JP5156328B2 - Copper alloy powder for conductive material paste - Google Patents

Copper alloy powder for conductive material paste Download PDF

Info

Publication number
JP5156328B2
JP5156328B2 JP2007271211A JP2007271211A JP5156328B2 JP 5156328 B2 JP5156328 B2 JP 5156328B2 JP 2007271211 A JP2007271211 A JP 2007271211A JP 2007271211 A JP2007271211 A JP 2007271211A JP 5156328 B2 JP5156328 B2 JP 5156328B2
Authority
JP
Japan
Prior art keywords
copper alloy
alloy powder
content
mass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007271211A
Other languages
Japanese (ja)
Other versions
JP2009099443A (en
Inventor
義朗 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2007271211A priority Critical patent/JP5156328B2/en
Publication of JP2009099443A publication Critical patent/JP2009099443A/en
Application granted granted Critical
Publication of JP5156328B2 publication Critical patent/JP5156328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は回路導体形成用や積層セラミックスコンデンサの外部電極用等に使用される導電材ペースト用の銅合金粉に関するものである。   The present invention relates to a copper alloy powder for a conductive material paste used for forming a circuit conductor or for an external electrode of a multilayer ceramic capacitor.

回路導体形成用や積層セラミックスコンデンサの外部電極用等に使用される導電材ペーストには主として銅粉が用いられることが多いが、本用途に用いられる銅粉は平均粒径が約0.5〜10μm程度と非常に微細で比表面積が大きいため、大気中に放置すると酸素や炭酸ガス、亜硫酸ガス等と反応して粉末粒子表面に酸化物皮膜や塩基性炭酸塩あるいは硫酸塩皮膜が形成され易い。このような表面皮膜が形成された粉末を例えば導電材ペーストとして用いた場合、粉末粒子間の接触抵抗が増大し、回路抵抗の増大やばらつきの原因になり、また焼成ペーストに用いた場合には焼成不良による回路欠陥生成の原因になる。このような現象を抑制するためには銅粉の製造から最終製品の製造に至るすべての工程を不活性雰囲気にすることが望ましいが現実的にこれを実現するには多くの困難を伴う。   Copper powder is often used mainly for conductive material paste used for forming circuit conductors and external electrodes of multilayer ceramic capacitors, but the average particle size of copper powder used in this application is about 0.5 to 10 μm. Since it is very fine and has a large specific surface area, when it is left in the atmosphere, it reacts with oxygen, carbon dioxide gas, sulfurous acid gas, etc., and an oxide film, a basic carbonate film or a sulfate film tends to be formed on the powder particle surface. When the powder with such a surface film is used as, for example, a conductive material paste, the contact resistance between the powder particles increases, causing an increase or variation in circuit resistance. This causes generation of circuit defects due to defective firing. In order to suppress such a phenomenon, it is desirable to make all the processes from the production of copper powder to the production of the final product an inert atmosphere, but in reality, this involves many difficulties.

従来の導電材ペーストの持つこのような欠点を改善するための方策として銅にAgを合金化する方法(特許文献1)や、銅粉にAgメッキする方法(特許文献2)、あるいは銅粉を防錆処理する方法(特許文献3)などが提案されている。
しかしながら、銅にAgを合金化したり、Agメッキする方法はコスト面での問題があり、また防錆剤を用いる方法では焼成用ペーストに用いた場合、焼成時において焼結阻害や防錆剤の分解ガス発生による焼結不良を引き起こすことが多い。
As a measure for improving such disadvantages of the conventional conductive material paste, a method of alloying Ag with copper (Patent Document 1), a method of Ag plating on copper powder (Patent Document 2), or a copper powder A method of performing rust prevention treatment (Patent Document 3) is proposed.
However, the method of alloying Ag or Ag plating on copper has a problem in terms of cost, and the method using a rust inhibitor, when used as a paste for firing, inhibits sintering and prevents rust inhibitor during firing. Often causes poor sintering due to generation of cracked gas.

特許第2767729号公報Japanese Patent No. 2767729 特開2000−248303号公報JP 2000-248303 A 特開2006−117959号公報JP 2006-117959 A

本発明は上述のごとく従来の導電材ペースト用銅粉の持つ欠点を改善し、耐候性に優れ、しかも従来の導電材ペースト用銅粉と同程度の焼結性を実現する導電材ペースト用銅合金粉を提供することを目的とする。   As described above, the present invention improves the disadvantages of the conventional copper powder for conductive material paste, has excellent weather resistance, and achieves the same degree of sintering as the conventional copper powder for conductive material paste. The object is to provide alloy powder.

