JP6153077B2 - Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same - Google Patents

Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same Download PDF

Info

Publication number
JP6153077B2
JP6153077B2 JP2013177821A JP2013177821A JP6153077B2 JP 6153077 B2 JP6153077 B2 JP 6153077B2 JP 2013177821 A JP2013177821 A JP 2013177821A JP 2013177821 A JP2013177821 A JP 2013177821A JP 6153077 B2 JP6153077 B2 JP 6153077B2
Authority
JP
Japan
Prior art keywords
nanoparticles
bonding
layer
metal
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013177821A
Other languages
Japanese (ja)
Other versions
JP2015004122A (en
Inventor
敏孝 石崎
敏孝 石崎
亮太 渡邉
亮太 渡邉
明渡 邦夫
邦夫 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2013177821A priority Critical patent/JP6153077B2/en
Publication of JP2015004122A publication Critical patent/JP2015004122A/en
Application granted granted Critical
Publication of JP6153077B2 publication Critical patent/JP6153077B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/2949Coating material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83048Thermal treatments, e.g. annealing, controlled pre-heating or pre-cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Die Bonding (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、Cuナノ粒子を含有する金属ナノ粒子ペースト、それを含有する接合材料、および前記接合材料を用いた半導体装置に関する。   The present invention relates to a metal nanoparticle paste containing Cu nanoparticles, a bonding material containing the same, and a semiconductor device using the bonding material.

半導体素子の電極接合などにおいては、従来、Sn−Pb系はんだが用いられていたが、近年、環境保全の観点から、鉛フリーはんだといった新規な接合材料が求められている。また、半導体素子の接合技術においては、半導体素子への負荷を低減するために、低温での接合や無加圧での接合が可能な材料が求められている。   Conventionally, Sn—Pb-based solder has been used for electrode bonding of semiconductor elements, but recently, a new bonding material such as lead-free solder has been demanded from the viewpoint of environmental protection. Also, in semiconductor element bonding technology, materials that can be bonded at a low temperature or without pressure are required to reduce the load on the semiconductor element.

Ag、Cuなどの金属ナノ粒子は、粒径が、例えば1000nm以下のようにナノメートルサイズまで小さくなると、その融点よりはるかに低い温度(焼結温度200℃以下)で焼結させることが可能となるため、半導体素子の低温接合などへの応用が期待されている。   Metal nanoparticles such as Ag and Cu can be sintered at a temperature much lower than their melting point (sintering temperature 200 ° C. or less) when the particle size is reduced to a nanometer size such as 1000 nm or less. Therefore, application to low-temperature bonding of semiconductor elements is expected.

しかしながら、このような金属ナノ粒子は、表面が高活性であり、凝集しやすいため、通常、界面活性剤やポリマーなどで被覆して分散安定性を確保している。このため、このような金属ナノ粒子を用いて半導体素子の接合を行う際に加熱処理を施すと、金属ナノ粒子が焼結するとともに界面活性剤やポリマーなどの被膜が分解され、ガスが発生し、金属ナノ粒子間に空隙(ボイド)が生じる。その結果、無加圧や低温では焼結組織が密にならず、十分に高い接合強度が得られなかった。   However, such metal nanoparticles have a highly active surface and are likely to aggregate, so that they are usually coated with a surfactant or a polymer to ensure dispersion stability. For this reason, when heat treatment is performed when joining semiconductor elements using such metal nanoparticles, the metal nanoparticles are sintered and the coating of surfactant, polymer, etc. is decomposed and gas is generated. , Voids are generated between the metal nanoparticles. As a result, the sintered structure did not become dense at no pressure or low temperature, and a sufficiently high bonding strength could not be obtained.

11th Symposium on ”Microjoining and Assembly Technology in Electronics”、2005年2月3〜4日、229〜232頁(非特許文献1)には、平均粒子径が10μmまたは30μmのCu粉10〜50質量%と平均粒子径が10μmまたは25μmのSn粉90〜50質量%とを含有する複合ペーストが開示されている。しかしながら、このような平均粒子径が10μm以上のマイクロメートルサイズの粉末を含有する複合ペーストを用いて半導体装置の低温接合を行うと、十分に高い接合強度が得られなかった。   11th Symposium on “Microjoining and Assembly Technology in Electronics”, February 3-4, 2005, pp. 229-232 (Non-Patent Document 1) includes 10-50 mass% Cu powder with an average particle size of 10 μm or 30 μm. A composite paste containing Sn powder of 90 to 50% by mass with an average particle size of 10 μm or 25 μm is disclosed. However, when a low temperature bonding of a semiconductor device is performed using a composite paste containing a micrometer-sized powder having an average particle diameter of 10 μm or more, a sufficiently high bonding strength cannot be obtained.

また、特開2012−46779号公報(特許文献1)には、炭素数8以上の脂肪酸と脂肪族アミンとを含有する有機被膜を表面に備える金属ナノ粒子が開示されており、前記有機被膜が低温で熱分解されることも記載されている。   Japanese Patent Laid-Open No. 2012-46779 (Patent Document 1) discloses metal nanoparticles having an organic coating containing a fatty acid having 8 or more carbon atoms and an aliphatic amine on the surface. It is also described that it is pyrolyzed at low temperatures.

一方、金属ナノ粒子を用いた半導体素子の実装技術においては、従来、半導体素子と基板との接合を加圧下で行なっていたが、チップの破壊による歩留まりの低下や生産工程の追加によるコストアップといった問題があり、無加圧接合による実装技術の開発が強く求められていた。   On the other hand, in the semiconductor device mounting technology using metal nanoparticles, conventionally, the bonding between the semiconductor device and the substrate has been performed under pressure, but the yield is reduced due to chip destruction and the cost is increased due to the addition of production processes. There was a problem, and there was a strong demand for the development of mounting technology by pressureless bonding.

特開2012−46779号公報JP 2012-46779 A

池田靖ら、「Cu粉/Sn粉複合ペーストを用いた接続の検討」、11th Symposium on ”Microjoining and Assembly Technology in Electronics”、2005年2月3〜4日、229〜232頁Ikeda, et al., “Examination of connection using Cu powder / Sn powder composite paste”, 11th Symposium on “Microjoining and Assembly Technology in Electronics”, February 3-4, 2005, pages 229-232

しかしながら、特許文献1に記載の表面被覆Cuナノ粒子を用いると、低温での焼結は可能であるが、接合層内部でのボイドは必ずしも十分に抑制されておらず、接合強度は必ずしも十分に高いものではなかった。   However, when the surface-coated Cu nanoparticles described in Patent Document 1 are used, sintering at a low temperature is possible, but voids in the bonding layer are not necessarily sufficiently suppressed, and the bonding strength is not always sufficient. It was not expensive.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、接合強度が高い接合層を低温(具体的には400℃以下)で形成することが可能な金属ナノ粒子ペーストを提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and provides the metal nanoparticle paste which can form a joining layer with high joining strength at low temperature (specifically 400 degrees C or less). For the purpose.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、Cuナノ粒子とSnナノ粒子とを特定の割合で含有する金属ナノ粒子ペーストを用いることによって、接合強度が高い接合層を低温(具体的には400℃以下)で形成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a bonding layer having high bonding strength by using a metal nanoparticle paste containing Cu nanoparticles and Sn nanoparticles in a specific ratio. It has been found that it can be formed at a low temperature (specifically, 400 ° C. or lower), and the present invention has been completed.

すなわち、本発明の金属ナノ粒子ペーストは、全金属ナノ粒子に対して、Cuナノ粒子を9785質量%且つSnナノ粒子を15質量%含有することを特徴とするものである。このような金属ナノ粒子ペーストにおいて、直径が1〜1000nmの範囲にある金属ナノ粒子が、個数基準で全金属粒子の99%以上であることが好ましい。本発明の接合材料はこのような本発明の金属ナノ粒子ペーストを含有するものである。 That is, the metal nanoparticle paste of the present invention is characterized by containing 97 to 85 % by mass of Cu nanoparticles and 3 to 15 % by mass of Sn nanoparticles with respect to all metal nanoparticles. In such a metal nanoparticle paste, the metal nanoparticles having a diameter in the range of 1 to 1000 nm are preferably 99% or more of the total metal particles on a number basis. The bonding material of the present invention contains such a metal nanoparticle paste of the present invention.

本発明の半導体装置は、半導体素子、基板、および前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が前記本発明の接合材料により形成されたCuとSnとの混合物層であることを特徴とするものである。   The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer for bonding the semiconductor element and the substrate, and the bonding layer is a mixture of Cu and Sn formed of the bonding material of the present invention. It is characterized by being a layer.

このような本発明の半導体装置において、前記混合物層は平均粒子径1〜1000nmの金属ナノ粒子により形成されていることが好ましい。また、前記混合物層にはCuSn金属間化合物が含まれていることが好ましく、前記CuSn金属間化合物としてはCuSnおよびCuSnのうちの少なくとも一方であることが好ましい。 In such a semiconductor device of the present invention, the mixture layer is preferably formed of metal nanoparticles having an average particle diameter of 1 to 1000 nm. The mixture layer preferably includes a CuSn intermetallic compound, and the CuSn intermetallic compound is preferably at least one of Cu 3 Sn and Cu 6 Sn 5 .

さらに、本発明の半導体装置においては、前記接合層の両面にNi、CoおよびAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることが好ましい。 Furthermore, in the semiconductor device of the present invention, an adhesive layer made of at least one metal selected from the group consisting of Ni, Co, and Ag is further provided on both surfaces of the bonding layer, and one adhesive layer is the semiconductor layer. It is preferable that it is disposed so as to be in contact with the joint portion of the element, and the other adhesion layer is disposed so as to be in contact with the joint portion of the substrate.

なお、本発明の金属ナノ粒子ペーストによって接合強度が高い接合層を低温で形成することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、本発明の金属ナノ粒子ペーストは融点が232℃のSnナノ粒子を含んでいるため、400℃以下の温度で溶融したSnが、Cuナノ粒子間に浸透することによってボイドが埋められ、焼結密度が向上し、接合層の接合強度が高くなると推察される。また、Cuナノ粒子とSnナノ粒子は、活性な表面原子同士が低温、短時間で反応しやすく、CuSn金属間化合物が形成されやすい。このため、Cuナノ粒子間に浸透したSnナノ粒子は、その界面近傍で、CuSnやCuSnといった安定で高耐熱性のCuSn金属間化合物を形成しやすく、強固で高強度の接合層が形成されると推察される。さらに、Snナノ粒子の還元効果によりCuナノ粒子表面の酸化物層が還元されやすいため、Cuナノ粒子が焼結しやすく、焼結密度が向上し、接合強度が高い接合層が形成されると推察される。 The reason why the metal nanoparticle paste of the present invention makes it possible to form a bonding layer having high bonding strength at a low temperature is not necessarily clear, but the present inventors speculate as follows. That is, since the metal nanoparticle paste of the present invention contains Sn nanoparticles with a melting point of 232 ° C., Sn melted at a temperature of 400 ° C. or less penetrates between the Cu nanoparticles, filling the voids, and firing. It is presumed that the consolidation density is improved and the bonding strength of the bonding layer is increased. In addition, Cu surface nanoparticles and Sn nanoparticles easily react with each other at a low temperature in a short time, and CuSn intermetallic compounds are easily formed. For this reason, Sn nanoparticles that have penetrated between Cu nanoparticles easily form stable and high heat-resistant CuSn intermetallic compounds such as Cu 3 Sn and Cu 6 Sn 5 in the vicinity of the interface, and are strong and high-strength bonded. It is inferred that a layer is formed. Furthermore, since the oxide layer on the surface of the Cu nanoparticles is easily reduced due to the reduction effect of the Sn nanoparticles, the Cu nanoparticles are easily sintered, the sintering density is improved, and a bonding layer having high bonding strength is formed. Inferred.

一方、マイクロメートルサイズのSn粒子を用いると、Cu粒子間にSn粒子が浸透せず、Cu粒子間のボイドが十分に埋まらないため、十分な接合強度が得られないと推察される。また、マイクロメートルサイズのCu粒子やSn粒子は、表面の活性が高いものではないため、低温では焼結しにくく、また、CuSn金属間化合物が形成されにくく、接合強度が十分に高くならないと推察される。   On the other hand, when Sn particles having a micrometer size are used, the Sn particles do not permeate between the Cu particles, and the voids between the Cu particles are not sufficiently filled. Therefore, it is assumed that sufficient bonding strength cannot be obtained. In addition, Cu particles and Sn particles of micrometer size are not highly active on the surface, so it is difficult to sinter at low temperatures, CuSn intermetallic compounds are not easily formed, and it is assumed that the bonding strength is not sufficiently high. Is done.

また、有機被膜を表面に備えるCuナノ粒子のみを用いて比較的低温での熱処理や無加圧での熱処理により接合層を形成すると、有機被膜の分解時に生成するガスやCuナノ粒子同士の点での結合状態(リンキング状態)によりボイドが形成しやすく、焼結密度が低い組織構造が形成されると推察される。このため、有機被膜を表面に備えるCuナノ粒子のみを用いた場合には、接合強度は低下すると推察される。   In addition, when the bonding layer is formed by heat treatment at a relatively low temperature or heat treatment without pressure using only Cu nanoparticles having an organic coating on the surface, gas generated during decomposition of the organic coating or points between Cu nanoparticles It is presumed that voids are easy to be formed due to the bonding state (linking state) in, and a structure having a low sintered density is formed. For this reason, it is speculated that the bonding strength decreases when only Cu nanoparticles having an organic coating on the surface are used.

本発明によれば、接合強度が高い接合層を低温(具体的には400℃以下)で形成することが可能な金属ナノ粒子ペーストを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the metal nanoparticle paste which can form a joining layer with high joining strength at low temperature (specifically 400 degrees C or less).

本発明の半導体装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 実施例で作製したせん断強度測定用接合体を示す模式図である。It is a schematic diagram which shows the joined body for shear strength measurement produced in the Example. 実施例1−2で作製した接合層の上側の密着層付近のXRDスペクトルを示すグラフである。It is a graph which shows the XRD spectrum of the adhesion layer upper part vicinity of the joining layer produced in Example 1-2 . 比較例1−2で作製した接合層の上側の密着層付近のXRDスペクトルを示すグラフである。It is a graph which shows the XRD spectrum of the adhesion layer vicinity of the upper side of the joining layer produced in Comparative Example 1-2 . 実施例1−2で作製した接合層の上側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the adhesion layer vicinity of the upper side of the joining layer produced in Example 1-2 . 実施例1−2で作製した接合層の下側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the adhesion layer vicinity of the lower side of the joining layer produced in Example 1-2 . 実施例2−1で作製した接合層の上側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the adhesion layer vicinity of the upper side of the joining layer produced in Example 2-1 . 実施例2−1で作製した接合層の下側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the adhesion layer vicinity of the lower side of the joining layer produced in Example 2-1 . 比較例2−2で作製した接合層の上側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph near the adhesion layer on the upper side of the bonding layer produced in Comparative Example 2-2 . 比較例2−2で作製した接合層の下側の密着層付近の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the adhesive layer vicinity of the lower side of the joining layer produced in Comparative Example 2-2 .

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の金属ナノ粒子ペーストおよびそれを含有する本発明の接合材料について説明する。本発明の金属ナノ粒子ペーストは、Cuナノ粒子とSnナノ粒子とを所定の割合で含有するものである。本発明の金属ナノ粒子ペーストは、低温(具体的には400℃以下)での熱処理により焼結し、接合強度が高い接合層を形成することができる。また、本発明の金属ナノ粒子ペーストを用いると、熱処理時に無加圧でも、接合強度が高い接合層を形成することができる。   First, the metal nanoparticle paste of the present invention and the bonding material of the present invention containing the same will be described. The metal nanoparticle paste of the present invention contains Cu nanoparticles and Sn nanoparticles at a predetermined ratio. The metal nanoparticle paste of the present invention can be sintered by heat treatment at a low temperature (specifically, 400 ° C. or lower) to form a bonding layer having high bonding strength. In addition, when the metal nanoparticle paste of the present invention is used, a bonding layer having high bonding strength can be formed even without pressure during heat treatment.

(Cuナノ粒子)
本発明においては、直径が1〜1000nmの範囲にあるCu粒子を「Cuナノ粒子」という。Cu粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全Cu粒子に対するCuナノ粒子の割合およびCu粒子(Cuナノ粒子を含む)の平均粒子径を、前記TEM観察において、無作為に200個のCu粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Cu nanoparticles)
In the present invention, Cu particles having a diameter in the range of 1 to 1000 nm are referred to as “Cu nanoparticles”. The diameter of Cu particles can be measured by transmission electron microscope (TEM) observation. In the present invention, the ratio of Cu nanoparticles to the total Cu particles shown below and the average of Cu particles (including Cu nanoparticles) are as follows. The particle diameter is a value obtained by randomly extracting 200 Cu particles and measuring their diameters in the TEM observation.

本発明の金属ナノ粒子ペーストにおいては、このようなCuナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全Cu粒子の99%以上であることが好ましく、全てのCu粒子が前記Cuナノ粒子であることが特に好ましい。Cuナノ粒子の割合が前記下限未満になると、Cu粒子の焼結温度が高くなるため、低温(具体的には400℃以下)での加熱によるCu粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   In the metal nanoparticle paste of the present invention, such Cu nanoparticles (those having a diameter in the range of 1 to 1000 nm) are preferably 99% or more of all Cu particles on a number basis, and all Cu particles are The Cu nanoparticles are particularly preferable. When the ratio of Cu nanoparticles is less than the lower limit, the sintering temperature of Cu particles becomes high, so that bonding of Cu particles due to heating at a low temperature (specifically, 400 ° C. or less) hardly occurs. The strength tends to decrease.

また、本発明の金属ナノ粒子ペーストに含まれるCu粒子(Cuナノ粒子を含む)の平均粒子径としては、10〜1000nmが好ましく、30〜500nmがより好ましく、50〜250nmが特に好ましい。Cu粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、Cuナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子ペースト中でCuナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、Cuナノ粒子を不活性ガスまたは還元性ガス雰囲気下で取り扱えば、Cuナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満のCuナノ粒子も本発明の金属ナノ粒子ペーストに使用することが可能である。また、有機被膜を備えるCuナノ粒子を使用する場合には、有機被膜の割合がCuナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、Cu粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、Cu粒子の焼結温度が高くなり、低温(具体的には400℃以下)での加熱によるCu粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   Moreover, as an average particle diameter of Cu particle | grains (a Cu nanoparticle is included) contained in the metal nanoparticle paste of this invention, 10-1000 nm is preferable, 30-500 nm is more preferable, 50-250 nm is especially preferable. When the average particle diameter of the Cu particles is less than the lower limit, the surface ratio to the bulk is increased, so that the surface of the Cu nanoparticles is easily oxidized in the atmosphere. As a result, the Cu nanoparticles are aggregated in the metal nanoparticle paste. Or the oxidation component cannot be sufficiently removed by heat treatment at the time of bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be deteriorated. However, if the Cu nanoparticles are handled in an inert gas or reducing gas atmosphere, the surface of the Cu nanoparticles is less likely to be oxidized, and the above problems are less likely to occur. Therefore, Cu nanoparticles having an average particle diameter of less than the lower limit are also included. It can be used for the metal nanoparticle paste of the present invention. In addition, when using Cu nanoparticles with an organic coating, the organic coating remains higher than the Cu nanoparticles in proportion to the organic coating. There is a tendency that characteristics of the bonding material such as conductivity, thermal conductivity and the like are deteriorated. On the other hand, if the average particle diameter of the Cu particles exceeds the upper limit, the particle size effect is small, so the sintering temperature of the Cu particles increases, and the Cu particles are heated by heating at a low temperature (specifically, 400 ° C. or less). Bonding is difficult to occur, and as a result, the bonding strength tends to decrease.

このようなCuナノ粒子としては、例えば、Cuナノ粒子と、このCuナノ粒子の表面に配置された、脂肪酸および脂肪族アミンを含有する有機被膜とを備える表面被覆Cuナノ粒子が挙げられる。前記有機被膜は低温(具体的には400℃以下)で熱分解させることができるものである。この表面被覆Cuナノ粒子は、特開2012−46779号公報に記載された方法に準じて製造することができる。すなわち、アルコール系溶媒中、脂肪酸および脂肪族アミンの共存下で、前記アルコール系溶媒に不溶なCu塩を還元せしめることによってCuナノ粒子を形成させ、且つ、このCuナノ粒子の表面に前記脂肪酸および脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆Cuナノ粒子を製造することができる。ここで、Cu塩としては炭酸銅、水酸化銅が挙げられる。また、脂肪酸としてはオクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの飽和脂肪酸やオレイン酸などの不飽和脂肪酸が挙げられ、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪酸および脂肪族アミンの炭化水素鎖の炭素数を変更することによってCuナノ粒子の粒子径を調整することができる。   Examples of such Cu nanoparticles include surface-coated Cu nanoparticles including Cu nanoparticles and an organic coating containing a fatty acid and an aliphatic amine disposed on the surface of the Cu nanoparticles. The organic coating can be thermally decomposed at a low temperature (specifically, 400 ° C. or lower). The surface-coated Cu nanoparticles can be produced according to the method described in JP 2012-46779 A. That is, Cu nanoparticles are formed by reducing a Cu salt that is insoluble in the alcohol solvent in the presence of a fatty acid and an aliphatic amine in the alcohol solvent, and the fatty acid and the surface of the Cu nanoparticles are formed. The surface-coated Cu nanoparticles can be produced by forming an organic coating containing an aliphatic amine. Here, examples of the Cu salt include copper carbonate and copper hydroxide. Examples of fatty acids include saturated fatty acids such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and unsaturated fatty acids such as oleic acid. Aliphatic amines include octylamine, decylamine and dodecylamine. , Saturated aliphatic amines such as myristylamine, palmitylamine, stearylamine, and unsaturated aliphatic amines such as oleylamine, and by changing the number of carbons in the hydrocarbon chain of fatty acids and aliphatic amines, The particle size can be adjusted.

また、本発明においては、(株)テックサイエンス製の銅ナノ粒子粉末などの市販のCuナノ粒子を使用することもできる。さらに、溶媒中に分散されたCuナノ粒子を使用することもできる。このようなCuナノ粒子分散液としては、(株)イオックス製「Cu60−BtTP」、立山科学工業(株)製の銅ナノ粒子分散液、大研化学工業(株)製「NCU−09」、ハリマ化成グループ(株)製の銅ナノ粒子分散液などの市販品が挙げられる。   In the present invention, commercially available Cu nanoparticles such as a copper nanoparticle powder manufactured by Tech Science Co., Ltd. can also be used. Furthermore, Cu nanoparticles dispersed in a solvent can also be used. As such a Cu nanoparticle dispersion, "Cu60-BtTP" manufactured by IOX Co., Ltd., a copper nanoparticle dispersion manufactured by Tateyama Scientific Industry Co., Ltd., "NCU-09" manufactured by Daiken Chemical Industry Co., Ltd., Commercial products such as copper nanoparticle dispersions manufactured by Harima Chemical Group Co., Ltd. may be mentioned.

(Snナノ粒子)
本発明においては、直径が1〜1000nmの範囲にあるSn粒子を「Snナノ粒子」という。Sn粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、以下に示す全Sn粒子に対するSnナノ粒子の割合およびSn粒子(Snナノ粒子を含む)の平均粒子径は、前記TEM観察において、無作為に200個のSn粒子を抽出し、これらの直径を測定することによって求められる値とする。
(Sn nanoparticles)
In the present invention, Sn particles having a diameter in the range of 1 to 1000 nm are referred to as “Sn nanoparticles”. The diameter of the Sn particles can be measured by transmission electron microscope (TEM) observation. In the present invention, the ratio of Sn nanoparticles to the total Sn particles shown below and the average of Sn particles (including Sn nanoparticles) The particle diameter is a value obtained by randomly extracting 200 Sn particles and measuring these diameters in the TEM observation.

本発明の金属ナノ粒子ペーストにおいては、このようなSnナノ粒子(直径が1〜1000nmの範囲にあるもの)が個数基準で全Sn粒子の99%以上であることが好ましく、全てのSn粒子が前記Snナノ粒子であることが特に好ましい。Snナノ粒子の割合が前記下限未満になると、Cuナノ粒子間に入り込むSnナノ粒子の量が少なくなり、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が十分に向上しない傾向にある。   In the metal nanoparticle paste of the present invention, such Sn nanoparticles (thickness in the range of 1 to 1000 nm) are preferably 99% or more of all Sn particles on a number basis, and all Sn particles The Sn nanoparticles are particularly preferable. When the ratio of the Sn nanoparticles is less than the lower limit, the amount of Sn nanoparticles entering between the Cu nanoparticles decreases, and voids between the Cu nanoparticles are not sufficiently filled, so voids are generated, and the bonding strength is sufficient. There is a tendency not to improve.

また、本発明の金属ナノ粒子ペーストに含まれるSn粒子(Snナノ粒子を含む)の平均粒子径としては、5〜1000nmが好ましく、10〜500nmがより好ましく、20〜250nmが特に好ましい。Sn粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、Snナノ粒子の表面が大気中で酸化されやすく、その結果、金属ナノ粒子ペースト中でSnナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、Snナノ粒子を不活性ガスまたは還元性ガス雰囲気下で取り扱えば、Snナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満のSnナノ粒子も本発明の金属ナノ粒子ペーストに使用することが可能である。また、有機被膜を備えるSnナノ粒子を使用する場合には、有機被膜の割合がSnナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、Sn粒子の平均粒子径が前記上限を超えると、Cuナノ粒子間にSnナノ粒子が入り込めず、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が十分に向上しない傾向にある。   Moreover, as an average particle diameter of Sn particle | grains (a Sn nanoparticle is included) contained in the metal nanoparticle paste of this invention, 5-1000 nm is preferable, 10-500 nm is more preferable, 20-250 nm is especially preferable. When the average particle diameter of the Sn particles is less than the lower limit, the surface ratio to the bulk increases, so that the surface of the Sn nanoparticles is likely to be oxidized in the atmosphere. As a result, the Ag nanoparticles aggregate in the metal nanoparticle paste. Or the oxidation component cannot be sufficiently removed by heat treatment at the time of bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be deteriorated. However, if the Sn nanoparticles are handled in an inert gas or reducing gas atmosphere, the surface of the Sn nanoparticles is less likely to be oxidized and the above problems are less likely to occur. It can be used for the metal nanoparticle paste of the present invention. In addition, when using Sn nanoparticles with an organic coating, since the proportion of the organic coating is larger than that of Sn nanoparticles, the organic coating remains without being sufficiently decomposed by the heat treatment during bonding, and the bonding strength There is a tendency that characteristics of the bonding material such as conductivity, thermal conductivity and the like are deteriorated. On the other hand, when the average particle diameter of the Sn particles exceeds the upper limit, Sn nanoparticles cannot enter between the Cu nanoparticles, and voids between the Cu nanoparticles are not sufficiently filled, so voids are generated and the bonding strength is sufficient. It does not tend to improve.

このようなSnナノ粒子としては、例えば、Snナノ粒子と、このSnナノ粒子の表面に配置された、脂肪族アミンを含有する有機被膜とを備える表面被覆Snナノ粒子が挙げられる。前記有機被膜は低温(具体的には400℃以下)で熱分解させることができるものである。この表面被覆Snナノ粒子は、特願2012−130888号の明細書に記載された方法に準じて製造することができる。すなわち、有機溶媒中、脂肪族アミンと第4級アンモニウムボロハイドライドとの共存下で、Snイオンを還元せしめることによってSnナノ粒子を形成させ、且つ、このSnナノ粒子の表面に前記脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆Snナノ粒子を製造することができる。ここで、Snイオン源としては、有機溶媒に可溶であり、Snイオンを生成するSn化合物であれば特に制限はなく、例えば、塩化スズ、フッ化スズ、臭化スズ、ヨウ化スズ、酢酸スズ、硫酸スズ、硝酸スズ、アセチルアセトナートスズなどが挙げられる。また、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪族アミンの炭化水素鎖の炭素数を変更することによってSnナノ粒子の粒子径を調整することができる。   Examples of such Sn nanoparticles include surface-coated Sn nanoparticles including Sn nanoparticles and an organic coating containing an aliphatic amine disposed on the surface of the Sn nanoparticles. The organic coating can be thermally decomposed at a low temperature (specifically, 400 ° C. or lower). The surface-coated Sn nanoparticles can be produced according to the method described in the specification of Japanese Patent Application No. 2012-130888. That is, Sn nanoparticles are formed by reducing Sn ions in the presence of an aliphatic amine and a quaternary ammonium borohydride in an organic solvent, and the aliphatic amine is formed on the surface of the Sn nanoparticles. The surface-coated Sn nanoparticles can be produced by forming an organic film to be contained. Here, the Sn ion source is not particularly limited as long as it is an Sn compound that is soluble in an organic solvent and generates Sn ions. For example, tin chloride, tin fluoride, tin bromide, tin iodide, acetic acid Examples thereof include tin, tin sulfate, tin nitrate, and acetylacetonatotin. Examples of aliphatic amines include saturated aliphatic amines such as octylamine, decylamine, dodecylamine, myristylamine, palmitylamine, stearylamine, and unsaturated aliphatic amines such as oleylamine. The particle diameter of Sn nanoparticles can be adjusted by changing the number of carbon atoms.

また、本発明においては、日本イオン(株)製のスズナノパウダーなどの市販のSnナノ粒子を使用することもできる。さらに、溶媒中に分散されたSnナノ粒子を使用することもできる。このようなSnナノ粒子分散液としては、立山科学工業(株)製のスズナノ粒子分散液などの市販品が挙げられる。   In the present invention, commercially available Sn nanoparticles such as tin nano powder manufactured by Nippon Ion Co., Ltd. can also be used. Furthermore, Sn nanoparticles dispersed in a solvent can also be used. Examples of such Sn nanoparticle dispersion include commercially available products such as tin nanoparticle dispersion manufactured by Tateyama Science Co., Ltd.

(金属ナノペースト)
本発明の金属ナノペーストは、このようなCuナノ粒子とSnナノ粒子とを所定の割合で含有するものである。本発明の金属ナノペーストにおけるCuナノ粒子とSnナノ粒子の割合は、全金属ナノ粒子に対して、Cuナノ粒子が99.9〜70質量%であり且つSnナノ粒子が0.1〜30質量%ある。Snナノ粒子の含有量が前記下限未満になる(すなわち、Cuナノ粒子の含有量が前記上限を超える)と、Cuナノ粒子間に入り込むSnナノ粒子の量が少なくなり、Cuナノ粒子間の空隙が十分に埋まらないため、ボイドが生成し、接合強度が低下する。また、CuSn金属間化合物も生成しないため、接合強度が低下する。他方、Snナノ粒子の含有量が前記上限を超える(すなわち、Cuナノ粒子の含有量が前記下限未満になる)と、接合強度や導電性、熱伝導性などの接合材料の特性が低下する。また、接合強度がより高くなるという観点から、Cuナノ粒子の含有量が98〜80質量%であり且つSnナノ粒子の含有量が2〜20質量%であることが好ましく、Cuナノ粒子の含有量が97〜85質量%であり且つSnナノ粒子の含有量が3〜15質量%であることがより好ましい。なお、Cuナノ粒子とSnナノ粒子の割合において、これらの合計量は全金属ナノ粒子に対して100質量%である。
(Metal nano paste)
The metal nanopaste of the present invention contains such Cu nanoparticles and Sn nanoparticles at a predetermined ratio. The ratio of Cu nanoparticles and Sn nanoparticles in the metal nanopaste of the present invention is 99.9 to 70% by mass of Cu nanoparticles and 0.1 to 30% by mass of Sn nanoparticles with respect to all metal nanoparticles. %is there. When the content of Sn nanoparticles is less than the lower limit (that is, the content of Cu nanoparticles exceeds the upper limit), the amount of Sn nanoparticles that enter between the Cu nanoparticles decreases, and the voids between the Cu nanoparticles Is not sufficiently filled, voids are generated and the bonding strength is reduced. Moreover, since the CuSn intermetallic compound is not generated, the bonding strength is reduced. On the other hand, when the content of Sn nanoparticles exceeds the upper limit (that is, the content of Cu nanoparticles is less than the lower limit), the properties of the bonding material such as bonding strength, conductivity, and thermal conductivity are deteriorated. Further, from the viewpoint of higher bonding strength, the content of Cu nanoparticles is preferably 98 to 80% by mass and the content of Sn nanoparticles is preferably 2 to 20% by mass, and the inclusion of Cu nanoparticles It is more preferable that the amount is 97 to 85% by mass and the content of Sn nanoparticles is 3 to 15% by mass. In addition, in the ratio of Cu nanoparticle and Sn nanoparticle, these total amount is 100 mass% with respect to all the metal nanoparticles.

また、本発明の金属ナノペーストにおいては、金属ナノ粒子(直径が1〜1000nmの範囲にあるもの、Cuナノ粒子+Snナノ粒子)が個数基準で全金属粒子(Cu粒子+Sn粒子)の99%以上であることが好ましく、全ての金属粒子が前記金属ナノ粒子であることが特に好ましい。金属ナノ粒子の割合が前記下限未満になると、金属粒子の焼結温度が高くなるため、低温(具体的には400℃以下)での加熱による金属粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。   In the metal nanopaste of the present invention, metal nanoparticles (thickness in the range of 1 to 1000 nm, Cu nanoparticles + Sn nanoparticles) are 99% or more of all metal particles (Cu particles + Sn particles) on a number basis. It is preferable that all metal particles are the metal nanoparticles. When the ratio of the metal nanoparticles is less than the lower limit, the sintering temperature of the metal particles becomes high, so that the metal particles are hardly bonded by heating at a low temperature (specifically, 400 ° C. or less). The strength tends to decrease.

このような本発明の金属ナノペーストは、例えば、Cuナノ粒子とSnナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子がペースト状となるように有機溶媒などの溶剤と混合したり、Cuナノ粒子ペーストおよびSnナノ粒子ペーストを調製した後、Cuナノ粒子とSnナノ粒子とが所定の割合となるように、両者を混合したり、Cuナノ粒子分散液とSnナノ粒子分散液とを調製した後、Cuナノ粒子とSnナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子の分散液をペースト状になるまでエバポレータなどを用いて濃縮することによって製造することができる。   Such a metal nanopaste of the present invention includes, for example, an organic solvent such that Cu nanoparticles and Sn nanoparticles are mixed so that a predetermined ratio is obtained, and the resulting mixed nanoparticles become a paste. After mixing with a solvent such as Cu, and preparing Cu nanoparticle paste and Sn nanoparticle paste, both are mixed so that Cu nanoparticles and Sn nanoparticles are in a predetermined ratio, or Cu nanoparticle dispersion liquid And Sn nanoparticle dispersion liquid are prepared, and then both are mixed so that Cu nanoparticles and Sn nanoparticles are in a predetermined ratio, and the resulting dispersion liquid of the mixed nanoparticles is made into an evaporator until a paste is formed. It can manufacture by concentrating using etc.

これらのナノ粒子のペーストや分散液は、Cuナノ粒子およびSnナノ粒子をそれぞれ有機溶媒などの溶剤と混合して調製してもよいし、前述したような市販のナノ粒子のペーストや分散液を使用してもよい。   These nanoparticle pastes and dispersions may be prepared by mixing Cu nanoparticles and Sn nanoparticles with a solvent such as an organic solvent, or commercially available nanoparticle pastes or dispersions as described above. May be used.

本発明の金属ナノペーストに用いられる有機溶媒としては特に制限はないが、例えば、テトラデカンなどの炭素数5〜18のアルカン類;1−ブタノール、デカノール、イソプロピルアルコールなどの炭素数1〜20のモノアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのグリコール類;グリセリンなどのトリオール類;α−テルピネオールなどの環状アルコール類;アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類;テトラヒドロフラン、ジエチルエーテル、ブチルカルビトールなどのエーテル類;酢酸エチル、ブチルカルビトールアセテートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族化合物などが挙げられる。また、本発明の金属ナノペーストには、必要に応じて、セルロース誘導体(例えば、エチルセルロース、ヒドロキシエチルセルロース)やグリセリド(例えば、ヒマシ油)といった粘度調整剤などの添加剤を添加してもよい。   Although there is no restriction | limiting in particular as an organic solvent used for the metal nanopaste of this invention, For example, C5-C18 alkanes, such as tetradecane; C1-C20 things, such as 1-butanol, decanol, and isopropyl alcohol Alcohols; glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; triols such as glycerin; cyclic alcohols such as α-terpineol; ketones such as acetone, methyl ethyl ketone, and diethyl ketone; tetrahydrofuran, diethyl ether And ethers such as butyl carbitol; esters such as ethyl acetate and butyl carbitol acetate; aromatic compounds such as benzene, toluene and xylene. Moreover, you may add additives, such as viscosity modifiers, such as a cellulose derivative (for example, ethyl cellulose, hydroxyethyl cellulose) and a glyceride (for example, castor oil) to the metal nano paste of this invention as needed.

ナノ粒子と溶剤との混合方法としては特に制限はないが、例えば、自転・公転ミキサー、ボールミル、スターラーなどの公知の撹拌装置を用いる方法が挙げられる。   The mixing method of the nanoparticles and the solvent is not particularly limited, and examples thereof include a method using a known stirring device such as a rotation / revolution mixer, a ball mill, or a stirrer.

<半導体装置>
次に、本発明の半導体装置について説明する。本発明の半導体装置は、半導体素子、基板、および前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が本発明の金属ナノペーストを含有する接合材料(以下、「本発明の接合材料」という)により形成されたCuとSnとの混合物層である。また、本発明の半導体装置において、前記混合物層は平均粒子径1〜1000nmの金属ナノ粒子により形成されていることが好ましい。さらに、前記混合物層には、接合強度が高くなるという観点から、CuSn金属間化合物が含まれていることが好ましい。このようなCuSn金属間化合物としては、CuSnおよびCuSnが挙げられ、これらは、いずれか一方が含まれていても両方が含まれていてもよい。また、本発明の半導体装置においては、前記混合物層の両面に、Ni、CoおよびAgのうちの少なくとも1種の金属からなる密着層を更に備えていることが好ましい。この場合、一方の密着層は前記半導体素子の接合部に接するように配置され、他方の密着層は前記基板の接合部に接するように配置されている。
<Semiconductor device>
Next, the semiconductor device of the present invention will be described. The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer that bonds the semiconductor element and the substrate, and the bonding layer includes a bonding material (hereinafter referred to as “book”) containing the metal nanopaste of the present invention. It is a mixture layer of Cu and Sn formed by the “joining material of the invention”. Moreover, the semiconductor device of this invention WHEREIN: It is preferable that the said mixture layer is formed with the metal nanoparticle with an average particle diameter of 1-1000 nm. Furthermore, the CuSn intermetallic compound is preferably contained in the mixture layer from the viewpoint of increasing the bonding strength. Examples of such CuSn intermetallic compounds include Cu 3 Sn and Cu 6 Sn 5 , which may include either one or both. In the semiconductor device of the present invention, it is preferable that an adhesive layer made of at least one of Ni, Co, and Ag is further provided on both surfaces of the mixture layer. In this case, one adhesion layer is disposed so as to contact the bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to contact the bonding portion of the substrate.

本発明の半導体装置を構成する半導体素子としては特に制限はなく、例えば、パワー素子、LSI、抵抗、コンデンサなどが挙げられる。また、基板としては特に制限はなく、例えば、リードフレーム、電極が形成されたセラミック基板、実装基板などが挙げられる。リードフレームとしては、例えば、銅合金リードフレームが挙げられる。また、電極が形成されたセラミックス基板としては、例えば、DBC(Direct Bond Copper:登録商標)基板、活性金属接合(AMC:Active Metal Copper)基板が挙げられる。また、実装基板としては、例えば、電極が形成されたアルミナ基板、低温同時焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)基板、ガラスエポキシ基板などが挙げられる。   There is no restriction | limiting in particular as a semiconductor element which comprises the semiconductor device of this invention, For example, a power element, LSI, resistance, a capacitor | condenser etc. are mentioned. Moreover, there is no restriction | limiting in particular as a board | substrate, For example, a lead frame, the ceramic substrate in which the electrode was formed, a mounting substrate, etc. are mentioned. An example of the lead frame is a copper alloy lead frame. Examples of the ceramic substrate on which the electrode is formed include a DBC (Direct Bond Copper: registered trademark) substrate and an active metal bonded (AMC: Active Metal Copper) substrate. Examples of the mounting substrate include an alumina substrate on which electrodes are formed, a low temperature co-fired ceramics (LTCC) substrate, a glass epoxy substrate, and the like.

以下、図面を参照しながら本発明の半導体装置の好適な実施形態について詳細に説明するが、本発明の半導体装置は前記図面に限定されるものではない。なお、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the semiconductor device of the present invention will be described in detail with reference to the drawings. However, the semiconductor device of the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

図1は、本発明の半導体装置の一実施形態を示す模式図である。この半導体装置は、半導体素子1、上部基板2a、下部基板2b、接合層3aおよび3b、信号端子5、ボンディングワイヤ6、ならびにモールド樹脂7を備えるものである。半導体素子1の上表面には、接合層3aを介して上部基板2aが接合されている。半導体素子1の下表面には、接合層3bを介して下部基板2bが接合されている。また、半導体素子1の上表面の一部と信号素子5とは、ボンディングワイヤ6によって電気的に接続されている。半導体素子1、上部基板2aの一部、下部基板2bの一部、接合層3aおよび3b、信号端子5の一部、ならびにボンディングワイヤ6は、モールド樹脂7に覆われている。また、上部基板2aの突出部2c、下部基板2bの突出部2d、および信号端子5の一部は、モールド樹脂7の外部に突出している。   FIG. 1 is a schematic view showing an embodiment of a semiconductor device of the present invention. This semiconductor device includes a semiconductor element 1, an upper substrate 2a, a lower substrate 2b, bonding layers 3a and 3b, a signal terminal 5, a bonding wire 6, and a molding resin 7. An upper substrate 2a is bonded to the upper surface of the semiconductor element 1 via a bonding layer 3a. A lower substrate 2b is bonded to the lower surface of the semiconductor element 1 through a bonding layer 3b. A part of the upper surface of the semiconductor element 1 and the signal element 5 are electrically connected by a bonding wire 6. The semiconductor element 1, a part of the upper substrate 2 a, a part of the lower substrate 2 b, the bonding layers 3 a and 3 b, a part of the signal terminal 5, and the bonding wire 6 are covered with the mold resin 7. Further, the protruding portion 2 c of the upper substrate 2 a, the protruding portion 2 d of the lower substrate 2 b, and a part of the signal terminal 5 protrude outside the mold resin 7.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の上表面および上部基板2aの下表面のいずれか一方に本発明の接合材料を塗布して接合材料層を形成する。また、半導体素子1の下表面および下部基板2bの上表面のいずれか一方に本発明の接合材料を塗布し接合材料層を形成する。これらの接合材料層の厚さとしては特に制限はないが、生産性や接合抵抗を考慮すると、1〜500μmが好ましく、50〜400μmがより好ましく、100〜300μmが特に好ましい。接合材料の塗布方法としては、例えば、スクリーン印刷法、インクジェット法、ディップ法、フレキソ印刷法などが挙げられる。また、このような塗布は、大気中もしくは不活性ガス雰囲気中で行うことができる。   Such a semiconductor device can be manufactured as follows. That is, first, the bonding material of the present invention is applied to either the upper surface of the semiconductor element 1 or the lower surface of the upper substrate 2a to form a bonding material layer. Also, the bonding material of the present invention is applied to either the lower surface of the semiconductor element 1 or the upper surface of the lower substrate 2b to form a bonding material layer. Although there is no restriction | limiting in particular as thickness of these joining material layers, When productivity and joining resistance are considered, 1-500 micrometers is preferable, 50-400 micrometers is more preferable, 100-300 micrometers is especially preferable. Examples of the method for applying the bonding material include a screen printing method, an ink jet method, a dip method, and a flexographic printing method. Moreover, such application | coating can be performed in air | atmosphere or inert gas atmosphere.

次に、半導体素子1の上表面と上部基板2aの下表面との間に接合材料層が配置されるように、半導体素子1と上部基板2aとを貼り合わせ、また、半導体素子1の下表面と下部基板2bの上表面との間に接合材料層が配置されるように、半導体素子1と下部基板2bとを貼り合わせる。このとき、接合材料層に気泡が入り込まないように、加圧してもよい。また、貼り合わせは真空中で行なってもよいが、本発明の接合材料は大気中でのCuナノ粒子の酸化が抑制されているため、大気中で貼り合わせを行うことができる。   Next, the semiconductor element 1 and the upper substrate 2a are bonded together so that the bonding material layer is disposed between the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together so that the bonding material layer is disposed between the upper surface of the lower substrate 2b. At this time, pressure may be applied so that bubbles do not enter the bonding material layer. The bonding may be performed in a vacuum, but the bonding material of the present invention can be bonded in the air because the oxidation of Cu nanoparticles in the air is suppressed.

このようにして半導体素子1と上部基板2aおよび半導体素子1と下部基板2bとを貼り合わせた接合体に加熱処理を施して接合材料を焼結させ、接合層3aおよび3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aを介して接合され、半導体素子1と下部基板2bとが接合層3bを介して接合される。本発明の接合材料により形成された前記接合層3aおよび3bは、CuとSnとの混合物層であるため、接合強度に優れている。前記接合層3aおよび3bは、Snが含まれていることにより、応力緩和層として作用する傾向にある。これに対して、Cuのみからなる接合層は、高硬度であるため、応力が緩和されず、例えば、冷熱サイクル時に半導体素子が破壊されるという不具合が生じる。   In this way, the bonded body in which the semiconductor element 1 and the upper substrate 2a and the semiconductor element 1 and the lower substrate 2b are bonded together is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b. Since the bonding layers 3a and 3b formed of the bonding material of the present invention are a mixture layer of Cu and Sn, the bonding strength is excellent. Since the bonding layers 3a and 3b contain Sn, they tend to act as stress relaxation layers. On the other hand, since the bonding layer made of only Cu has high hardness, the stress is not relieved, and, for example, there is a problem that the semiconductor element is destroyed during the cooling and heating cycle.

さらに、本発明にかかる接合層においては、CuSn金属間化合物が含まれていることが好ましく、前記CuSn金属間化合物としてはCuSnおよびCuSnのうちの少なくとも一方であることが好ましい。このようなCuSn金属間化合物が含まれることによって、前記接合層の接合強度が向上する傾向にある。また、本発明にかかる接合層においては、焼結時にCuSn金属間化合物が形成されることによって、Cuナノ粒子は完全には焼結されず、本発明の接合材料中での粒子径を維持しながら焼結される傾向にある。その結果、得られる接合層(混合物層)は、平均粒子径1〜1000nm(より好ましくは10〜1000nm)の金属ナノ粒子により形成されたものとなる傾向にある。このような金属ナノ粒子により形成された接合層は、走査型電子顕微鏡観察などにより確認することができる。 Furthermore, the bonding layer according to the present invention preferably contains a CuSn intermetallic compound, and the CuSn intermetallic compound is preferably at least one of Cu 3 Sn and Cu 6 Sn 5 . By including such a CuSn intermetallic compound, the bonding strength of the bonding layer tends to be improved. In the bonding layer according to the present invention, CuSn intermetallic compounds are formed during sintering, so that the Cu nanoparticles are not completely sintered, and the particle diameter in the bonding material of the present invention is maintained. However, it tends to be sintered. As a result, the obtained bonding layer (mixture layer) tends to be formed of metal nanoparticles having an average particle diameter of 1 to 1000 nm (more preferably 10 to 1000 nm). The bonding layer formed of such metal nanoparticles can be confirmed by observation with a scanning electron microscope or the like.

加熱処理の温度としては特に制限はないが、150〜450℃が好ましく、250〜400℃がより好ましい。加熱処理温度が前記下限未満になると、接合材料に含まれていた溶剤が接合層3aおよび3b中に残存しやすく、十分な接合強度が得られない傾向にあり、他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にあり、また、接合層が酸化される場合もある。   Although there is no restriction | limiting in particular as temperature of heat processing, 150-450 degreeC is preferable and 250-400 degreeC is more preferable. When the heat treatment temperature is less than the lower limit, the solvent contained in the bonding material tends to remain in the bonding layers 3a and 3b, and sufficient bonding strength tends not to be obtained. In some cases, the temperature exceeds the heat-resistant temperature of the semiconductor element, the thermal stress increases, the warp or peeling tends to occur, and the bonding layer may be oxidized.

また、このような加熱処理は、不活性ガスまたは還元性ガス雰囲気中で行うことが好ましい。さらに、本発明の接合材料を用いると、無加圧で接合することができるが、加圧しながら接合することによって接合強度が向上する傾向にある。   Such heat treatment is preferably performed in an inert gas or reducing gas atmosphere. Furthermore, when the bonding material of the present invention is used, bonding can be performed without applying pressure, but bonding strength tends to be improved by bonding while applying pressure.

また、本発明の半導体装置においては、図2に示すように、半導体素子1と接合層3aとの間、上部基板2aと接合層3aとの間、半導体素子1と接合層3bとの間、下部基板2bと接合層3aとの間に、Ni、CoおよびAgのうちの少なくとも1種の金属からなる密着層4aおよび4bが配置されていることが好ましい。このような密着層を形成することによって、接合強度がさらに向上する傾向にある。   In the semiconductor device of the present invention, as shown in FIG. 2, between the semiconductor element 1 and the bonding layer 3a, between the upper substrate 2a and the bonding layer 3a, between the semiconductor element 1 and the bonding layer 3b, It is preferable that adhesion layers 4a and 4b made of at least one of Ni, Co, and Ag are disposed between the lower substrate 2b and the bonding layer 3a. By forming such an adhesion layer, the bonding strength tends to be further improved.

このような密着層の厚さについては、1nm以上であれば高い接合強度が得られるため特に制限はないが、半導体装置の生産コストや密着層の電気抵抗などを考慮すると10μm以下が好ましい。また、生産コストをより低減するという観点から200nm以下がより好ましい。   The thickness of such an adhesion layer is not particularly limited because high bonding strength can be obtained if it is 1 nm or more, but it is preferably 10 μm or less in consideration of the production cost of the semiconductor device, the electric resistance of the adhesion layer, and the like. Moreover, 200 nm or less is more preferable from a viewpoint of reducing production cost more.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の両面、上部基板2aの下表面、および下部基板2bの上表面に前記密着層を形成する。密着層の形成方法としては、スパッタ法、メッキ法、塗布法などが挙げられる。   Such a semiconductor device can be manufactured as follows. That is, first, the adhesion layer is formed on both surfaces of the semiconductor element 1, the lower surface of the upper substrate 2a, and the upper surface of the lower substrate 2b. Examples of the method for forming the adhesion layer include a sputtering method, a plating method, and a coating method.

スパッタ法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物を真空チャンバーに挿入し、チャンバー内を減圧する。チャンバー内が真空状態になった後、アルゴンガスを導入し、被塗布物側にRFプラズマを生成して被塗布物表面の不純物の除去を行う。その後、形成する密着層の材料(例えば、Ni、Co、またはAg)のターゲットを用いてRFスパッタ法を行う。これにより、被塗布物表面に密着層を形成することができる。密着層を形成する際の被塗布物の温度としては特に制限はないが、例えば、室温(25℃程度)〜450℃が好ましい。被塗布物の温度が前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   In the case of forming an adhesion layer by sputtering, first, an object to be coated such as a semiconductor element or a substrate is inserted into a vacuum chamber, and the inside of the chamber is decompressed. After the inside of the chamber is in a vacuum state, argon gas is introduced, and RF plasma is generated on the object to be coated to remove impurities on the surface of the object to be coated. Thereafter, RF sputtering is performed using a target of the material of the adhesion layer to be formed (for example, Ni, Co, or Ag). Thereby, an adhesion layer can be formed on the surface of an object to be coated. Although there is no restriction | limiting in particular as a temperature of the to-be-coated object at the time of forming a contact | glue layer, For example, room temperature (about 25 degreeC)-450 degreeC are preferable. If the temperature of the object to be coated exceeds the upper limit, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping or peeling tends to occur.

また、塗布法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物に、大気中もしくは不活性ガス雰囲気中でメタルマスク法、インクジェット法、スピンコート法、ディップ法、スクリーン印刷法などの手法によって、形成する密着層の材料(例えば、Ni、Co、またはAg)を含むペーストまたはインクを塗布する。ペーストやインクとしては、金属粒子と溶剤などを混合して調製したものを使用してもよいし、金属粒子を含む市販のペーストを使用してもよい。ニッケル粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のニッケルナノ粒子分散液、大研化学工業(株)製「MM12−800TO」などが挙げられる。コバルト粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のコバルトナノ粒子分散液などが挙げられる。銀粒子を含む市販のペーストとしては、例えば、住友電気工業(株)製「AGIN−W4A」、ハリマ化成(株)製「NPS−J−HTB」などが挙げられる。このようにペーストを塗布した被塗布物を不活性ガスまたは還元性ガス雰囲気中で加熱処理することにより前記密着層が形成される。なお、不活性ガスまたは還元性ガス雰囲気中での加熱処理の前に酸化雰囲気中で加熱処理を行なってもよい。加熱処理における雰囲気温度としては特に制限はないが、150〜450℃が好ましい。雰囲気温度が前記下限未満になると、ペースト中の有機成分(例えば、有機溶媒、有機修飾剤)の揮発除去が不十分となり、密着層中の有機成分の含有量が多くなる傾向にある。他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   In the case of forming an adhesion layer by a coating method, first, a metal mask method, an ink jet method, a spin coating method, a dip method, an object to be coated such as a semiconductor element or a substrate in the air or an inert gas atmosphere, A paste or ink containing the material (for example, Ni, Co, or Ag) of the adhesion layer to be formed is applied by a method such as a screen printing method. As the paste or ink, a paste prepared by mixing metal particles and a solvent may be used, or a commercially available paste containing metal particles may be used. Examples of commercially available pastes containing nickel particles include nickel nanoparticle dispersions manufactured by Tateyama Kagaku Kogyo Co., Ltd., “MM12-800TO” manufactured by Daiken Chemical Industries, Ltd., and the like. Examples of commercially available pastes containing cobalt particles include cobalt nanoparticle dispersions manufactured by Tateyama Science Co., Ltd. Examples of commercially available pastes containing silver particles include “AGIN-W4A” manufactured by Sumitomo Electric Industries, Ltd. and “NPS-J-HTB” manufactured by Harima Chemical Co., Ltd. The adhesion layer is formed by heat-treating the object to which the paste is applied in this manner in an inert gas or reducing gas atmosphere. Note that heat treatment may be performed in an oxidizing atmosphere before heat treatment in an inert gas or reducing gas atmosphere. Although there is no restriction | limiting in particular as atmospheric temperature in heat processing, 150-450 degreeC is preferable. When the atmospheric temperature is lower than the lower limit, the organic components (for example, organic solvent and organic modifier) in the paste are not sufficiently volatilized and removed, and the content of the organic components in the adhesion layer tends to increase. On the other hand, when the upper limit is exceeded, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping and peeling tend to occur.

次に、このようにして形成した密着層の表面に、図1に示した半導体装置の場合と同様に、本発明の接合材料を用いて接合材料層を形成し、半導体素子1と上部基板2a、半導体素子1と下部基板2bとを貼り合わせ、得られた接合体に加熱処理を施して接合材料を焼結させ、接合層3aおよび3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aおよび密着層4aおよび4bを介して接合され、半導体素子1と下部基板2bとが接合層3bおよび密着層4aおよび4bを介して接合される。このようにNi、CoおよびAgのうちの少なくとも1種の金属からなる密着層を形成することによって、接合強度がさらに向上する傾向にある。   Next, as in the case of the semiconductor device shown in FIG. 1, a bonding material layer is formed on the surface of the adhesion layer thus formed using the bonding material of the present invention, and the semiconductor element 1 and the upper substrate 2a. Then, the semiconductor element 1 and the lower substrate 2b are bonded together, and the obtained bonded body is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a and the adhesion layers 4a and 4b, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b and the adhesion layers 4a and 4b. The Thus, by forming the adhesion layer made of at least one metal of Ni, Co, and Ag, the bonding strength tends to be further improved.

なお、前記密着層を形成することによって、接合強度がさらに向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、Niなどの金属表面に形成されている不働態の酸化物層は薄く、容易に還元されるとともに、Niなどの金属層にはCuナノ粒子表面の酸化物層を還元する作用もある。また、Niなどの金属層は焼結時のCuナノ粒子との濡れ性が非常に大きいため、無加圧でも高い接合強度を有する密着層を形成することができる、と推察される。   The reason why the bonding strength is further improved by forming the adhesion layer is not necessarily clear, but the present inventors infer as follows. That is, the passive oxide layer formed on the metal surface such as Ni is thin and easily reduced, and the metal layer such as Ni also has an action of reducing the oxide layer on the surface of the Cu nanoparticles. In addition, since a metal layer such as Ni has very high wettability with Cu nanoparticles during sintering, it is presumed that an adhesion layer having high bonding strength can be formed even without pressure.

以上、半導体素子を上部電極と下部電極とで挟持する場合(図1および図2)を例に本発明の半導体装置を説明したが、本発明の半導体装置はこれらに限定されるものではなく、例えば、図3および図4に示すように、半導体素子の一方の面のみを接合層を介して基板と接合した半導体装置などが挙げられる。   As described above, the semiconductor device of the present invention has been described by taking the case where the semiconductor element is sandwiched between the upper electrode and the lower electrode (FIGS. 1 and 2) as an example, but the semiconductor device of the present invention is not limited to these. For example, as shown in FIGS. 3 and 4, a semiconductor device in which only one surface of a semiconductor element is bonded to a substrate through a bonding layer can be given.

以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例および比較例で使用した各種金属ナノ粒子は以下の方法により調製した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. Various metal nanoparticles used in Examples and Comparative Examples were prepared by the following method.

(調製例1)
<Cuナノ粒子の調製>
Cuナノ粒子は、特開2012−46779号公報に記載の方法に従って調製した。すなわち、フラスコにエチレングリコール(HO(CHOH)300mlを入れ、これに炭酸銅(CuCO・Cu(OH)・HO)60mmolを添加したところ、炭酸銅はエチレングリコールにほとんど溶解せずに沈殿した。これに、デカン酸(C19COOH)90mmolおよびデシルアミン(C1021NH)30mmolを添加した後、窒素ガスを1L/minで流しながら、エチレングリコールの沸点で1時間加熱還流させたところ、微粒子が生成した。得られた微粒子をヘキサン中に分散させて回収し、アセトンおよびエタノールを順次添加して洗浄した後、遠心分離(3000rpm、20min)により回収し、真空乾燥(35℃、30min)を施した。
(Preparation Example 1)
<Preparation of Cu nanoparticles>
Cu nanoparticles were prepared according to the method described in JP 2012-46779 A. That is, when 300 ml of ethylene glycol (HO (CH 2 ) 2 OH) was put into a flask and 60 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O) was added thereto, the copper carbonate was hardly added to ethylene glycol. It precipitated without dissolving. To this was added 90 mmol of decanoic acid (C 9 H 19 COOH) and 30 mmol of decylamine (C 10 H 21 NH 2 ), and then the mixture was heated to reflux for 1 hour at the boiling point of ethylene glycol while flowing nitrogen gas at 1 L / min. However, fine particles were generated. The obtained fine particles were recovered by dispersing in hexane, washed with acetone and ethanol sequentially added, recovered by centrifugation (3000 rpm, 20 min), and vacuum-dried (35 ° C., 30 min).

得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Cuが主成分であることを確認した。   About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Cu was the main component.

また、得られたCu微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は200nmであった。   In addition, the obtained Cu fine particles are dispersed in toluene, and this dispersion is dispersed in a Cu microgrid (Aken Shoji Co., Ltd.) with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)). The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Cu fine particles were randomly extracted and the diameter thereof was measured. As a result, the Cu nanoparticles having a diameter in the range of 1 to 1000 nm were 100% (number basis) of the total Cu fine particles. Moreover, these average particle diameters were 200 nm.

(調製例2)
<Cu粒子の調製>
デカン酸およびデシルアミンの代わりにヘキサン酸(C11COOH)30mmolおよびヘキシルアミン(C13NH)30mmolを用いた以外は調製例1と同様にしてCu粒子を調製した。得られたCu粒子を走査型電子顕微鏡(SEM、(株)日立製作所製「S−3600N」)を用いた以外は調製例1と同様にして観察したところ、平均粒子径は1.5μmであった。
(Preparation Example 2)
<Preparation of Cu particles>
Cu particles were prepared in the same manner as in Preparation Example 1 except that 30 mmol of hexanoic acid (C 5 H 11 COOH) and 30 mmol of hexylamine (C 6 H 13 NH 2 ) were used instead of decanoic acid and decylamine. When the obtained Cu particles were observed in the same manner as in Preparation Example 1 except that a scanning electron microscope (SEM, “S-3600N” manufactured by Hitachi, Ltd.) was used, the average particle diameter was 1.5 μm. It was.

(調製例3)
<Snナノ粒子の調製>
フラスコにテトラヒドロフラン(THF)120mlを入れ、これに塩化スズ(SnCl)10.8mmol、オレイルアミン(C1835NH)96mmolおよびテトラブチルアンモニウムボロハイドライド(TBABH)21.6mmolを添加した後、窒素ガスを1L/minで流しながら、50℃で3時間撹拌して合成反応を行い、微粒子を含むTHF分散液を得た。
(Preparation Example 3)
<Preparation of Sn nanoparticles>
The flask was charged with 120 ml of tetrahydrofuran (THF), to which 10.8 mmol of tin chloride (SnCl 2 ), 96 mmol of oleylamine (C 18 H 35 NH 2 ) and 21.6 mmol of tetrabutylammonium borohydride (TBABH) were added, and then nitrogen was added. While flowing gas at 1 L / min, the mixture was stirred at 50 ° C. for 3 hours to carry out a synthesis reaction to obtain a THF dispersion containing fine particles.

このTHF分散液に遠心分離(3000rpm、10min)を施し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。   The THF dispersion is subjected to centrifugation (3000 rpm, 10 min), and the resulting precipitate is dispersed in ethanol, and then centrifuged again (3000 rpm, 20 min) to collect fine particles, followed by vacuum drying (35 ° C. , 30 min).

得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Snが主成分であることを確認した。   About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Sn was the main component.

また、得られたSn微粒子をトルエンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のSn微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるSnナノ粒子は全Sn微粒子の100%(個数基準)であった。また、これらの平均粒子径は25nmであった。   In addition, the obtained Sn fine particles were dispersed in toluene, and this dispersion was dispersed into a Cu microgrid (Aken Shoji Co., Ltd.) with an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)). The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Sn fine particles were randomly extracted and the diameter thereof was measured. As a result, the Sn nanoparticles having a diameter in the range of 1 to 1000 nm accounted for 100% of all Sn fine particles (number basis). Moreover, these average particle diameters were 25 nm.

(調製例4)
<Cuナノ粒子の調製>
炭酸銅(CuCO・Cu(OH)・HO)を30mmol、デカン酸およびデシルアミンの代わりにドデカン酸(C1123COOH)30mmolおよびドデシルアミン(C1225NH)30mmolを用いた以外は調製例1と同様にしてCu微粒子を調製した。得られたCu微粒子を調製例1と同様にして観察した。TEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は60nmであった。
(Preparation Example 4)
<Preparation of Cu nanoparticles>
30 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O), 30 mmol of dodecanoic acid (C 11 H 23 COOH) and 30 mmol of dodecylamine (C 12 H 25 NH 2 ) instead of decanoic acid and decylamine Cu fine particles were prepared in the same manner as in Preparation Example 1 except for the above. The obtained Cu fine particles were observed in the same manner as in Preparation Example 1. In TEM observation, 200 Cu fine particles were randomly extracted and the diameters thereof were measured. As a result, Cu nanoparticles in the range of 1 to 1000 nm in diameter were 100% of all Cu fine particles (number basis). Moreover, these average particle diameters were 60 nm.

(調製例5)
<Cuナノ粒子の調製>
炭酸銅(CuCO・Cu(OH)・HO)を30mmol、デカン酸およびデシルアミンの代わりにオクタン酸(C15COOH)30mmolおよびオクチルアミン(C17NH)30mmolを用いた以外は調製例1と同様にしてCu微粒子を調製した。得られたCu微粒子を調製例1と同様にして観察した。TEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、直径1〜1000nmの範囲にあるCuナノ粒子は全Cu微粒子の100%(個数基準)であった。また、これらの平均粒子径は300nmであった。
(Preparation Example 5)
<Preparation of Cu nanoparticles>
30 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O), 30 mmol of octanoic acid (C 7 H 15 COOH) and 30 mmol of octylamine (C 8 H 17 NH 2 ) instead of decanoic acid and decylamine Cu fine particles were prepared in the same manner as in Preparation Example 1 except for the above. The obtained Cu fine particles were observed in the same manner as in Preparation Example 1. In TEM observation, 200 Cu fine particles were randomly extracted and the diameters thereof were measured. As a result, Cu nanoparticles in the range of 1 to 1000 nm in diameter were 100% of all Cu fine particles (number basis). Moreover, these average particle diameters were 300 nm.

比較例1−1
調製例1で調製したCuナノ粒子と調製例3で調製したSnナノ粒子とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して99質量%のCuナノ粒子と1質量%のSnナノ粒子を含有する混合粉末を調製した。この混合粉末1gにデカノール50μlおよびα−テルピネオール50μlを添加し、自転・公転ミキサーにより撹拌して接合材料ペーストを調製した。
( Comparative Example 1-1 )
Cu nanoparticles prepared in Preparation Example 1 and Sn nanoparticles prepared in Preparation Example 3 are ground and mixed in a mortar, and 99% by mass of Cu nanoparticles and 1% by mass of Sn nanoparticles with respect to all metal nanoparticles. A mixed powder containing was prepared. To 1 g of this mixed powder, 50 μl of decanol and 50 μl of α-terpineol were added and stirred by a rotating / revolving mixer to prepare a bonding material paste.

<接合強度測定>
リードフレームや半導体素子などにより構成される半導体装置において、接合層の接合強度を直接測定することは困難である。従って、得られた接合材料により形成される接合層の接合強度は、図5に示すせん断強度測定用接合体を用いて、以下の方法により測定した。
<Bonding strength measurement>
In a semiconductor device composed of a lead frame, a semiconductor element, etc., it is difficult to directly measure the bonding strength of the bonding layer. Therefore, the bonding strength of the bonding layer formed of the obtained bonding material was measured by the following method using the bonded body for measuring shear strength shown in FIG.

先ず、無酸素銅(C1020)からなる試験片8a(直径5mmφ×高さ2mm)の一方の面および無酸素銅(C1020)からなる試験片8b(10mm×22mm×3mm)の一方の面にそれぞれRFスパッタリング法により厚さ40nmのNi密着層10aおよび10bを形成した。   First, on one surface of a test piece 8a (diameter 5 mmφ × height 2 mm) made of oxygen-free copper (C1020) and on one surface of a test piece 8b (10 mm × 22 mm × 3 mm) made of oxygen-free copper (C1020), respectively. Ni adhesion layers 10a and 10b having a thickness of 40 nm were formed by RF sputtering.

次に、試験片8b上のNi密着層10bの表面に、メタルマスク(直径5mmφ×厚さ0.15mm)を用いてスクリーン印刷法により接合材料ペーストを塗布し、接合材料層(直径5mmφ×厚さ150μm)を形成した。この接合材料層と試験片8a上のNi密着層10aとが接するように試験片8aと試験片8bとを貼り合わせ、水素雰囲気中、無加圧の条件下、200℃で10分間予備加熱した後、接合温度400℃で5分間の加熱処理を施し、試験片8aと試験片8bが接合層9により接合された、せん断強度測定用接合体(図5)を作製した。   Next, a bonding material paste is applied to the surface of the Ni adhesion layer 10b on the test piece 8b by a screen printing method using a metal mask (diameter 5 mmφ × thickness 0.15 mm), and the bonding material layer (diameter 5 mmφ × thickness). 150 μm) was formed. The test piece 8a and the test piece 8b were bonded so that the bonding material layer and the Ni adhesion layer 10a on the test piece 8a were in contact with each other, and preheated at 200 ° C. for 10 minutes in a hydrogen atmosphere under no pressure. Then, the heat processing for 5 minutes were performed at the joining temperature of 400 degreeC, and the bonded body for shear strength measurement (FIG. 5) in which the test piece 8a and the test piece 8b were joined by the joining layer 9 was produced.

このようにして3個のせん断強度測定用接合体を作製し、これらのせん断強度を、インストロン型万能試験機(インストロン社製)を用いて、室温(20℃)、剪断速度1mm/分でそれぞれ測定し、これらの平均値を接合材料により形成された接合層の接合強度とした。その結果を表1に示す。 In this way, three joined bodies for measuring shear strength were prepared, and these shear strengths were measured at room temperature (20 ° C.) and shear rate of 1 mm / min using an Instron universal testing machine (Instron). The average value of these values was taken as the bonding strength of the bonding layer formed of the bonding material. The results are shown in Table 1 .

(実施例1−1〜1−2、比較例1−2
Cuナノ粒子およびSnナノ粒子の含有量を表1に示す割合に変更した以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Examples 1-1 to 1-2, Comparative Example 1-2 )
A bonding material paste was prepared in the same manner as in Comparative Example 1-1 except that the contents of Cu nanoparticles and Sn nanoparticles were changed to the ratios shown in Table 1, and further a bonded body for measuring shear strength was prepared and bonded. The bond strength of the layers was determined. The results are shown in Table 1 .

また、実施例1−2で形成した接合層(Sn:10質量%)および比較例1−2で形成した接合層(Sn:30質量%)の上側の密着層10a付近のXRDスペクトルを測定したところ、それぞれ図〜図に示すように、Cuに由来する回折ピークに加えて、CuSnおよびCuSnに由来する回折ピークが観察され、CuSn金属間化合物(CuSnおよびCuSn)が生成していることが確認された。 The bonding layer formed in Example 1-2 (Sn: 10 wt%) and the bonding layer formed in Comparative Example 1-2: The XRD spectrum around the upper contact layer 10a of (Sn 30 wt%) was measured However, as shown in FIGS. 6 to 7 , in addition to the diffraction peaks derived from Cu, diffraction peaks derived from Cu 3 Sn and Cu 6 Sn 5 are observed, and CuSn intermetallic compounds (Cu 3 Sn and Cu) are observed. 6 Sn 5 ) was confirmed to be generated.

さらに、実施例1−2で形成した接合層(Sn:10質量%)の上側の密着層10a付近および下側の密着層10b付近の断面を走査型電子顕微鏡(SEM)により観察したところ、図8Aおよび図8Bに示したように、いずれの部分においても平均粒子径は1000nm以下であることが確認された。これは、前記接合材料ペーストを用いて形成した接合層においては、CuSn金属間化合物が形成したことによってCuナノ粒子が完全には焼結せず(焼結が抑制され)、前記接合材料ペースト中での粒子径を維持しながらCuナノ粒子が焼結したためと考えられる。 Further, the cross section of the bonding layer (Sn: 10% by mass) formed in Example 1-2 near the upper adhesion layer 10a and the lower adhesion layer 10b was observed with a scanning electron microscope (SEM). As shown in FIG. 8A and FIG. 8B , it was confirmed that the average particle diameter was 1000 nm or less in any part. This is because, in the bonding layer formed using the bonding material paste, Cu nanoparticles are not completely sintered (sintering is suppressed) due to the formation of the CuSn intermetallic compound. This is considered to be because the Cu nanoparticles were sintered while maintaining the particle diameter at.

(実施例1−3
調製例1で調製したCuナノ粒子と平均粒子径が1.2μmのCu粉(全Cu粒子に対する直径1〜1000nmの範囲にあるCuナノ粒子の割合(個数基準):20%)とを混合し、Cuナノ粒子を個数基準で99%含有するCu混合粉を調製した。このCu混合粉97質量%と調製例3で調製したSnナノ粒子3質量%とを乳鉢ですりつぶして混合し、Cuナノ粒子とSnナノ粒子とを含有する混合粉末を調製した。この混合粉末1g用いた以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Example 1-3 )
The Cu nanoparticles prepared in Preparation Example 1 were mixed with Cu powder having an average particle diameter of 1.2 μm (the ratio of Cu nanoparticles having a diameter of 1 to 1000 nm with respect to the total Cu particles (number basis): 20%). A Cu mixed powder containing 99% of Cu nanoparticles on a number basis was prepared. 97 mass% of this Cu mixed powder and 3 mass% of Sn nanoparticles prepared in Preparation Example 3 were ground and mixed in a mortar to prepare a mixed powder containing Cu nanoparticles and Sn nanoparticles. A bonding material paste was prepared in the same manner as in Comparative Example 1-1 except that 1 g of this mixed powder was used. Further, a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 1.

(比較例1−3
Snナノ粒子を混合しなかった以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Comparative Example 1-3 )
A bonding material paste was prepared in the same manner as in Comparative Example 1-1 except that the Sn nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 1 .

(比較例1−4〜1−6
Cuナノ粒子およびSnナノ粒子の含有量を表1に示す割合に変更した以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表1に示す。
(Comparative Examples 1-4 to 1-6 )
A bonding material paste was prepared in the same manner as in Comparative Example 1-1 except that the contents of Cu nanoparticles and Sn nanoparticles were changed to the ratios shown in Table 1, and further a bonded body for measuring shear strength was prepared and bonded. The bond strength of the layers was determined. The results are shown in Table 1 .

1に示した結果から明らかなように、全金属ナノ粒子に対して9785質量%のCuナノ粒子と15質量%のSnナノ粒子を含有する接合材料により形成された接合層(実施例1−1〜1−2)の接合強度は、Snナノ粒子を含まない接合材料により形成された接合層(比較例1−3)およびSnナノ粒子の含有量が15質量%を超える接合材料により形成された接合層(比較例1−2、1−4〜1−6)の接合強度に比べて、高くなることが確認された。 As is clear from the results shown in Table 1, a bonding layer formed of a bonding material containing 97 to 85 % by mass of Cu nanoparticles and 3 to 15 % by mass of Sn nanoparticles with respect to all metal nanoparticles ( The bonding strength of Examples 1-1 to 1-2 ) is a bonding layer formed of a bonding material that does not contain Sn nanoparticles (Comparative Example 1-3 ) and a content of Sn nanoparticles exceeding 15 % by mass. It was confirmed that the bonding strength of the bonding layer (Comparative Example 1-2 , 1-4 to 1-6 ) formed of the material was higher.

(比較例1−7
調製例2で調製したCu粒子と調製例3で調製したSnナノ粒子とを乳鉢ですりつぶして混合し、全金属粒子に対して90質量%のCu粒子と10質量%のSnナノ粒子を含有する混合粉末を調製した。この混合粉末0.2gにデカノール20μlおよびα−テルピネオール20μlを添加した以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表2に示す。なお、表2には、実施例1−2の結果も示した。
(Comparative Example 1-7 )
Cu particles prepared in Preparation Example 2 and Sn nanoparticles prepared in Preparation Example 3 are mixed in a mortar and contain 90% by mass Cu particles and 10% by mass Sn nanoparticles with respect to all metal particles. A mixed powder was prepared. A bonding material paste was prepared in the same manner as in Comparative Example 1-1 except that 20 μl of decanol and 20 μl of α-terpineol were added to 0.2 g of this mixed powder. The bonding strength was determined. The results are shown in Table 2. Table 2 also shows the results of Example 1-2 .

(比較例1−8
調製例2で調製したCu粒子の代わりに平均粒子径が24μmのCu粉(福田金属箔粉工業(株)製の電解Cu粉)を用いた以外は比較例1−7と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表2に示す。
(Comparative Example 1-8 )
Joining material in the same manner as Comparative Example 1-7 , except that Cu powder having an average particle size of 24 μm (electrolytic Cu powder manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) was used instead of Cu particles prepared in Preparation Example 2. A paste was prepared, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 2.

表2に示した結果から明らかなように、平均粒子径が1μmを超えるCu粒子を用いた場合(比較例1−7〜1−8)には、Cuナノ粒子を用いた場合(実施例1−2)に比べて接合強度が低くなることが確認された。 As is apparent from the results shown in Table 2, when Cu particles having an average particle diameter exceeding 1 μm are used (Comparative Examples 1-7 to 1-8 ), Cu nanoparticles are used (Example 1). -2 ), it was confirmed that the bonding strength was low.

(実施例2−1、比較例2−1〜2−2
実施例1−2、比較例1−1〜1−2と同様にして接合材料ペーストを調製し、さらに、接合温度を350℃に変更した以外は実施例1−2、比較例1−1〜1−2と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Example 2-1 and Comparative Examples 2-1 to 2-2 )
Example 1-2, in the same manner as in Comparative Example 1-1~1-2 prepare a bonding material paste, further except for changing the junction temperature of 350 ° C. Example 1-2, Comparative Examples 1-1 A bonded body for measuring shear strength was prepared in the same manner as in 1-2, and the bonding strength of the bonding layer was determined. The results are shown in Table 3 .

また、実施例2−1で形成した接合層(Sn:10質量%)および比較例2−2で形成した接合層(Sn:30質量%)のそれぞれの上側の密着層10a付近および下側の密着層10b付近の断面を走査型電子顕微鏡(SEM)により観察したところ、図9A〜図10Bに示したように、いずれの部分においても平均粒子径は1000nm以下であることが確認された。これは、前記接合材料ペーストを用いて形成した接合層においては、CuSn金属間化合物が形成したことによってCuナノ粒子が完全には焼結せず(焼結が抑制され)、前記接合材料ペースト中での粒子径を維持しながらCuナノ粒子が焼結したためと考えられる。 In addition, the bonding layer formed in Example 2-1 (Sn: 10% by mass) and the bonding layer formed in Comparative Example 2-2 (Sn: 30% by mass) in the vicinity of the upper adhesion layer 10a and the lower layer. When the cross section near the adhesion layer 10b was observed with a scanning electron microscope (SEM), as shown in FIGS. 9A to 10B , it was confirmed that the average particle diameter was 1000 nm or less in any part. This is because, in the bonding layer formed using the bonding material paste, Cu nanoparticles are not completely sintered (sintering is suppressed) due to the formation of the CuSn intermetallic compound. This is considered to be because the Cu nanoparticles were sintered while maintaining the particle diameter at.

(比較例2−3〜2−4
比較例1−3および1−4と同様にして接合材料ペーストを調製し、さらに、接合温度を350℃に変更した以外は比較例1−3および1−4と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Comparative Examples 2-3 to 2-4 )
Comparative Examples 1-3 and 1-4 and in the same manner to prepare a bonding material paste, further Similarly shear strength measuring junction and except for changing the junction temperature of 350 ° C. Comparative Examples 1-3 and 1-4 The body was prepared and the bonding strength of the bonding layer was determined. The results are shown in Table 3 .

3に示した結果から明らかなように、接合温度を350℃に変更した場合であっても、接合温度が400℃の場合と同様に、全金属ナノ粒子に対して9785質量%のCuナノ粒子と15質量%のSnナノ粒子を含有する接合材料により形成された接合層(実施例2−1)は、Snナノ粒子を含まない接合材料により形成された接合層(比較例2−3)およびSnナノ粒子の含有量が15質量%を超える接合材料により形成された接合層(比較例2−2、比較例2−4)の接合強度に比べて、高くなることが確認された。 As is apparent from the results shown in Table 3, even when the bonding temperature is changed to 350 ° C., 97 to 85 % by mass with respect to all metal nanoparticles is obtained as in the case where the bonding temperature is 400 ° C. A bonding layer (Example 2-1 ) formed of a bonding material containing Cu nanoparticles and 3 to 15 % by mass of Sn nanoparticles is a bonding layer formed of a bonding material not containing Sn nanoparticles (Comparative Example). 2-3 ) and the content of Sn nanoparticles are confirmed to be higher than the bonding strength of bonding layers (Comparative Examples 2-2 and 2-4 ) formed of a bonding material exceeding 15 % by mass. It was done.

(実施例3−1)
Cuナノ粒子として調製例4で調製したCuナノ粒子を用い、さらに、Cuナノ粒子およびSnナノ粒子の含有量を表4に示す割合に変更した以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、比較例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Example 3-1)
The bonding material was the same as in Comparative Example 1-1 except that the Cu nanoparticles prepared in Preparation Example 4 were used as the Cu nanoparticles, and the contents of Cu nanoparticles and Sn nanoparticles were changed to the ratios shown in Table 4. A paste was prepared, and a bonded body for measuring shear strength was prepared in the same manner as in Comparative Example 1-1 to determine the bonding strength of the bonding layer. The results are shown in Table 4.

(比較例3−1)
Snナノ粒子を混合しなかった以外は実施例3−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 3-1)
A bonding material paste was prepared in the same manner as in Example 3-1, except that the Sn nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 4.

表4に示した結果から明らかなように、平均粒子径60nmのCuナノ粒子を用いた場合であっても、実施例3−1の接合材料により形成された接合層は、Snナノ粒子を含まない接合材料(比較例3−1)により形成された接合層の接合強度に比べて高くなることが確認された。   As is clear from the results shown in Table 4, even when Cu nanoparticles having an average particle diameter of 60 nm are used, the bonding layer formed of the bonding material of Example 3-1 contains Sn nanoparticles. It was confirmed that the bonding strength of the bonding layer formed by the bonding material having no bonding (Comparative Example 3-1) was higher.

(実施例4−1)
Cuナノ粒子として調製例5で調製したCuナノ粒子を用い、さらに、Cuナノ粒子およびSnナノ粒子の含有量を表5に示す割合に変更した以外は比較例1−1と同様にして接合材料ペーストを調製し、さらに、比較例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表5に示す。
(Example 4-1)
The bonding material was the same as Comparative Example 1-1 except that the Cu nanoparticles prepared in Preparation Example 5 were used as Cu nanoparticles, and the contents of Cu nanoparticles and Sn nanoparticles were changed to the ratios shown in Table 5. A paste was prepared, and a bonded body for measuring shear strength was prepared in the same manner as in Comparative Example 1-1 to determine the bonding strength of the bonding layer. The results are shown in Table 5.

(比較例4−1)
Snナノ粒子を混合しなかった以外は実施例4−1と同様にして接合材料ペーストを調製し、さらに、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表5に示す。
(Comparative Example 4-1)
A bonding material paste was prepared in the same manner as in Example 4-1, except that Sn nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 5.

表5に示した結果から明らかなように、平均粒子径300nmのCuナノ粒子を用いた場合であっても、実施例3−1の接合材料により形成された接合層は、Snナノ粒子を含まない接合材料(比較例3−1)により形成された接合層の接合強度に比べて高くなることが確認された。   As is clear from the results shown in Table 5, even when Cu nanoparticles having an average particle diameter of 300 nm are used, the bonding layer formed of the bonding material of Example 3-1 contains Sn nanoparticles. It was confirmed that the bonding strength of the bonding layer formed by the bonding material having no bonding (Comparative Example 3-1) was higher.

以上説明したように、本発明によれば、接合強度が高い接合層を無加圧、低温(具体的には400℃以下)で形成することが可能な接合材料を得ることができる。したがって、本発明の金属ナノ粒子ペーストは、低温や無加圧での半導体素子の接合技術において接合材料として有用である。   As described above, according to the present invention, it is possible to obtain a bonding material capable of forming a bonding layer having high bonding strength at no pressure and at a low temperature (specifically, 400 ° C. or lower). Therefore, the metal nanoparticle paste of the present invention is useful as a bonding material in a bonding technique for semiconductor elements at a low temperature or no pressure.

1:半導体素子、2:基板、2a:上部基板、2b:下部基板、2c,2d:各基板の突出部、3,3a,3b:接合層、4a,4b:密着層、5:信号端子、6:ボンディングワイヤ、7:モールド樹脂、8a,8b:試験片、9:接合層、10a,10b:密着層。   1: semiconductor element, 2: substrate, 2a: upper substrate, 2b: lower substrate, 2c, 2d: protruding portion of each substrate, 3, 3a, 3b: bonding layer, 4a, 4b: adhesion layer, 5: signal terminal, 6: bonding wire, 7: mold resin, 8a, 8b: test piece, 9: bonding layer, 10a, 10b: adhesion layer.

Claims (8)

全金属ナノ粒子に対して、Cuナノ粒子を9785質量%且つSnナノ粒子を15質量%含有することを特徴とする金属ナノ粒子ペースト。 A metal nanoparticle paste comprising 97 to 85 % by mass of Cu nanoparticles and 3 to 15 % by mass of Sn nanoparticles with respect to all metal nanoparticles. 直径が1〜1000nmの範囲にある金属ナノ粒子が、個数基準で全金属粒子の99%以上であることを特徴とする請求項1に記載の金属ナノ粒子ペースト。   2. The metal nanoparticle paste according to claim 1, wherein the metal nanoparticles having a diameter in the range of 1 to 1000 nm are 99% or more of the total metal particles based on the number. 請求項1または2に記載の金属ナノ粒子ペーストを含有することを特徴とする接合材料。   A bonding material comprising the metal nanoparticle paste according to claim 1. 半導体素子、基板、および前記半導体素子と前記基板との間に配置された接合層を備え、
前記接合層が請求項3に記載の接合材料により形成されたCuとSnとの混合物層であることを特徴とする半導体装置。
Comprising a semiconductor element, a substrate, and a bonding layer disposed between the semiconductor element and the substrate;
A semiconductor device, wherein the bonding layer is a mixed layer of Cu and Sn formed of the bonding material according to claim 3.
前記混合物層が平均粒子径1〜1000nmの金属ナノ粒子により形成されていることを特徴とする請求項4に記載の半導体装置。   The semiconductor device according to claim 4, wherein the mixture layer is formed of metal nanoparticles having an average particle diameter of 1 to 1000 nm. 前記混合物層にCuSn金属間化合物が含まれていることを特徴とする請求項4または5に記載の半導体装置。   6. The semiconductor device according to claim 4, wherein a CuSn intermetallic compound is contained in the mixture layer. 前記CuSn金属間化合物がCuSnおよびCuSnのうちの少なくとも一方であることを特徴とする請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the CuSn intermetallic compound is at least one of Cu 3 Sn and Cu 6 Sn 5 . 前記接合層の両面にNi、CoおよびAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、
一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることを特徴とする請求項4〜7のうちのいずれか一項に記載の半導体装置。
An adhesive layer made of at least one metal selected from the group consisting of Ni, Co and Ag is further provided on both surfaces of the bonding layer;
8. One of the adhesion layers is disposed so as to be in contact with the bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to be in contact with the bonding portion of the substrate. The semiconductor device according to claim 1.
JP2013177821A 2013-02-28 2013-08-29 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same Expired - Fee Related JP6153077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177821A JP6153077B2 (en) 2013-02-28 2013-08-29 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013039779 2013-02-28
JP2013039779 2013-02-28
JP2013107968 2013-05-22
JP2013107968 2013-05-22
JP2013177821A JP6153077B2 (en) 2013-02-28 2013-08-29 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2015004122A JP2015004122A (en) 2015-01-08
JP6153077B2 true JP6153077B2 (en) 2017-06-28

Family

ID=52300246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177821A Expired - Fee Related JP6153077B2 (en) 2013-02-28 2013-08-29 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6153077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462508B2 (en) 2020-03-24 2022-10-04 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153076B2 (en) * 2013-05-22 2017-06-28 株式会社豊田中央研究所 Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP2016167379A (en) * 2015-03-09 2016-09-15 株式会社東芝 Conductive paste, dry matter thereof, and composite body
JP2018006512A (en) * 2016-06-30 2018-01-11 株式会社 日立パワーデバイス Semiconductor device and mobile body
TWI655693B (en) * 2017-02-28 2019-04-01 日商京瓷股份有限公司 Manufacturing method of semiconductor device
WO2019123856A1 (en) * 2017-12-18 2019-06-27 Dic株式会社 Copper fine particle sintered body
JP7194922B2 (en) * 2018-04-12 2022-12-23 パナソニックIpマネジメント株式会社 Mounting structures and nanoparticle mounting materials
WO2020003536A1 (en) * 2018-06-29 2020-01-02 日立化成株式会社 Sheet for liquid phase sintering, sintered body, joined body, and joined body production method
WO2020017050A1 (en) * 2018-07-20 2020-01-23 日立化成株式会社 Composition, bonding material, sintered compact, assembly, and method for producing assembly
JP7198479B2 (en) * 2018-08-31 2023-01-04 学校法人早稲田大学 Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
US11890681B2 (en) 2018-11-29 2024-02-06 Resonac Corporation Method for producing bonded object and semiconductor device and copper bonding paste
CN114051522B (en) * 2019-07-16 2024-03-15 古河电气工业株式会社 Bonding film, wafer processing tape, method for producing bonded body, and bonded body
JP7463681B2 (en) * 2019-09-30 2024-04-09 株式会社レゾナック Method for manufacturing joined body and joined body
CN111916344B (en) * 2020-09-09 2022-10-04 合肥工业大学 Copper-copper low-temperature bonding method based on graphene/tin modified copper nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202938A (en) * 2005-01-20 2006-08-03 Kojiro Kobayashi Semiconductor device and its manufacturing method
JP4638825B2 (en) * 2006-02-01 2011-02-23 三井金属鉱業株式会社 Multi-component metal particle slurry and conductive ink or conductive paste using the slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462508B2 (en) 2020-03-24 2022-10-04 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP2015004122A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP6153077B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
KR101709302B1 (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP6337909B2 (en) Manufacturing method of electronic component module
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
Zhang et al. Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices
Krishnan et al. Preparation and low-temperature sintering of Cu nanoparticles for high-power devices
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP5557698B2 (en) Sintered bonding agent, manufacturing method thereof and bonding method using the same
JP6372978B2 (en) Conductive paste
JP6352444B2 (en) Metal oxide particles for bonding, sintered bonding agent including the same, method for producing metal oxide particles for bonding, and method for bonding electronic components
JP6659026B2 (en) Low temperature joining method using copper particles
TW201312595A (en) Metal nanoparticle paste, bonding method, bonded element and electronic substrate
WO2019188511A1 (en) Copper paste, bonding method, and method for producing bonded body
Choi et al. Characterization of the die-attach process via low-temperature reduction of Cu formate in air
JP6270241B2 (en) Bonding material and semiconductor device using the same
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
JP6722679B2 (en) Conductive paste
JP2007136503A (en) Clad solder for joining
Sun et al. Solderless bonding with nanoporous copper as interlayer for high-temperature applications
JP4624222B2 (en) Conductive part forming particles
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP6626572B2 (en) Metal bonding material, method of manufacturing the same, and method of manufacturing metal bonded body using the same
JP2018168226A (en) Paste-like silver powder composition, method for producing joined body, and method for producing silver film
JP2014043382A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6153077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170521

LAPS Cancellation because of no payment of annual fees