JP4638825B2 - Multi-component metal particle slurry and conductive ink or conductive paste using the slurry - Google Patents

Multi-component metal particle slurry and conductive ink or conductive paste using the slurry Download PDF

Info

Publication number
JP4638825B2
JP4638825B2 JP2006025036A JP2006025036A JP4638825B2 JP 4638825 B2 JP4638825 B2 JP 4638825B2 JP 2006025036 A JP2006025036 A JP 2006025036A JP 2006025036 A JP2006025036 A JP 2006025036A JP 4638825 B2 JP4638825 B2 JP 4638825B2
Authority
JP
Japan
Prior art keywords
particles
tin
silver
copper
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025036A
Other languages
Japanese (ja)
Other versions
JP2007207577A (en
Inventor
貴彦 坂上
彰記 熊谷
克彦 吉丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006025036A priority Critical patent/JP4638825B2/en
Publication of JP2007207577A publication Critical patent/JP2007207577A/en
Application granted granted Critical
Publication of JP4638825B2 publication Critical patent/JP4638825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Description

本件出願に係る発明は、多成分系金属粒子スラリーに関する。特に、nmレベルの一次粒子径を備えるスズ粒子を必須として、nmレベルの一次粒子径を備える銅粒子や銀粒子を組み合わせた多成分系金属粒子スラリーの提供を目的とする。   The invention according to the present application relates to a multi-component metal particle slurry. In particular, an object is to provide a multi-component metal particle slurry in which tin particles having a primary particle size of nm level are essential, and copper particles and silver particles having a primary particle size of nm level are combined.

電子機器には、小型化、軽量化と同時に高機能化を達成するため、電子機器等の回路配線にも小型軽量化が要求され、その結果として、微細回路形成や高密度実装など新しい技術が求められてきた。特に、近年は、特許文献1に開示されているような、導電性インクを用いてインクジェット法で、回路形成、導電性薄膜の形成を行うことも一般化しており、前記導電性インクの導電性フィラーとしての金属ナノ粒子(nmレベルの一次粒子径を備えた金属粒子の意である。)の品質向上及び応用が期待されている。   In order to achieve higher functionality at the same time as electronic devices are becoming smaller and lighter, circuit wiring for electronic devices and the like is also required to be smaller and lighter. As a result, new technologies such as fine circuit formation and high-density mounting are required. It has been sought. In particular, in recent years, it has become common to form a circuit and a conductive thin film by an inkjet method using a conductive ink as disclosed in Patent Document 1, and the conductivity of the conductive ink The quality improvement and application of metal nanoparticles (meaning metal particles having a primary particle size of nm level) as a filler are expected.

そして、一方では、環境対策に伴う、半田の鉛フリー化や半田メッキの廃液問題が存在する。この問題を解決するため、特許文献2にあるような鉛フリー、フラックスレス、低温実装といった利点を備える導電性ナノ粒子ペーストや導電性インクに対する要求が顕著になってきている。   On the other hand, there are problems of solder lead-free and solder plating waste associated with environmental measures. In order to solve this problem, there is a growing demand for conductive nanoparticle pastes and conductive inks having advantages such as lead-free, fluxless, and low-temperature mounting as disclosed in Patent Document 2.

この金属ナノ粒子は、粒子がナノサイズであり微粒化効果によって融点降下や、バルクの材料にはない高い表面活性を示すことが期待されている。例えば、銀粉を用いて形成した導体には、電気抵抗の低減と、高い接続信頼性とが要求される。そのため、樹脂成分の硬化と共にフィラーである銀粉自体も焼結して導電性を発揮する銀インクあるいは銀ペーストに対する要求が高まった。そして、銀粒子の焼成温度を下げることを考え、特許文献3に開示されているような、導電性フィラーである銀粉の粒子をnmレベルに微細化する努力が払われてきた。   The metal nanoparticles are expected to exhibit a high surface activity that is not found in bulk materials due to the atomization effect due to the nano-sized particles, due to the effect of atomization. For example, a conductor formed using silver powder is required to have low electrical resistance and high connection reliability. Therefore, there has been an increasing demand for silver ink or silver paste that exhibits conductivity by sintering the silver powder itself as the filler as the resin component is cured. In view of lowering the firing temperature of silver particles, efforts have been made to refine the particles of silver powder, which is a conductive filler, to the nm level as disclosed in Patent Document 3.

特開2002−324966号公報JP 2002-324966 A 特開平10−58190号公報JP-A-10-58190 特開2002−324966号公報JP 2002-324966 A

しかしながら、ナノサイズの銀粉、銅粉を初めとする金属粉を導電性フィラーとして含む導電性インクの場合には、ナノ粒子の分散性を確保するため、保護コロイドとして多量の分散剤を添加するのが一般的である。ここで使用される分散剤は、前記金属ナノ粒子の焼成温度よりも高い分解温度の分散剤を使用するのが一般的であり、金属ナノ粒子が本来持つ低温焼結特性を充分に生かしきれないという欠点がある。   However, in the case of conductive ink containing metal powder such as nano-sized silver powder and copper powder as a conductive filler, a large amount of dispersant is added as a protective colloid to ensure the dispersibility of the nanoparticles. Is common. As the dispersant used here, it is common to use a dispersant having a decomposition temperature higher than the firing temperature of the metal nanoparticles, and the low-temperature sintering characteristics inherent to the metal nanoparticles cannot be fully utilized. There is a drawback.

以上のことから、市場では、良好な粒子分散性を示すnmオーダーの1次粒子径を含み、十分な低温焼結特性を示す導電性ペースト及び導電性インクが求められてきた。   In view of the above, there has been a demand in the market for conductive pastes and conductive inks having primary particle diameters on the order of nm showing good particle dispersibility and showing sufficient low-temperature sintering characteristics.

導電性インクにおいて、そこに含まれる導電性フィラーである金属ナノ粒子の再凝集を防止して分散性を確保するため、保護コロイドとして多量の分散剤を用いることを前提として考えねばならない。そこで、本件発明の発明者等は、鋭意研究の結果、導電性フィラーである金属ナノ粒子として、低融点金属粒子(スズナノ粒子)を一定量含ませれば、分散剤が多量であっても、低温焼結性を確保できると判断した。その結果、導電性フィラーの焼結特性に優れた導電性インク、導電性ペーストの製造原料として、以下に述べる多成分系金属粒子スラリーを用いることに想到した。   In the conductive ink, in order to prevent re-aggregation of the metal nanoparticles as the conductive filler contained therein and ensure dispersibility, it is necessary to consider using a large amount of dispersant as a protective colloid. Therefore, the inventors of the present invention, as a result of diligent research, found that a certain amount of low-melting-point metal particles (tin nanoparticles) were contained as the metal nanoparticles that are conductive fillers. It was judged that sinterability could be secured. As a result, the inventors have conceived of using a multi-component metal particle slurry described below as a raw material for producing a conductive ink and a conductive paste excellent in sintering characteristics of a conductive filler.

本件発明に係る多成分系金属粒子スラリー: 本件発明に係る多成分系金属粒子スラリーは、溶媒にナノ粒子径サイズの成分の異なる金属粒子を含んだ多成分系金属粒子スラリーであって、前記金属粒子は、一次粒子径が30nm〜300nmのスズ粒子と、一次粒子径が30nm〜300nmの銅粒子及び銀粒子のいずれか一種又は二種を含むことを特徴とする。 Multi-component metal particle slurry according to the present invention: The multi-component metal particle slurry according to the present invention is a multi-component metal particle slurry containing metal particles having different nanoparticle size components in a solvent, the metal The particles include tin particles having a primary particle diameter of 30 nm to 300 nm, and any one or two of copper particles and silver particles having a primary particle diameter of 30 nm to 300 nm.

本件発明に係る多成分系金属粒子スラリーにおいて、前記金属粒子は、多成分系金属粒子スラリーとしての体積を100vol%としたとき、総金属粒子を20vol%〜70vol%含有することが好ましい。   In the multicomponent metal particle slurry according to the present invention, the metal particles preferably contain 20 vol% to 70 vol% of the total metal particles when the volume of the multicomponent metal particle slurry is 100 vol%.

本件発明に係る多成分系金属粒子スラリーにおいて、前記金属粒子がスズ粒子と銅粒子又は銀粒子とからなる場合において、その金属粒子の総重量を100wt%としたとき、スズ粒子と銅粒子又は銀粒子との重量含有比が、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]=0.2〜0.8である事が好ましい。以下、これを2成分系と称する。   In the multi-component metal particle slurry according to the present invention, when the metal particles are composed of tin particles and copper particles or silver particles, when the total weight of the metal particles is 100 wt%, tin particles and copper particles or silver The weight content ratio with the particles is preferably [tin particles (wt%)] / [copper particles or silver particles (wt%)] = 0.2 to 0.8. Hereinafter, this is referred to as a two-component system.

また、本件発明に係る多成分系金属粒子スラリーにおいて、前記金属粒子がスズ粒子と銅粒子と銀粒子とからなる場合において、その金属粒子の総重量を100wt%としたとき、スズ粒子と銅粒子と銀粒子との重量含有比は、スズ粒子のwt%の値を1としたとき、[スズ粒子(wt%)]:[銅粒子(wt%)]:[銀粒子(wt%)]=1:0.05〜0.30:0.10〜0.50である事が好ましい。以下、これを3成分系と称する。   Further, in the multi-component metal particle slurry according to the present invention, when the metal particles are composed of tin particles, copper particles, and silver particles, when the total weight of the metal particles is 100 wt%, the tin particles and the copper particles The weight content ratio between the silver particles and the silver particles is [tin particles (wt%)]: [copper particles (wt%)]: [silver particles (wt%)], where the value of wt% of the tin particles is 1. It is preferable that it is 1: 0.05-0.30: 0.10-0.50. Hereinafter, this is referred to as a three-component system.

そして、本件発明に係る多成分系金属粒子スラリーに用いる前記溶媒は、多成分系金属粒子スラリーの重量を100wt%としたとき、カルボキシル基を有する化合物を1wt%〜30wt%含有したしたものであることが好ましい。   The solvent used for the multi-component metal particle slurry according to the present invention contains 1 wt% to 30 wt% of a compound having a carboxyl group when the weight of the multi-component metal particle slurry is 100 wt%. It is preferable.

本件発明に係る多成分系金属粒子スラリーにおいて、前記カルボキシル基を有する化合物は、カルボン酸類であり、且つ、分子量が200以上のものを用いる事が好ましい。   In the multi-component metal particle slurry according to the present invention, the compound having a carboxyl group is preferably a carboxylic acid having a molecular weight of 200 or more.

本件発明に係る多成分系金属粒子スラリーを用いた導電性インク等: 上記多成分系金属粒子スラリーは、そのままで用いることも可能であるが、本件発明に係る多成分系金属粒子スラリーは、溶媒成分の事後的調整を行い導電性インク又は導電性ペーストを調整するための基礎材料として使用することも可能である。 Conductive ink using the multi-component metal particle slurry according to the present invention: The multi-component metal particle slurry can be used as it is, but the multi-component metal particle slurry according to the present invention is a solvent. It is also possible to use it as a basic material for adjusting the components after adjusting the conductive ink or conductive paste.

即ち、本件発明に係る多成分系金属粒子スラリーの溶媒成分を、一定量除去して、その中に適宜必要な成分を添加して任意の成分の導電性インク又は導電性ペーストを調整するのである。   That is, a certain amount of the solvent component of the multi-component metal particle slurry according to the present invention is removed, and a necessary component is added therein to adjust the conductive ink or conductive paste of any component. .