本発明者は上記目的を達成するため、銅粉の基質である銅に合金元素を添加することで基質の電気伝導度や焼結性を大きく損なうことなく耐候性を改善する方策について種々検討を行い本発明を完成させた。   In order to achieve the above-mentioned object, the present inventor has made various studies on measures for improving the weather resistance without significantly impairing the electric conductivity and sinterability of the substrate by adding an alloy element to copper which is a substrate of the copper powder. This completes the present invention.

即ち、第一の発明の導電材ペースト用銅合金粉は、主成分であるCuに、ZnとSnの少なくともいずれか一方が合金化された銅合金粉であって、当該銅合金粉中のZn及び/又はSnの含有量が0.02〜1.2質量%であり、しかも当該銅合金粉が0.005〜0.05質量%のPを含有することを特徴とする。   That is, the copper alloy powder for conductive material paste of the first invention is a copper alloy powder in which at least one of Zn and Sn is alloyed with Cu as a main component, and Zn in the copper alloy powder And content of Sn is 0.02-1.2 mass%, Furthermore, the said copper alloy powder contains 0.005-0.05 mass% P, It is characterized by the above-mentioned.

また、第二の発明の導電材ペースト用銅合金粉は、前記銅合金粉が、アトマイズ法を用いた粉末化により製造されたものであることを特徴とする。
また、第三の発明の導電材ペースト用銅合金粉は、前記銅合金粉中のZnの含有量が0.05〜1.0質量%であり、しかも前記ZnとPの含有量の合計が0.1質量%以上であることを特徴とする。
The copper alloy powder for conductive material paste of the second invention is characterized in that the copper alloy powder is produced by pulverization using an atomizing method.
In the copper alloy powder for conductive material paste of the third invention, the content of Zn in the copper alloy powder is 0.05 to 1.0% by mass, and the total content of Zn and P is 0.1% by mass or more. It is characterized by being.

さらに第四の発明の導電材ペースト用銅合金粉は、前記銅合金粉中のSnの含有量が0.02〜0.2質量%であり、しかも前記SnとPの含有量の合計が0.05質量%以上であることを特徴とする。 Furthermore, in the copper alloy powder for conductive material paste of the fourth invention, the content of Sn in the copper alloy powder is 0.02 to 0.2% by mass, and the total content of Sn and P is 0.05% by mass or more. It is characterized by being.

また、第五の発明の導電材ペースト用銅合金粉は、前記Znの含有量が0.02〜1.0質量%で、前記Snの含有量が0.01〜0.2質量%であり、しかも前記ZnとPの含有量の合計が0.1質量%以上もしくは、前記SnとPの含有量の合計が0.05質量%以上であることを特徴とする。 The copper alloy powder for conductive material paste according to the fifth aspect of the present invention has a Zn content of 0.02 to 1.0% by mass, a Sn content of 0.01 to 0.2% by mass, and the Zn and P content. The total amount is 0.1% by mass or more, or the total content of Sn and P is 0.05% by mass or more.

以下に本発明についてより詳細に説明する。
本発明に示される合金元素のうち、ZnとSnはいずれも銅に合金化した場合、基質表面に酸化皮膜を形成し、耐食耐酸化性を向上させることは良く知られる事実であるが、十分な効果を得るにはいずれも数%以上添加する必要があり基質の電気伝導度が大きく低下してしまう。一方、PについてもZnおよびSnと同様、銅に合金化させることで表面に酸化皮膜を形成し、耐食耐酸化性を向上させる効果があるが、PはZnやSnに比べてより著しく基質の電気伝導度を低下させてしまう。このため、導電材ペーストの用途には添加量が多くとも0.05質量%以下に限られてくるが、このような微量添加では十分な耐食耐酸化性の改善は見られない。
The present invention will be described in detail below.
Of the alloying elements shown in the present invention, when both Zn and Sn are alloyed with copper, it is a well-known fact that an oxide film is formed on the surface of the substrate to improve the corrosion resistance and oxidation resistance. In order to obtain a sufficient effect, it is necessary to add several percent or more, and the electrical conductivity of the substrate is greatly reduced. On the other hand, P, like Zn and Sn, has an effect of forming an oxide film on the surface by alloying with copper and improving the corrosion resistance and oxidation resistance. However, P is significantly more of a substrate than Zn and Sn. Reduces electrical conductivity. For this reason, the amount of addition of the conductive material paste is limited to 0.05% by mass or less at the most, but such a small amount addition does not sufficiently improve the corrosion resistance and oxidation resistance.

しかしながら、本発明者らは銅基質中にZnもしくはSnあるいはこれらの両方がPと共存することでこれら合金元素の添加量が極めて微量の場合でも基質の耐食耐酸化性を著しく改善することを見出した。この原因については明らかでないが、基質表面にZn-PもしくはSn-Pの合金皮膜、あるいはリン酸塩皮膜を形成することによるものと推察される。これら皮膜はきわめて薄く、粉末粒子の焼結性等を大きく劣化させることもない。   However, the present inventors have found that Zn or Sn or both of them coexist with P in the copper substrate, so that the corrosion resistance and oxidation resistance of the substrate are remarkably improved even when the amount of these alloy elements added is extremely small. It was. Although the cause of this is not clear, it is presumed that this is due to the formation of a Zn—P or Sn—P alloy film or a phosphate film on the substrate surface. These films are extremely thin and do not greatly deteriorate the sinterability of the powder particles.

本発明の銅合金粉を用いた導電材ペーストを使用することで品質の安定した回路導体や積層セラミックコンデンサの外部電極等、電子部品の製造が可能になる。   By using the conductive material paste using the copper alloy powder of the present invention, it is possible to manufacture electronic parts such as circuit conductors having stable quality and external electrodes of multilayer ceramic capacitors.

以下、本発明を実施するための最良の形態について述べる。
本発明の銅合金粉は導電材ペーストを念頭に置いているため、粒径は体積平均径で0.5〜20μm程度が好ましい。また、本発明の銅合金粉は、各成分が前述の含有量となるようにして配合し、この配合物を湿式還元法やアトマイズ法を用いて粉末化することにより製造できるが、合金粉が容易に製造できる点でアトマイズ法が適している。さらにアトマイズ法の場合には、凝固過程において合金元素が粉末粒子表面に濃化する傾向があるため、Zn、Sn、Pによる基質の耐食耐酸化性改善の効果を増大させるという利点もある。
Hereinafter, the best mode for carrying out the present invention will be described.
Since the copper alloy powder of the present invention has the conductive material paste in mind, the particle size is preferably about 0.5 to 20 μm in volume average diameter. Moreover, the copper alloy powder of the present invention can be produced by blending each component so as to have the above-mentioned content, and pulverizing this blend using a wet reduction method or an atomizing method. The atomizing method is suitable because it can be easily manufactured. Further, in the case of the atomizing method, the alloy element tends to concentrate on the surface of the powder particles during the solidification process, so that there is an advantage that the effect of improving the corrosion resistance and oxidation resistance of the substrate by Zn, Sn, and P is increased.

本発明の銅合金粉においては、主成分であるCuに、ZnとSnの少なくともいずれか一方が合金化され、当該銅合金粉中のZn及び/又はSnの含有量が0.02〜1.2質量%で、しかも当該銅合金粉が0.005〜0.05質量%のPを含有していれば良く、本発明の銅合金粉におけるZnの含有量、Snの含有量及びPの含有量は、合金成分がZn、Pの2成分系の場合それぞれ0.05〜1.0質量%、及び0.005〜0.05質量%の範囲が適当であり、且つZnの含有量とPの含有量の合計が0.1質量%以上必要である。また、Sn、Pの2成分系ではそれぞれ0.02〜0.2質量%、及び0.005〜0.05質量%の範囲が適当であり、且つSnの含有量とPの含有量の合計が0.05%以上必要である。さらにZn、Sn、Pの3成分系ではそれぞれ0.02〜1.0質量%、0.01〜0.2質量%、及び0.005〜0.05質量%の範囲が適当であり、且つZnの含有量とPの含有量の合計が0.1質量%以上、もしくはSnの含有量とPの含有量の合計が0.05質量%以上必要である。前記いずれの元素も前記範囲を下回ると耐食耐酸化性改善の効果がほとんど見られず、逆に、前記範囲を上回った場合には基質の電気伝導度が低下し、実用に耐えなくなる。
次に本発明の実施例について述べる。
In the copper alloy powder of the present invention, at least one of Zn and Sn is alloyed with Cu as the main component, and the content of Zn and / or Sn in the copper alloy powder is 0.02 to 1.2 mass%. Moreover, the copper alloy powder only needs to contain 0.005 to 0.05 mass% of P, and the content of Zn, the content of Sn, and the content of P in the copper alloy powder of the present invention are such that the alloy component is Zn, In the case of the two-component system of P, the ranges of 0.05 to 1.0 mass% and 0.005 to 0.05 mass% are appropriate, respectively, and the total of Zn content and P content needs to be 0.1 mass% or more. In the two-component system of Sn and P, the ranges of 0.02 to 0.2% by mass and 0.005 to 0.05% by mass are appropriate, respectively, and the total of Sn content and P content needs to be 0.05% or more. Further, in the three-component system of Zn, Sn, and P, the ranges of 0.02 to 1.0 mass%, 0.01 to 0.2 mass%, and 0.005 to 0.05 mass% are appropriate, respectively, and the total of Zn content and P content is 0.1 mass% or more, or the total of Sn content and P content needs to be 0.05 mass% or more. If any of the above elements is less than the above range, the effect of improving the corrosion resistance and oxidation resistance is hardly observed. Conversely, if the above range is exceeded, the electrical conductivity of the substrate is lowered, and the element cannot be practically used.
Next, examples of the present invention will be described.

<実施例1>
水アトマイズ法によって体積平均径がいずれも3.0〜4.0μmで、且つ表1の実施例1の欄に記載されている組成の銅合金粉を作製した。得られた粉末について焼結性試験を行うとともに40℃−湿度60%の恒温恒湿試験機中で10日間の恒温恒湿試験を行なった。
各粉末の恒温恒湿試験前後における酸素量測定結果ならびに焼結性試験の結果をさらには恒温恒湿試験後の粉体体積抵抗測定結果を同じく表1に示す。
体積平均径は、レーザー回折・散乱法(日機装株式会社製MT300)で測定した。
酸素量は、不活性ガス-インパルス加熱融解法(株式会社堀場製作所製 EMGA-620W)で測定した。
焼結性試験は各粉末を金型で50MPaで圧粉成形後、窒素中で600℃で10分間焼結し、焼結前後における成形軸方向の寸法変化率の測定値を指標とした。
粉体体積抵抗については、粉体抵抗測定システム(三菱化学株式会社製 MCP-PD41)を用いて、試験片直径25mm、800kgで加圧した時の粉体体積抵抗を測定した。
<Example 1>
Copper alloy powders having a volume average diameter of 3.0 to 4.0 μm and a composition described in the column of Example 1 in Table 1 were prepared by the water atomization method. The obtained powder was subjected to a sinterability test and a constant temperature and humidity test for 10 days in a constant temperature and humidity tester at 40 ° C. and 60% humidity.
Table 1 also shows the oxygen content measurement results and the sinterability test results of each powder before and after the constant temperature and humidity test, and the powder volume resistance measurement results after the constant temperature and humidity test.
The volume average diameter was measured by a laser diffraction / scattering method (MT300 manufactured by Nikkiso Co., Ltd.).
The amount of oxygen was measured by an inert gas-impulse heating melting method (EMGA-620W manufactured by Horiba, Ltd.).
In the sinterability test, each powder was compacted with a mold at 50 MPa and then sintered in nitrogen at 600 ° C. for 10 minutes, and the measured value of the dimensional change rate in the molding axis direction before and after sintering was used as an index.
Regarding the powder volume resistance, the powder volume resistance when pressurized with a test piece diameter of 25 mm and 800 kg was measured using a powder resistance measurement system (MCP-PD41 manufactured by Mitsubishi Chemical Corporation).

<比較例1>
水アトマイズ法によって体積平均径がいずれも3.0〜4.0μmの範囲にあり、且つ表1の比較例1の欄に記載されている組成の銅合金粉を作製し、得られた粉末を40℃−湿度60%の恒温恒湿試験機中で10日間の恒温恒湿試験を行なった。
各粉末の恒温恒湿試験前後において実施例1と同じ方法で酸素量測定ならびに焼結性試験、粉体体積抵抗測定を行った。結果を同じく表1に示す。
<Comparative Example 1>
A copper alloy powder having a volume average diameter in the range of 3.0 to 4.0 μm by the water atomization method and having a composition described in the column of Comparative Example 1 in Table 1 was prepared. A constant temperature and humidity test for 10 days was performed in a constant temperature and humidity tester having a humidity of 60%.
Before and after the constant temperature and humidity test of each powder, an oxygen amount measurement, a sinterability test, and a powder volume resistance measurement were performed in the same manner as in Example 1. The results are also shown in Table 1.

表1の結果から、本発明の銅合金粉は純銅粉あるいはZn、Sn、Pを各々単独で添加した場合に比べてほぼ同等の焼結性を確保しつつ恒温恒湿試験後でも酸素量の増加およびその結果として焼結性の低下が少なく、粉体体積抵抗の変化も少なく、耐候性に優れていることが判る。   From the results shown in Table 1, the copper alloy powder of the present invention has pure oxygen powder or the amount of oxygen even after the constant temperature and humidity test while ensuring almost the same sinterability as compared with the case where Zn, Sn, and P are added alone. It can be seen that the increase and, as a result, the decrease in sinterability is small, the change in powder volume resistance is small, and the weather resistance is excellent.

Figure 0005156328
Figure 0005156328

Claims (5)

主成分であるCuに、ZnとSnの少なくともいずれか一方が合金化された銅合金粉であって、当該銅合金粉中のZn及び/又はSnの含有量が0.02〜1.2質量%であり、しかも当該銅合金粉が0.005〜0.05質量%のPを含有することを特徴とする導電材ペースト用銅合金粉。   Cu, which is the main component, is a copper alloy powder in which at least one of Zn and Sn is alloyed, and the content of Zn and / or Sn in the copper alloy powder is 0.02 to 1.2% by mass, And the said copper alloy powder contains 0.005-0.05 mass% P, The copper alloy powder for electrically conductive material pastes characterized by the above-mentioned. 前記銅合金粉が、アトマイズ法を用いた粉末化により製造されたものであることを特徴とする請求項1に記載の導電材ペースト用銅合金粉。 The copper alloy powder for a conductive material paste according to claim 1, wherein the copper alloy powder is manufactured by pulverization using an atomizing method . 前記銅合金粉中のZnの含有量が0.05〜1.0質量%であり、しかも前記ZnとPの含有量の合計が0.1質量%以上であることを特徴とする請求項1又は2に記載の導電材ペースト用銅合金粉。 The content of Zn of the copper alloy powder in is 0.05 to 1.0 wt%, yet conductive according to claim 1 or 2 the total content of the Zn and P is equal to or not less than 0.1 wt% Copper alloy powder for material paste. 前記銅合金粉中のSnの含有量が0.02〜0.2質量%であり、しかも前記SnとPの含有量の合計が0.05質量%以上であることを特徴とする請求項1又は2に記載の導電材ペースト用銅合金粉。 The content of Sn in the copper alloy powder in is 0.02 to 0.2 wt%, yet conductive according to claim 1 or 2 the total content of the Sn and P is equal to or not less than 0.05 wt% Copper alloy powder for material paste. 前記Znの含有量が0.02〜1.0質量%で、前記Snの含有量が0.01〜0.2質量%であり、しかも前記ZnとPの含有量の合計が0.1質量%以上もしくは、前記SnとPの含有量の合計が0.05質量%以上であることを特徴とする請求項1又は2に記載の導電材ペースト用銅合金粉。The Zn content is 0.02 to 1.0 mass%, the Sn content is 0.01 to 0.2 mass%, and the total content of Zn and P is 0.1 mass% or more, or the content of Sn and P The copper alloy powder for conductive material paste according to claim 1 or 2, wherein the total amount is 0.05 mass% or more.
JP2007271211A 2007-10-18 2007-10-18 Copper alloy powder for conductive material paste Expired - Fee Related JP5156328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007271211A JP5156328B2 (en) 2007-10-18 2007-10-18 Copper alloy powder for conductive material paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007271211A JP5156328B2 (en) 2007-10-18 2007-10-18 Copper alloy powder for conductive material paste

Publications (2)

Publication Number Publication Date
JP2009099443A JP2009099443A (en) 2009-05-07
JP5156328B2 true JP5156328B2 (en) 2013-03-06

Family

ID=40702254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007271211A Expired - Fee Related JP5156328B2 (en) 2007-10-18 2007-10-18 Copper alloy powder for conductive material paste

Country Status (1)

Country Link
JP (1) JP5156328B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP5566743B2 (en) * 2010-03-26 2014-08-06 古河電気工業株式会社 Method for producing copper alloy fine particles
JP2012067327A (en) * 2010-09-21 2012-04-05 Mitsui Mining & Smelting Co Ltd Copper powder for conductive paste, and conductive paste
US9224517B2 (en) 2011-04-07 2015-12-29 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2012227183A (en) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell element
JP5768455B2 (en) 2011-04-14 2015-08-26 日立化成株式会社 Electrode paste composition and solar cell element
JP5891599B2 (en) * 2011-04-14 2016-03-23 日立化成株式会社 Paste composition for silicon solar cell electrode
JP5811186B2 (en) * 2011-11-14 2015-11-11 日立化成株式会社 Electrode paste composition, solar cell element and solar cell
JP5958526B2 (en) * 2014-11-26 2016-08-02 日立化成株式会社 ELEMENT, SOLAR CELL, AND ELECTRODE PASTE COMPOSITION
JP2015144126A (en) * 2015-02-16 2015-08-06 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2015130355A (en) * 2015-02-16 2015-07-16 日立化成株式会社 Paste composition for electrode, and solar cell element
JP2019065375A (en) * 2017-09-29 2019-04-25 株式会社原田伸銅所 Copper alloy powder having antibacterial properties and antivirus properties and article using the same
CN116235262A (en) * 2020-09-25 2023-06-06 株式会社村田制作所 Chip ceramic electronic component and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852014B2 (en) * 1975-08-13 1983-11-19 ゴトウゴウキン カブシキガイシヤ Kounetsudendouseidouimonozairyou
JPS6053089B2 (en) * 1976-09-20 1985-11-22 後藤合金株式会社 Manufacturing method for highly conductive copper castings
JP2001118424A (en) * 1999-10-19 2001-04-27 Kawatetsu Mining Co Ltd Copper alloy powder for conductive paste
JP4749780B2 (en) * 2005-07-06 2011-08-17 三井住友金属鉱山伸銅株式会社 Copper alloy rolled foil

Also Published As

Publication number Publication date
JP2009099443A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP5156328B2 (en) Copper alloy powder for conductive material paste
JP5155743B2 (en) Copper powder for conductive paste and conductive paste
US10062473B2 (en) Silver-coated copper alloy powder and method for producing same
KR100991626B1 (en) Copper alloy powder and method for producing the same
JP5394084B2 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
JP4942333B2 (en) Nickel powder, method for producing the same, and polymer PTC element using the nickel powder
JP6186197B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2010013730A (en) Copper powder for conductive paste, and conductive paste
WO2010050352A1 (en) Electrode material for vacuum circuit breaker and method for producing same
JP2010196105A (en) Copper powder for electroconductive paste, and electroconductive paste
JP4638825B2 (en) Multi-component metal particle slurry and conductive ink or conductive paste using the slurry
JP2016074950A (en) Copper alloy and manufacturing method therefor
JP2006118032A (en) Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP6194166B2 (en) Method for producing silver-coated copper alloy powder
JP6258616B2 (en) Silver-coated copper alloy powder and method for producing the same
JP2008111175A (en) Composite metal powder, its production method, and electrically conductive paste
JP6004034B1 (en) Copper powder
US20240116104A1 (en) Conductive composition for bonding, bonding structure using same, and manufacturing method thereof
JP6860435B2 (en) A sintered body composed of a copper-based alloy powder for powder metallurgy and the copper-based alloy powder.
JP2017201062A (en) Method for producing silver-coated copper alloy powder
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder
JP2017190483A (en) Silver-coated copper powder and method for producing the same
JP6654880B2 (en) Powder for conductive filler
JP2017210686A (en) Silver-coated copper alloy powder and production method therefor
JP6380220B2 (en) Copper powder for paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees