JP2012251222A - Method for producing silver nanoparticle, and ink - Google Patents

Method for producing silver nanoparticle, and ink Download PDF

Info

Publication number
JP2012251222A
JP2012251222A JP2011125339A JP2011125339A JP2012251222A JP 2012251222 A JP2012251222 A JP 2012251222A JP 2011125339 A JP2011125339 A JP 2011125339A JP 2011125339 A JP2011125339 A JP 2011125339A JP 2012251222 A JP2012251222 A JP 2012251222A
Authority
JP
Japan
Prior art keywords
silver
silver nanoparticles
citrate
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011125339A
Other languages
Japanese (ja)
Inventor
Takao Abe
阿部  隆夫
Jun Natsuki
潤 夏木
Kenichi Kaneda
健一 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Tokyo Printing Ink Mfg Co Ltd
Original Assignee
Shinshu University NUC
Tokyo Printing Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC, Tokyo Printing Ink Mfg Co Ltd filed Critical Shinshu University NUC
Priority to JP2011125339A priority Critical patent/JP2012251222A/en
Publication of JP2012251222A publication Critical patent/JP2012251222A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing silver nanoparticles while considering environmental impact, and excellent in workability, and to provide ink.SOLUTION: The method for producing the silver nanoparticles includes a process of preparing an aqueous solution in which an aliphatic carboxylic acid having at least one hydroxy group or a salt thereof is dissolved, and a process of mixing the aqueous solution, silver nitrate, citrate and an amine compound to reduce the silver nitrate.

Description

本発明は、銀ナノ粒子の製造方法およびインクに関する。   The present invention relates to a method for producing silver nanoparticles and an ink.

近年、電子回路の配線や、電極を形成するために、銀微粒子が使用されている。
一般に金属微粒子の製造方法としては、CVD法や噴霧熱分解法などの気相法と、化学的な還元反応を利用した湿式法が知られているが、従来の湿式法によって製造した微粒子は凝集性が強く、単分散粒子が得られ難いため、凝集が少ない高純度の銀微粒子などは多くが気相法によって製造されていた。一方、気相法によって得た金属微粒子は単分散性に優れるが、製造コストが高く、かつ粒度制御が難しいと云う問題がある。そこで、分散性に優れた金属微粒子の湿式製造方法が試みられている。
In recent years, silver fine particles have been used to form wiring of electronic circuits and electrodes.
Generally, as a method for producing metal fine particles, a vapor phase method such as a CVD method or a spray pyrolysis method and a wet method using a chemical reduction reaction are known, but fine particles produced by a conventional wet method are aggregated. Because of its high properties and difficulty in obtaining monodisperse particles, many high-purity silver fine particles with little aggregation have been produced by a gas phase method. On the other hand, metal fine particles obtained by a vapor phase method are excellent in monodispersibility, but have a problem that production costs are high and particle size control is difficult. Then, the wet manufacturing method of the metal fine particle excellent in the dispersibility is tried.

特許文献1には、粉末状の酸化銀と長鎖脂肪酸およびアミン化合物とをトルエン等の非極性溶媒中で撹拌加熱することによって銀微粒子を製造する方法が開示されている。ここでは、酸化銀の表面から銀イオンが脂肪酸塩として溶出しながら還元されて銀微粒子が生成し、生成した銀微粒子はその表面にアミン化合物が配位することにより分散安定化しているとしている。
また、特許文献2には、特定の保護剤の存在下、エタノール中で塩化銀を還元する方法が開示されている。
Patent Document 1 discloses a method for producing silver fine particles by stirring and heating powdered silver oxide, a long-chain fatty acid and an amine compound in a nonpolar solvent such as toluene. Here, silver ions are reduced while being eluted as a fatty acid salt from the surface of silver oxide to produce silver fine particles, and the produced silver fine particles are dispersed and stabilized by coordination of an amine compound on the surface.
Patent Document 2 discloses a method for reducing silver chloride in ethanol in the presence of a specific protective agent.

特開2008−25005号公報JP 2008-25005 A 特開平10−265812号公報JP-A-10-265812

しかしながら、特許文献1,2では、多量の有機溶媒を使用するため、取り扱い性が良好でなく、また、環境への影響が懸念される。   However, in Patent Documents 1 and 2, since a large amount of an organic solvent is used, handleability is not good, and there is a concern about influence on the environment.

本発明によれば、少なくとも水酸基を1以上有する脂肪族カルボン酸またはその塩を水に溶解させた水溶液を用意する工程と、前記水溶液と、硝酸銀と、クエン酸塩と、アミン化合物とを混合して、前記硝酸銀を還元して銀ナノ粒子を得る工程とを含む銀ナノ粒子の製造方法が提供される。   According to the present invention, a step of preparing an aqueous solution in which an aliphatic carboxylic acid having at least one hydroxyl group or a salt thereof is dissolved in water, the aqueous solution, silver nitrate, citrate, and an amine compound are mixed. And a method for producing silver nanoparticles comprising reducing the silver nitrate to obtain silver nanoparticles.

この発明によれば、水溶液中で硝酸銀を還元しており、多量の有機溶媒を使用せずに、銀ナノ粒子を得ることができる。したがって、環境への影響に配慮することができ、かつ、作業性に優れた製造方法となる。   According to this invention, silver nitrate is reduced in an aqueous solution, and silver nanoparticles can be obtained without using a large amount of organic solvent. Therefore, it becomes a manufacturing method which can consider the influence on the environment and has excellent workability.

また、本発明によれば、上述した製造方法により製造された銀ナノ粒子と、前記銀ナノ粒子が分散した溶液とを有するインクジェット用インクも提供できる。   Moreover, according to this invention, the ink for inkjets which has the silver nanoparticle manufactured by the manufacturing method mentioned above and the solution in which the said silver nanoparticle was disperse | distributed can also be provided.

本発明によれば、環境への影響に配慮することができ、かつ、作業性に優れた銀ナノ粒子の製造方法およびインクが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method and ink of a silver nanoparticle which can consider the influence on an environment and were excellent in workability | operativity are provided.

実施例2により得られた銀ナノ粒子の粒径分布を示す図である。6 is a graph showing the particle size distribution of silver nanoparticles obtained in Example 2. FIG.

以下、本発明の実施形態を説明する。
本実施形態の銀ナノ粒子の製造方法は、少なくとも水酸基を1以上有する脂肪族カルボン酸もしくはその塩を水に溶解させた水溶液を用意する工程と、前記水溶液と、硝酸銀と、クエン酸塩と、アミン化合物とを混合して、前記硝酸銀を還元して銀ナノ粒子を得る工程とを含む。
ここで、銀ナノ粒子とは、平均粒径(D50)がナノオーダーの粒子を意味するが、なかでも、平均粒径(D50)50nm以下であることが好ましい。平均粒径の下限値は、特に制限されないが、1nm以上であることが好ましい。
Embodiments of the present invention will be described below.
The method for producing silver nanoparticles of the present embodiment includes a step of preparing an aqueous solution in which an aliphatic carboxylic acid having at least one hydroxyl group or a salt thereof is dissolved in water, the aqueous solution, silver nitrate, citrate, Mixing with an amine compound to reduce the silver nitrate to obtain silver nanoparticles.
Here, the silver nanoparticle means a particle having an average particle diameter (D50) of nano-order, and the average particle diameter (D50) is preferably 50 nm or less. The lower limit of the average particle diameter is not particularly limited, but is preferably 1 nm or more.

(水溶液を用意する工程)
ここでは、少なくとも水酸基を1以上有する脂肪族カルボン酸もしくはその塩を水に溶解させて、水溶液(以下、水酸基を有する脂肪族カルボン酸等が溶解した水溶液という)を用意する。
水酸基を1以上有する脂肪族カルボン酸もしくはその塩は、銀ナノ粒子の分散剤として働く。
水酸基を有する脂肪族カルボン酸としては、水に溶解し、銀とキレートを形成できるものであればよく、たとえば、クエン酸、グルコン酸、リンゴ酸、酒石酸、ヘプトン酸、乳酸があげられる。
また、水酸基を有する脂肪族カルボン酸塩としては、上述したいずれかの脂肪族カルボン酸のアルカリ金属塩、具体的にはカリウム塩、ナトリウム塩等があげられる。
分散性の観点から、グルコン酸、グルコン酸塩、リンゴ酸、リンゴ酸塩のいずれかを使用することが好ましい。
脂肪族カルボン酸や、脂肪族カルボン酸塩は、2種以上を併用してもよい。
以上のような脂肪族カルボン酸もしくはその塩を、水に溶解させる。このとき、加熱や冷却をせずに、室温で実施することが好ましい。このようにすることで、作業性に優れたものとなる。
なお、脂肪族カルボン酸や、脂肪族カルボン酸塩の使用量は、分散性の観点から、硝酸銀1モルに対し1.5モル〜3モルであることが好ましい。
(Process for preparing aqueous solution)
Here, an aliphatic carboxylic acid having at least one hydroxyl group or a salt thereof is dissolved in water to prepare an aqueous solution (hereinafter referred to as an aqueous solution in which an aliphatic carboxylic acid having a hydroxyl group or the like is dissolved).
An aliphatic carboxylic acid having one or more hydroxyl groups or a salt thereof acts as a dispersant for silver nanoparticles.
Any aliphatic carboxylic acid having a hydroxyl group may be used as long as it can dissolve in water and form a chelate with silver. Examples thereof include citric acid, gluconic acid, malic acid, tartaric acid, heptonic acid, and lactic acid.
Examples of the aliphatic carboxylate having a hydroxyl group include alkali metal salts of any of the above-described aliphatic carboxylic acids, specifically potassium salts and sodium salts.
From the viewpoint of dispersibility, it is preferable to use any one of gluconic acid, gluconate, malic acid, and malate.
Two or more kinds of aliphatic carboxylic acids and aliphatic carboxylates may be used in combination.
The aliphatic carboxylic acid or salt thereof as described above is dissolved in water. At this time, it is preferable to carry out at room temperature without heating or cooling. By doing in this way, it becomes the thing excellent in workability | operativity.
In addition, it is preferable that the usage-amount of aliphatic carboxylic acid and aliphatic carboxylate is 1.5 mol-3 mol with respect to 1 mol of silver nitrate from a dispersible viewpoint.

(硝酸銀を還元する工程)
次に、前記水溶液と、硝酸銀と、クエン酸塩と、アミン化合物とを混合する。
本発明では、銀ナノ粒子の原料として、硝酸銀を使用する。硝酸銀を使用することで、粒径の小さな銀ナノ粒子を得ることができる。
硝酸銀の還元剤として、クエン酸塩を使用する。また、触媒としてアミン化合物を使用する。
クエン酸塩は、水溶性の塩であれば、特に限定されず、クエン酸リチウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸二水素アンモニウム等があげられる。なかでも、溶解性の観点から、クエン酸ナトリウム、クエン酸水素二アンモニウムのいずれかが好ましい。
クエン酸塩を水に溶解した後、前記水溶液に添加することが好ましい。
クエン酸塩の使用量は、反応速度および製造コストの観点から硝酸銀1モルに対し0.5モル〜3モルであることが好ましい。
なお、クエン酸塩として、異なるクエン酸塩を2種類以上併用してもよい。
(Step of reducing silver nitrate)
Next, the aqueous solution, silver nitrate, citrate, and amine compound are mixed.
In the present invention, silver nitrate is used as a raw material for silver nanoparticles. By using silver nitrate, silver nanoparticles having a small particle diameter can be obtained.
Citrate is used as a reducing agent for silver nitrate. Moreover, an amine compound is used as a catalyst.
The citrate is not particularly limited as long as it is a water-soluble salt, and examples thereof include lithium citrate, sodium citrate, potassium citrate, and ammonium dihydrogen citrate. Of these, sodium citrate or diammonium hydrogen citrate is preferable from the viewpoint of solubility.
It is preferable that citrate is dissolved in water and then added to the aqueous solution.
It is preferable that the usage-amount of a citrate is 0.5-3 mol with respect to 1 mol of silver nitrate from a viewpoint of reaction rate and manufacturing cost.
In addition, you may use 2 or more types of different citrates together as a citrate.

また、アミン化合物は、水溶性で水に溶解するものであれば、特に限定されず、リシン、エチルアミン、エタノールアミン等の1級アミン、ジエチルアミン、ジエタノールアミン等の2級アミン、トリエチルアミン、ジメチルアミノエタノール等の3級アミン、イミダゾール、トリアゾール等があげられる。なかでも、小さな粒径の銀ナノ粒子を製造する観点から、ジメチルアミノエタノール、イミダゾールまたはトリエチルアミンを使用することが好ましい。また、アミン化合物の使用量は、反応速度を適度なものとし、かつ、得られる銀ナノ粒子の粒径を小さくするために、硝酸銀に対し、モル比で1/20以上、1/5以下であることが好ましい。
なお、アミン化合物として、異なるアミン化合物を2種類以上併用してもよい。
The amine compound is not particularly limited as long as it is water-soluble and soluble in water. Primary amines such as lysine, ethylamine and ethanolamine, secondary amines such as diethylamine and diethanolamine, triethylamine, dimethylaminoethanol and the like And tertiary amine, imidazole, triazole and the like. Among these, it is preferable to use dimethylaminoethanol, imidazole or triethylamine from the viewpoint of producing silver nanoparticles having a small particle diameter. The amine compound is used in an amount of 1/20 or more and 1/5 or less in terms of molar ratio with respect to silver nitrate in order to moderate the reaction rate and reduce the particle size of the resulting silver nanoparticles. Preferably there is.
Two or more different amine compounds may be used in combination as the amine compound.

アミン化合物を水に溶解した後、水酸基を有する脂肪族カルボン酸等が溶解した前記水溶液に添加することが好ましい。
本工程では、水酸基を有する脂肪族カルボン酸等が溶解した前記水溶液と、硝酸銀と、クエン酸塩と、アミン化合物とを混合すればよい。
ただし、水酸基を有する脂肪族カルボン酸等が溶解した前記水溶液に対し、硝酸銀を添加した後、アミン化合物を水に溶解した溶液と、クエン酸塩を水に溶解した溶液と添加することが好ましい。このようにすることで、銀ナノ粒子の凝集を抑制することができ、粒径を制御することができる。
アミン化合物を水に溶解した溶液と、クエン酸塩を水に溶解した溶液とを同時に添加してもよく、また、クエン酸塩を水に溶解した溶液を添加した後、アミン化合物を水に溶解した溶液を添加してもよい。さらに、アミン化合物を水に溶解した溶液を添加した後、クエン酸塩を水に溶解した溶液を添加してもよい。
また、クエン酸塩を水に溶解した溶液、アミン化合物を水に溶解した溶液の添加方法としては、水酸基を有する脂肪族カルボン酸等が溶解した前記水溶液に対して滴下することが好ましい。このようにすることで、得られる銀ナノ粒子の平均粒径を小さくすることができる。また、クエン酸塩を水に溶解した溶液、アミン化合物を水に溶解した溶液の滴下時間を比較的長くすることで、得られる銀ナノ粒子の平均粒径を小さくすることができる。
After the amine compound is dissolved in water, it is preferably added to the aqueous solution in which the aliphatic carboxylic acid having a hydroxyl group and the like are dissolved.
In this step, the aqueous solution in which an aliphatic carboxylic acid having a hydroxyl group or the like is dissolved, silver nitrate, citrate, and an amine compound may be mixed.
However, after adding silver nitrate to the aqueous solution in which the aliphatic carboxylic acid having a hydroxyl group and the like is dissolved, it is preferable to add a solution in which the amine compound is dissolved in water and a solution in which the citrate is dissolved in water. By doing in this way, aggregation of a silver nanoparticle can be suppressed and a particle size can be controlled.
A solution in which the amine compound is dissolved in water and a solution in which the citrate is dissolved in water may be added at the same time, or after adding a solution in which the citrate is dissolved in water, the amine compound is dissolved in water. Solution may be added. Further, a solution in which an amine compound is dissolved in water may be added, and then a solution in which citrate is dissolved in water may be added.
In addition, as a method for adding a solution in which citrate is dissolved in water and a solution in which an amine compound is dissolved in water, it is preferable to add dropwise to the aqueous solution in which an aliphatic carboxylic acid having a hydroxyl group or the like is dissolved. By doing in this way, the average particle diameter of the silver nanoparticle obtained can be made small. Moreover, the average particle diameter of the silver nanoparticle obtained can be made small by making comparatively long dripping time of the solution which melt | dissolved the citrate in water, and the solution which melt | dissolved the amine compound in water.

以上のようにして、全ての原料を混合した後、1〜2時間程度攪拌して、反応液を得る。攪拌は、室温で実施することができる。
なお、反応液中の硝酸銀濃度は、0.01モル/l以上、0.1モル/l以下が好ましい。このように比較的薄い濃度とすることで、得られる銀ナノ粒子の平均粒径を小さく制御することが可能となる。
本発明では、上述した全ての工程を10℃以上、50℃以下で実施することができ、さらには、特に加熱や冷却をすることなく、室温で実施することが好ましい。このようにすることで、作業性に優れた製造方法となる。なお、50℃以下とすることで、反応速度を抑制し、平均粒径の小さい銀ナノ粒子を得ることができる。また、10℃以上とすることで、反応速度の低下を抑制することができる。
また、本発明では、上述した全ての工程で、特に激しい発熱はないため、作業性に優れた製造方法となる。
さらに、本発明の製造方法は、多量の有機溶媒を使用しないため、環境への影響に配慮することができ、かつ、作業性に優れた製造方法である。
After mixing all the raw materials as mentioned above, it stirs for about 1 to 2 hours, and obtains a reaction liquid. Agitation can be carried out at room temperature.
The silver nitrate concentration in the reaction solution is preferably 0.01 mol / l or more and 0.1 mol / l or less. Thus, it becomes possible to control the average particle diameter of the obtained silver nanoparticle small by setting it as a comparatively thin density | concentration.
In the present invention, all the steps described above can be carried out at 10 ° C. or higher and 50 ° C. or lower, and more preferably carried out at room temperature without heating or cooling. By doing in this way, it becomes a manufacturing method excellent in workability | operativity. In addition, by setting it as 50 degrees C or less, reaction rate can be suppressed and a silver nanoparticle with a small average particle diameter can be obtained. Moreover, the fall of reaction rate can be suppressed by setting it as 10 degreeC or more.
Moreover, in this invention, since there is no especially intense heat_generation | fever in all the processes mentioned above, it becomes a manufacturing method excellent in workability | operativity.
Furthermore, since the production method of the present invention does not use a large amount of an organic solvent, it is possible to consider the influence on the environment and is a production method excellent in workability.