本件発明に係る多成分系金属粒子スラリーは、スズナノ粒子を必須の金属粒子として用い、これに銀ナノ粒子、銅ナノ粒子を組み合わせて用いることで、焼成温度300℃以下で合金化した焼成膜の形成に好適である。特に、当該多成分系金属粒子スラリーは、その中に低温焼結性を向上させるため、カルボキシル基を有する化合物を含ませることが好ましく。カルボキシル基を有する化合物を用いることで、焼成温度が200℃前後であっても合金化反応を起こさせることが可能となる。従って、これらを用いて得られる導電性インク及び導電性ペーストは、低温焼結用途に於いて好適なものとなる。そして、スズナノ粒子の含有量を調整することで、半田ペースト等の代替え材料としても好適な製品を提供できる。   The multi-component metal particle slurry according to the present invention uses tin nanoparticles as essential metal particles, combined with silver nanoparticles and copper nanoparticles. Suitable for formation. In particular, the multi-component metal particle slurry preferably contains a compound having a carboxyl group in order to improve low-temperature sinterability. By using a compound having a carboxyl group, an alloying reaction can be caused even when the firing temperature is around 200 ° C. Therefore, the conductive ink and conductive paste obtained by using these are suitable for low-temperature sintering applications. And by adjusting the content of tin nanoparticles, a product suitable as an alternative material such as solder paste can be provided.

以下、本件発明に係る多成分系金属粒子スラリーの実施の形態に関して説明する。本件発明に係る多成分系金属粒子スラリーは、溶媒にナノ粒子径サイズの成分の異なる金属粒子を含んだ多成分系金属粒子スラリーであって、前記金属粒子は、一次粒子径が30nm〜300nmのスズ粒子と、一次粒子径が30nm〜300nmの銅粒子及び銀粒子のいずれか一種又は二種を含むことを特徴とする。即ち、本件発明に係る多成分系金属粒子スラリーの場合、構成成分として低融点金属であるスズナノ粒子を必須とする。そして、他の成分としては銅ナノ粒子及び銀ナノ粒子を選択的に組み合わせて用いるのである。従って、誤解の無きように、本件発明に係る多成分系金属粒子スラリーを2成分系と3成分系とに分けて説明する。   Hereinafter, embodiments of the multi-component metal particle slurry according to the present invention will be described. The multi-component metal particle slurry according to the present invention is a multi-component metal particle slurry containing metal particles having different nano particle size components in a solvent, and the metal particles have a primary particle size of 30 nm to 300 nm. It contains any one or two of tin particles and copper particles and silver particles having a primary particle diameter of 30 nm to 300 nm. That is, in the case of the multicomponent metal particle slurry according to the present invention, tin nanoparticles that are low melting point metals are essential as a constituent component. And as another component, a copper nanoparticle and a silver nanoparticle are selectively combined and used. Therefore, in order to avoid misunderstanding, the multi-component metal particle slurry according to the present invention will be described as being divided into a two-component system and a three-component system.

[本件発明に係る2成分系の多成分系金属粒子スラリー形態]
ここで、スズ粒子、銅粒子、銀粒子の一次粒子径は、30nm〜300nmの範囲のナノ粒子を用いることが好ましい。一次粒子径が30nm未満の金属ナノ粒子は、良好な粒度分布を備えた製品として得ることが困難である。仮に30nm未満の良好な粒度分布を備える製品が得られたとすれば、使用可能なものとなる。一方、一次粒子径が300nmを超える金属ナノ粒子は、ナノ粒子と称することはできても、十分な低温焼結性を得ることが困難となる。
[Two-component multi-component metal particle slurry form according to the present invention]
Here, as the primary particle diameter of tin particles, copper particles, and silver particles, it is preferable to use nanoparticles in the range of 30 nm to 300 nm. Metal nanoparticles having a primary particle diameter of less than 30 nm are difficult to obtain as a product having a good particle size distribution. If a product with a good particle size distribution of less than 30 nm is obtained, it can be used. On the other hand, metal nanoparticles having a primary particle diameter exceeding 300 nm can be referred to as nanoparticles, but it is difficult to obtain sufficient low-temperature sinterability.

ここで、2成分系の多成分系金属粒子スラリーに含まれる粒子の低温焼結特性の説明を分かりやすくするため、スズ粒子、銀粒子、銅粒子のそれぞれ単独の焼結特性に関して述べておく。なお、金属粒子の焼結特性は、金属粒子の溶融挙動を観測する事により行い、DSC(高温示差走査熱量計)を用いた測定結果で説明する。前記DSCの測定条件は、窒素雰囲気下、昇温速度10℃/min、測定範囲は室温〜800℃であり、80℃で30分間、定温加熱を行い、その後800℃まで昇温する加熱方法を採用した。そして、焼結の度合いは、粒子の結晶性を見ることとして、X線回折測定装置で評価した。そして、粒子の状態観察には、FE−SEM(電界放射走査型電子顕微鏡)を用いた。   Here, in order to make it easy to understand the explanation of the low-temperature sintering characteristics of the particles contained in the two-component multi-component metal particle slurry, the individual sintering characteristics of tin particles, silver particles, and copper particles will be described. In addition, the sintering characteristic of a metal particle is performed by observing the melting behavior of a metal particle, and is demonstrated with the measurement result using DSC (high temperature differential scanning calorimeter). The DSC is measured under the following conditions: a heating method in which a temperature rise rate is 10 ° C./min in a nitrogen atmosphere, a measurement range is room temperature to 800 ° C., constant temperature heating is performed at 80 ° C. for 30 minutes, and then the temperature is raised to 800 ° C. Adopted. Then, the degree of sintering was evaluated by an X-ray diffraction measurement device by looking at the crystallinity of the particles. And FE-SEM (field emission scanning electron microscope) was used for the state observation of particle | grains.

スズ粒子の熱特性: スズ粒子の溶融特性及び焼結特性に関して説明する。ここで、図1に、平均一次粒径が100nm程度の球状ナノ粒子のスズ粒子(以下、「試料A(スズ)」と称する。)のFE−SEM観察像を示す。このナノ粒子径を備えるスズ粒子のレーザー回折法による粒度分布測定のD50は0.3μmと大きい値になった。これは、図1のFE−SEM観察像からも分かるように粒子凝集による二次粒子の存在による影響であり、微粒化により凝集時に粒子同士の付着力が強くなっていると考えられる。しかし、この凝集状態は、ビーズミル等の媒体解砕機、ホモジナイザー等の高速攪拌機等による粒子分散処理での、粒子分散性を向上させる解砕が可能である。従って、スズナノ粒子の場合、上述の如き湿式での粒子分散処理を行い粒子分散性を高めることが好ましく、また、銅粒子又は銀粒子との均一な混合状態を得るためには好ましい。そして、粒子分散の効果は、[D50(nm)]/[一次粒子径(nm)]の値が3.0以下、より好ましくは2.0以下となるレベルまで粒子分散処理することが好ましい。以下のDSC分析に用いたナノ粒子径を持つスズ粒子も流体ミルによる粒子分散処理を施し、[D50(nm)]/[一次粒子径(nm)]の値が1.4となるように調整した。一方、図2に平均一次粒径が2μm程度の球状スズ粉(以下、「試料B(スズ)」と称する。)のFE−SEM観察像を示している。この図1から明らかなように、一次粒子径が5μm程度の粗粉や、一次粒子径が1μm以下の微粉が混在し、かなりブロードな粒度分布となっていることが理解できる。但し、FE−SEM観察像と粒度分布の測定結果から判断すると、粒子凝集は少ないと考えられる。 Thermal characteristics of tin particles: The melting characteristics and sintering characteristics of tin particles will be described. Here, FIG. 1 shows an FE-SEM observation image of tin particles of spherical nanoparticles having an average primary particle size of about 100 nm (hereinafter referred to as “sample A (tin)”). The D 50 particle size distribution measurement by laser diffraction method of the tin particles with a nanoparticle size became large value of 0.3 [mu] m. As can be seen from the FE-SEM observation image of FIG. 1, this is an influence due to the presence of secondary particles due to particle aggregation, and it is considered that the adhesion force between particles is increased during aggregation due to atomization. However, this agglomerated state can be crushed to improve particle dispersibility in a particle dispersion treatment with a medium crusher such as a bead mill, a high-speed stirrer such as a homogenizer. Therefore, in the case of tin nanoparticles, it is preferable to perform wet particle dispersion treatment as described above to improve particle dispersibility, and it is preferable to obtain a uniform mixed state with copper particles or silver particles. The particle dispersion effect is preferably achieved by particle dispersion treatment until the value of [D 50 (nm)] / [primary particle diameter (nm)] is 3.0 or less, more preferably 2.0 or less. . The tin particles having a nanoparticle size used in the following DSC analysis are also subjected to particle dispersion treatment by a fluid mill so that the value of [D 50 (nm)] / [primary particle size (nm)] is 1.4. It was adjusted. On the other hand, FIG. 2 shows an FE-SEM observation image of spherical tin powder having an average primary particle size of about 2 μm (hereinafter referred to as “sample B (tin)”). As is apparent from FIG. 1, it can be understood that coarse powder having a primary particle diameter of about 5 μm and fine powder having a primary particle diameter of 1 μm or less are mixed, resulting in a considerably broad particle size distribution. However, judging from the FE-SEM observation image and the measurement result of the particle size distribution, it is considered that the particle aggregation is small.

次に、この粒径の異なる試料A(スズ)及び試料B(スズ)のそれぞれを用い、粒径の違いによる溶融挙動への影響を確認するため、DSCによる測定を行った。その結果、試料A(スズ)及び試料B(スズ)ともに230℃付近にスズの融解に由来する吸熱ピークが見られ、粒径の違いによる差は見られなかった。なお、270℃付近に有機物の酸化による発熱ピークを確認した。この有機物の発熱ピークは、比表面積の大きなナノ粒子、特にスズの如き卑金属のナノ粒子は非常に酸化されやすいため、空気に触れないよう有機溶媒中に金属粒子を分散させたスラリーを用いたことに起因したものである。また、X線回折の結果から、試料A(スズ)及び試料B(スズ)ともにスズに固有の回折パターンが確認され、それぞれ純粋な金属スズであることが確認できた。   Next, using each of sample A (tin) and sample B (tin) having different particle sizes, measurement by DSC was performed in order to confirm the influence on the melting behavior due to the difference in particle size. As a result, in both sample A (tin) and sample B (tin), an endothermic peak derived from melting of tin was observed at around 230 ° C., and no difference due to the difference in particle diameter was observed. In addition, the exothermic peak by oxidation of organic substance was confirmed in 270 degreeC vicinity. The exothermic peak of this organic matter is that nanoparticles with a large specific surface area, especially nanoparticles of base metals such as tin, are very easy to oxidize, so we used a slurry in which metal particles were dispersed in an organic solvent so that they were not exposed to air This is due to Moreover, from the result of X-ray diffraction, the diffraction pattern peculiar to tin was confirmed for both sample A (tin) and sample B (tin), and it was confirmed that each was pure metallic tin.

そして、次に粒径の違いによる焼結特性の差異を見るため、以下のような評価を行った。即ち、最初に試料A(スズ)及び試料B(スズ)のスズ粒子を用いた金属粒子スラリーを調製した。ここでは、スズ粒子を有機溶媒(ターピネオール)中に分散させたものを、スズ粒子スラリーとした。そして、このときのスラリー中のスズ含有率は、良好な塗膜形成の可能なように粒径に応じてスズ含有量を調整し、スズ粒子スラリーを100wt%としたとき、試料A(スズ)の一次粒子径が100nmのスズ粒子については68wt%、試料B(スズ)の一次粒子径が2μmのスズ粒子については87wt%とした。このスズ粒子スラリーを、スクリーン印刷によりアルミニウム基板上に印刷し、窒素雰囲気中で130℃〜300℃の範囲で焼成を行い、焼成後の塗膜の状態をFE−SEMで観察し、粒子の焼結状態を観察した。その結果、試料B(スズ)の一次粒子径が2μmの粒子を用いた場合には200℃以下では焼結が起こったとは確認できなかった。これに対し、試料A(スズ)の一次粒子径が100nmの粒子を用いた場合には、150℃以上で焼成すれば、図3に示すように、焼結による粒子成長が確認された。以上の結果から見れば、溶融挙動は粒径に依存しないものの、粒子同士の焼結挙動は粒径が小さいほど、低温で起こることが理解できる。   Then, in order to see the difference in sintering characteristics due to the difference in particle size, the following evaluation was performed. That is, first, metal particle slurries using tin particles of Sample A (tin) and Sample B (tin) were prepared. Here, a tin particle slurry was prepared by dispersing tin particles in an organic solvent (terpineol). Then, the tin content in the slurry at this time is adjusted so that the tin content is adjusted according to the particle size so that a good coating film can be formed. When the tin particle slurry is 100 wt%, sample A (tin) 68 wt% for the tin particles having a primary particle diameter of 100 nm, and 87 wt% for the tin particles having a primary particle diameter of 2 μm for sample B (tin). This tin particle slurry is printed on an aluminum substrate by screen printing, fired in a range of 130 ° C. to 300 ° C. in a nitrogen atmosphere, the state of the coating film after firing is observed by FE-SEM, and the particles are fired. The freezing state was observed. As a result, it was not possible to confirm that sintering occurred at 200 ° C. or lower when particles having a primary particle diameter of 2 μm were used for sample B (tin). On the other hand, when particles having a primary particle diameter of 100 nm of sample A (tin) were used, if fired at 150 ° C. or higher, particle growth by sintering was confirmed as shown in FIG. From the above results, it can be understood that although the melting behavior does not depend on the particle size, the sintering behavior between particles occurs at a lower temperature as the particle size is smaller.

銀粒子の熱特性: 次に、ナノレベルの粒径を備える銀粒子に関する溶融挙動及び焼結挙動に関して述べる。これらの評価方法に関しては、上記スズ粒子の場合と同様の評価を行った。ここで用いた銀粒子の一つは、図4のFE−SEM観察像から明らかなように、球状で平均一次粒径が80nm程度のナノレベルの銀粒子(以下、「試料A(銀)」と称する。)であり、ナノレベルのスズ粒子と同様に粒子同士の凝集が進行している。その結果、粒度分布測定のD50の値は、0.2μmと大きなものとなっている。従って、ここで用いたナノ粒子径を持つ銀粒子は、上記ナノ粒子径を持つスズ粒子の場合と同様に、流体ミルによる粒子分散処理を施し、[D50(nm)]/[一次粒子径(nm)]の値が1.5となるように調整したものである。一方、対比用に、図5のFE−SEM観察像に示した平均一次粒径が4μm程度の球状粉であり、1μm〜5μm程度の粗粉までを含んで、粒子凝集は少ないものの、粒度分布がブロードな銀粒子(以下、「試料B(銀)」と称する。)を用いた。 Thermal characteristics of silver particles: Next, melting behavior and sintering behavior regarding silver particles having a nano-level particle size will be described. Regarding these evaluation methods, the same evaluation as in the case of the tin particles was performed. As is apparent from the FE-SEM observation image of FIG. 4, one of the silver particles used here is a spherical silver nanoparticle having an average primary particle size of about 80 nm (hereinafter, “sample A (silver)”). In the same manner as in the case of nano-level tin particles, aggregation of the particles proceeds. As a result, the value of D 50 in the particle size distribution measurement is as large as 0.2 μm. Accordingly, the silver particles having the nanoparticle diameter used here are subjected to particle dispersion treatment by a fluid mill in the same manner as the tin particles having the nanoparticle diameter, and [D 50 (nm)] / [primary particle diameter]. (Nm)] is adjusted to be 1.5. On the other hand, for comparison, the average primary particle size shown in the FE-SEM observation image of FIG. 5 is a spherical powder having a particle size distribution of 1 μm to 5 μm, including a coarse powder having a small particle aggregation. Broad silver particles (hereinafter referred to as “sample B (silver)”) were used.

そして、DSCによる溶融特性の評価を行ったが、その測定結果から、試料A(銀)及び試料B(銀)ともに800℃以下の範囲では、銀の融解に由来する吸熱ピークが見られず、粒径の違いによる差は見られなかった。そして、更に、溶融試験後の試料A(銀)及び試料B(銀)のX線回折の結果からは、双方の試料とも純粋な金属銀のスペクトルのみが得られた。   And although the melting characteristic by DSC was evaluated, from the measurement results, in the range of 800 ° C. or less for both sample A (silver) and sample B (silver), no endothermic peak derived from melting of silver was observed, There was no difference due to the difference in particle size. Further, from the results of X-ray diffraction of Sample A (silver) and Sample B (silver) after the melting test, only pure metal silver spectra were obtained for both samples.

次に、銀粒子の粒径の違いによる焼結特性を見るため、上記スズ粒子の場合と同様に銀粒子スラリーを作製した。そして、このときのスラリー中の銀含有率は、良好な塗膜形成の可能なように粒径に応じてスズ含有量を調整し、銀粒子スラリーを100wt%としたとき、試料A(銀)の一次粒子径が80nmの銀粒子については72wt%、試料B(銀)の一次粒子径が4μmの銀粒子については91wt%とした。そして、上記スズ粒子の場合と同様にして焼結挙動の観察を行った。その結果、FE−SEMの観察結果によると、試料B(銀)の一次粒子径が4μmの粒子を用いた場合には300℃付近に焼結開始点があった。これに対し、試料A(銀)の一次粒子径が80nmの粒子を用いた場合には、150℃付近に焼結開始点が確認された。図6に焼成温度150℃での焼成膜を示す。以上の結果から見れば、溶融挙動は粒径に依存しないものの、粒子同士の焼結挙動は粒径が小さいほど、低温で起こることが理解できる。これらの挙動は、スズ粒子の場合と同様である。   Next, a silver particle slurry was prepared in the same manner as in the case of the tin particles in order to see the sintering characteristics due to the difference in the particle diameter of the silver particles. And the silver content rate in the slurry at this time is adjusted such that the tin content is adjusted according to the particle size so that a good coating film can be formed, and when the silver particle slurry is 100 wt%, sample A (silver) The silver particle having a primary particle diameter of 80 nm was 72 wt%, and the silver particle having a primary particle diameter of 4 μm in Sample B (silver) was 91 wt%. Then, the sintering behavior was observed in the same manner as in the case of the tin particles. As a result, according to the observation result of FE-SEM, there was a sintering start point in the vicinity of 300 ° C. when particles having a primary particle diameter of 4 μm were used for sample B (silver). On the other hand, when a particle having a primary particle diameter of 80 nm was used for sample A (silver), a sintering start point was confirmed at around 150 ° C. FIG. 6 shows a fired film at a firing temperature of 150 ° C. From the above results, it can be understood that although the melting behavior does not depend on the particle size, the sintering behavior between particles occurs at a lower temperature as the particle size is smaller. These behaviors are the same as in the case of tin particles.

銅粒子の熱特性: 次に、ナノレベルの粒径を備える銅粒子に関する溶融挙動及び焼結挙動に関して述べる。これらの評価方法に関しては、上記スズ粒子の場合と同様の評価を行った。ここで用いた銅粒子の一つは、図7のFE−SEM観察像から明らかなように、球状で平均一次粒径が50nm程度のナノレベルの銅粒子(以下、「試料A(銅)」と称する。)であり、ナノレベルのスズ粒子と同様に粒子同士の凝集が進行している。その結果、粒度分布測定のD50の値は、0.3μmと大きなものとなっている。従って、ここで用いたナノ粒子径を持つ銅粒子は、上記ナノ粒子径を持つスズ粒子の場合と同様に、流体ミルによる粒子分散処理を施し、[D50(nm)]/[一次粒子径(nm)]の値が1.4となるように調整したものである。一方、対比用に、図8のFE−SEM観察像に示した平均一次粒径が5μm程度の角張った部位のある球状粉であり、粒子凝集は少ないものの、粒度分布がブロードな銅粒子(以下、「試料B(銅)」と称する。)を用いた。 Thermal characteristics of copper particles: Next, the melting behavior and sintering behavior of copper particles having a nano-level particle size will be described. Regarding these evaluation methods, the same evaluation as in the case of the tin particles was performed. One of the copper particles used here is, as is apparent from the FE-SEM observation image of FIG. 7, a spherical copper particle having an average primary particle size of about 50 nm (hereinafter, “sample A (copper)”). In the same manner as in the case of nano-level tin particles, aggregation of the particles proceeds. As a result, the value of D 50 in the particle size distribution measurement is as large as 0.3 μm. Therefore, the copper particles having the nanoparticle diameter used here are subjected to particle dispersion treatment by a fluid mill in the same manner as the tin particles having the nanoparticle diameter, and [D 50 (nm)] / [primary particle diameter]. (Nm)] is adjusted to be 1.4. On the other hand, for comparison, a copper powder having an angular portion with an average primary particle size of about 5 μm shown in the FE-SEM observation image of FIG. , Referred to as “Sample B (copper)”).

そして、DSCによる溶融特性の評価を行ったが、その測定結果から、試料A(銅)及び試料B(銅)ともに800℃以下の範囲では、銀の融解に由来する吸熱ピークが見られず、粒径の違いによる差は見られなかった。そして、更に、溶融試験後の試料A(銅)及び試料B(銅)のX線回折の結果からは、双方の試料とも純粋な金属銅のスペクトルのみが得られた。   And although the melting characteristic by DSC was evaluated, the endothermic peak derived from the melting of silver was not seen in the range of 800 ° C. or less for both sample A (copper) and sample B (copper) from the measurement results. There was no difference due to the difference in particle size. Furthermore, from the results of X-ray diffraction of Sample A (copper) and Sample B (copper) after the melting test, only pure metal copper spectra were obtained for both samples.

次に、銅粒子の粒径の違いによる焼結特性を見るため、上記スズ粒子の場合と同様に銀粒子スラリーを作製した。そして、このときのスラリー中の銀含有率は、良好な塗膜形成の可能なように粒径に応じてスズ含有量を調整し、銀粒子スラリーを100wt%としたとき、試料A(銅)の一次粒子径が50nmの銀粒子については88wt%、試料B(銅)の一次粒子径が5μmの銀粒子については88wt%とした。そして、上記スズ粒子の場合と同様にして焼結挙動の観察を行った。その結果、FE−SEMの観察結果によると、試料B(銅)の一次粒子径が5μmの粒子を用いた場合には300℃でも焼結は開始しなかった。これに対し、試料A(銅)の一次粒子径が50nmの粒子を用いた場合には、150℃以上で焼結が開始することが確認された。図9に焼成温度200℃での焼成膜を示す。以上の結果から見れば、溶融挙動は粒径に依存しないものの、粒子同士の焼結挙動は粒径が小さいほど、低温で起こることが理解できる。これらの挙動は、スズ粒子の場合と同様である。   Next, in order to see the sintering characteristics due to the difference in the particle size of the copper particles, a silver particle slurry was prepared in the same manner as in the case of the tin particles. And the silver content rate in the slurry at this time is adjusted such that the tin content is adjusted according to the particle size so that a good coating film can be formed, and when the silver particle slurry is 100 wt%, sample A (copper) The silver particle having a primary particle diameter of 50 nm was 88 wt%, and the silver particle having a primary particle diameter of 5 μm in Sample B (copper) was 88 wt%. Then, the sintering behavior was observed in the same manner as in the case of the tin particles. As a result, according to the observation result of FE-SEM, when particles having a primary particle diameter of 5 μm of sample B (copper) were used, sintering did not start even at 300 ° C. On the other hand, when particles having a primary particle diameter of 50 nm for sample A (copper) were used, it was confirmed that sintering started at 150 ° C. or higher. FIG. 9 shows a fired film at a firing temperature of 200 ° C. From the above results, it can be understood that although the melting behavior does not depend on the particle size, the sintering behavior between particles occurs at a lower temperature as the particle size is smaller. These behaviors are the same as in the case of tin particles.

以上に述べてきたようなナノレベルの粒子径を備えるスズ粒子を必須成分として、これにナノレベルの粒子径を備える銀粒子又は銅粒子を組みあせて、2成分系の多成分系金属粒子スラリーの導電性フィラーとして用いるのである。以下、その組み合わせを考慮して2成分系の多成分系金属粒子スラリーとした場合の溶融特性及び焼結特性に関して述べる。   A tin particle having a nano-level particle diameter as described above is an essential component, and silver particles or copper particles having a nano-level particle diameter are combined with this to form a two-component multi-component metal particle slurry. It is used as a conductive filler. Hereinafter, in consideration of the combination, melting characteristics and sintering characteristics in the case of a two-component multi-component metal particle slurry will be described.

2成分系(スズ粒子と銀粒子)の熱特性: まず、粒径の違いによる異種金属間の合金化反応の反応性を検討するために、上述の一次粒子径が100nmの試料A(スズ)と一次粒子径が80nmの試料A(銀)とを組み合わせた場合と、一次粒子径が2μmの試料B(スズ)と一次粒子径が80nmの試料A(銀)とを組み合わせた場合の対比を行った。このとき、上述のスズ粒子スラリーと銀粒子スラリーとを混合し、スズ粒子(wt%)と銀粒子(wt%)とが1:1の割合になるように混練し、スズ粒子と銀粒子との2成分のナノ粒子を含む多成分系金属粒子スラリー(以下、単に「スズ/銀スラリー」と称する。)とした。次に、この多成分系金属粒子スラリーを、スクリーン印刷法によりアルミニウム基板上に印刷し、窒素雰囲気中150℃〜300℃の範囲で焼成を行い、焼成膜を作製した。 Thermal characteristics of the two-component system (tin particles and silver particles): First, in order to examine the reactivity of the alloying reaction between different metals due to the difference in particle size, the above-mentioned sample A (tin) having a primary particle size of 100 nm And the sample A (silver) having a primary particle size of 80 nm and the sample B (tin) having a primary particle size of 2 μm and a sample A (silver) having a primary particle size of 80 nm are compared. went. At this time, the above-mentioned tin particle slurry and silver particle slurry are mixed and kneaded so that tin particles (wt%) and silver particles (wt%) are in a ratio of 1: 1. A multi-component metal particle slurry (hereinafter simply referred to as “tin / silver slurry”) containing the two-component nanoparticles. Next, this multi-component metal particle slurry was printed on an aluminum substrate by a screen printing method, and baked in a range of 150 ° C. to 300 ° C. in a nitrogen atmosphere to prepare a fired film.

この結果、一次粒子径が100nmの試料A(スズ)と一次粒子径が80nmの試料A(銀)とを組み合わせた場合には、焼成膜のFE−SEM による観察結果から150℃以上であれば粒子同士が焼結して粒子成長することが確認できた。また、焼成膜のX線回折パターンの測定を行うと、150℃での焼成膜ではスズと銀との回折パターンが分離して観察された。しかし、200℃での焼成膜は、単独のスズと銀との回折パターンが僅かに観察されるものの、銀−スズ合金の回折パターンが強くなり、合金化の進行が顕著であると考えられる。更に、300℃での焼成膜は、単独のスズと銀との回折パターンは完全に消失し、銀−スズ合金の回折パターンのみが観察される。そして、次に、DSCによる溶融特性の測定を行った。焼成前のスズ/銀スラリーを用いて測定したところ、227℃にスズの溶融に由来する吸熱ピークが、484℃に銀−スズ合金に特有の吸熱ピークが確認できた。これに対し、ここで言うスズ/銀スラリーを300℃で焼成した後の焼成膜で、DSCによる測定を行った。その結果、スズに由来する吸熱ピークは消失し、484℃の銀−スズ合金に特有の吸熱ピークがより強く現れた。即ち、焼成前のスズ/銀スラリーを用いてDSC測定を行うと測定途中で合金化が進行するが、一旦300℃で焼成された焼成膜の場合には、既に合金化が進行しているため、銀−スズ合金に特有の吸熱ピークがより強く現れたのであり、焼成による合金化が良好に行われている証拠となる。   As a result, when the sample A (tin) with a primary particle diameter of 100 nm and the sample A (silver) with a primary particle diameter of 80 nm are combined, the result of FE-SEM observation of the fired film is 150 ° C. or higher. It was confirmed that the particles were sintered to grow particles. Further, when the X-ray diffraction pattern of the fired film was measured, the diffraction pattern of tin and silver was observed separately in the fired film at 150 ° C. However, in the fired film at 200 ° C., although the diffraction pattern of single tin and silver is slightly observed, the diffraction pattern of the silver-tin alloy becomes strong and the progress of alloying is considered to be remarkable. Furthermore, in the fired film at 300 ° C., the diffraction pattern of single tin and silver completely disappears, and only the diffraction pattern of the silver-tin alloy is observed. Next, the melting characteristics were measured by DSC. When measured using a tin / silver slurry before firing, an endothermic peak derived from melting of tin at 227 ° C. and an endothermic peak specific to the silver-tin alloy at 484 ° C. were confirmed. On the other hand, the measurement by DSC was performed on the fired film after firing the tin / silver slurry here at 300 ° C. As a result, the endothermic peak derived from tin disappeared, and the endothermic peak peculiar to the silver-tin alloy at 484 ° C. appeared more strongly. That is, when DSC measurement is performed using a tin / silver slurry before firing, alloying proceeds in the middle of the measurement, but in the case of a fired film fired once at 300 ° C., alloying has already proceeded. The endothermic peak peculiar to the silver-tin alloy appeared more strongly, which is evidence that the alloying by firing is performed well.

一方、一次粒子径が2μmの試料B(スズ)と一次粒子径が80nmの試料A(銀)とを組み合わせた場合には、次のような結果となる。ここでは、前述の一次粒子径が100nmのスズナノ粒子を、一次粒子径が2μmのスズ粒子に代えたのみであり、上述と同様にして、スズ粒子(wt%)と銀粒子(wt%)とが1:1の割合になるスズ粒子と銀粒子との2成分のナノ粒子を含む多成分系金属粒子スラリー(以下、単に「スズ/銀スラリー」と称する。)とした。次に、このスズ/銀スラリーを、スクリーン印刷法によりアルミニウム基板上に印刷し、窒素雰囲気中150〜300℃の範囲で焼成を行い、焼成膜を作製した。   On the other hand, when sample B (tin) having a primary particle diameter of 2 μm and sample A (silver) having a primary particle diameter of 80 nm are combined, the following results are obtained. Here, the above-mentioned tin nanoparticles with a primary particle size of 100 nm are merely replaced with tin particles with a primary particle size of 2 μm. In the same manner as described above, tin particles (wt%) and silver particles (wt%) Is a multi-component metal particle slurry (hereinafter simply referred to as “tin / silver slurry”) containing two-component nanoparticles of tin particles and silver particles in a ratio of 1: 1. Next, this tin / silver slurry was printed on an aluminum substrate by a screen printing method, and baked in a range of 150 to 300 ° C. in a nitrogen atmosphere to prepare a baked film.

その結果、焼成膜のX線回折を行うと、200℃での焼成膜においては銀−スズ合金に特有の回折パターンが観察されるものの、スズ独自の回折パターンも強く観察される。これは、300℃でも焼成膜でも同様であり、銀−スズ合金と独立のスズ成分とが混在していると判断できる。また、次に、DSCによる溶融特性の測定を行った。焼成前のスズ/銀スラリーを用いて測定したところ、227℃にスズの溶融に由来する吸熱ピークが、484℃に銀−スズ合金に特有の吸熱ピークが確認できた。これに対し、ここで言うスズ/銀スラリーを300℃で焼成した後の焼成膜で、DSCによる測定を行った。その結果、単独のスズに特有の吸熱ピークが確認されると同時に、484℃の銀−スズ合金に特有の吸熱ピークが現れる。このように単独のスズが、焼成後に残留していると、焼成膜の電気的抵抗が上昇し好ましくない。これらの結果から分かるのは、スズ粒子の粒径による合金化反応の違いが明瞭となる。そして、300℃以下での低温焼成領域で十分な合金化を行わせようとすると、粒径がナノレベルの粒子同士を組み合わせて用いる必要があることが理解できる。しかも、完全な合金化が起きていれば、融点の低いスズ(232℃)が焼成膜中に存在しなくなるため、低温(スズの融点232℃)では溶融せず480℃付近で初めて溶融する耐熱特性に優れた焼成膜となる。   As a result, when X-ray diffraction of the fired film is performed, a diffraction pattern peculiar to the silver-tin alloy is observed in the fired film at 200 ° C., but a unique diffraction pattern of tin is also strongly observed. This is the same for both the 300 ° C. and the fired film, and it can be determined that the silver-tin alloy and the independent tin component are mixed. Next, melting characteristics were measured by DSC. When measured using a tin / silver slurry before firing, an endothermic peak derived from melting of tin at 227 ° C. and an endothermic peak specific to the silver-tin alloy at 484 ° C. were confirmed. On the other hand, the measurement by DSC was performed on the fired film after firing the tin / silver slurry here at 300 ° C. As a result, an endothermic peak peculiar to single tin is confirmed, and an endothermic peak peculiar to a silver-tin alloy at 484 ° C. appears. Thus, if single tin remains after firing, the electrical resistance of the fired film increases, which is not preferable. As can be seen from these results, the difference in the alloying reaction depending on the particle size of the tin particles becomes clear. And if it is going to perform sufficient alloying in the low-temperature baking area | region at 300 degrees C or less, it can be understood that it is necessary to use in combination particle | grains with a particle size of nano level. Moreover, if complete alloying has occurred, tin (232 ° C.) having a low melting point will not be present in the fired film. It becomes a fired film having excellent characteristics.

2成分系(スズ粒子と銅粒子)の熱特性: 次に、スズナノ粒子と銅ナノ粒子とを組み合わせた多成分系スラリーを用いて、焼成膜を作製した。ここで用いた銅粒子上記図5に示した球状で平均一次粒径が50nm程度のナノレベルの銅粒子(試料A(銅))である。また、ここで用いたスズ粒子は、図1に示す平均一次粒径が100nm程度の球状ナノ粒子のスズ粒子(試料A(スズ))である。即ち、上述の一次粒子径が100nmの試料A(スズ)と一次粒子径が50nmの試料A(銅)とを組み合わせた場合の評価を行った。 Thermal characteristics of two-component system (tin particles and copper particles): Next, a fired film was prepared using a multi-component slurry in which tin nanoparticles and copper nanoparticles were combined. The copper particles used here are the nano-level copper particles (sample A (copper)) having a spherical shape and an average primary particle size of about 50 nm shown in FIG. Moreover, the tin particle used here is a tin particle (sample A (tin)) of spherical nanoparticles having an average primary particle diameter of about 100 nm shown in FIG. That is, the evaluation was performed when the sample A (tin) having a primary particle diameter of 100 nm and the sample A (copper) having a primary particle diameter of 50 nm were combined.

このとき、上述のスズ粒子スラリーと銅粒子スラリーとを混合し、スズ粒子(wt%)と銅粒子(wt%)とが1:1の割合になるように混練し、スズ粒子と銅粒子との2成分のナノ粒子を含む多成分系金属粒子スラリー(以下、単に「スズ/銅スラリー」と称する。)とした。次に、この多成分系金属粒子スラリーを、スクリーン印刷法によりアルミニウム基板上に印刷し、窒素雰囲気中150〜300℃の範囲で焼成を行い、焼成膜を作製した。   At this time, the above-described tin particle slurry and copper particle slurry are mixed and kneaded so that the ratio of the tin particles (wt%) and the copper particles (wt%) is 1: 1, and the tin particles and the copper particles A multi-component metal particle slurry (hereinafter simply referred to as “tin / copper slurry”) containing the two-component nanoparticles. Next, this multi-component metal particle slurry was printed on an aluminum substrate by a screen printing method, and baked in a range of 150 to 300 ° C. in a nitrogen atmosphere to prepare a baked film.

