqueous solution containing at least a borohydride compound are reacted to generate a precipitate containing nickel and boron. After the separation and washing step, particles having a primary particle size of 50 nm or more and 1 μm or less are fused by heating at a temperature of 70 ° C. or more and 1,000 ° C. or less under a reduced pressure of 5 × 10 4 Pa or less. And a method for producing nickel powder or nickel alloy powder having a three-dimensionally connected structure.

本発明において、ニッケル塩とは、水に溶解しニッケルイオンを生成するニッケル化合物のことを指す。例えば、硫酸ニッケル、塩化ニッケル、硝酸ニッケル、酢酸ニッケル、アミド硫酸ニッケルなどが挙げられる。また、これらニッケル塩の2種以上のものを混合して用いてもよい。   In the present invention, the nickel salt refers to a nickel compound that dissolves in water and generates nickel ions. For example, nickel sulfate, nickel chloride, nickel nitrate, nickel acetate, nickel amide sulfate and the like can be mentioned. Two or more of these nickel salts may be mixed and used.

ニッケルとともに還元されるニッケル以外の元素を含む化合物を添加してもよい。例えば、添加しうる元素としてはCo、Fe、W、Cr、Mn、V、Cu、Zn、Mo、Pd、Sn、Re、P等ニッケルとともに還元される元素の化合物であればよい。添加量はとくに限定されないが、元素比で50%以下であればよい。過剰に添加すると三次元的に連結した構造が得られないことがある。   You may add the compound containing elements other than nickel reduced with nickel. For example, the elements that can be added may be compounds of elements that are reduced together with nickel, such as Co, Fe, W, Cr, Mn, V, Cu, Zn, Mo, Pd, Sn, Re, and P. The addition amount is not particularly limited, but may be 50% or less in terms of element ratio. If added excessively, a three-dimensionally connected structure may not be obtained.

本発明において、水素化ホウ素化合物は、還元効率を上げるために、水素化ホウ素ナトリウム、水素化ホウ素カリウムからなる群から選ばれる少なくとも1つであることが好ましい。水素化ホウ素化合物の使用量は、ニッケルイオン1molに対して0.2mol以上5mol以下であることが、還元効率の点でより好ましい。5molよりも多く使用しても差し支えないが、経済的でない。   In the present invention, the borohydride compound is preferably at least one selected from the group consisting of sodium borohydride and potassium borohydride in order to increase the reduction efficiency. The amount of the borohydride compound used is more preferably 0.2 mol or more and 5 mol or less with respect to 1 mol of nickel ions from the viewpoint of reduction efficiency. Although it is possible to use more than 5 mol, it is not economical.

本発明において、錯化剤は、収率を向上させるために、ニッケル塩を含む水溶液、水素化ホウ素化合物を含む還元剤水溶液の少なくとも一方に添加することが好ましい。錯化剤は、ニッケルイオンと錯体を形成するもので、酢酸、マロン酸、酒石酸、クエン酸、りんご酸、乳酸、プロピオン酸、ギ酸、酪酸、アクリル酸、ポリアクリル酸等のカルボン酸、もしくはその塩、アンモニア、塩化アンモニウム、硫酸アンモニウム等のアンモニウム塩、エチレンジアミン、EDTA等のアミン化合物、ヘキサメタリン酸、ピロリン酸等のリン酸塩化合物、グリシン、グルタミン酸等のアミノ酸、チオグリコール酸等のチオール化合物等が挙げられ、2種以上同時に用いてもよい。これらの化合物はpH調整剤、緩衝剤としても作用するため好ましい。   In the present invention, the complexing agent is preferably added to at least one of an aqueous solution containing a nickel salt and an aqueous reducing agent solution containing a borohydride compound in order to improve the yield. The complexing agent forms a complex with nickel ions, and is a carboxylic acid such as acetic acid, malonic acid, tartaric acid, citric acid, malic acid, lactic acid, propionic acid, formic acid, butyric acid, acrylic acid, polyacrylic acid, or the like. Salts, ammonium salts such as ammonia, ammonium chloride and ammonium sulfate, amine compounds such as ethylenediamine and EDTA, phosphate compounds such as hexametaphosphoric acid and pyrophosphoric acid, amino acids such as glycine and glutamic acid, and thiol compounds such as thioglycolic acid Two or more of them may be used simultaneously. These compounds are preferable because they also act as pH adjusters and buffers.

さらにニッケル塩水溶液、または還元剤水溶液、またはその双方にpH調整、及び緩衝作用を目的として、ホウ酸、リン酸、炭酸、塩酸、硫酸、フッ酸、硝酸、酢酸並びにそれらの塩類等を添加することもできる。   Furthermore, boric acid, phosphoric acid, carbonic acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, nitric acid, acetic acid and salts thereof are added to the aqueous nickel salt solution, the reducing agent aqueous solution, or both for the purpose of pH adjustment and buffer action. You can also.

またニッケル塩水溶液、または還元剤水溶液、またはその双方に界面活性剤など添加することもできる。   A surfactant or the like can also be added to the nickel salt aqueous solution, the reducing agent aqueous solution, or both.

また還元剤水溶液は、還元剤の自己分解を防ぐために、水酸化ナトリウム、水酸化カリウム、アンモニア水等の塩基性化合物を添加し、pHを7以上にすることが好ましい。   The aqueous reducing agent solution preferably has a pH of 7 or more by adding a basic compound such as sodium hydroxide, potassium hydroxide, or aqueous ammonia in order to prevent the reducing agent from self-decomposing.

本発明において、ニッケル塩水溶液と還元剤水溶液との反応方法は、とくに限定されるものではないが、後述する反応温度の制御しやすさ、還元反応の制御しやすさという点で、ニッケル塩水溶液に還元剤水溶液を100mL/分以下の速度で滴下する方法が好ましい。   In the present invention, the reaction method of the nickel salt aqueous solution and the reducing agent aqueous solution is not particularly limited. However, the nickel salt aqueous solution is easy to control the reaction temperature described later and the control of the reduction reaction. A method of dropping the aqueous reducing agent solution at a rate of 100 mL / min or less is preferred.

本発明において、反応温度は特に限定されず、好ましくは水溶液の融点以上沸点以下、より好ましくは50度C以上であることが収率の向上のために好ましい。   In the present invention, the reaction temperature is not particularly limited, and is preferably from the melting point to the boiling point of the aqueous solution, more preferably from 50 ° C. to improve the yield.

反応溶液からの沈殿物の分離方法は、ろ過、デカンテーョン、遠心分離、磁気選鉱等、特に限定されない。沈殿物は精製水による1回以上の洗浄を行うことが好ましい。   The method for separating the precipitate from the reaction solution is not particularly limited, such as filtration, decantation, centrifugation, and magnetic beneficiation. The precipitate is preferably washed once or more with purified water.

反応液から分離・洗浄した沈殿物は、乾燥させないまま減圧加熱する。好ましくは、ろ過した沈殿物を減圧加熱炉に投入し、5×10MPa未満の減圧下で70度C以上1,000度C未満の温度で加熱する。この範囲であると、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結した構造のニッケル粉又はニッケル合金粉が得られる。 The precipitate separated and washed from the reaction solution is heated under reduced pressure without being dried. Preferably, the filtered precipitate is put into a reduced pressure heating furnace and heated at a temperature of 70 ° C. or more and less than 1,000 ° C. under a reduced pressure of less than 5 × 10 4 MPa. Within this range, nickel powder or nickel alloy powder having a structure in which particles having an average primary particle diameter of 50 nm to 1 μm are three-dimensionally connected can be obtained.

本発明の製造方法で作製されたニッケル粉又はニッケル合金粉は、ニッケルの含有量が、75重量%以上であり、ホウ素の含有量が、0.1重量%以上20重量%以下である。   The nickel powder or nickel alloy powder produced by the production method of the present invention has a nickel content of 75% by weight or more and a boron content of 0.1% by weight or more and 20% by weight or less.

以下、実施例によって、本発明を詳細に説明する。各実施例及び比較例で作製したニッケル粉又はニッケル合金粉の諸物性は、下記の方法で測定した。
(1)走査型電子顕微鏡(SEM)観察
日立サイエンスシステムズ製の低真空型電子顕微鏡“SEMEDX3TTypeN”を用いた。
(2)ホウ素含有量
島津製作所製の高周波プラズマ発光分析装置“ICPS−8000”を用いた。
(3)元素分析
日立サイエンスシステムズ製の低真空型電子顕微鏡“SEMEDX3TTypeN”を用いた。
Hereinafter, the present invention will be described in detail by way of examples. Various physical properties of the nickel powder or nickel alloy powder produced in each example and comparative example were measured by the following methods.
(1) Observation with Scanning Electron Microscope (SEM) A low-vacuum electron microscope “SEMEDX3TTypeN” manufactured by Hitachi Science Systems was used.
(2) Boron content A high frequency plasma emission analyzer “ICPS-8000” manufactured by Shimadzu Corporation was used.
(3) Elemental analysis A low-vacuum electron microscope “SEMEDX3TTypeN” manufactured by Hitachi Science Systems was used.

水素化ホウ素ナトリウム0.38g及び水酸化ナトリウム1.00gを精製水に溶解して100mLとし、還元剤水溶液とした。該還元剤水溶液のpHは12であった。次に、硫酸ニッケル(2)六水和物2.63g及び酒石酸カリウムナトリウム四水和物(ロッシェル塩)1.41gを精製水に溶解して100mLとし、ニッケル塩水溶液を得た。この水溶液を75度Cに加熱して攪拌した。
75度Cに保ち攪拌しているニッケル塩水溶液に、還元剤水溶液を10分かけて滴下したところ黒色の沈殿が生じた。さらに75度Cを保ち1時間攪拌した後、上澄み液をデカンテーションによって取り除いた後、精製水100mLを加えて超音波を当てて洗浄した。次いで吸引ろ過により沈殿を分離し、さらに精製水100mLを用いて洗浄、吸引して黒色の粉末を得た。この粉末を乾燥させないまま、2×10Pa未満の減圧下150度Cで2時間加熱したところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.67gが得られた。該ニッケル合金粉のSEM写真を図1に示す。ICP発光分析の結果、該ニッケル合金粉のホウ素含有量は4.6重量パーセントであった。
0.38 g of sodium borohydride and 1.00 g of sodium hydroxide were dissolved in purified water to make 100 mL, and a reducing agent aqueous solution was prepared. The pH of the reducing agent aqueous solution was 12. Next, 2.63 g of nickel sulfate (2) hexahydrate and 1.41 g of potassium sodium tartrate tetrahydrate (Rochelle salt) were dissolved in purified water to 100 mL to obtain an aqueous nickel salt solution. This aqueous solution was heated to 75 ° C. and stirred.
When the reducing agent aqueous solution was added dropwise to the stirring nickel salt aqueous solution at 75 ° C. over 10 minutes, a black precipitate was formed. After further stirring at 75 ° C. for 1 hour, the supernatant was removed by decantation, and 100 mL of purified water was added and washed by applying ultrasonic waves. Next, the precipitate was separated by suction filtration, further washed with 100 mL of purified water, and sucked to obtain a black powder. When this powder is heated for 2 hours at 150 ° C. under reduced pressure of less than 2 × 10 3 Pa without drying, a nickel alloy powder in which particles having a gray average primary particle size of 50 nm to 1 μm are three-dimensionally connected. 0.67 g was obtained. An SEM photograph of the nickel alloy powder is shown in FIG. As a result of ICP emission analysis, the boron content of the nickel alloy powder was 4.6 weight percent.

水素化ホウ素ナトリウム0.38gを精製水に溶解して100mLとし、還元剤水溶液とした。該還元剤水溶液のpHは10であった。次に、硫酸ニッケル(2)六水和物2.63gを精製水に溶解して100mLとし、ニッケル塩水溶液を得た。この水溶液を室温(23度C)で攪拌した。
室温で攪拌しているニッケル塩水溶液に、還元剤水溶液を10分かけて滴下したところ黒色の沈殿が生じた。さらに1時間攪拌した後、上澄み液をデカンテーションによって取り除いた後、精製水100mL加えて超音波を当てて洗浄した。次いで吸引ろ過により沈殿を分離し、さらに精製水100mLを用いて洗浄、吸引して黒色の粉末を得た。この粉末を乾燥させないまま、2×10Pa未満の減圧下150度Cで2時間加熱したところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.34gが得られた。該ニッケル合金粉のホウ素含有量は3.4重量パーセントであった。
Sodium borohydride (0.38 g) was dissolved in purified water to make 100 mL, and a reducing agent aqueous solution was prepared. The pH of the reducing agent aqueous solution was 10. Next, 2.63 g of nickel sulfate (2) hexahydrate was dissolved in purified water to 100 mL to obtain an aqueous nickel salt solution. The aqueous solution was stirred at room temperature (23 degrees C).
When a reducing agent aqueous solution was dropped into a nickel salt aqueous solution stirred at room temperature over 10 minutes, a black precipitate was formed. After further stirring for 1 hour, the supernatant was removed by decantation, and then 100 mL of purified water was added and washed by applying ultrasonic waves. Next, the precipitate was separated by suction filtration, further washed with 100 mL of purified water, and sucked to obtain a black powder. When this powder is heated for 2 hours at 150 ° C. under reduced pressure of less than 2 × 10 3 Pa without drying, a nickel alloy powder in which particles having a gray average primary particle size of 50 nm to 1 μm are three-dimensionally connected. 0.34 g was obtained. The boron content of the nickel alloy powder was 3.4 weight percent.

還元剤水溶液を22秒で滴下した以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.45gが得られた。該ニッケル合金粉のホウ素含有量は4.2重量パーセントであった。   When the same operation as in Example 1 was performed except that the reducing agent aqueous solution was dropped in 22 seconds, 0.45 g of nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected. was gotten. The boron content of the nickel alloy powder was 4.2 weight percent.

還元剤水溶液として、水素化ホウ素ナトリウム0.38g及び水酸化ナトリウム2.00gを精製水に溶解して100mLとしたもの(pH12)を用い、ニッケル塩水溶液として、硫酸ニッケル(2)六水和物5.26g及び酒石酸カリウムナトリウム四水和物1.41gを精製水に溶解して100mLとしたものを用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉1.27gが得られた。該ニッケル合金粉のホウ素含有量は1.8重量パーセントであった。   As an aqueous reducing agent solution, 0.38 g of sodium borohydride and 2.00 g of sodium hydroxide were dissolved in purified water to make 100 mL (pH 12), and nickel sulfate (2) hexahydrate was used as the nickel salt aqueous solution. When the same operation as in Example 1 was performed except that 5.26 g and 1.41 g of potassium sodium tartrate tetrahydrate were dissolved in purified water to make 100 mL, the gray average primary particle diameter was As a result, 1.27 g of nickel alloy powder in which particles of 50 nm to 1 μm were three-dimensionally connected was obtained. The boron content of the nickel alloy powder was 1.8 weight percent.

ニッケル塩水溶液として、硫酸ニッケル(2)六水和物2.63g及びグリシン0.38gを精製水に溶解して100mLとしたものを用いた以外、実施例1と同様の操作を行なったところ灰色の、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.67gが得られた。該ニッケル合金粉のSEM写真を図2に示す。該ニッケル合金粉のホウ素含有量は3.6重量パーセントであった。   When the same operation as in Example 1 was performed except that 2.63 g of nickel sulfate (2) hexahydrate and 0.38 g of glycine were dissolved in purified water to make 100 mL as an aqueous nickel salt solution, gray was obtained. Thus, 0.67 g of nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. An SEM photograph of the nickel alloy powder is shown in FIG. The boron content of the nickel alloy powder was 3.6 weight percent.

ニッケル塩水溶液として、硫酸ニッケル(2)六水和物2.63g及びエチレンジアミン0.30gを精製水に溶解して100mLとしたものを用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.69gが得られた。該ニッケル合金粉のホウ素含有量は2.8重量パーセントであった。   When the same operation as in Example 1 was performed, except that 2.63 g of nickel sulfate (2) hexahydrate and 0.30 g of ethylenediamine were dissolved in purified water to make 100 mL as an aqueous nickel salt solution, As a result, 0.69 g of nickel alloy powder in which gray particles having an average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. The boron content of the nickel alloy powder was 2.8 weight percent.

ニッケル塩水溶液として、硫酸ニッケル(2)六水和物2.63g及び硫酸アンモニウム0.66gを精製水に溶解して100mLとしたもの(pH12)を用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.68gが得られた。該ニッケル合金粉のホウ素含有量は2.5重量パーセントであった。   The same operation as in Example 1 was performed except that 2.63 g of nickel sulfate (2) hexahydrate and 0.66 g of ammonium sulfate were dissolved in purified water to make 100 mL (pH 12). As a result, 0.68 g of nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. The boron content of the nickel alloy powder was 2.5 weight percent.

ニッケル塩水溶液として、アミド硫酸ニッケル(2)四水和物3.23g及び酒石酸カリウムナトリウム四水和物1.41gを精製水に溶解して100mLとしたものを用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.66gが得られた。該ニッケル合金粉のホウ素含有量は1.2重量パーセントであった。   The same as in Example 1, except that the aqueous solution of nickel salt was prepared by dissolving 3.23 g of nickel amidosulfate (2) tetrahydrate and 1.41 g of potassium sodium tartrate tetrahydrate in purified water to make 100 mL. As a result, 0.66 g of nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. The boron content of the nickel alloy powder was 1.2 weight percent.

還元剤水溶液として、水素化ホウ素カリウム0.54g及び水酸化ナトリウム1.00gを精製水に溶解して100mLとしたもの(pH12.5)を用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.70gが得られた。該ニッケル合金粉のホウ素含有量は1.0重量パーセントであった。   The same operation as in Example 1 was performed except that 0.54 g of potassium borohydride and 1.00 g of sodium hydroxide were dissolved in purified water to make 100 mL (pH 12.5) as the reducing agent aqueous solution. As a result, 0.70 g of nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. The boron content of the nickel alloy powder was 1.0 weight percent.

ニッケル塩水溶液の代わりに、硫酸ニッケル(2)六水和物2.37g及び硫酸コバルト(2)七水和物0.28g及び酒石酸カリウムナトリウム四水和物1.41gを精製水に溶解して100mLとしたニッケル−コバルト塩水溶液を用いた以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.74gが得られた。元素分析の結果、ニッケルとコバルトの元素比率は9:1であった。該ニッケル合金粉のホウ素含有量は4.0重量パーセントであった。   Instead of aqueous nickel salt solution, 2.37 g of nickel sulfate (2) hexahydrate, 0.28 g of cobalt sulfate (2) heptahydrate and 1.41 g of potassium sodium tartrate tetrahydrate were dissolved in purified water. Except for using 100 mL of nickel-cobalt salt aqueous solution, the same operation as in Example 1 was performed. As a result, nickel alloy powder in which gray particles having an average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected 0 .74 g was obtained. As a result of elemental analysis, the elemental ratio of nickel and cobalt was 9: 1. The boron content of the nickel alloy powder was 4.0 weight percent.

減圧加熱の減圧度を2×10Paとした以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.72gが得られた。該ニッケル合金粉のホウ素含有量は4.7重量パーセントであった。 A nickel alloy in which gray particles having an average primary particle diameter of 50 nm or more and 1 μm or less are three-dimensionally connected except that the degree of reduced pressure of the reduced pressure heating is 2 × 10 4 Pa. 0.72 g of powder was obtained. The boron content of the nickel alloy powder was 4.7 weight percent.

減圧加熱の温度を100度Cとした以外、実施例1と同様の操作を行なったところ、灰色の平均1次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル合金粉0.68gが得られた。該ニッケル合金粉のホウ素含有量は4.5重量パーセントであった。   Except that the temperature of the reduced pressure heating was set to 100 ° C., the same operation as in Example 1 was performed. As a result, a nickel alloy powder in which particles having a gray average primary particle diameter of 50 nm to 1 μm were three-dimensionally connected was obtained. 68 g was obtained. The boron content of the nickel alloy powder was 4.5 weight percent.

(比較例1)
実施例1において、減圧加熱の温度を50度Cとした以外、実施例1と同様の操作を行なったが、黒色の粉末が得られた。該粉末をSEMで観察した結果、50nm以下の粒子の凝集物であった。
(Comparative Example 1)
In Example 1, the same operation as in Example 1 was performed except that the temperature of the reduced pressure heating was set to 50 ° C., but a black powder was obtained. As a result of observing the powder by SEM, it was an aggregate of particles of 50 nm or less.

(比較例2)
実施例1において、減圧せず大気圧下150度Cで2時間加熱した以外、実施例1と同様の操作を行なったが黒色の粉末が得られた。該粉末をSEMで観察した結果、50nm以下の粒子の凝集物であった。
(Comparative Example 2)
In Example 1, the same operation as in Example 1 was carried out except that heating was performed at 150 ° C. under atmospheric pressure for 2 hours without reducing pressure, but a black powder was obtained. As a result of observing the powder by SEM, it was an aggregate of particles of 50 nm or less.

本発明の、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉の製造方法は、プロセスが簡単で、かつ、ニッケル塩が効率よく還元されるため、収率が高く経済的である。また、本発明のニッケル粉又はニッケル合金粉は、ナノ粒子が三次元的に連結しているため、例えば、導電性フィラーとして、塗料、樹脂、ゴム、ペースト、接着剤やインクなど幅広い用途に使用することができる。また、本発明のニッケル粉又はニッケル合金粉は、スポンジ状ニッケル触媒としても期待できる。   The method for producing nickel powder or nickel alloy powder in which particles having an average primary particle diameter of 50 nm or more and 1 μm or less are three-dimensionally connected according to the present invention is simple in process and the nickel salt is efficiently reduced. High yield and economical. In addition, the nickel powder or nickel alloy powder of the present invention is used in a wide range of applications such as paint, resin, rubber, paste, adhesive and ink as the conductive filler because the nanoparticles are three-dimensionally connected. can do. The nickel powder or nickel alloy powder of the present invention can also be expected as a sponge nickel catalyst.

実施例1のニッケル合金粉のSEM写真SEM photograph of the nickel alloy powder of Example 1 実施例5のニッケル合金粉のSEM写真SEM photograph of nickel alloy powder of Example 5

Claims (9)

少なくともニッケル塩を含む水溶液と、少なくとも水素化ホウ素化合物を含む還元剤水溶液を反応させる還元反応工程と、生成した沈殿物を分離する沈殿分離工程と、分離した沈殿物を減圧下で加熱する減圧加熱工程を備える、平均一次粒子径が50nm以上1μm以下の粒子が三次元的に連結したニッケル粉又はニッケル合金粉の製造方法。   A reduction reaction step for reacting an aqueous solution containing at least a nickel salt with an aqueous reducing agent solution containing at least a borohydride compound, a precipitation separation step for separating the produced precipitate, and heating under reduced pressure for heating the separated precipitate under reduced pressure The manufacturing method of the nickel powder or nickel alloy powder which the particle | grain with an average primary particle diameter of 50 nm or more and 1 micrometer or less provided three-dimensionally provided with a process. ニッケル塩は、塩化ニッケル、硫酸ニッケル、硝酸ニッケル、酢酸ニッケル、アミド硫酸ニッケルからなる群から選ばれる少なくとも1つである請求項1に記載のニッケル粉又はニッケル合金粉の製造方法。   The method for producing nickel powder or nickel alloy powder according to claim 1, wherein the nickel salt is at least one selected from the group consisting of nickel chloride, nickel sulfate, nickel nitrate, nickel acetate, and nickel amidosulfate. ニッケル塩を含む水溶液は、さらに、Co、Fe、W、Cr、Mn、V、Cu、Zn、Mo、Pd、Sn、Reから選ばれる少なくとも1つの塩を含む水溶液である請求項1又は2に記載のニッケル粉又はニッケル合金粉の製造方法。   The aqueous solution containing a nickel salt is an aqueous solution further containing at least one salt selected from Co, Fe, W, Cr, Mn, V, Cu, Zn, Mo, Pd, Sn, and Re. The manufacturing method of the nickel powder or nickel alloy powder of description. 水素化ホウ素化合物は、水素化ホウ素ナトリウム、水素化ホウ素カリウムからなる群から選ばれる少なくとも1つである請求項1から3のいずれかに記載のニッケル粉又はニッケル合金粉の製造方法。   The method for producing nickel powder or nickel alloy powder according to any one of claims 1 to 3, wherein the borohydride compound is at least one selected from the group consisting of sodium borohydride and potassium borohydride. 前記減圧加熱工程における減圧度は、5×10Pa以下であり、かつ加熱温度は、70度C以上1,000度C以下である請求項1から4のいずれかに記載のニッケル粉又はニッケル合金粉の製造方法。 The nickel powder or nickel according to any one of claims 1 to 4, wherein the degree of reduced pressure in the reduced-pressure heating step is 5 x 10 4 Pa or less, and the heating temperature is 70 degrees C or more and 1,000 degrees C or less. Manufacturing method of alloy powder. ニッケル塩を含む水溶液、水素化ホウ素化合物を含む還元剤水溶液の少なくとも一方は、錯化剤を含む請求項1から5のいずれかに記載のニッケル粉又はニッケル合金粉の製造方法。   The method for producing nickel powder or nickel alloy powder according to any one of claims 1 to 5, wherein at least one of the aqueous solution containing a nickel salt and the reducing agent aqueous solution containing a borohydride compound contains a complexing agent. 水素化ホウ素化合物を含む水溶液のpHは、7以上である請求項1から6のいずれかに記載のニッケル粉又はニッケル合金粉の製造方法。   The method for producing nickel powder or nickel alloy powder according to any one of claims 1 to 6, wherein the pH of the aqueous solution containing the borohydride compound is 7 or more. 請求項1から7のいずれかに記載の製造方法で製造したニッケル粉又はニッケル合金粉。   Nickel powder or nickel alloy powder produced by the production method according to claim 1. ホウ素の含有率は、0.1重量%以上20重量%以下である請求項8又は9に記載のニッケル又はニッケル合金粉。   The nickel or nickel alloy powder according to claim 8 or 9, wherein the boron content is 0.1 wt% or more and 20 wt% or less.
JP2007178114A 2007-07-06 2007-07-06 Nickel powder or nickel alloy powder, and production method therefor Pending JP2009013482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007178114A JP2009013482A (en) 2007-07-06 2007-07-06 Nickel powder or nickel alloy powder, and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178114A JP2009013482A (en) 2007-07-06 2007-07-06 Nickel powder or nickel alloy powder, and production method therefor

Publications (2)

Publication Number Publication Date
JP2009013482A true JP2009013482A (en) 2009-01-22
JP2009013482A5 JP2009013482A5 (en) 2009-03-12

Family

ID=40354744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178114A Pending JP2009013482A (en) 2007-07-06 2007-07-06 Nickel powder or nickel alloy powder, and production method therefor

Country Status (1)

Country Link
JP (1) JP2009013482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021250A (en) * 2009-07-16 2011-02-03 Noritake Co Ltd Metallic material composed of metal nanoparticle, and method for producing the same
CN102601384A (en) * 2012-03-31 2012-07-25 北京科技大学 Chemical method for preparing cobalt nickel nanoscale alloy powder
JP2014189867A (en) * 2013-03-28 2014-10-06 Sumitomo Metal Mining Co Ltd Method for drying nickel powder
CN105710384A (en) * 2015-11-04 2016-06-29 中国科学院上海高等研究院 One-dimensional nano bimetal alloy with hexagonal nail head structure and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280206A (en) * 1985-10-02 1987-04-13 Murata Mfg Co Ltd Production of nickel powder
JP2007146251A (en) * 2005-11-29 2007-06-14 Sumitomo Metal Mining Co Ltd Nickel powder, its production method and polymer-ptc element using the nickel powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280206A (en) * 1985-10-02 1987-04-13 Murata Mfg Co Ltd Production of nickel powder
JP2007146251A (en) * 2005-11-29 2007-06-14 Sumitomo Metal Mining Co Ltd Nickel powder, its production method and polymer-ptc element using the nickel powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021250A (en) * 2009-07-16 2011-02-03 Noritake Co Ltd Metallic material composed of metal nanoparticle, and method for producing the same
CN102601384A (en) * 2012-03-31 2012-07-25 北京科技大学 Chemical method for preparing cobalt nickel nanoscale alloy powder
JP2014189867A (en) * 2013-03-28 2014-10-06 Sumitomo Metal Mining Co Ltd Method for drying nickel powder
CN105710384A (en) * 2015-11-04 2016-06-29 中国科学院上海高等研究院 One-dimensional nano bimetal alloy with hexagonal nail head structure and preparation method thereof

Similar Documents

Publication Publication Date Title
TWI492246B (en) The conductive powder, the conductive material containing the conductive powder, and the method for producing the conductive particles
JP5412551B2 (en) Copper fine particles and method for producing the same
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
TWI664643B (en) Ferromagnetic metal nanowire dispersion and production method thereof
WO2010044388A1 (en) Conductive powdery material, conductive material containing same, and method for manufacturing conductive particles
TWI602201B (en) Conductive particles, conductive material and method for producing conductive particles
JP2018523758A (en) Method for producing silver powder for high-temperature sintered conductive paste
JP2009013482A (en) Nickel powder or nickel alloy powder, and production method therefor
JP2012251222A (en) Method for producing silver nanoparticle, and ink
WO2016117138A1 (en) Method for producing nickel powder
JP2009013482A5 (en)
JP4978115B2 (en) Method for producing copper powder
JP2006022394A (en) Method for producing metallic copper fine particle
JP6278969B2 (en) Silver coated copper powder
JP4725459B2 (en) Method for producing copper powder
JP5796696B1 (en) Method for producing nickel powder
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same
KR101490970B1 (en) Manufacturing method for ultra fine composite powder of tungsten carbide and cobalt
JP5485122B2 (en) Sulfur-containing nickel particles and method for producing the same
JP2009052146A (en) Copper powder and its manufacturing method
JP4074637B2 (en) Method for producing fine silver powder
JP2018104724A (en) Production method of silver-coated copper powder
CN111094186A (en) Preparation method of platy manganese dioxide nanoparticles
JP5416979B2 (en) Copper powder and method for producing the same
JP2007284714A (en) Method for producing nickel nanorod, and nickel nanorod

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090413

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120829