以上のようにして得られた反応液を遠心分離し、上澄み液を捨てる。そして、得られた沈殿物に水を加えて再度遠心分離し、上澄み液を捨てる。この作業を繰り返すことで、銀ナノ粒子が分散した水分散液を得ることができる。本発明では、クエン酸塩、アミン化合物といった水溶性の原料を使用しているため、遠心分離後の沈殿物中には、ほとんど不純物が混入していないと考えられる。
また、水分散液中では、銀ナノ粒子は、ほとんど凝集しておらず、銀ナノ粒子の分散性がよい。銀ナノ粒子の分散性がよい理由としては、以下のことが考えられる。銀ナノ粒子に対し、脂肪族カルボン酸や脂肪族カルボン酸塩の水酸基、カルボキシル基(あるいはカルボキシル残基)が配位して、キレートを形成していると考えられる。これにより、銀ナノ粒子の分散性が良好となっていると推測される。
また、銀ナノ粒子の平均粒径(D50)は、50nm以下、1nm以上となる。なかでも、銀ナノ粒子の平均粒径(D50)は、10nm以下、1nm以上であることが好ましい。さらに、銀ナノ粒子の形状は、球形となる。
なお、平均粒径(D50)は、銀ナノ粒子の一次粒子の粒径を200個をTEM像で測定し、小粒径側からの累積個数が50%となる粒径(D50)を平均粒径(メディアン径D50)とする。
The reaction solution obtained as described above is centrifuged, and the supernatant is discarded. Then, water is added to the obtained precipitate and centrifuged again, and the supernatant is discarded. By repeating this operation, an aqueous dispersion in which silver nanoparticles are dispersed can be obtained. In the present invention, since water-soluble raw materials such as citrate and amine compound are used, it is considered that impurities are hardly mixed in the precipitate after centrifugation.
Further, in the aqueous dispersion, the silver nanoparticles are hardly aggregated and the dispersibility of the silver nanoparticles is good. The reason why the dispersibility of the silver nanoparticles is good is considered as follows. It is considered that the hydroxyl group or carboxyl group (or carboxyl residue) of the aliphatic carboxylic acid or aliphatic carboxylate is coordinated with the silver nanoparticles to form a chelate. Thereby, it is estimated that the dispersibility of silver nanoparticles is good.
Moreover, the average particle diameter (D50) of the silver nanoparticles is 50 nm or less and 1 nm or more. Especially, it is preferable that the average particle diameter (D50) of a silver nanoparticle is 10 nm or less and 1 nm or more. Further, the silver nanoparticles have a spherical shape.
The average particle size (D50) is determined by measuring 200 primary particles of silver nanoparticles with a TEM image, and the average particle size (D50) is 50% from the small particle size side. The diameter (median diameter D50).

以上のようにして得られた銀ナノ粒子の水分散液は、インクジェット用のインクに加工される。たとえば、銀ナノ粒子の水分散液に対し、アルコール、たとえばエタノールを混合することで、インクジェット用のインクを得ることができる。
また、以上のようにして得られたインクや銀ナノ粒子の水分散液を塗布した後、110℃以上、300℃以下で30分以上焼成し、さらに、水等の溶液で洗浄することで導電性を有する膜を得ることができる。
なお、焼成温度は、110℃以上、180℃以下であることが好ましく、このように比較的低温で焼成しても、導電性の膜を得ることができる。したがって、たとえば、ポリエチレンテレフタレート等の比較的耐熱性の低い基材上に、導電性の膜を形成することが可能となる。
The silver nanoparticle aqueous dispersion obtained as described above is processed into an inkjet ink. For example, an ink jet ink can be obtained by mixing an alcohol such as ethanol with an aqueous dispersion of silver nanoparticles.
In addition, after applying the aqueous dispersion of the ink and silver nanoparticles obtained as described above, it is baked at 110 ° C. or higher and 300 ° C. or lower for 30 minutes or more, and further washed with a solution such as water to conduct electricity. A film having properties can be obtained.
Note that the baking temperature is preferably 110 ° C. or higher and 180 ° C. or lower. Thus, even when baking is performed at a relatively low temperature, a conductive film can be obtained. Therefore, for example, a conductive film can be formed on a base material having relatively low heat resistance such as polyethylene terephthalate.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

次に、本発明の実施例について説明する。
なお、各実施例において、銀ナノ粒子の平均粒径を計測しているが、計測方法は、以下の通りである。
(平均粒径の計測方法)
各実施例にて得られた銀ナノ粒子の水分散液を乾燥させて、TEM(透過型電子顕微鏡)像を観察した。装置としては、JEOL JEM2010を使用した。銀ナノ粒子の一次粒子の粒径を200個測定し、小粒径側からの累積個数が50%となる粒径(D50)を平均粒径(メディアン径D50)とした。
Next, examples of the present invention will be described.
In addition, in each Example, although the average particle diameter of silver nanoparticle is measured, the measuring method is as follows.
(Measuring method of average particle size)
The silver nanoparticle aqueous dispersion obtained in each example was dried, and a TEM (transmission electron microscope) image was observed. As an apparatus, JEOL JEM2010 was used. The particle diameter of 200 primary particles of silver nanoparticles was measured, and the particle diameter (D50) at which the cumulative number from the small particle diameter side was 50% was defined as the average particle diameter (median diameter D50).

(実施例1)
グルコン酸ナトリウム1gを蒸留水20mlに溶解して水溶液を得た。次に、硝酸銀0.5gを前記水溶液に添加した。その後、硝酸銀、グルコン酸ナトリウムを含有する前記水溶液に対し、クエン酸ナトリウム0.88gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、ジメチルアミノエタノール0.027gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることが確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。平均粒径は5nmである。粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。
得られた水分散液をフィルムに塗布して、大気圧下で大気中150℃1時間焼成し、所定時間、水に浸漬した。その後、水を乾燥させて抵抗率を測定した。結果を表1に示す。浸漬時間が30分以上となると、導電性を示すことがわかる。
Example 1
1 g of sodium gluconate was dissolved in 20 ml of distilled water to obtain an aqueous solution. Next, 0.5 g of silver nitrate was added to the aqueous solution. Thereafter, a solution prepared by dissolving 0.88 g of sodium citrate in 20 ml of distilled water was added dropwise to the aqueous solution containing silver nitrate and sodium gluconate at room temperature for 20 minutes. After the dropwise addition, a solution prepared by dissolving 0.027 g of dimethylaminoethanol in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
In the aqueous dispersion of silver nanoparticles, it was confirmed that the silver nanoparticles were not aggregated and had excellent dispersibility. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical. The average particle size is 5 nm. It was found that the particle size distribution was very narrow and monodispersed, and the particle size was almost uniform.
The obtained aqueous dispersion was applied to a film, baked at 150 ° C. for 1 hour in the atmosphere under atmospheric pressure, and immersed in water for a predetermined time. Thereafter, the water was dried and the resistivity was measured. The results are shown in Table 1. It can be seen that conductivity is exhibited when the immersion time is 30 minutes or more.

Figure 2012251222
Figure 2012251222

また、得られた水分散液をフィルムに塗布して、大気圧下、大気中で表2に示したようにそれぞれ焼成し、所定時間、0.1モル/lの水酸化カリウム水溶液に浸漬した。その後、水で洗浄し、乾燥させて抵抗率を測定した。結果を表2に示す。導電性を示すことがわかる。   Further, the obtained aqueous dispersion was applied to a film, fired in the atmosphere at atmospheric pressure as shown in Table 2, and immersed in a 0.1 mol / l potassium hydroxide aqueous solution for a predetermined time. . Thereafter, it was washed with water and dried to measure the resistivity. The results are shown in Table 2. It turns out that electroconductivity is shown.

Figure 2012251222
Figure 2012251222

(実施例2)
グルコン酸ナトリウム2gを蒸留水20mlに溶解して水溶液を得た。次に、硝酸銀0.5gを前記水溶液に添加した。その後、硝酸銀、グルコン酸ナトリウムを含有する前記水溶液に対し、クエン酸ナトリウム0.88gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、ジメチルアミノエタノール0.027gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
また、得られた銀ナノ粒子の平均粒径は6nmであり、粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。図1に得られた銀ナノ粒子の粒径分布を示す。5.61〜7.53nmの範囲でピークが観測され、非常に狭い分布であることがわかる。装置としては、Malvern Instruments社製の Zetasizer NanoSeriesを使用した。
さらに、銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることも確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。
得られた水分散液をフィルムに塗布して、表3に示したように大気中、大気圧下で焼成し、所定時間、0.1モル/lの水酸化カリウム水溶液に浸漬した。その後、乾燥させて抵抗率を測定した。結果を表3に示す。いずれも、抵抗率が低く、導電性があることがわかる。
(Example 2)
An aqueous solution was obtained by dissolving 2 g of sodium gluconate in 20 ml of distilled water. Next, 0.5 g of silver nitrate was added to the aqueous solution. Thereafter, a solution prepared by dissolving 0.88 g of sodium citrate in 20 ml of distilled water was added dropwise to the aqueous solution containing silver nitrate and sodium gluconate at room temperature for 20 minutes. After the dropwise addition, a solution prepared by dissolving 0.027 g of dimethylaminoethanol in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
Moreover, it was found that the average particle diameter of the obtained silver nanoparticles was 6 nm, the particle diameter distribution was very narrow and monodispersed, and the particle diameter was almost uniform. FIG. 1 shows the particle size distribution of the silver nanoparticles obtained. A peak is observed in the range of 5.61 to 7.53 nm, and it can be seen that the distribution is very narrow. A Zetasizer NanoSeries manufactured by Malvern Instruments was used as the apparatus.
Furthermore, in the aqueous dispersion of silver nanoparticles, the silver nanoparticles were not agglomerated and it was confirmed that the dispersion was excellent. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical.
The obtained aqueous dispersion was applied to a film, baked at atmospheric pressure under atmospheric pressure as shown in Table 3, and immersed in a 0.1 mol / l aqueous potassium hydroxide solution for a predetermined time. Then, it dried and measured the resistivity. The results are shown in Table 3. It can be seen that both have low resistivity and conductivity.

Figure 2012251222
Figure 2012251222

(実施例3)
DL−リンゴ酸二ナトリウム1gを蒸留水20mlに溶解した。次に、硝酸銀0.5gを前記水溶液に添加した。このようにして得られた溶液に、クエン酸ナトリウム0.88gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、ジメチルアミノエタノール0.027gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
得られた銀ナノ粒子の平均粒径は5nmであり、粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。さらに、銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることも確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。
得られた水分散液をフィルムに塗布して、表4に示したように大気中、大気圧下で焼成し、所定時間、水に浸漬した。その後、水を乾燥させて抵抗率を測定した。結果を表4に示す。浸漬時間が30分以上となると、導電性を示すことがわかる。
(Example 3)
1 g of disodium DL-malate was dissolved in 20 ml of distilled water. Next, 0.5 g of silver nitrate was added to the aqueous solution. A solution obtained by dissolving 0.88 g of sodium citrate in 20 ml of distilled water was added dropwise to the solution thus obtained at room temperature for 20 minutes. After the dropwise addition, a solution prepared by dissolving 0.027 g of dimethylaminoethanol in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
The average particle size of the obtained silver nanoparticles was 5 nm, the particle size distribution was very narrow and monodispersed, and the particle size was almost uniform. Furthermore, in the aqueous dispersion of silver nanoparticles, the silver nanoparticles were not agglomerated and it was confirmed that the dispersion was excellent. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical.
The obtained aqueous dispersion was applied to a film, baked at atmospheric pressure under atmospheric pressure as shown in Table 4, and immersed in water for a predetermined time. Thereafter, the water was dried and the resistivity was measured. The results are shown in Table 4. It can be seen that conductivity is exhibited when the immersion time is 30 minutes or more.

Figure 2012251222
Figure 2012251222

(実施例4)
グルコン酸ナトリウム1gを蒸留水20mlに溶解して水溶液を得た。次に、硝酸銀0.5gを前記水溶液に添加した。その後、硝酸銀、グルコン酸ナトリウムを含有する前記水溶液に対し、クエン酸ナトリウム0.88gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、イミダゾール0.02gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
また、得られた銀ナノ粒子の平均粒径は10nmであり、粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。さらに、銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることも確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。
Example 4
1 g of sodium gluconate was dissolved in 20 ml of distilled water to obtain an aqueous solution. Next, 0.5 g of silver nitrate was added to the aqueous solution. Thereafter, a solution prepared by dissolving 0.88 g of sodium citrate in 20 ml of distilled water was added dropwise to the aqueous solution containing silver nitrate and sodium gluconate at room temperature for 20 minutes. After the dropwise addition, a solution prepared by dissolving 0.02 g of imidazole in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
Moreover, it was found that the average particle size of the obtained silver nanoparticles was 10 nm, the particle size distribution was very narrow and monodispersed, and the particle size was almost uniform. Furthermore, in the aqueous dispersion of silver nanoparticles, the silver nanoparticles were not agglomerated and it was confirmed that the dispersion was excellent. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical.

(実施例5)
グルコン酸ナトリウム1gを蒸留水20mlに溶解して水溶液を得た。次に、硝酸銀0.5gを前記水溶液に添加した。その後、硝酸銀、グルコン酸ナトリウムを含有する前記水溶液に対し、クエン酸ナトリウム0.88gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、トリエチルアミン0.03gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
また、得られた銀ナノ粒子の平均粒径は5nmであり、粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。さらに、銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることも確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。
(Example 5)
1 g of sodium gluconate was dissolved in 20 ml of distilled water to obtain an aqueous solution. Next, 0.5 g of silver nitrate was added to the aqueous solution. Thereafter, a solution prepared by dissolving 0.88 g of sodium citrate in 20 ml of distilled water was added dropwise to the aqueous solution containing silver nitrate and sodium gluconate at room temperature for 20 minutes. After dropping, a solution of 0.03 g of triethylamine dissolved in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
Moreover, it was found that the average particle diameter of the obtained silver nanoparticles was 5 nm, the particle diameter distribution was very narrow and monodispersed, and the particle diameter was almost uniform. Furthermore, in the aqueous dispersion of silver nanoparticles, the silver nanoparticles were not agglomerated and it was confirmed that the dispersion was excellent. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical.

(実施例6)
グルコン酸ナトリウム1gを蒸留水20mlに溶解して水溶液を得た。次に、硝酸銀0.5gを前記水溶液に添加した。その後、硝酸銀、グルコン酸ナトリウムを含有する前記水溶液に対し、クエン酸水素二アンモニウム0.68gを蒸留水20mlに溶解した溶液を、室温、20分間で滴下した。滴下後、イミダゾール0.02gを0.5mlの蒸留水に溶解した溶液を滴下し、1時間撹拌した。なお、攪拌には、AS ONE社製のウォーターバススターラーを使用した。
得られた反応液を5000rpm、1分間遠心し、上澄みを捨て、沈殿物に蒸留水を加えて、5000rpm、2分間遠心し、沈殿物を得た。この沈殿物に、さらに、もう一度遠心操作を行い、沈殿物を水に再分散させることで、銀ナノ粒子の水分散液を得た。以上の工程はすべて室温で実施した。
また、得られた銀ナノ粒子の平均粒径は4nmであり、粒径分布が非常に狭く単分散であり、粒径がほぼ均一であることがわかった。さらに、銀ナノ粒子の水分散液において、銀ナノ粒子は凝集しておらず、分散性に優れることも確認できた。また、得られた銀ナノ粒子をTEMで観察したところ、球形であることがわかった。
(Example 6)
1 g of sodium gluconate was dissolved in 20 ml of distilled water to obtain an aqueous solution. Next, 0.5 g of silver nitrate was added to the aqueous solution. Thereafter, a solution prepared by dissolving 0.68 g of diammonium hydrogen citrate in 20 ml of distilled water was added dropwise to the aqueous solution containing silver nitrate and sodium gluconate at room temperature for 20 minutes. After the dropwise addition, a solution prepared by dissolving 0.02 g of imidazole in 0.5 ml of distilled water was added dropwise and stirred for 1 hour. For stirring, a water bath stirrer manufactured by AS ONE was used.
The obtained reaction solution was centrifuged at 5000 rpm for 1 minute, the supernatant was discarded, distilled water was added to the precipitate, and centrifuged at 5000 rpm for 2 minutes to obtain a precipitate. The precipitate was further centrifuged once more, and the precipitate was redispersed in water to obtain an aqueous dispersion of silver nanoparticles. All the above steps were performed at room temperature.
Further, it was found that the average particle diameter of the obtained silver nanoparticles was 4 nm, the particle diameter distribution was very narrow and monodispersed, and the particle diameter was almost uniform. Furthermore, in the aqueous dispersion of silver nanoparticles, the silver nanoparticles were not agglomerated and it was confirmed that the dispersion was excellent. Moreover, when the obtained silver nanoparticle was observed by TEM, it turned out that it is spherical.

なお、実施例1〜6で得られた銀ナノ粒子(焼成前)について、UV可視吸収分光法で計測したところ、400nm付近に吸収が見られた。これは、銀ナノ粒子のプラズモン共鳴吸収である。
また、実施例1〜6で得られた銀ナノ粒子(焼成前)についてEDS(エネルギー分散型X線分光分析)を用いて同定を行ったところ、3keV付近に銀ナノ粒子のピークを示し、銀以外の金属成分は観測されなかった。
また、実施例1〜6で得られた銀ナノ粒子の水分散液を室温で風乾後、水を加えて攪拌することで、再分散した銀ナノ粒子を得ることができた。銀ナノ粒子の再分散性が非常に良好であることがわかった。
また、実施例1〜6で得られた銀ナノ粒子の水分散液(攪拌直後の沈降が生じていないもの)を放置し、30分経過した時点で観察したところ、銀ナノ粒子が沈降していないことが確認された。
実施例1〜6で得られた銀ナノ粒子の分散性は、特許文献1,2で開示されたものよりも良好である。
In addition, when it measured by UV visible absorption spectroscopy about the silver nanoparticle (before baking) obtained in Examples 1-6, absorption was seen by 400 nm vicinity. This is the plasmon resonance absorption of silver nanoparticles.
In addition, when the silver nanoparticles (before firing) obtained in Examples 1 to 6 were identified using EDS (energy dispersive X-ray spectroscopy), a peak of silver nanoparticles was shown in the vicinity of 3 keV. No metal components other than were observed.
Moreover, after air-drying the aqueous dispersion of silver nanoparticles obtained in Examples 1 to 6 at room temperature, re-dispersed silver nanoparticles could be obtained by adding water and stirring. The redispersibility of the silver nanoparticles was found to be very good.
In addition, when the aqueous dispersion of silver nanoparticles obtained in Examples 1 to 6 (no precipitation immediately after stirring) was allowed to stand and observed after 30 minutes, the silver nanoparticles were precipitated. Not confirmed.
The dispersibility of the silver nanoparticles obtained in Examples 1 to 6 is better than those disclosed in Patent Documents 1 and 2.

さらに、実施例1〜3を参照すると、焼成し、水や、水酸化カリウム水溶液で洗浄することで、導電性を有する膜を得ることができることがわかる。
これに加え、実施例1、3を参照すると、150℃〜160℃の焼成を行うことで、導電性を有する膜が得られていることがわかる。このように比較的低温で焼成することで、導電性の膜を得ることができるので、たとえば、ポリエチレンテレフタレート等の比較的耐熱性の低い基材上に、導電性の膜を形成することが可能となる。
Furthermore, referring to Examples 1 to 3, it can be seen that a conductive film can be obtained by baking and washing with water or an aqueous potassium hydroxide solution.
In addition to this, referring to Examples 1 and 3, it can be seen that a conductive film is obtained by performing baking at 150 ° C. to 160 ° C. Since a conductive film can be obtained by firing at a relatively low temperature in this way, it is possible to form a conductive film on a relatively low heat resistant substrate such as polyethylene terephthalate. It becomes.

Claims (7)

少なくとも水酸基を1以上有する脂肪族カルボン酸もしくはその塩を水に溶解させた水溶液を用意する工程と、
前記水溶液と、硝酸銀と、クエン酸塩と、アミン化合物とを混合して、前記硝酸銀を還元して、銀ナノ粒子を得る工程とを含む銀ナノ粒子の製造方法。
Preparing an aqueous solution in which an aliphatic carboxylic acid having at least one hydroxyl group or a salt thereof is dissolved in water;
A method for producing silver nanoparticles, comprising: mixing the aqueous solution, silver nitrate, citrate, and an amine compound, and reducing the silver nitrate to obtain silver nanoparticles.
請求項1に記載の銀ナノ粒子の製造方法において、
前記脂肪族カルボン酸もしくはその塩は、銀ナノ粒子の分散剤であり、
前記クエン酸塩は、前記硝酸銀を還元する還元剤である銀ナノ粒子の製造方法。
In the manufacturing method of the silver nanoparticle of Claim 1,
The aliphatic carboxylic acid or a salt thereof is a dispersant for silver nanoparticles,
The method for producing silver nanoparticles, wherein the citrate is a reducing agent that reduces the silver nitrate.
請求項1または2に記載の銀ナノ粒子の製造方法において、
前記水溶液を用意する工程では、前記脂肪族カルボン酸もしくはその塩として、グルコン酸もしくはグルコン酸塩、または、リンゴ酸もしくはリンゴ酸塩を使用する銀ナノ粒子の製造方法。
In the manufacturing method of the silver nanoparticle of Claim 1 or 2,
In the step of preparing the aqueous solution, a method for producing silver nanoparticles using gluconic acid or gluconate, or malic acid or malate as the aliphatic carboxylic acid or a salt thereof.
請求項1乃至3いずれかに記載の銀ナノ粒子の製造方法において、
前記アミン化合物はジメチルアミノエタノール、イミダゾールまたはトリエチルアミンである銀ナノ粒子の製造方法。
In the manufacturing method of the silver nanoparticle in any one of Claims 1 thru | or 3,
The method for producing silver nanoparticles, wherein the amine compound is dimethylaminoethanol, imidazole or triethylamine.
請求項1乃至4のいずれかに記載の銀ナノ粒子の製造方法において、
前記クエン酸塩が、クエン酸ナトリウムまたはクエン酸水素二アンモニウムである銀ナノ粒子の製造方法。
In the manufacturing method of the silver nanoparticle in any one of Claims 1 thru | or 4,
A method for producing silver nanoparticles, wherein the citrate is sodium citrate or diammonium hydrogen citrate.
請求項1乃至5のいずれかに記載の銀ナノ粒子の製造方法において、
前記銀ナノ粒子の平均粒径(D50)が、50nm以下、1nm以上である銀ナノ粒子の製造方法。
In the manufacturing method of the silver nanoparticle in any one of Claims 1 thru | or 5,
A method for producing silver nanoparticles, wherein the silver nanoparticles have an average particle diameter (D50) of 50 nm or less and 1 nm or more.
請求項1乃至6のいずれかに記載の製造方法により製造された銀ナノ粒子と、前記銀ナノ粒子が分散した溶液とを有するインクジェット用インク。   An ink-jet ink comprising silver nanoparticles produced by the production method according to claim 1 and a solution in which the silver nanoparticles are dispersed.
JP2011125339A 2011-06-03 2011-06-03 Method for producing silver nanoparticle, and ink Withdrawn JP2012251222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125339A JP2012251222A (en) 2011-06-03 2011-06-03 Method for producing silver nanoparticle, and ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125339A JP2012251222A (en) 2011-06-03 2011-06-03 Method for producing silver nanoparticle, and ink

Publications (1)

Publication Number Publication Date
JP2012251222A true JP2012251222A (en) 2012-12-20

Family

ID=47524299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125339A Withdrawn JP2012251222A (en) 2011-06-03 2011-06-03 Method for producing silver nanoparticle, and ink

Country Status (1)

Country Link
JP (1) JP2012251222A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles
JP2019142748A (en) * 2018-02-21 2019-08-29 東レエンジニアリング株式会社 Method for producing silver nanoparticle composite, silver nanoparticle composite, and method for forming conductive ink and conductive film
CN111013585A (en) * 2019-12-04 2020-04-17 太原氦舶新材料有限责任公司 Silver catalyst for ethylene epoxidation reaction and preparation method and application thereof
CN112006031A (en) * 2020-08-25 2020-12-01 广东欧文莱陶瓷有限公司 Antibacterial agent for ceramics, antibacterial ceramics and preparation method thereof
CN112033924A (en) * 2020-08-25 2020-12-04 盐城工学院 2-hydracrylic acid-gold and silver composite nano particle, preparation method and application thereof
CN112091233A (en) * 2020-11-19 2020-12-18 西安宏星电子浆料科技股份有限公司 Synthesis method of silver nanoparticles
US11807762B2 (en) 2018-11-22 2023-11-07 Societe Bic Process for preparing aqueous gel inks with variable color, and aqueous gel inks thereof
CN117457258A (en) * 2023-12-25 2024-01-26 深圳市绚图新材科技有限公司 Preparation method and application of conductive silver paste
CN117457258B (en) * 2023-12-25 2024-04-26 深圳市绚图新材科技有限公司 Preparation method and application of conductive silver paste

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204105A1 (en) * 2015-06-15 2016-12-22 株式会社大阪ソーダ Composition for manufacturing metal nanoparticles
JP2019142748A (en) * 2018-02-21 2019-08-29 東レエンジニアリング株式会社 Method for producing silver nanoparticle composite, silver nanoparticle composite, and method for forming conductive ink and conductive film
US11807762B2 (en) 2018-11-22 2023-11-07 Societe Bic Process for preparing aqueous gel inks with variable color, and aqueous gel inks thereof
CN111013585A (en) * 2019-12-04 2020-04-17 太原氦舶新材料有限责任公司 Silver catalyst for ethylene epoxidation reaction and preparation method and application thereof
CN112006031A (en) * 2020-08-25 2020-12-01 广东欧文莱陶瓷有限公司 Antibacterial agent for ceramics, antibacterial ceramics and preparation method thereof
CN112033924A (en) * 2020-08-25 2020-12-04 盐城工学院 2-hydracrylic acid-gold and silver composite nano particle, preparation method and application thereof
CN112006031B (en) * 2020-08-25 2021-09-14 广东欧文莱陶瓷有限公司 Antibacterial agent for ceramics, antibacterial ceramics and preparation method thereof
CN112091233A (en) * 2020-11-19 2020-12-18 西安宏星电子浆料科技股份有限公司 Synthesis method of silver nanoparticles
CN117457258A (en) * 2023-12-25 2024-01-26 深圳市绚图新材科技有限公司 Preparation method and application of conductive silver paste
CN117457258B (en) * 2023-12-25 2024-04-26 深圳市绚图新材科技有限公司 Preparation method and application of conductive silver paste

Similar Documents

Publication Publication Date Title
JP5355007B2 (en) Method for producing spherical silver powder
JP2012251222A (en) Method for producing silver nanoparticle, and ink
JP2022116130A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
JP2008075181A (en) Method for manufacturing copper nanoparticle using microwave
JP2005314755A (en) Flake copper powder, production method therefor and conductive paste
JP2007031835A (en) Metal nanoparticle, its production method and conductive ink
CN108140451B (en) Silver-colored tellurium cladding glass powder and its manufacturing method and electrocondution slurry and its manufacturing method
WO2006068061A1 (en) Superfine copper powder slurry and process for producing the same
JP2009252507A (en) Conductive paste containing micro silver particles, and hardened film
WO2012046666A1 (en) Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
KR20150099595A (en) A method to prepare a metallic nanoparticle dispersion
JP2016193813A (en) Silver-coated tellurium powder and production method thereof, and electrically conductive paste
JP4496026B2 (en) Method for producing metallic copper fine particles
KR20150035805A (en) Composite copper particles, and method for producing same
JP2014034697A (en) Method for producing copper fine particle, conductive paste and method for producing conductive paste
JP2013011014A (en) Method for producing silver nanoparticle, ink and method for producing conductive film
JP2016196705A (en) Oxide coated copper fine particle and manufacturing method therefor
JP2010138494A (en) Method for producing flake copper powder
JP2016216824A (en) Silver powder and manufacturing method therefor
JP2014029845A (en) Method for producing conductive paste
CN103702786A (en) Fine silver particles, conductive paste containing fine silver particles, conductive film and electronic device
JP5985216B2 (en) Silver powder
JP2010275578A (en) Silver powder and production method therefor
JP2017039990A (en) Copper powder, method for producing the same, and conductive paste using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805