この結果、一次粒子径が100nmの試料A(スズ)と一次粒子径が50nmの試料A(銅)とを組み合わせた場合には、焼成膜のFE−SEM による観察結果から150℃以上であれば粒子同士が焼結して粒子成長することが確認できた。ところが、X線回折の結果は、スズ/銀スラリーの場合とは異なる結果が得られた。即ち、焼成温度が150℃の場合には、スズと銅との単独の回折パターンが得られる点は、スズ/銀スラリーを用いた場合と同様である。これに対し、焼成温度が200℃の場合には、FE−SEM観察の見た目では焼成の進行が認められても、スズと銅との単独の回折パターンが僅かに観察され、銅−スズ合金であるCuSnの回折パターンが観察され始める。そして、焼成温度を300℃とすると、スズと銅との単独の回折パターンは消失し、CuSnの回折パターンが顕著となる。ここで分かるのは、スズと銅との組み合わせは、例えナノ粒子同士でも、300℃付近の焼成温度を採用しないと、相互拡散を起こしにくく、合金が出来ないと言うことである。 As a result, when the sample A (tin) having a primary particle size of 100 nm and the sample A (copper) having a primary particle size of 50 nm are combined, if the sintered film is 150 ° C. or higher from the observation result by FE-SEM It was confirmed that the particles were sintered to grow particles. However, the result of X-ray diffraction was different from that of the tin / silver slurry. That is, when the firing temperature is 150 ° C., the point that a single diffraction pattern of tin and copper can be obtained is the same as in the case of using a tin / silver slurry. On the other hand, when the firing temperature is 200 ° C., a single diffraction pattern of tin and copper is slightly observed even if the progress of firing is observed in the appearance of FE-SEM observation. A certain Cu 3 Sn diffraction pattern begins to be observed. Then, when the firing temperature and 300 ° C., the diffraction pattern of a single tin and copper disappeared, the diffraction pattern of the Cu 3 Sn becomes remarkable. It can be seen that the combination of tin and copper, even between nanoparticles, is difficult to cause mutual diffusion and cannot be alloyed unless a firing temperature around 300 ° C. is adopted.

次に、DSC測定の結果による、溶融特性に関して説明する。この測定条件等は上述と同様である。焼成前のスズナノ粒子のDSC測定の結果は、225℃にスズの特徴的吸熱ピーク、300〜400℃に有機物の酸化によると考えられる発熱ピークが観測され、300℃で焼成するとスズに固有の吸熱ピークが消失し、発熱ピークのみとなる。このDSC測定の結果、銅−スズの組み合わせの場合も、銀−スズの組み合わせの場合と同様に、焼成後に合金化することにより溶融温度が上昇することが確認できた。また、銀−スズの組み合わせの場合の200℃での焼成膜は、銀−スズ合金の回折パターンが強く確認されるのに対し、銅−スズの組み合わせの場合の200℃での焼成膜は銅−スズ合金の回折パターンは非常に弱くなる。このことは、銅−スズの組み合わせの場合には、銀−スズの組み合わせの場合と比べ、合金化するためにはより高温の加熱が必要となることを裏付けている。これは、銅ナノ粒子表面が、銀ナノ粒子表面より酸化されやすいため、銅ナノ粒子表面の酸化が原因で、合金化温度が上昇したと考えられる。   Next, melting characteristics based on the results of DSC measurement will be described. The measurement conditions are the same as described above. As a result of DSC measurement of tin nanoparticles before firing, a characteristic endothermic peak of tin was observed at 225 ° C and an exothermic peak believed to be due to oxidation of organic substances at 300 to 400 ° C. The peak disappears and only the exothermic peak is present. As a result of the DSC measurement, it was confirmed that, in the case of the copper-tin combination, the melting temperature was increased by alloying after firing, as in the case of the silver-tin combination. In the case of the sintered film at 200 ° C. in the case of the silver-tin combination, the diffraction pattern of the silver-tin alloy is strongly confirmed, whereas the sintered film at 200 ° C. in the case of the copper-tin combination is copper. -The diffraction pattern of the tin alloy is very weak. This confirms that the copper-tin combination requires higher temperature heating for alloying than the silver-tin combination. This is probably because the copper nanoparticle surface is more easily oxidized than the silver nanoparticle surface, and the alloying temperature has increased due to the oxidation of the copper nanoparticle surface.

以上に述べてきたような実験及び研究を通して、本件発明者等は、一次粒子径が300nmを超える金属ナノ粒子を組み合わせて用いることで、焼成温度300℃以下、より好ましくは200℃以下での、スズ粒子と銅粒子又は銀粒子との合金化可能な焼結が可能と結論づけたのである。従って、300nmを超えるナノ粒子同士を組み合わせて、焼結させようとしても、焼成温度に300℃を超える温度が必要となり好ましくない。特に、半田粉の代替え材料として使用する場合には、200℃前後での溶融及び合金化を伴う焼結が求められ、好ましくない。   Through experiments and research as described above, the present inventors have used a combination of metal nanoparticles having a primary particle diameter of more than 300 nm, so that the firing temperature is 300 ° C. or lower, more preferably 200 ° C. or lower. It was concluded that alloyable sintering of tin particles and copper particles or silver particles is possible. Therefore, even if nanoparticles exceeding 300 nm are combined and sintered, a temperature exceeding 300 ° C. is necessary for the firing temperature, which is not preferable. In particular, when used as a substitute material for solder powder, sintering with melting and alloying at around 200 ° C. is required, which is not preferable.

2成分系の多成分系金属粒子スラリー中の金属粒子の含有状況: 本件発明に係る2成分系の多成分系金属粒子スラリーにおいて、前記金属粒子は、多成分系金属粒子スラリーとしての体積を100vol%としたとき、20vol%〜70vol%であることが好ましい。ここで、総金属粒子とは、スズ粒子と銅粒子又は銀粒子との合計を意味することを明記しておく。そして、多成分系金属粒子スラリーとは、溶媒に金属ナノ粒子を分散させたものであり、その多成分系金属粒子スラリーの用途に応じて、総金属粒子量が決められる。例えば、導電性インクとして用いる場合には15vol%〜25vol%、導電性ペーストとして用いる場合には80vol%〜92vol%、そして、導電膜を形成する手法であるスクリーン印刷法、グラビア印刷法等の種々の方法及び設備特性に会わせて、適宜有機溶媒を添加して等の調整を受ける。従って、この多成分系金属粒子スラリーを導電性インク及び導電性ペーストを調製するための基礎材料として考えれば、18vol%〜97vol%の金属粒子スラリーとして供給することが好ましい。しかし、金属粒子スラリーとして、金属粒子を高濃度で含有する場合には、スラリー中で粒子の再凝集が起こる場合もあり、常に粒子分散性を安定して保ちたい場合には、18vol%〜50vol%、更には18vol%〜35vol%程度とすることが品質の長期安定性確保の観点から好ましい。 Content of metal particles in a two-component multi-component metal particle slurry: In the two-component multi-component metal particle slurry according to the present invention, the metal particles have a volume of 100 vol as the multi-component metal particle slurry. %, It is preferably 20 vol% to 70 vol%. Here, it should be clearly stated that the total metal particles means the sum of tin particles and copper particles or silver particles. The multicomponent metal particle slurry is obtained by dispersing metal nanoparticles in a solvent, and the total amount of metal particles is determined according to the use of the multicomponent metal particle slurry. For example, 15 vol% to 25 vol% when used as a conductive ink, 80 vol% to 92 vol% when used as a conductive paste, and various methods such as a screen printing method and a gravure printing method which are methods for forming a conductive film In accordance with the method and equipment characteristics, an organic solvent is added as appropriate and adjustments are made. Therefore, if this multicomponent metal particle slurry is considered as a basic material for preparing a conductive ink and a conductive paste, it is preferably supplied as a metal particle slurry of 18 vol% to 97 vol%. However, when the metal particles are contained at a high concentration as the metal particle slurry, reaggregation of the particles may occur in the slurry. When the particle dispersibility is always kept stable, 18 vol% to 50 vol. %, More preferably about 18 vol% to 35 vol%, from the viewpoint of ensuring the long-term stability of the quality.

そして、本件発明に係る2成分系の多成分系金属粒子スラリーにおいて、前記スズ粒子と銅粒子又は銀粒子との総重量を100wt%としたとき、スズ粒子と銅粒子又は銀粒子との重量含有比が、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]=0.2〜0.8である事が好ましい。[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]の値が0.2未満で、スズ粒子の存在量が少なくなりすぎると、焼成膜の低温焼結性が得られなくなるため好ましくない。一方、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]の値が0.8を超えると、銅粒子又は銀粒子の存在量に対してスズ粒子の存在量が多くなり、焼結による十分な合金化が起こっても、合金化しないスズ成分が単独で残留し、焼結後の溶融温度が低くなり好ましくない。なお、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]の値が0.3、より好ましくは0.4を超えると半田ペースト等の代替え材としての使用に好ましく、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]の値が0.3未満の場合には電気的抵抗を特段問題としない導電体の低温焼結加工用途に好適である。   In the two-component multi-component metal particle slurry according to the present invention, when the total weight of the tin particles and the copper particles or silver particles is 100 wt%, the weight content of the tin particles and the copper particles or silver particles is contained. The ratio is preferably [tin particles (wt%)] / [copper particles or silver particles (wt%)] = 0.2 to 0.8. If the value of [tin particles (wt%)] / [copper particles or silver particles (wt%)] is less than 0.2 and the amount of tin particles is too small, low-temperature sinterability of the fired film is obtained. Since it disappears, it is not preferable. On the other hand, if the value of [tin particles (wt%)] / [copper particles or silver particles (wt%)] exceeds 0.8, the amount of tin particles present is larger than the amount of copper particles or silver particles present Even if sufficient alloying occurs by sintering, a tin component that is not alloyed remains alone, and the melting temperature after sintering is lowered, which is not preferable. In addition, when the value of [tin particles (wt%)] / [copper particles or silver particles (wt%)] is 0.3, more preferably more than 0.4, it is preferable for use as a substitute material for solder paste, When the value of [tin particle (wt%)] / [copper particle or silver particle (wt%)] is less than 0.3, it is suitable for low-temperature sintering processing of electrical conductors that do not make electrical resistance a particular problem. is there.

2成分系の多成分系金属粒子スラリー中の溶媒: 本件発明に係る多成分系金属粒子スラリーで用いる金属ナノ粒子は、濾別、洗浄、脱水、乾燥して採取することも可能である。しかし、極めて微粒で、余分な粒子表面の酸化を防止するためスラリー状態で保存することが好ましい。スラリー状態で保存する場合には、特に限定はないが、以下のような溶媒を用いることが好ましい。ここで用いる前記溶媒は、多成分系金属粒子スラリーの重量を100wt%としたとき、カルボキシル基を有する化合物を1wt%〜30wt%含有したものであることが好ましい。ここで言う溶媒は、事後的に導電性ペーストや導電性インクへの加工の容易なターピネオール、メタノール、エタノール、プロピルアルコール、アセトン、メチルエチルケトン、ブチルカルビトール、エチレングリコール等の有機溶媒の一種又はこれらを組み合わせて主剤として用いることが好ましい。そして、ここにカルボキシル基を有する化合物を1wt%〜30wt%含有させるのである。このカルボキシル基を有する化合物は、当該スラリー中にある金属粒子の表面に付着して表面処理剤と同様に機能するが、焼成膜を形成するときの低温焼結性能をより高めるための助剤として機能する。このカルボキシル基を有する化合物を本件発明に係る多成分系金属粒子スラリーに予め含ませておけば、これを溶媒置換する等して導電性ペーストや導電性インクへの加工が行われても、金属ナノ粒子表面への当該カルボキシル基を有する化合物の付着が起こっており、低温焼結性能を効果的に高めるのである。カルボキシル基を有する化合物の含有量が、多成分系金属粒子スラリーの重量を100wt%としたとき1wt%未満の場合には、焼成膜を形成するときの低温焼結性能をより高めるための助剤として機能し得ない。一方、カルボキシル基を有する化合物の含有量が、多成分系金属粒子スラリーの重量を100wt%としたとき30wt%を超えるものとしても、それ以上に前記低温焼結性能を向上させ得ず、むしろ焼成膜中の有機物残留量(炭素量として事後的に溶解させ分析可能)が増加し、電気的抵抗の上昇を招くため好ましくない。 Solvent in two-component multi-component metal particle slurry: The metal nanoparticles used in the multi-component metal particle slurry according to the present invention can be collected by filtration, washing, dehydration and drying. However, it is very fine and is preferably stored in a slurry state in order to prevent oxidation of the excess particle surface. When stored in a slurry state, there is no particular limitation, but it is preferable to use the following solvent. The solvent used here is preferably one containing 1 wt% to 30 wt% of a compound having a carboxyl group when the weight of the multicomponent metal particle slurry is 100 wt%. The solvent here refers to one or more organic solvents such as terpineol, methanol, ethanol, propyl alcohol, acetone, methyl ethyl ketone, butyl carbitol, ethylene glycol, which can be easily processed into a conductive paste or conductive ink after the fact. It is preferable to use as a main agent in combination. And 1 wt%-30 wt% of compounds which have a carboxyl group are contained here. This compound having a carboxyl group adheres to the surface of the metal particles in the slurry and functions in the same manner as the surface treatment agent, but as an auxiliary agent for further enhancing the low-temperature sintering performance when forming a fired film. Function. If the compound having a carboxyl group is included in the multi-component metal particle slurry according to the present invention in advance, even if it is processed into a conductive paste or conductive ink by, for example, solvent substitution, the metal The adhesion of the compound having a carboxyl group to the surface of the nanoparticle occurs, and the low-temperature sintering performance is effectively enhanced. When the content of the compound having a carboxyl group is less than 1 wt% when the weight of the multi-component metal particle slurry is 100 wt%, an auxiliary agent for further improving the low-temperature sintering performance when forming a fired film Cannot function as. On the other hand, even if the content of the compound having a carboxyl group exceeds 30 wt% when the weight of the multi-component metal particle slurry is 100 wt%, the low-temperature sintering performance cannot be further improved, and rather it is fired. This is not preferable because the residual amount of organic matter in the film (which can be dissolved and analyzed as a carbon amount later) increases and causes an increase in electrical resistance.

また、前記溶媒中に、樹脂成分としてエチルセルロース、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂等を添加することが、低温焼結性能をより向上させる観点から好ましい。これらの樹脂の添加量としては、多成分系金属粒子スラリー中の金属粒子重量を100wt%としたとき、1wt%〜15wt%の範囲で含有させることが好ましい。これら樹脂成分の含有量が前記1wt%未満の場合には、低温焼結性を向上させる効果を得ることは出来ない。一方、これら樹脂成分の含有量が前記15wt%を超えるものとすると、多成分系金属粒子スラリーの増粘化が起こり取扱が困難な傾向が出ると同時に、焼成膜の内部に不純物としての炭素成分が残留しやすくなり導体抵抗を上昇させるため、好ましくない。   In addition, it is preferable to add ethyl cellulose, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like as a resin component in the solvent from the viewpoint of further improving the low-temperature sintering performance. The amount of these resins added is preferably in the range of 1 wt% to 15 wt% when the weight of the metal particles in the multicomponent metal particle slurry is 100 wt%. When the content of these resin components is less than 1 wt%, the effect of improving the low temperature sinterability cannot be obtained. On the other hand, if the content of these resin components exceeds 15 wt%, the multicomponent metal particle slurry tends to be thickened and difficult to handle, and at the same time, carbon components as impurities in the fired film Is liable to remain and increases the conductor resistance, which is not preferable.

そして、前記カルボキシル基を有する化合物は、特に、カルボン酸類であり、且つ、分子量が200以上のものを用いる事が好ましい。この分子量200未満のカルボン酸は、前記低温焼結特性の向上効果が少ないが、分子量が200以上のカルボン酸類は顕著に低温焼結特性を向上させることができる。この分子量200以上のカルボン酸を具体的に言えば、ステアリン酸、オレイン酸、ベヘン酸等である。   The compound having a carboxyl group is particularly preferably a carboxylic acid having a molecular weight of 200 or more. The carboxylic acid having a molecular weight of less than 200 is less effective in improving the low-temperature sintering characteristics, but carboxylic acids having a molecular weight of 200 or more can remarkably improve the low-temperature sintering characteristics. Specific examples of the carboxylic acid having a molecular weight of 200 or more are stearic acid, oleic acid, behenic acid and the like.

ここで、低温焼結特性の変化を評価するのに、FE−SEM観察像とX線回折により算出される結晶子径とを用いて判断した。ここで言うカルボキシル基を有する化合物(以下、図面を用いた説明では「カルボン酸類」と言う。)を多成分系金属粒子スラリーに含ませると、低温焼結性が顕著に向上する効果をFE−SEM観察像で説明する。図10には、カルボン酸類を含ませていない金属粒子スラリー(試料A(スズ))を用いて、窒素雰囲気、焼成温度200℃で得た焼成膜の30000倍の観察像を示す。そして、図11には、カルボン酸類を含ませた同様の金属粒子スラリー(カルボン酸類の含有量8wt%)を用いて、同様の条件で得た焼成膜の30000倍の観察像を示す。そして、焼成膜の結晶子径を測定した。最初に、カルボン酸類を含ませなかった場合の焼結膜の結晶子径は435Åであった。一方、カルボン酸類としてステアリン酸を用いた場合の焼成膜の結晶子径は775Å、オレイン酸の場合の結晶子径は592Å、アクリル酸の場合の結晶子径は576Åであった。この結果から分かるように、分子量200以上のカルボン酸を用いれば、焼結特性が向上し、粒子同士の拡散又は溶融結合が容易に起こり、結晶子径の大きな粒子が生成すると言える。これに対し、分子量が200未満のデカン酸を用いた場合の結晶子径は418Åと、カルボン酸類を添加しなかった場合よりも劣る焼結性能となる事が分かる。即ち、分子量が200未満のカルボン酸類は、粒子同士の焼結を阻害するように働くのである。   Here, in order to evaluate the change in the low-temperature sintering characteristics, judgment was made using an FE-SEM observation image and a crystallite diameter calculated by X-ray diffraction. When the compound having a carboxyl group referred to herein (hereinafter referred to as “carboxylic acid” in the description with reference to the drawings) is included in the multicomponent metal particle slurry, the effect of remarkably improving the low temperature sinterability is shown by FE−. This will be described with an SEM observation image. FIG. 10 shows an observation image 30000 times as large as that of a fired film obtained using a metal particle slurry (sample A (tin)) not containing carboxylic acids at a firing temperature of 200 ° C. in a nitrogen atmosphere. FIG. 11 shows an observation image of 30000 times the fired film obtained under the same conditions using the same metal particle slurry containing carboxylic acids (content of carboxylic acids 8 wt%). Then, the crystallite diameter of the fired film was measured. Initially, the crystallite diameter of the sintered film when carboxylic acids were not included was 435 mm. On the other hand, when stearic acid was used as the carboxylic acid, the crystallite diameter of the fired film was 775 mm, the crystallite diameter of oleic acid was 592 mm, and the crystallite diameter of acrylic acid was 576 mm. As can be seen from this result, it can be said that if a carboxylic acid having a molecular weight of 200 or more is used, the sintering characteristics are improved, the particles are easily diffused or melt-bonded, and particles having a large crystallite diameter are generated. On the other hand, the crystallite diameter when using decanoic acid having a molecular weight of less than 200 is 418 mm, indicating that the sintering performance is inferior to that when the carboxylic acids are not added. That is, carboxylic acids having a molecular weight of less than 200 work to inhibit the sintering of the particles.

次に、2成分系における低温焼結特性に与えるカルボン酸類の影響を確認するため、上述と同様にFE−SEM観察像を用いて判断した。ここで言うカルボン酸類を多成分系金属粒子スラリーに含ませると、単独の金属ナノ粒子の場合以上に、顕著に低温焼結性が向上する効果をFE−SEM観察像で説明する。図12には、カルボン酸類を含ませていないスズ/銀粒子スラリー(試料A(スズ)と試料A(銀)とを用いて、[スズナノ粒子(wt%)]/[銀ナノ粒子(wt%)]=1とした混合スラリー)を用いて、窒素雰囲気、焼成温度200℃で得た焼成膜の焼成状態を最も捉えやすい部位の100000倍の観察像を示す。そして、図13には、カルボン酸類としてステアリン酸、樹脂成分としてエチルセルロースを含ませた同様の金属粒子スラリー(ステアリン酸の含有量8wt%、エチルセルロースの含有量5wt%)を用いて、同様の条件で得た焼成膜の焼成状態を最も捉えやすい部位の30000倍の観察像を示す。図12から分かるように、焼結が進行していても、拡大してみると焼結して連結した粒子同士の存在が明瞭に確認できる。これに対し、図13では、図12より低倍率で観察しているが、焼結して連結した粒子同士の観察できる部位は少なくなり、完全に溶融して合金化が起こりフラットになった領域が観察される。従って、結晶子径の違いを見るまでもなく、カルボン酸類としてステアリン酸を含ませたスズ/銀金属粒子スラリーの方が容易に焼結することが理解できる。この結果に関しては、後述する3成分系の多成分系金属粒子スラリーにおいても同様である。   Next, in order to confirm the influence of carboxylic acids on the low-temperature sintering characteristics in the two-component system, determination was made using an FE-SEM observation image in the same manner as described above. When the carboxylic acids mentioned here are included in the multi-component metal particle slurry, the effect of significantly improving the low-temperature sinterability will be described with an FE-SEM observation image as compared with the case of single metal nanoparticles. FIG. 12 shows a tin / silver particle slurry (sample A (tin) and sample A (silver) not containing carboxylic acids, [tin nanoparticles (wt%)] / [silver nanoparticles (wt%). )] = 1), and a 100,000 times observed image of a portion where the firing state of the fired film obtained at a firing temperature of 200 ° C. is most easily captured. FIG. 13 shows the same conditions using the same metal particle slurry (stearic acid content 8 wt%, ethyl cellulose content 5 wt%) containing stearic acid as the carboxylic acid and ethyl cellulose as the resin component. The observation image of 30000 times of the site where the fired state of the obtained fired film is most easily captured is shown. As can be seen from FIG. 12, even if the sintering is in progress, the presence of particles connected by sintering can be clearly confirmed when enlarged. On the other hand, in FIG. 13, although observed at a lower magnification than in FIG. 12, there are fewer sites where the sintered and connected particles can be observed, completely melted, alloyed, and flattened. Is observed. Therefore, it can be understood that the tin / silver metal particle slurry containing stearic acid as the carboxylic acid sinters more easily without looking at the difference in crystallite diameter. This result is the same for the ternary multi-component metal particle slurry described later.

[本件発明に係る3成分系の多成分系金属粒子スラリー形態]
本件発明に係る3成分系の多成分系金属粒子スラリーは、溶媒にナノ粒子径サイズの成分の異なる金属粒子を含んだ多成分系金属粒子スラリーであって、前記金属粒子は、一次粒子径が30nm〜300nmのスズ粒子と、一次粒子径が30nm〜300nmの銅粒子と、一次粒子径が30nm〜300nmの銀粒子とを含む3成分金属粒子であることを特徴とする。即ち、3種のナノ粒子を含むスラリーである。
[Three-component multi-component metal particle slurry form according to the present invention]
The three-component multi-component metal particle slurry according to the present invention is a multi-component metal particle slurry containing metal particles having different nano-particle size components in a solvent, and the metal particles have a primary particle size. It is a three-component metal particle comprising tin particles of 30 nm to 300 nm, copper particles having a primary particle diameter of 30 nm to 300 nm, and silver particles having a primary particle diameter of 30 nm to 300 nm. That is, it is a slurry containing three kinds of nanoparticles.

3成分系(スズ粒子、銀粒子、銅粒子)の熱特性: ここでは、スズ(試料A(スズ))、銀(試料A(銀))、銅(試料A(銅))の各ナノ粒子スラリーを、重量比1:1:1で混練することによりスズ/銀/銅多成分系スラリーを調製した。そして、上述と同様にスクリーン印刷後、窒素雰囲気中で150〜300℃の範囲で焼成を行い焼成膜を得た。 Thermal properties of ternary system (tin particles, silver particles, copper particles): Here, each nanoparticle of tin (sample A (tin)), silver (sample A (silver)), copper (sample A (copper)) The slurry was kneaded at a weight ratio of 1: 1: 1 to prepare a tin / silver / copper multicomponent slurry. And after screen printing like the above-mentioned, it baked in the range of 150-300 degreeC in nitrogen atmosphere, and obtained the baked film.

上記焼成膜のFE−SEM観察像から判断するに、150℃以上で焼成することによりナノ粒子同士が連結し粒子成長することが確認された。また、X線回折の結果からは、焼成温度が200℃の場合には、スズ、銀、銅それぞれの単独回折パターンに加え、わずかにCuSnの回折パターンが確認できた。そして、焼成温度が300℃の場合には、スズ、銅それぞれの単独回折パターンは消失するが、CuSnの回折パターンと銀の単独回折パターンが強く確認できる。 Judging from the FE-SEM observation image of the fired film, it was confirmed that the nanoparticles were connected and grown by firing at 150 ° C. or higher. From the results of X-ray diffraction, when the firing temperature was 200 ° C., a slight diffraction pattern of Cu 3 Sn was confirmed in addition to the individual diffraction patterns of tin, silver, and copper. When the firing temperature is 300 ° C., the single diffraction patterns of tin and copper disappear, but the diffraction pattern of Cu 3 Sn and the single diffraction pattern of silver can be strongly confirmed.

以上の結果を考えるに、単に2成分系で確認できた挙動を根拠とした3成分系の反応挙動とは異なると言える。即ち、2成分系では、銅−スズの組み合わせの場合と、銀−スズの組み合わせの場合とを比べると、合金化を起こさせるためには、前者の銅−スズの組み合わせの方が、より高温の加熱が必要となると考えられた。しかし、スズ−銀−銅の組み合わせの3成分系の場合には、銀とスズとの合金化反応に比べ、銅とスズとの合金化反応が優先して起こりCuSnが早期に生成する。現段階で、この現象の明確なメカニズムは特定できていないが、3成分系の混合ナノ粒子組成を採用することで、単独のナノ粒子又は2成分系のナノ粒子では起こりえない焼結特性が得られることを予見させる。 Considering the above results, it can be said that it is different from the reaction behavior of the ternary system based on the behavior that can be confirmed simply by the two-component system. That is, in the case of the two-component system, when the combination of copper and tin is compared with the combination of silver and tin, in order to cause alloying, the former combination of copper and tin has a higher temperature. It was thought that heating of was necessary. However, in the case of a three-component system of a combination of tin-silver-copper, the alloying reaction between copper and tin takes precedence over the alloying reaction between silver and tin, and Cu 3 Sn is generated early. . At this stage, the clear mechanism of this phenomenon has not been specified, but by adopting a ternary mixed nanoparticle composition, sintering characteristics that cannot occur with single nanoparticles or two-component nanoparticles are not possible. I foresee what will be obtained.

ここでも、スズ粒子と銅粒子と銀粒子の各一次粒子径は、30nm〜300nmの範囲のナノ粒子を用いることが好ましい。以下、念のためにその上限下限の意味合いを記載するが、実質的には上述と同様である。一次粒子径が30nm未満の金属ナノ粒子は、良好な粒度分布を備えた製品として得ることが困難である。仮に30nm未満の良好な粒度分布を備える製品が得られたとすれば、使用可能なものとなる。一方、一次粒子径が300nmを超える金属ナノ粒子は、ナノ粒子と称することはできても、十分な低温焼結性を得ることが困難となる。即ち、以上に述べてきたような実験及び研究を通して、本件発明者等は、一次粒子径が300nmを超える金属ナノ粒子を組み合わせて用いることで、焼成温度300℃以下、より好ましくは200℃以下での、金属粒子間の合金化が可能な焼結ができると結論づけたのである。従って、300nmを超えるナノ粒子同士を組み合わせて、焼結させようとしても、焼成温度に300℃を超える温度が必ず必要となるため好ましくない。特に、半田粉の代替え材料として使用する場合には、200℃前後での溶融及び合金化を伴う焼結が求められるからである。   Also here, it is preferable to use nanoparticles having a primary particle diameter of tin particles, copper particles, and silver particles in the range of 30 nm to 300 nm. Hereinafter, the meaning of the upper and lower limits will be described just in case, but it is substantially the same as described above. Metal nanoparticles having a primary particle diameter of less than 30 nm are difficult to obtain as a product having a good particle size distribution. If a product with a good particle size distribution of less than 30 nm is obtained, it can be used. On the other hand, metal nanoparticles having a primary particle diameter exceeding 300 nm can be referred to as nanoparticles, but it is difficult to obtain sufficient low-temperature sinterability. That is, through experiments and research as described above, the present inventors have used a combination of metal nanoparticles having a primary particle diameter of more than 300 nm, and a firing temperature of 300 ° C. or less, more preferably 200 ° C. or less. It was concluded that sintering that enables alloying between metal particles was possible. Therefore, even if it is going to combine and sinter the nanoparticle exceeding 300 nm, since the temperature exceeding 300 degreeC is necessarily required for baking temperature, it is unpreferable. This is because, in particular, when used as a substitute material for solder powder, sintering with melting and alloying at around 200 ° C. is required.

3成分系の多成分系金属粒子スラリー中の金属粒子の含有状況: 本件発明に係る3成分系の多成分系金属粒子スラリーにおいて、前記金属粒子は、多成分系金属粒子スラリーとしての体積を100vol%としたとき、スズ粒子と銅粒子と銀粒子の総金属粒子量が20vol%〜70vol%であることが好ましい。そして、その多成分系金属粒子スラリーの用途に応じて、総金属粒子量が決められる。なお、導電性インク、導電性ペーストとして用いる場合の考え方は、上述のとおりであり、より好ましい範囲も上述のとおりであるため、ここでの重複した説明は省略する。 Content of metal particles in ternary multi-component metal particle slurry: In the ternary multi-component metal particle slurry according to the present invention, the metal particles have a volume of 100 vol as the multi-component metal particle slurry. %, The total metal particle amount of tin particles, copper particles, and silver particles is preferably 20 vol% to 70 vol%. The total amount of metal particles is determined according to the use of the multi-component metal particle slurry. In addition, since the view when using as a conductive ink and a conductive paste is as above-mentioned, and the more preferable range is also as above-mentioned, the overlapping description here is abbreviate | omitted.

本件発明に係る3成分系の多成分系金属粒子スラリーにおいて、前記スズ粒子と銅粒子と銀粒子の総重量を100wt%としたとき、スズ粒子と銅粒子と銀粒子の重量含有比は、スズ粒子のwt%の値を1としたとき、[スズ粒子(wt%)]:[銅粒子(wt%)]:[銀粒子(wt%)]=1:0.05〜0.30:0.10〜0.50であることが好ましい。この重量含有比のバランスが保たれる限り、相互の金属ナノ粒子同士の加熱による相互拡散が良好に行え、強度及び耐熱性的にも良好な焼結膜を得ることが出来るのである。即ち、この重量含有比の中で、スズ粒子に起因したスズの量が、銅粒子及び銀粒子に対して少なくなると焼成膜の低温焼結性が得られなくなる。一方、スズ粒子に起因したスズの量が、銅粒子及び銀粒子に対して多くなると、銅粒子及び銀粒子の存在量に対してスズ粒子の存在量が少なくなり、焼結による十分な合金化を起こさせても、合金化しないスズ成分が単独で残留し、焼結後の溶融温度が低くなり好ましくない。なお、銀粒子と銅粒子の重量含有比として考えた場合、銅と銀とは広く固溶する領域を備えているため、特段の限定はない。最終的に得られる焼成膜の用途に応じて、焼成膜の電気抵抗、焼成膜の強度等を考慮して、任意に重量含有比を定めることが可能である。   In the ternary multi-component metal particle slurry according to the present invention, when the total weight of the tin particles, the copper particles and the silver particles is 100 wt%, the weight content ratio of the tin particles, the copper particles and the silver particles is tin. When the value of wt% of the particles is 1, [tin particles (wt%)]: [copper particles (wt%)]: [silver particles (wt%)] = 1: 0.05-0.30: 0 .10 to 0.50 is preferable. As long as the balance of the weight content ratio is maintained, mutual diffusion by heating between the metal nanoparticles can be performed well, and a sintered film having good strength and heat resistance can be obtained. That is, in this weight content ratio, when the amount of tin resulting from tin particles is smaller than that of copper particles and silver particles, the low-temperature sinterability of the fired film cannot be obtained. On the other hand, when the amount of tin due to tin particles increases with respect to copper particles and silver particles, the abundance of tin particles decreases with respect to the abundance of copper particles and silver particles, and sufficient alloying by sintering Even if it raise | generates, the tin component which is not alloyed remains independently, and the melting temperature after sintering becomes low, and is unpreferable. In addition, when considered as the weight content ratio of the silver particles and the copper particles, there is no particular limitation because the copper and silver have a region that is widely dissolved. Depending on the use of the finally obtained fired film, the weight content ratio can be arbitrarily determined in consideration of the electrical resistance of the fired film, the strength of the fired film, and the like.

以上のことから分かるように、銀粒子と銅粒子とを併せて「混合第2成分粒子」として捉えると、2成分系の場合と同様に、[スズ粒子(wt%)]/[混合第2成分粒子(wt%)]=0.2〜0.8とする事が好ましい。[スズ粒子(wt%)]/[混合第2成分粒子(wt%)]の値が0.2未満で、スズ粒子の存在量が少なくなりすぎると、焼成膜の低温焼結性が得られなくなる。一方、[スズ粒子(wt%)]/[混合第2成分粒子(wt%)]の値が0.8を超えると、混合第2成分の存在量に対してスズ粒子の存在量が多くなり、焼結による十分な合金化が起こっても、合金化しないスズ成分が単独で残留し、焼結後の溶融温度が低くなり好ましくない。なお、[スズ粒子(wt%)]/[混合第2成分粒子(wt%)]の値が0.3、より好ましくは0.4を超えると半田ペースト等の代替え材としての使用に好ましく、[スズ粒子(wt%)]/[混合第2成分粒子(wt%)]の値が0.3未満の場合には電気的抵抗を特段問題としない導電体の低温焼結加工用途に好適である。   As can be seen from the above, when the silver particles and the copper particles are combined and regarded as “mixed second component particles”, as in the case of the two-component system, [tin particles (wt%)] / [mixed second component particles]. Component particles (wt%)] = 0.2 to 0.8 is preferable. If the value of [tin particles (wt%)] / [mixed second component particles (wt%)] is less than 0.2 and the amount of tin particles is too small, low-temperature sinterability of the fired film is obtained. Disappear. On the other hand, when the value of [tin particles (wt%)] / [mixed second component particles (wt%)] exceeds 0.8, the amount of tin particles increases relative to the amount of mixed second components. Even if sufficient alloying by sintering occurs, a tin component that does not alloy remains alone, which is not preferable because the melting temperature after sintering becomes low. In addition, when the value of [tin particles (wt%)] / [mixed second component particles (wt%)] is 0.3, more preferably more than 0.4, it is preferable for use as a substitute material for solder paste, When the value of [tin particles (wt%)] / [mixed second component particles (wt%)] is less than 0.3, it is suitable for low-temperature sintering processing of conductors where electrical resistance is not a particular problem. is there.

3成分系の多成分系金属粒子スラリー中の溶媒: 本件発明に係る3成分系の多成分系金属粒子スラリーに用いる前記溶媒は、多成分系金属粒子スラリーの重量を100wt%としたとき、上述と同様にカルボキシル基を有する化合物を1wt%〜30wt%含有したものであることが好ましい。そして、前記カルボキシル基を有する化合物は、カルボン酸類であり、且つ、分子量が200以上のものを用いる事が好ましい。これらに関しては、上述したと同様であるため、ここでの説明は省略する。 Solvent in ternary multi-component metal particle slurry: The solvent used in the ternary multi-component metal particle slurry according to the present invention is as described above when the weight of the multi-component metal particle slurry is 100 wt%. Similarly, it is preferable to contain 1 wt% to 30 wt% of a compound having a carboxyl group. The compound having a carboxyl group is preferably a carboxylic acid having a molecular weight of 200 or more. Since these are the same as described above, description thereof is omitted here.

本件発明に係る多成分系金属粒子スラリーは、スズナノ粒子、銀ナノ粒子、銅ナノ粒子を組み合わせて用いたもので、焼成温度300℃以下で合金化した焼成膜の形成に好適である。従って、そのスズナノ粒子の含有量を適性に調整すれば、半田代替え材料として200℃前後での焼結又は溶融可能な導電性ペースト又は導電性インクを調製するための基礎材料として好適なものとなる。特に、当該多成分系金属粒子スラリーは、その中に低温焼結性を向上させるためのカルボキシル基を有する化合物を含ませると、一般的な低温半田材料に比べ、更に低温領域での焼成、溶融が可能であり、プリント配線板の回路配線、表面実装の分野での応用が期待できる。   The multi-component metal particle slurry according to the present invention is a combination of tin nanoparticles, silver nanoparticles, and copper nanoparticles, and is suitable for forming a fired film alloyed at a firing temperature of 300 ° C. or lower. Therefore, if the content of the tin nanoparticles is appropriately adjusted, it becomes suitable as a basic material for preparing a conductive paste or conductive ink that can be sintered or melted at around 200 ° C. as a solder substitute material. . In particular, when the multi-component metal particle slurry contains a compound having a carboxyl group for improving low-temperature sinterability, it is fired and melted in a lower temperature region than a general low-temperature solder material. Therefore, it can be expected to be applied in the field of printed wiring board circuit wiring and surface mounting.

また、本件発明に係る多成分系金属粒子スラリーは、その構成溶媒を容易に他の成分の溶媒に置換することが可能であり、必要な組成の導電性インク又は導電性ペーストを調製する事が容易で、種々の組成の製品製造に好適である。   In addition, the multi-component metal particle slurry according to the present invention can easily replace the constituent solvent with a solvent of another component, and can prepare a conductive ink or conductive paste having a necessary composition. It is easy and suitable for manufacturing products of various compositions.

スズナノ粒子のFE−SEM観察像である。It is an FE-SEM observation image of a tin nanoparticle. スズ粒子のFE−SEM観察像である。It is an FE-SEM observation image of a tin particle. スズナノ粒子で構成した焼成膜(焼成温度150℃)のFE−SEM観察像である。It is a FE-SEM observation image of the baking film | membrane (baking temperature 150 degreeC) comprised with the tin nanoparticle. 銀ナノ粒子のFE−SEM観察像である。It is a FE-SEM observation image of a silver nanoparticle. 銀粒子のFE−SEM観察像である。It is an FE-SEM observation image of silver particles. 銀ナノ粒子で構成した焼成膜(焼成温度150℃)のFE−SEM観察像である。It is a FE-SEM observation image of the baking film | membrane (baking temperature of 150 degreeC) comprised with the silver nanoparticle. 銅ナノ粒子のFE−SEM観察像である。It is an FE-SEM observation image of a copper nanoparticle. 銅粒子のFE−SEM観察像である。It is an FE-SEM observation image of a copper particle. 銅ナノ粒子で構成した焼成膜(焼成温度200℃)のFE−SEM観察像である。It is a FE-SEM observation image of the baking film | membrane (baking temperature of 200 degreeC) comprised with the copper nanoparticle. カルボン酸類を含ませていないスズナノ粒子スラリーを用いて、窒素雰囲気、焼成温度200℃で得た焼成膜の30000倍の観察像である。It is a 30000 times as many observed image of the baking film | membrane obtained by the nitrogen atmosphere and the baking temperature of 200 degreeC using the tin nanoparticle slurry which does not contain carboxylic acids. カルボン酸類を含ませた同様のスズナノ粒子スラリーを用いて、窒素雰囲気、焼成温度200℃で得た焼成膜の30000倍の観察像である。It is a 30000 times observed image of the baking film | membrane obtained by nitrogen atmosphere and baking temperature 200 degreeC using the same tin nanoparticle slurry containing carboxylic acid. カルボン酸類を含ませていないスズ/銀粒子スラリーを用いて、窒素雰囲気、焼成温度200℃、で得た焼成膜の焼成状態の典型的部位の30000倍の観察像である。It is a 30000 times as many observed image of the typical site | parts of the baking state of the baking film | membrane obtained by nitrogen atmosphere and the baking temperature of 200 degreeC using the tin / silver particle slurry which does not contain carboxylic acids. カルボン酸類としてステアリン酸等を含ませたスズ/銀粒子スラリーを用いて、窒素雰囲気、焼成温度200℃で得た焼成膜の焼成状態の典型的部位の30000倍の観察像である。It is a 30000 times as many observation image of the typical site | part of the baking state of the baking film | membrane obtained by using the tin / silver particle slurry which contained stearic acid etc. as carboxylic acids at a nitrogen atmosphere and the baking temperature of 200 degreeC.

Claims (8)

溶媒にナノ粒子径サイズの成分の異なる金属粒子を含んだ多成分系金属粒子スラリーであって、
前記金属粒子は、一次粒子径が30nm〜300nmのスズ粒子と、
一次粒子径が30nm〜300nmの銅粒子及び銀粒子のいずれか一種又は二種を含む多成分系金属粒子スラリー。
A multi-component metal particle slurry containing metal particles having different nanoparticle size components in a solvent,
The metal particles are tin particles having a primary particle diameter of 30 nm to 300 nm,
A multi-component metal particle slurry containing one or two of copper particles and silver particles having a primary particle size of 30 nm to 300 nm.
前記金属粒子は、多成分系金属粒子スラリーとしての体積を100vol%としたとき、総金属粒子を20vol%〜70vol%含有した請求項1に記載の多成分系金属粒子スラリー。 The multi-component metal particle slurry according to claim 1, wherein the metal particles contain 20 vol% to 70 vol% of total metal particles when the volume of the multi-component metal particle slurry is 100 vol%. 前記金属粒子がスズ粒子と銅粒子又は銀粒子とからなる場合において、
その金属粒子の総重量を100wt%としたとき、スズ粒子と銅粒子又は銀粒子との重量含有比が、[スズ粒子(wt%)]/[銅粒子又は銀粒子(wt%)]=0.2〜0.8である請求項1又は請求項2に記載の多成分系金属粒子スラリー。
In the case where the metal particles are composed of tin particles and copper particles or silver particles,
When the total weight of the metal particles is 100 wt%, the weight content ratio of tin particles to copper particles or silver particles is [tin particles (wt%)] / [copper particles or silver particles (wt%)] = 0. The multicomponent metal particle slurry according to claim 1 or 2, which is from 2 to 0.8.
前記金属粒子がスズ粒子と銅粒子と銀粒子とからなる場合において、
その金属粒子の総重量を100wt%としたとき、スズ粒子と銅粒子と銀粒子との重量含有比は、スズ粒子のwt%の値を1としたとき、[スズ粒子(wt%)]:[銅粒子(wt%)]:[銀粒子(wt%)]=1:0.05〜0.30:0.10〜0.50である請求項1又は請求項2に記載の多成分系金属粒子スラリー。
In the case where the metal particles are composed of tin particles, copper particles, and silver particles,
When the total weight of the metal particles is 100 wt%, the weight content ratio of the tin particles, the copper particles, and the silver particles when the wt% value of the tin particles is 1, [tin particles (wt%)]: [Copper particles (wt%)]: [silver particles (wt%)] = 1: 0.05 to 0.30: 0.10 to 0.50 The multicomponent system according to claim 1 or claim 2 Metal particle slurry.
前記溶媒は、多成分系金属粒子スラリーの重量を100wt%としたとき、カルボキシル基を有する化合物を1wt%〜30wt%含有した請求項1〜請求項4のいずれかに記載の多成分系金属粒子スラリー。 The multicomponent metal particles according to any one of claims 1 to 4, wherein the solvent contains 1 wt% to 30 wt% of a compound having a carboxyl group when the weight of the multicomponent metal particle slurry is 100 wt%. slurry. 前記カルボキシル基を有する化合物は、カルボン酸類であり、且つ、分子量が200以上のものを用いる請求項5に記載の多成分系金属粒子スラリー。 The multi-component metal particle slurry according to claim 5, wherein the compound having a carboxyl group is a carboxylic acid having a molecular weight of 200 or more. 請求項1〜請求項6のいずれかに記載の多成分系金属粒子スラリーを用いて得られる導電性インク。 The electroconductive ink obtained using the multicomponent-type metal particle slurry in any one of Claims 1-6. 請求項1〜請求項6のいずれかに記載の多成分系金属粒子スラリーを用いて得られる導電性ペースト。 The electroconductive paste obtained using the multicomponent-type metal particle slurry in any one of Claims 1-6.
JP2006025036A 2006-02-01 2006-02-01 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry Expired - Fee Related JP4638825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025036A JP4638825B2 (en) 2006-02-01 2006-02-01 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025036A JP4638825B2 (en) 2006-02-01 2006-02-01 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry

Publications (2)

Publication Number Publication Date
JP2007207577A JP2007207577A (en) 2007-08-16
JP4638825B2 true JP4638825B2 (en) 2011-02-23

Family

ID=38486847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025036A Expired - Fee Related JP4638825B2 (en) 2006-02-01 2006-02-01 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry

Country Status (1)

Country Link
JP (1) JP4638825B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900297A (en) * 2014-03-07 2015-09-09 湖南利德电子浆料股份有限公司 Copper conductive slurry for radio frequency identification (RFID) tag and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5461796B2 (en) * 2008-07-07 2014-04-02 株式会社日本触媒 Method for producing metal nanoparticle dispersion excellent in film formability and metal coating
CN102802846B (en) * 2010-03-15 2017-05-24 同和电子科技有限公司 Bonding material and bonding method using same
JP6153077B2 (en) * 2013-02-28 2017-06-28 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
DE102013208387A1 (en) * 2013-05-07 2014-11-13 Robert Bosch Gmbh Silver composite sintered pastes for low temperature sintered joints
JP6153076B2 (en) * 2013-05-22 2017-06-28 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP6132716B2 (en) * 2013-09-10 2017-05-24 株式会社東芝 Metal particle paste, cured product using the same, and semiconductor device
US11217554B2 (en) * 2017-06-12 2022-01-04 Ormet Circuits, Inc. Metallic adhesive compositions having good work lives and thermal conductivity, methods of making same and uses thereof
JP6952101B2 (en) * 2019-12-27 2021-10-20 花王株式会社 Ink containing fine metal particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005054A (en) * 2003-06-10 2005-01-06 Asahi Kasei Corp Conductive paste
JP2005235533A (en) * 2004-02-19 2005-09-02 Sumitomo Electric Ind Ltd Metal particle dispersion liquid and circuit forming method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005054A (en) * 2003-06-10 2005-01-06 Asahi Kasei Corp Conductive paste
JP2005235533A (en) * 2004-02-19 2005-09-02 Sumitomo Electric Ind Ltd Metal particle dispersion liquid and circuit forming method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900297A (en) * 2014-03-07 2015-09-09 湖南利德电子浆料股份有限公司 Copper conductive slurry for radio frequency identification (RFID) tag and preparation method thereof

Also Published As

Publication number Publication date
JP2007207577A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4638825B2 (en) Multi-component metal particle slurry and conductive ink or conductive paste using the slurry
CN107848077B (en) Composition containing metal particles
JP4978844B2 (en) Copper fine particle dispersion and method for producing the same
JP5937730B2 (en) Method for producing copper powder
EP1884960B1 (en) Conductive paste and wiring board using it
KR101375488B1 (en) Fine particle dispersion and method for producing fine particle dispersion
WO2014080662A1 (en) Copper powder and method for producing same
JPWO2002035554A1 (en) Conductive metal paste and method for producing the same
CN111906321B (en) Metal nanoparticle dispersion liquid for solder paste, method for producing same, and solder paste and method for producing same
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
US20170306170A1 (en) Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof
JP2011006740A (en) Copper powder for conductive paste, and conductive paste
WO2016002741A1 (en) Nickel particle composition, bonding material, and bonding method in which said material is used
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
KR20130101980A (en) Copper powder for electrically conductive paste, and electrically conductive paste
KR20130079315A (en) Copper powder for conductive paste, and conductive paste
EP2078762B1 (en) Nickel-rhenium alloy powder and conductor paste containing the nickel-rhenium alloy powder
KR102078328B1 (en) Lead free solder composition and manufacturing method of the same, manufacturing method of piezoelectric element using lead free solder composition
US11801556B2 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
JP2011006739A (en) Copper powder for conductive paste, and conductive paste
JP4774750B2 (en) Conductive paste and wiring board using the same
JP2022049054A (en) Method of making electric conductor, metal paste and electric conductor
CN117813171A (en) Metal ink, method for producing metal ink, and method for producing metal layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4638825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees