JP6270241B2 - Bonding material and semiconductor device using the same - Google Patents

Bonding material and semiconductor device using the same Download PDF

Info

Publication number
JP6270241B2
JP6270241B2 JP2014015155A JP2014015155A JP6270241B2 JP 6270241 B2 JP6270241 B2 JP 6270241B2 JP 2014015155 A JP2014015155 A JP 2014015155A JP 2014015155 A JP2014015155 A JP 2014015155A JP 6270241 B2 JP6270241 B2 JP 6270241B2
Authority
JP
Japan
Prior art keywords
nanoparticles
bonding
fine
cuni alloy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014015155A
Other languages
Japanese (ja)
Other versions
JP2015141860A (en
Inventor
敏孝 石崎
敏孝 石崎
亮太 渡邉
亮太 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2014015155A priority Critical patent/JP6270241B2/en
Publication of JP2015141860A publication Critical patent/JP2015141860A/en
Application granted granted Critical
Publication of JP6270241B2 publication Critical patent/JP6270241B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)
  • Conductive Materials (AREA)

Description

本発明は、接合材料及び前記接合材料を用いた半導体装置に関する。   The present invention relates to a bonding material and a semiconductor device using the bonding material.

半導体素子の電極接合などにおいては、従来、Sn−Pb系はんだが用いられていたが、近年、環境保全の観点から、鉛フリーはんだといった新規な接合材料が求められている。また、半導体素子の接合技術においては、半導体素子への負荷を低減するために、低温での接合や無加圧での接合が可能な材料が求められている。更に、半導体素子の接合技術や微細配線形成技術においては、半導体素子への負荷を低減するために、低温での接合や無加圧での接合が可能な材料や低温での配線形成が可能な材料が求められている。   Conventionally, Sn—Pb-based solder has been used for electrode bonding of semiconductor elements, but recently, a new bonding material such as lead-free solder has been demanded from the viewpoint of environmental protection. Also, in semiconductor element bonding technology, materials that can be bonded at a low temperature or without pressure are required to reduce the load on the semiconductor element. Furthermore, in semiconductor element bonding technology and fine wiring formation technology, materials that can be bonded at low temperatures or non-pressure bonding and wiring formation at low temperatures are possible to reduce the load on the semiconductor elements. There is a need for materials.

Ag、Cu、Niなどの金属ナノ粒子は、粒径が、例えば50nm以下のように、ナノメートルサイズまで小さくなると、その融点よりはるかに低い温度(焼結温度200℃以下)で焼結させることが可能となるため、半導体素子の低温接合やインクジェットやスクリーン印刷を利用した微細配線の低温形成などへの応用が期待されている。   Metal nanoparticles such as Ag, Cu, Ni, etc. should be sintered at a temperature much lower than their melting point (sintering temperature 200 ° C. or less) when the particle size is reduced to a nanometer size, for example 50 nm or less. Therefore, it is expected to be applied to low-temperature bonding of semiconductor elements and low-temperature formation of fine wiring using ink jet or screen printing.

しかしながら、このような金属ナノ粒子は、表面が高活性であり、凝集しやすいため、通常、界面活性剤やポリマーなどで被覆して分散安定性を確保している。このため、このような金属ナノ粒子を用いて半導体素子の接合や微細配線形成を行う際に加熱処理を施すと、金属ナノ粒子が焼結するとともに界面活性剤やポリマーなどの被膜が分解され、ガスが発生し、金属ナノ粒子間に空隙が生じる。その結果、無加圧や低温では焼結組織が密にならず、十分に高い接合強度や十分に低い抵抗率が得られなかった。   However, such metal nanoparticles have a highly active surface and are likely to aggregate, so that they are usually coated with a surfactant or a polymer to ensure dispersion stability. For this reason, when heat treatment is performed when joining semiconductor elements or forming fine wiring using such metal nanoparticles, the metal nanoparticles are sintered and the coating of surfactant, polymer, etc. is decomposed, Gas is generated and voids are formed between the metal nanoparticles. As a result, the sintered structure did not become dense at no pressure or low temperature, and a sufficiently high bonding strength and a sufficiently low resistivity could not be obtained.

また、Cuナノ粒子は、低コストで耐熱性及び耐マイクレーション性に優れ、抵抗率が低い金属ナノ粒子であるが、一般に、酸化されやすく、表面の酸化被膜により焼結が阻害されるという問題があった。   In addition, Cu nanoparticles are metal nanoparticles that are low in cost, excellent in heat resistance and anti-mication properties, and low in resistivity. In general, however, the problem is that oxidation is easy and sintering is hindered by the oxide film on the surface. was there.

そこで、このような課題を解決するために、特開2008−24969号公報(特許文献1)には、表面に有機化合物成分を吸着したニッケル被膜により被覆された単分散性の銅微粒子であって、上記ニッケルの被覆量は、質量比率でNi:Cu=1:100〜50:100であり、上記銅微粒子の平均粒径が10〜100nmであり、かつ、上記銅微粒子の粒径における標準偏差(σ)と平均粒径(d)の比を表す(σ/d)×100は、10〜30%であるニッケル被覆銅微粒子が開示されている。しかしながら、特許文献1に開示されているニッケル被覆銅微粒子は、コーティング構造を有するナノ粒子のコーティング層自体が焼結阻害要因となってしまうため、低温−無加圧で高い接合強度が得られず、そのため低温度(例えば300℃以下)において無加圧で接合しても強度が十分なものではなかった。   In order to solve such a problem, Japanese Patent Application Laid-Open No. 2008-24969 (Patent Document 1) discloses monodispersed copper fine particles coated with a nickel coating that adsorbs an organic compound component on the surface. The coating amount of nickel is Ni: Cu = 1: 100 to 50: 100 in terms of mass ratio, the average particle size of the copper fine particles is 10 to 100 nm, and the standard deviation in the particle size of the copper fine particles Nickel-coated copper fine particles in which (σ / d) × 100 representing the ratio of (σ) to the average particle diameter (d) is 10 to 30% are disclosed. However, in the nickel-coated copper fine particles disclosed in Patent Document 1, the coating layer of the nanoparticle having a coating structure itself becomes a sintering inhibiting factor, so that high bonding strength cannot be obtained at low temperature and no pressure. Therefore, the strength is not sufficient even when bonding is performed under no pressure at a low temperature (for example, 300 ° C. or less).

また、特開2011−63828号公報(特許文献2)には、炭素数6〜10の直鎖アルコールの一種以上と、分子数200〜400の有機化合物の一種以上が溶解されてなる反応溶媒に、銅及びニッケルの化合物を溶解させた後、有機−水酸化アンモニウム塩溶液を添加した製造方法により、中心部分の銅の構成割合が高く、周囲をニッケル−銅の合金を呈した銅−ニッケルナノ粒子において、分子数200〜400の有機化合物により被覆され、透過型電子顕微鏡により計測される平均粒子径DTEMが1〜30nmであって、中心部の銅構成割合が高く表層部がニッケルと銅の合金により形成される銅−ニッケルナノ粒子からなり、微細で表層部がニッケルリッチのニッケル−銅合金が開示されている。しかしながら、特許文献2に開示されているニッケル−銅合金においても、コーティング構造を有するナノ粒子のコーティング層自体が焼結阻害要因となってしまうため、低温−無加圧で高い接合強度が得られず、そのため低温度(例えば300℃以下)で無加圧で接合しても強度が十分なものではなかった。 JP-A-2011-63828 (Patent Document 2) discloses a reaction solvent in which one or more linear alcohols having 6 to 10 carbon atoms and one or more organic compounds having 200 to 400 molecules are dissolved. After the copper and nickel compounds are dissolved, the copper-nickel nanostructures in which the composition ratio of copper in the central portion is high and the surroundings are formed of a nickel-copper alloy by a manufacturing method in which an organic-ammonium hydroxide salt solution is added in particles coated with an organic compound having a molecular number 200 to 400, transmission electron a mean particle diameter D TEM is 1~30nm measured by a microscope, a high surface portion nickel copper composition ratio of the central portion and copper There is disclosed a nickel-copper alloy which is made of a copper-nickel nanoparticle formed of the above alloy and which is fine and has a nickel-rich surface layer. However, even in the nickel-copper alloy disclosed in Patent Document 2, since the coating layer of nanoparticles having a coating structure itself becomes a sintering inhibiting factor, high bonding strength can be obtained at low temperature and no pressure. Therefore, the strength is not sufficient even when joining without pressure at a low temperature (for example, 300 ° C. or less).

更に、特開2011−175871号公報(特許文献3)には、平均粒径の異なる2種以上の銀系粉末を含有する接合用材料であって、第1粉末として有機成分及び銀を含む銀系粒子からなり平均粒径が10nm未満の銀系粉末、及び、第2粉末として銀を含む銀系粒子からなり平均粒径が40nm以上である銀系粉末を含む接合用材料が開示されている。しかしながら、特許文献3に開示されている接合用材料においても、耐マイグレーション性が十分ではなく、低温−無加圧で高い接合強度が得られず、そのため低温度(例えば300℃以下)において無加圧で接合しても強度が十分なものではなかった。   Further, JP 2011-175871 A (Patent Document 3) discloses a bonding material containing two or more kinds of silver-based powders having different average particle diameters, and includes an organic component and silver as the first powder. Disclosed is a bonding material including a silver-based powder having a mean particle size of less than 10 nm and a silver-based powder having a mean particle size of 40 nm or more, which is composed of silver-based particles containing silver as the second powder. . However, even the bonding material disclosed in Patent Document 3 does not have sufficient migration resistance, and a high bonding strength cannot be obtained at low temperature and no pressure. Therefore, no application at low temperature (for example, 300 ° C. or lower). Even if it was joined by pressure, the strength was not sufficient.

また、下田将義ら、「耐高温接合材によるダイボンド技術の開発」、MES2013(第23回マイクロエレクトロニクスシンポジウム)、社団法人エレクトロニクス実装学会、2013年9月、P147−150(非特許文献1)には、平均粒径が70nm、0.8μm及び5μmの3種類のサイズの異なるCuナノ粒子を混合したペーストを用いる接合材が開示されている。しかしながら、非特許文献1に開示されているCuナノ粒子混合ペーストにおいても、粒子が十分に微細で無いため焼結温度の低温化が難しく、更にCuナノ粒子を微細化すると表面が酸化しやすくなり接合強度が向上できなくなるなど、低温−無加圧で高い接合強度が得られず、そのため低温度(例えば300℃以下)で無加圧で接合しても強度が必ずしも十分なものではなかった。   In addition, Masayoshi Shimoda et al., “Development of die-bonding technology using high-temperature bonding materials”, MES2013 (23rd Microelectronics Symposium), Japan Institute of Electronics Packaging, September 2013, P147-150 (Non-patent Document 1). Discloses a bonding material using a paste in which three kinds of Cu nanoparticles having different average sizes of 70 nm, 0.8 μm, and 5 μm are mixed. However, even in the Cu nanoparticle mixed paste disclosed in Non-Patent Document 1, it is difficult to lower the sintering temperature because the particles are not sufficiently fine, and when the Cu nanoparticles are further miniaturized, the surface tends to be oxidized. High bonding strength cannot be obtained at low temperature and no pressure, for example, the bonding strength cannot be improved. Therefore, even if bonding is performed at a low temperature (for example, 300 ° C. or less) without pressure, the strength is not always sufficient.

特開2008−24969号公報JP 2008-24969 A 特開2011−63828号公報JP 2011-63828 A 特開2011−175871号公報JP 2011-175871 A

下田将義ら、「耐高温接合材によるダイボンド技術の開発」、MES2013(第23回マイクロエレクトロニクスシンポジウム)、社団法人エレクトロニクス実装学会、2013年9月、P147−150Masayoshi Shimoda et al., “Development of die-bonding technology using high-temperature-resistant bonding materials”, MES2013 (23rd Microelectronics Symposium), Japan Institute of Electronics Packaging, September 2013, P147-150

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、接合強度が十分に高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料、及びそれを用いた半導体装置を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and a bonding material capable of forming a bonding layer having sufficiently high bonding strength at a low temperature (specifically, 300 ° C. or lower), and the same An object of the present invention is to provide a semiconductor device using this.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、粒子径及び平均粒子径が特定の範囲のCuナノ粒子と平均粒子径が特定の範囲の微細CuNi合金ナノ粒とを特定の割合で含む金属ナノ粒子混合物を特定の割合で含有する接合材料を用いることによって、接合強度が十分に高い接合層を低温(具体的には300℃以下)で形成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have identified Cu nanoparticles having a specific range of particle size and average particle size and fine CuNi alloy nanoparticles having a specific range of average particle size. It is possible to form a bonding layer having a sufficiently high bonding strength at a low temperature (specifically, 300 ° C. or lower) by using a bonding material containing a specific proportion of the metal nanoparticle mixture including As a result, the present invention has been completed.

すなわち、本発明の接合材料は、粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が60nm〜300nmであるCuナノ粒子と、平均粒子径が1nm〜50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物を含有しており、前記金属ナノ粒子混合物における前記微細CuNi合金ナノ粒子の含有量が0.1〜29質量%であり、かつ、前記金属ナノ粒子混合物の含有量が15質量%以上であることを特徴とするものである。 That is, the bonding material of the present invention is composed of Cu nanoparticles having a particle diameter of 1000 nm or less and an average particle diameter of 60 nm to 300 nm, and fine CuNi alloy nanoparticles having an average particle diameter of 1 nm to 50 nm. The metal nanoparticle mixture is contained, the content of the fine CuNi alloy nanoparticles in the metal nanoparticle mixture is 0.1 to 29% by mass, and the content of the metal nanoparticle mixture is 15% by mass. % Or more.

上記本発明の接合材料においては、前記微細CuNi合金ナノ粒子の平均粒子径に対する前記Cuナノ粒子の平均粒子径の比が2〜60であることが好ましい。   In the bonding material of the present invention, the ratio of the average particle diameter of the Cu nanoparticles to the average particle diameter of the fine CuNi alloy nanoparticles is preferably 2 to 60.

また、上記本発明の接合材料においては、前記微細CuNi合金ナノ粒子に含まれるNiの含有量が2〜90質量%であることが好ましい。   In the bonding material of the present invention, the Ni content in the fine CuNi alloy nanoparticles is preferably 2 to 90% by mass.

更に、本発明の他の接合材料は粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が50nm〜1000nmであるCuナノ粒子と、平均粒子径が1nm〜50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物、及び、粒子径が1μm超のCu粒子からなりかつ平均粒子径が1μm超200μm以下であるCuミクロン粒子を含有しており、前記金属ナノ粒子混合物における前記微細CuNi合金ナノ粒子の含有量が0.1〜29質量%であり、前記金属ナノ粒子混合物の含有量が15質量%以上であり、かつ、前記Cuミクロン粒子の含有量が85質量%以下であることを特徴とするものであるIn addition, other bonding materials of the present invention, a Cu nanoparticle and the average particle size becomes a particle diameter from the Cu particles 1000nm is 50 nm to 1000 nm, the fine CuNi alloy nanoparticles having an average particle diameter of 1nm~50nm A metal nanoparticle mixture comprising particles, and Cu micron particles comprising Cu particles having a particle diameter of more than 1 μm and an average particle diameter of more than 1 μm and not more than 200 μm, and the fine CuNi in the metal nanoparticle mixture The alloy nanoparticle content is 0.1 to 29% by mass, the metal nanoparticle mixture content is 15% by mass or more, and the Cu micron particle content is 85% by mass or less. It is characterized by .

本発明の半導体装置は、半導体素子、基板、及び前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が前記本発明の接合材料により形成されたCuとCuNi合金との混合物層であることを特徴とするものである。   The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer that bonds the semiconductor element and the substrate, and the bonding layer is made of Cu and CuNi alloy formed of the bonding material of the present invention. It is a mixture layer.

上記本発明の半導体装置においては、前記混合物層に含まれるNiの含有量が0.0003〜26.1質量%であることが好ましい。   In the semiconductor device of the present invention, the Ni content in the mixture layer is preferably 0.0003 to 26.1% by mass.

また、上記本発明の半導体装置においては、前記混合物層の両面にNi、Co及びAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることが好ましい。   The semiconductor device of the present invention further includes an adhesion layer made of at least one metal selected from the group consisting of Ni, Co, and Ag on both surfaces of the mixture layer, and one adhesion layer is the above-mentioned It is preferable that the semiconductor element is disposed so as to be in contact with the joint portion of the semiconductor element, and the other adhesion layer is disposed so as to be in contact with the joint portion of the substrate.

なお、本発明の接合材料によって接合強度が高い接合層を低温で形成することが可能となる理由は必ずしも定かではないが、本発明者らは以下のように推察する。   The reason why the bonding layer having high bonding strength can be formed at a low temperature by the bonding material of the present invention is not necessarily clear, but the present inventors speculate as follows.

すなわち、従来より、金属のナノ粒子は表面原子の活性作用により、融点よりもはるかに低い温度で焼結することが知られている。最近、こうした金属ナノ粒子の低温焼結を利用して、半導体素子の高耐熱接合技術の開発が活発に行われている。従来技術ではAgナノ粒子が用いられてきたが、最近はAgよりも低コストで耐マイグレーション性の良いCuナノ粒子での開発が強く期待されている。また、半導体素子を加圧で接合を行うと、チップの破壊による歩留まりの低下や生産工程の追加によるコストアップなどの問題点があるため、無加圧での接合が強く期待されている。更に、従来のSn−Cuはんだなどと同じ接合温度(250℃など)で接合できれば、素子への熱負荷が低減出来、既存の設備で接合可能となるため、無加圧−低温接合が望ましいとされている。しかし、従来の技術では、Cuナノ粒子の粒径が50nm以下になると酸化を抑制することが困難になるため、50nm以上のCuナノ粒子を用いて接合を行っていた。これでは粒径が大きいため焼結温度の低温化が難しく、また無加圧では焼結したとしても粒子同士が点のみで結合した状態(リンキング状態)が多く残存してしまうため、十分な焼結強度が得られないという問題点があった。   That is, conventionally, metal nanoparticles are known to sinter at a temperature much lower than the melting point due to the active action of surface atoms. Recently, development of high heat-resistant bonding technology for semiconductor elements has been actively conducted by utilizing such low-temperature sintering of metal nanoparticles. In the prior art, Ag nanoparticles have been used, but recently, development of Cu nanoparticles having lower migration cost and better migration resistance than Ag is strongly expected. Further, when bonding semiconductor elements under pressure, there are problems such as a decrease in yield due to chip destruction and an increase in cost due to the addition of production processes, and therefore bonding without pressure is strongly expected. Furthermore, if bonding can be performed at the same bonding temperature (250 ° C., etc.) as conventional Sn—Cu solder, the thermal load on the element can be reduced and bonding can be performed with existing equipment. Has been. However, in the conventional technique, it is difficult to suppress oxidation when the particle size of the Cu nanoparticles is 50 nm or less, and therefore bonding is performed using Cu nanoparticles of 50 nm or more. This makes it difficult to lower the sintering temperature because of the large particle size, and even if sintering is performed without pressure, many particles remain bonded only at points (linking state), so that sufficient sintering is achieved. There was a problem that the knot strength could not be obtained.

本発明者らは、先ず、粒径が50nm以上のCuナノ粒子に対して、50nm以下の微細Cuナノ粒子を添加することにより、粒子間をより密に充填して低温・高強度化を達成しようと試みたが、微細Cuナノ粒子は酸化が抑えられないため、酸化層が焼結を阻害して高強度化できなかった。   First, the present inventors achieve a low temperature and high strength by packing fine particles between Cu particles with a particle size of 50 nm or less to Cu nanoparticles with a particle size of 50 nm or more, thereby more densely filling the space between the particles. Although an attempt was made to oxidize fine Cu nanoparticles, the oxide layer hindered sintering and could not be strengthened.

そこで、本発明者らは、微細Cuナノ粒子に対してCuナノ粒子の酸化を抑制することが可能な添加成分としてNiに着目した。そして、粒子径及び平均粒子径が特定の範囲のCuナノ粒子とともに平均粒子径が特定の範囲の微細CuNi合金ナノ粒を特定の割合で含む金属ナノ粒子混合物を特定の割合で含有させて接合材料を構成することにより、該材料に含まれるNiの存在によりCuナノ粒子の酸化を抑制することが可能となり、このような接合材料を用いて接合層を形成すると焼結温度の十分な低温化を実現することができ、接合温度が十分に低い温度(具体的には300℃以下)においても無加圧でも高い接合強度を得ることが可能になるものと推察される。更に、添加剤として加えたNiは、Cuナノ粒子間の結合性を向上させる効果を有しており、例えばSn−Cuはんだと同じ接合温度(250℃)においても無加圧でも高い接合強度を得ることが可能になるものと推察される。   Therefore, the present inventors paid attention to Ni as an additive component capable of suppressing oxidation of Cu nanoparticles with respect to fine Cu nanoparticles. Then, a metal nanoparticle mixture containing a specific proportion of fine CuNi alloy nanoparticles having a specific particle diameter and a specific range together with Cu nanoparticles having a specific particle size and average particle size is included in a specific ratio. It is possible to suppress the oxidation of Cu nanoparticles due to the presence of Ni contained in the material. When a bonding layer is formed using such a bonding material, the sintering temperature can be sufficiently lowered. It can be realized that it is possible to obtain a high bonding strength even at a temperature at which the bonding temperature is sufficiently low (specifically, 300 ° C. or lower) even without pressure. Furthermore, Ni added as an additive has an effect of improving the bonding property between Cu nanoparticles, for example, high bonding strength even at the same bonding temperature (250 ° C.) as that of Sn—Cu solder or no pressure. It is assumed that it will be possible to obtain.

本発明によれば、接合強度が十分に高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料、及びそれを用いた半導体装置を提供することが可能となる。   According to the present invention, it is possible to provide a bonding material capable of forming a bonding layer having sufficiently high bonding strength at a low temperature (specifically, 300 ° C. or lower), and a semiconductor device using the same. .

本発明の半導体装置の一実施態様を示す模式図である。It is a schematic diagram which shows one embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 本発明の半導体装置の他の一実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the semiconductor device of this invention. 調製例2−1〜2−6で作製したナノ粒子のXRDスペクトルを示すグラフである。It is a graph which shows the XRD spectrum of the nanoparticle produced by the preparation examples 2-1 to 2-6. 調製例2−1で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles produced in Preparation Example 2-1. 調製例2−2で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles produced in Preparation Example 2-2. 調製例2−3で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles produced in Preparation Example 2-3. 調製例2−4で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles produced in Preparation Example 2-4. 調製例2−5で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles produced in Preparation Example 2-5. 調製例2−6で作製した比較用微細Cuナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)である。It is a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the comparative fine Cu nanoparticles produced in Preparation Example 2-6. 実施例で作製したせん断強度測定用接合体を示す模式図である。It is a schematic diagram which shows the joined body for shear strength measurement produced in the Example.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の接合材料について説明する。本発明の接合材料は、粒子径及び平均粒子径が所定の範囲であるCuナノ粒子と平均粒子径が所定の範囲である微細CuNi合金ナノ粒子とを所定の割合で含む金属ナノ粒子混合物を含有するものである。本発明の接合材料は、低温(具体的には300℃以下)での熱処理により焼結し、接合強度が十分に高い接合層を形成することができる。また、本発明の接合材料を用いると、熱処理時に無加圧でも、接合強度が十分に高い接合層を形成することができる。   First, the bonding material of the present invention will be described. The bonding material of the present invention contains a metal nanoparticle mixture including Cu nanoparticles having a predetermined particle diameter and average particle diameter and fine CuNi alloy nanoparticles having a predetermined average particle diameter in a predetermined ratio. To do. The bonding material of the present invention can be sintered by heat treatment at a low temperature (specifically, 300 ° C. or lower) to form a bonding layer having a sufficiently high bonding strength. In addition, when the bonding material of the present invention is used, a bonding layer having a sufficiently high bonding strength can be formed even when no pressure is applied during heat treatment.

(Cuナノ粒子)
本発明にかかる金属ナノ粒子混合物におけるCuナノ粒子は、粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が50nm〜1000nmであることが必要である。このようなCuナノ粒子、すなわち本発明の接合材料におけるCuナノ粒子の平均粒子径としては、50nm〜800nmが好ましく、60nm〜500nmがより好ましく、60nm〜400nmが特に好ましい。Cuナノ粒子の平均粒子径が前記下限未満になると、バルクに対する表面比率が大きくなるため、Cuナノ粒子の表面が大気中で酸化されやすく、その結果、接合材料中でCuナノ粒子同士の凝集が起こったり、接合時の熱処理で十分に酸化成分を除去できず、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。ただし、Cuナノ粒子を不活性ガス又は還元性ガス雰囲気下で取り扱えば、Cuナノ粒子表面の酸化が起こりにくく、上記の不具合が起こりにくくなるため、平均粒子径が前記下限未満のCuナノ粒子も本発明の接合材料に使用することが可能である。また、有機被膜を備えるCuナノ粒子を使用する場合には、有機被膜の割合がCuナノ粒子に比べて多くなるため、有機被膜が接合時の熱処理で十分に分解されずに残存し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、Cuナノ粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、Cu粒子の焼結温度が高くなり、低温(具体的には300℃以下)での加熱によるCu粒子同士の結合が起こりにくく、その結果、接合強度が低下する傾向にある。
(Cu nanoparticles)
The Cu nanoparticles in the metal nanoparticle mixture according to the present invention are required to be composed of Cu particles having a particle size of 1000 nm or less and an average particle size of 50 nm to 1000 nm. The average particle diameter of such Cu nanoparticles, that is, Cu nanoparticles in the bonding material of the present invention is preferably 50 nm to 800 nm, more preferably 60 nm to 500 nm, and particularly preferably 60 nm to 400 nm. When the average particle diameter of the Cu nanoparticles is less than the lower limit, the surface ratio with respect to the bulk increases, so that the surface of the Cu nanoparticles is easily oxidized in the air, and as a result, aggregation of Cu nanoparticles occurs in the bonding material. Occurs or the oxidizing component cannot be removed sufficiently by heat treatment during bonding, and the characteristics of the bonding material such as bonding strength, conductivity, and thermal conductivity tend to be reduced. However, if Cu nanoparticles are handled in an inert gas or a reducing gas atmosphere, the surface of the Cu nanoparticles is less likely to be oxidized, and the above problems are less likely to occur. Therefore, Cu nanoparticles having an average particle diameter of less than the lower limit are also included. It can be used for the bonding material of the present invention. In addition, when using Cu nanoparticles with an organic coating, the organic coating remains higher than the Cu nanoparticles in proportion to the organic coating. There is a tendency that characteristics of the bonding material such as conductivity, thermal conductivity and the like are deteriorated. On the other hand, if the average particle diameter of the Cu nanoparticles exceeds the upper limit, the particle size effect is small, so the sintering temperature of the Cu particles increases, and the Cu particles are heated by heating at a low temperature (specifically, 300 ° C. or less). As a result, the bonding strength tends to decrease.

なお、Cuナノ粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、前記金属ナノ粒子混合物における前記Cuナノ粒子及び前記微細CuNi合金ナノ粒子の合計量に対するCuナノ粒子の割合や含有量及びCuナノ粒子の平均粒子径を、前記TEM観察において、無作為に200個のCu粒子を抽出し、これらの直径を測定することによって求められる値とする。   The diameter of the Cu nanoparticles can be measured by transmission electron microscope (TEM) observation. In the present invention, the diameter of the Cu nanoparticles and the fine CuNi alloy nanoparticles in the metal nanoparticle mixture can be measured. The ratio and content of Cu nanoparticles and the average particle diameter of Cu nanoparticles are values determined by randomly extracting 200 Cu particles and measuring these diameters in the TEM observation.

また、このようなCuナノ粒子としては、例えば、Cuナノ粒子と、このCuナノ粒子の表面に配置された、脂肪酸及び脂肪族アミンを含有する有機被膜とを備える表面被覆Cuナノ粒子が挙げられる。前記有機被膜は低温(具体的には300℃以下)で熱分解させることができるものである。この表面被覆Cuナノ粒子は、特開2012−46779号公報に記載された方法に準じて製造することができる。すなわち、アルコール系溶媒中、脂肪酸及び脂肪族アミンの共存下で、前記アルコール系溶媒に不溶なCu塩を還元せしめることによってCuナノ粒子を形成させ、かつ、このCuナノ粒子の表面に前記脂肪酸及び脂肪族アミンを含有する有機被膜を形成させることによって前記表面被覆Cuナノ粒子を製造することができる。ここで、Cu塩としては炭酸銅、水酸化銅が挙げられる。また、脂肪酸としてはオクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸などの飽和脂肪酸やオレイン酸などの不飽和脂肪酸が挙げられ、脂肪族アミンとしてはオクチルアミン、デシルアミン、ドデシルアミン、ミリスチルアミン、パルミチルアミン、ステアリルアミンなどの飽和脂肪族アミンやオレイルアミンなどの不飽和脂肪族アミンが挙げられ、脂肪酸及び脂肪族アミンの炭化水素鎖の炭素数を変更することによってCuナノ粒子の粒子径を調整することができる。   In addition, examples of such Cu nanoparticles include surface-coated Cu nanoparticles including Cu nanoparticles and an organic coating containing a fatty acid and an aliphatic amine disposed on the surface of the Cu nanoparticles. . The organic coating can be thermally decomposed at a low temperature (specifically, 300 ° C. or lower). The surface-coated Cu nanoparticles can be produced according to the method described in JP 2012-46779 A. That is, Cu nanoparticles are formed by reducing a Cu salt insoluble in the alcohol solvent in the presence of a fatty acid and an aliphatic amine in an alcohol solvent, and the fatty acid and the surface of the Cu nanoparticles are formed. The surface-coated Cu nanoparticles can be produced by forming an organic coating containing an aliphatic amine. Here, examples of the Cu salt include copper carbonate and copper hydroxide. Examples of fatty acids include saturated fatty acids such as octanoic acid, decanoic acid, dodecanoic acid, myristic acid, palmitic acid and stearic acid, and unsaturated fatty acids such as oleic acid, and aliphatic amines include octylamine, decylamine and dodecylamine. , Saturated aliphatic amines such as myristylamine, palmitylamine, stearylamine, and unsaturated aliphatic amines such as oleylamine, and by changing the carbon number of the hydrocarbon chain of fatty acids and aliphatic amines, The particle size can be adjusted.

また、本発明においては、(株)イオックス製のCuナノ粒子「Cu60−BtTP」、(株)テックサイエンス製の銅ナノ粒子粉末などの市販のCuナノ粒子を使用することもできる。更に、溶媒中に分散されたCuナノ粒子を使用することもできる。このようなCuナノ粒子分散液としては、立山科学工業(株)製の銅ナノ粒子分散液、大研化学工業(株)製「NCU−09」、ハリマ化成グループ(株)製の銅ナノ粒子分散液などの市販品が挙げられる。   In the present invention, commercially available Cu nanoparticles such as Cu nanoparticles “Cu60-BtTP” manufactured by IOX Co., Ltd. and copper nanoparticle powders manufactured by Tech Science Co., Ltd. can also be used. Furthermore, Cu nanoparticles dispersed in a solvent can also be used. As such Cu nanoparticle dispersion liquid, copper nanoparticle dispersion liquid manufactured by Tateyama Scientific Industry Co., Ltd., “NCU-09” manufactured by Daiken Chemical Industry Co., Ltd., copper nanoparticle manufactured by Harima Chemical Group Co., Ltd. Commercial products such as dispersions can be mentioned.

(微細CuNi合金ナノ粒子)
本発明にかかる金属ナノ粒子混合物における微細CuNi合金ナノ粒子は、平均粒子径が1nm〜50nmであることが必要である。このような微細CuNi合金ナノ粒子、すなわち本発明の接合材料におけるCuNi合金粒子(CuNi合金ナノ粒子を含む)の平均粒子径としては、5nm〜50nmが好ましく、8nm〜40nmがより好ましく、10nm〜30nmが特に好ましい。微細CuNi合金ナノ粒子の平均粒子径が前記下限未満になると、粒子中の有機被膜の成分割合が大きくなり、有機被膜成分の残存が起こり焼結を阻害し、接合強度や導電性、熱伝導性などの接合材料の特性が低下する傾向にある。他方、微細CuNi合金ナノ粒子の平均粒子径が前記上限を超えると、粒子サイズ効果が小さいため、Cu粒子の焼結温度が高くなり、低温(具体的には300℃以下)での加熱によるCu−CuNi合金ナノ粒子同士の結合が起こりにくくなり、その結果、CuNi合金ナノ粒子の添加による強度向上が起こり難くなり、接合強度が低下する傾向にある。
(Fine CuNi alloy nanoparticles)
The fine CuNi alloy nanoparticles in the metal nanoparticle mixture according to the present invention are required to have an average particle diameter of 1 nm to 50 nm. The average particle diameter of such fine CuNi alloy nanoparticles, that is, CuNi alloy particles (including CuNi alloy nanoparticles) in the bonding material of the present invention is preferably 5 nm to 50 nm, more preferably 8 nm to 40 nm, and more preferably 10 nm to 30 nm. Is particularly preferred. When the average particle diameter of the fine CuNi alloy nanoparticles is less than the lower limit, the component ratio of the organic coating in the particles increases, the organic coating component remains and inhibits sintering, and the bonding strength, conductivity, and thermal conductivity. There is a tendency for the properties of the bonding material to deteriorate. On the other hand, if the average particle diameter of the fine CuNi alloy nanoparticles exceeds the above upper limit, the particle size effect is small, so the sintering temperature of the Cu particles becomes high, and the Cu by heating at a low temperature (specifically, 300 ° C. or less). -Bonding between CuNi alloy nanoparticles is difficult to occur, and as a result, the strength is not easily improved by the addition of CuNi alloy nanoparticles, and the bonding strength tends to decrease.

なお、CuNi合金ナノ粒子の直径は、透過型電子顕微鏡(TEM)観察において測定することができ、本発明においては、前記金属ナノ粒子混合物における前記Cuナノ粒子及び前記微細CuNi合金ナノ粒子の合計量に対する微細CuNi合金ナノ粒子の割合及びCuNi合金粒子(CuNi合金ナノ粒子を含む)の平均粒子径を、前記TEM観察において、無作為に200個のCu粒子を抽出し、これらの直径を測定することによって求められる値とする。   The diameter of the CuNi alloy nanoparticles can be measured by transmission electron microscope (TEM) observation. In the present invention, the total amount of the Cu nanoparticles and the fine CuNi alloy nanoparticles in the metal nanoparticle mixture. In the TEM observation, the ratio of fine CuNi alloy nanoparticles with respect to the average particle diameter and the average particle diameter of CuNi alloy particles (including CuNi alloy nanoparticles) are extracted by randomly extracting 200 Cu particles and measuring these diameters. The value obtained by.

本発明においては、このような微細CuNi合金ナノ粒子に含まれるNiの含有量としては、特に制限されないが、2〜90質量%であることが好ましく、10〜85質量%であることがより好ましく、20〜82質量%であることが特に好ましい。前記微細CuNi合金ナノ粒子に含まれるNiの含有量が前記下限未満では、微細CuNi合金ナノ粒子によるCuナノ粒子の酸化抑制が不十分となり、焼結特性に悪影響を及ぼし形成される接合層の接合強度が不十分となる傾向にあり、他方、前記上限を超えると、粒子の融点が上がり過ぎて焼結温度が上昇し、低温での焼結が起こりにくくなり、接合強度が高い接合層を低温で形成することができなくなる傾向にある。   In the present invention, the content of Ni contained in such fine CuNi alloy nanoparticles is not particularly limited, but is preferably 2 to 90% by mass, more preferably 10 to 85% by mass. It is especially preferable that it is 20-82 mass%. If the content of Ni contained in the fine CuNi alloy nanoparticles is less than the lower limit, the oxidation of the Cu nanoparticles by the fine CuNi alloy nanoparticles is insufficiently suppressed, adversely affecting the sintering characteristics, and joining of the joining layer formed On the other hand, when the upper limit is exceeded, the melting point of the particles is excessively increased, the sintering temperature is increased, sintering at a low temperature is difficult to occur, and a bonding layer having high bonding strength is formed at a low temperature. It tends to be impossible to form with.

また、このような微細CuNi合金ナノ粒子としては、特に制限されず、公知のCuNi合金ナノ粒子を適宜用いることができる。例えば、Cu粒子又はCuのイオンとNiのイオンとを溶液中で反応させ、Niのイオンを還元させてCuNi合金ナノ粒子を合成する。なお、還元を促進するために還元性溶剤中で反応させることが好ましい。   Moreover, it does not restrict | limit especially as such a fine CuNi alloy nanoparticle, A well-known CuNi alloy nanoparticle can be used suitably. For example, Cu particles or Cu ions and Ni ions are reacted in a solution, and Ni ions are reduced to synthesize CuNi alloy nanoparticles. In order to accelerate the reduction, the reaction is preferably carried out in a reducing solvent.

このような還元性溶剤としては、メタノール、エタノール、プロピルアルコール、ブタノール、ヘキサノール、オクタノール、デカノール、オレイルアルコールなどの1級モノアルコール類、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオールなどのジオール類、グリセリンなどのトリオール、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、オレイルアミンなどの1級アミン類などを使用することができる。1級アルコールに代えて2級アルコールや、1級アミンに代えて2級又は3級アミンを用いても良い。これらの還元性溶剤に混和可能な溶剤を適宜混合してもよい。混和可能な溶剤としては、ヘキサン、ベンゼン、トルエン、ジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、クロロホルム、酢酸エチル、ジクロロメタン、THF、アセトン、アセトニトリル、DMF、水などがあげられる。また、これらの還元性溶剤、混和可能な溶剤に加えて、ナノ粒子の形状制御のために修飾剤を加えることもできる。このような修飾剤としては、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィンなどのホスフィン類、プロピオン酸、酪酸、ヘキサン酸、オクタン酸、デカン酸、ドデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸などの脂肪酸類を使用することができる。また、還元剤として添加したアミン類も修飾剤としても使用することができる。   Such reducing solvents include primary monoalcohols such as methanol, ethanol, propyl alcohol, butanol, hexanol, octanol, decanol, oleyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, Diols such as butanediol, pentanediol and hexanediol, triols such as glycerin, primary amines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, and oleylamine can be used. . A secondary alcohol may be used in place of the primary alcohol, and a secondary or tertiary amine may be used in place of the primary amine. A solvent miscible with these reducing solvents may be appropriately mixed. Examples of miscible solvents include hexane, benzene, toluene, dimethyl ether, diethyl ether, diphenyl ether, chloroform, ethyl acetate, dichloromethane, THF, acetone, acetonitrile, DMF, water, and the like. In addition to these reducing solvents and miscible solvents, a modifier may be added for shape control of the nanoparticles. Such modifiers include phosphines such as tripropylphosphine, tributylphosphine, trihexylphosphine, trioctylphosphine, tricyclohexylphosphine, triphenylphosphine, propionic acid, butyric acid, hexanoic acid, octanoic acid, decanoic acid, dodecane. Fatty acids such as acid, myristic acid, palmitic acid, stearic acid and oleic acid can be used. In addition, amines added as reducing agents can also be used as modifiers.

なお、CuNi合金ナノ粒子の合成は、オレイルアミンなどの脂肪族アミン、トリオクチルフォスフィンなどの形状制御のための修飾剤の代わりにアルキル鎖長の異なる界面活性剤を用いたり、その添加割合を変化させることで、様々な粒径や有機成分含有量の粒子を合成することが可能である。   For the synthesis of CuNi alloy nanoparticles, surfactants with different alkyl chain lengths are used instead of modifiers for shape control such as aliphatic amines such as oleylamine and trioctylphosphine, and the addition ratio is changed. By doing so, it is possible to synthesize particles having various particle sizes and organic component contents.

このような本発明の微細CuNi合金ナノ粒子の形状は、特に制限されないが、球状、長方体形状、立方体形状、多面体形状などが挙げられる。なお、粒子同士が密につまって焼結密度を向上できるという観点から長方体形状、立方体形状、多面体形状であることが好ましい。   The shape of the fine CuNi alloy nanoparticles of the present invention is not particularly limited, and examples thereof include a spherical shape, a rectangular shape, a cubic shape, and a polyhedral shape. In addition, it is preferable that it is a rectangular shape, a cube shape, and a polyhedron shape from a viewpoint that particles are closely packed and a sintered density can be improved.

(接合材料)
本発明の接合材料は、このようなCuナノ粒子と微細CuNi合金ナノ粒子とを所定の割合で含む金属ナノ粒子混合物を含有するものである。本発明の接合材料においては、前記金属ナノ粒子混合物における前記微細CuNi合金ナノ粒子の含有量が0.1〜29質量%(すなわち、Cuナノ粒子の含有量が99.9〜71質量%)である。微細CuNi合金ナノ粒子の含有量が前記下限未満になる(すなわち、Cuナノ粒子の含有量が前記上限を超える)と、微細CuNi合金ナノ粒子による粒子間の結合向上効果が十分に発現しなくなるため、接合強度が低下する。他方、微細CuNi合金ナノ粒子の含有量が前記上限を超える(すなわち、Cuナノ粒子の含有量が前記下限未満になる)と、有機被膜量が多くなり過ぎて有機被膜の残存により焼結が阻害され、またCuよりもCuNi合金の方が融点が高いことによりCuNi成分が増えて低温での焼結が起こり難くなり、接合強度や導電性、熱伝導性などの接合材料の特性が低下する。また、接合強度がより高くなるという観点から、微細CuNi合金ナノ粒子の含有量が1〜27質量%であることが好ましく、1〜20質量%であることがより好ましい。
(Joining material)
The bonding material of the present invention contains a metal nanoparticle mixture containing such Cu nanoparticles and fine CuNi alloy nanoparticles in a predetermined ratio. In the bonding material of the present invention, the content of the fine CuNi alloy nanoparticles in the metal nanoparticle mixture is 0.1 to 29% by mass (that is, the content of Cu nanoparticles is 99.9 to 71% by mass). is there. If the content of the fine CuNi alloy nanoparticles is less than the lower limit (that is, the content of the Cu nanoparticles exceeds the upper limit), the effect of improving the bonding between particles by the fine CuNi alloy nanoparticles is not sufficiently exhibited. , The bonding strength decreases. On the other hand, if the content of fine CuNi alloy nanoparticles exceeds the upper limit (that is, the content of Cu nanoparticles is less than the lower limit), the amount of organic coating becomes too large and sintering is inhibited by the remaining organic coating. In addition, since the CuNi alloy has a higher melting point than Cu, the CuNi component is increased and sintering at low temperature is difficult to occur, and the properties of the bonding material such as bonding strength, conductivity, and thermal conductivity are deteriorated. Moreover, from a viewpoint that joint strength becomes higher, it is preferable that content of a fine CuNi alloy nanoparticle is 1-27 mass%, and it is more preferable that it is 1-20 mass%.

このような本発明の接合材料においては、前記接合材料における前記金属ナノ粒子混合物の含有量が15質量%以上である。金属ナノ粒子混合物の含有量を15質量%以上とすることにより、接合強度が十分に高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料とすることが可能となる。   In such a bonding material of the present invention, the content of the metal nanoparticle mixture in the bonding material is 15% by mass or more. By setting the content of the metal nanoparticle mixture to 15% by mass or more, a bonding material capable of forming a bonding layer having sufficiently high bonding strength at a low temperature (specifically, 300 ° C. or less) can be obtained. It becomes.

また、このような本発明の接合材料においては、前記微細CuNi合金ナノ粒子の平均粒子径に対する前記Cuナノ粒子の平均粒子径の比が2〜60であることが好ましく、3〜40であることがより好ましい。微細CuNi合金ナノ粒子の平均粒子径に対するCuナノ粒子の平均粒子径の比が前記下限未満では、Cuナノ粒子と微細CuNi合金ナノ粒子の粒子径の差が小さいため、微細CuNi合金ナノ粒子によるCuナノ粒子間の充填効果が小さくなり、形成される接合層の接合強度が不十分となる傾向にあり、他方、前記上限を超えると、Cuナノ粒子の粒子間を所定の添加量で微細CuNi合金ナノで充填することが難しくなり、形成される接合層の接合強度が不十分となる傾向にある。   In such a bonding material of the present invention, the ratio of the average particle diameter of the Cu nanoparticles to the average particle diameter of the fine CuNi alloy nanoparticles is preferably 2 to 60, and preferably 3 to 40. Is more preferable. When the ratio of the average particle diameter of the Cu nanoparticles to the average particle diameter of the fine CuNi alloy nanoparticles is less than the lower limit, the difference in the particle diameter between the Cu nanoparticles and the fine CuNi alloy nanoparticles is small. The filling effect between the nanoparticles tends to be small, and the bonding strength of the formed bonding layer tends to be insufficient. On the other hand, when the upper limit is exceeded, a fine CuNi alloy is added between the Cu nanoparticles with a predetermined addition amount. It becomes difficult to fill with nano, and the bonding strength of the formed bonding layer tends to be insufficient.

また、このような本発明の接合材料においては、粒子径が1μm超のCu粒子からなりかつ平均粒子径が1μm超200μm以下であるCuミクロン粒子を更に含有する接合材料であって、Cuミクロン粒子の含有量が85質量%以下であることがより好ましい。Cuミクロン粒子の含有量が前記上限を超えると、粒子径が大きい粒子の割合が多くなり過ぎて接合材料のナノサイズ効果による焼結温度の低下が起こらなくなり、形成される接合層の接合強度が不十分となる傾向にある。また、このようなCuミクロン粒子の平均粒子径としては、1.2μm〜180μm以下が好ましく、3μm〜150μmがより好ましい。Cuミクロン粒子の平均粒子径が前記下限未満になると、粒子間の凝集が起こりやすくなり接合強度が低下する傾向にあり、他方、前記上限を超えると、粒子の微細化による焼結温度の低温化が起こりにくくなり接合強度が低下する傾向にある。   In addition, the bonding material of the present invention is a bonding material further comprising Cu micron particles made of Cu particles having a particle diameter of more than 1 μm and having an average particle diameter of more than 1 μm and not more than 200 μm. The content of is more preferably 85% by mass or less. When the content of Cu micron particles exceeds the above upper limit, the proportion of particles having a large particle diameter increases so much that the sintering temperature does not decrease due to the nano-size effect of the bonding material, and the bonding strength of the bonding layer to be formed is reduced. It tends to be insufficient. Moreover, as an average particle diameter of such Cu micron particle, 1.2 micrometers-180 micrometers or less are preferable, and 3 micrometers-150 micrometers are more preferable. When the average particle diameter of Cu micron particles is less than the lower limit, aggregation between particles tends to occur and the bonding strength tends to decrease. On the other hand, when the upper limit is exceeded, the sintering temperature is lowered due to finer particles. Tends to occur and the bonding strength tends to decrease.

このような本発明の接合材料は、例えば、Cuナノ粒子と微細CuNi合金ナノ粒子とが所定の割合となるように、両者を混合し、得られた混合ナノ粒子を有機溶媒などの溶剤と混合したり、Cuナノ粒子と微細CuNi合金ナノ粒子とが所定の割合となるように、Cuナノ粒子分散液と微細CuNi合金ナノ粒子分散液とを混合したりすることによって製造することができる。また、Cuナノ粒子、微細CuNi合金ナノ粒子及びCuミクロン粒子をそれぞれ有機溶媒等の溶剤中に分散させた後、所望の量となるように分散溶液を混合してエバポレータで濃縮しても良いし、ボールミルで撹拌しても良い。更に、ペースト状やインク状の接合材料を調製する場合には、ペースト状やインク状となるように、前記混合ナノ粒子と溶剤とを混合してもよいし、ペースト状やインク状のCuナノ粒子及び微細CuNi合金ナノ粒子を調製し、これらを混合してもよいし、前記混合ナノ粒子の分散液を調製した後、ペースト状やインク状になるまでエバポレータなどを用いて濃縮してもよい。   Such a bonding material of the present invention is, for example, mixed so that Cu nanoparticles and fine CuNi alloy nanoparticles are in a predetermined ratio, and the resulting mixed nanoparticles are mixed with a solvent such as an organic solvent. Or by mixing the Cu nanoparticle dispersion and the fine CuNi alloy nanoparticle dispersion so that the Cu nanoparticles and the fine CuNi alloy nanoparticles have a predetermined ratio. Alternatively, Cu nanoparticles, fine CuNi alloy nanoparticles, and Cu micron particles may be dispersed in a solvent such as an organic solvent, and then the dispersion solution may be mixed and concentrated by an evaporator so that a desired amount is obtained. Alternatively, stirring may be performed with a ball mill. Furthermore, when preparing a paste-like or ink-like bonding material, the mixed nanoparticles and the solvent may be mixed so as to become a paste-like or ink-like, or a paste-like or ink-like Cu nano-particle may be mixed. Particles and fine CuNi alloy nanoparticles may be prepared and mixed, or after preparing a dispersion of the mixed nanoparticles, it may be concentrated using an evaporator or the like until a paste or ink is obtained. .

Cuナノ粒子分散液及び微細CuNi合金ナノ粒子分散液は、Cuナノ粒子及び微細CuNi合金ナノ粒子をそれぞれ有機溶媒などの溶剤と混合して調製してもよいし、市販のナノ粒子のペーストや分散液を使用してもよい。   The Cu nanoparticle dispersion and the fine CuNi alloy nanoparticle dispersion may be prepared by mixing Cu nanoparticles and fine CuNi alloy nanoparticles with a solvent such as an organic solvent, or a commercially available nanoparticle paste or dispersion. A liquid may be used.

本発明の接合材料に用いられる有機溶媒としては特に制限はないが、例えば、テトラデカンなどの炭素数5〜18のアルカン類;1−ブタノール、デカノール、イソプロピルアルコールなどの炭素数1〜20のモノアルコール類;エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールなどのグリコール類;グリセリンなどのトリオール類;α−テルピネオールなどの環状アルコール類;アセトン、メチルエチルケトン、ジエチルケトンなどのケトン類;テトラヒドロフラン、ジエチルエーテル、ブチルカルビトールなどのエーテル類;酢酸エチル、ブチルカルビトールアセテートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族化合物などが挙げられる。また、本発明の接合材料ペーストには、必要に応じて、セルロース誘導体(例えば、エチルセルロース、ヒドロキシエチルセルロース)やグリセリド(例えば、ヒマシ油)といった粘度調整剤、などの添加剤を添加してもよい。   Although there is no restriction | limiting in particular as an organic solvent used for the joining material of this invention, For example, C1-C20 monoalcohols, such as C1-C18 alkanes, such as tetradecane; 1-butanol, decanol, isopropyl alcohol, etc. Glycols such as ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol; triols such as glycerin; cyclic alcohols such as α-terpineol; ketones such as acetone, methyl ethyl ketone, and diethyl ketone; tetrahydrofuran, diethyl ether, Examples thereof include ethers such as butyl carbitol; esters such as ethyl acetate and butyl carbitol acetate; aromatic compounds such as benzene, toluene and xylene. Moreover, you may add additives, such as viscosity modifiers, such as a cellulose derivative (for example, ethyl cellulose, hydroxyethyl cellulose) and a glyceride (for example, castor oil) to the joining material paste of this invention as needed.

ナノ粒子と溶剤との混合方法としては特に制限はないが、例えば、自転・公転ミキサー、ボールミル、スターラーなどの公知の撹拌装置を用いる方法が挙げられる。   The mixing method of the nanoparticles and the solvent is not particularly limited, and examples thereof include a method using a known stirring device such as a rotation / revolution mixer, a ball mill, or a stirrer.

<半導体装置>
次に、本発明の半導体装置について説明する。本発明の半導体装置は、半導体素子、基板、及び前記半導体素子と前記基板とを接合する接合層を備えており、前記接合層が本発明の接合材料により形成されたCuとSnと遷移金属との混合物層である。また、本発明の半導体装置において、本発明の半導体装置においては、前記混合物層の両面にNi、Co及びAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えていることが好ましい。この場合、一方の密着層は前記半導体素子の接合部に接するように配置され、他方の密着層は前記基板の接合部に接するように配置されている。
<Semiconductor device>
Next, the semiconductor device of the present invention will be described. The semiconductor device of the present invention includes a semiconductor element, a substrate, and a bonding layer that bonds the semiconductor element and the substrate, and the bonding layer is formed of Cu, Sn, and a transition metal formed of the bonding material of the present invention. It is a mixture layer. In the semiconductor device of the present invention, the semiconductor device of the present invention further includes an adhesion layer made of at least one metal selected from the group consisting of Ni, Co, and Ag on both surfaces of the mixture layer. Is preferred. In this case, one adhesion layer is disposed so as to contact the bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to contact the bonding portion of the substrate.

このような本発明の半導体装置においては、前記混合物層に含まれるNiの含有量が0.0003〜26.1質量%であることが好ましく、0.003〜20質量%であることがより好ましい。Niの含有量が前記下限未満では、粒子間の焼結が不十分で接合強度が不十分となる傾向にあり、他方、前記上限を超えると、Ni量が多いことにより熱及び電気伝導特性が不十分となる傾向にある。   In such a semiconductor device of the present invention, the Ni content in the mixture layer is preferably 0.0003 to 26.1% by mass, and more preferably 0.003 to 20% by mass. . If the Ni content is less than the lower limit, sintering between particles tends to be insufficient and the bonding strength tends to be insufficient. On the other hand, if the upper limit is exceeded, the amount of Ni is large, resulting in heat and electrical conduction characteristics. It tends to be insufficient.

なお、CuとCuNi合金との混合物層からなる前記接合部のNi比率は、該接合部を形成する前記本発明の接合材料中のNiの最小含有比率及びNiの最大含有比率から求めることができる。   The Ni ratio of the joint composed of a mixture layer of Cu and CuNi alloy can be determined from the minimum content ratio of Ni and the maximum content ratio of Ni in the joining material of the present invention forming the joint. .

本発明の半導体装置を構成する半導体素子としては特に制限はなく、例えば、パワー素子、LSI、抵抗、コンデンサなどが挙げられる。また、基板としては特に制限はなく、例えば、リードフレーム、電極が形成されたセラミック基板、実装基板などが挙げられる。リードフレームとしては、例えば、銅合金リードフレームが挙げられる。また、電極が形成されたセラミックス基板としては、例えば、DBC(Direct Bond Copper:登録商標)基板、活性金属接合(AMC:Active Metal Copper)基板が挙げられる。また、実装基板としては、例えば、電極が形成されたアルミナ基板、低温同時焼成セラミックス(LTCC:Low Temperature Co−fired Ceramics)基板、ガラスエポキシ基板などが挙げられる。   There is no restriction | limiting in particular as a semiconductor element which comprises the semiconductor device of this invention, For example, a power element, LSI, resistance, a capacitor | condenser etc. are mentioned. Moreover, there is no restriction | limiting in particular as a board | substrate, For example, a lead frame, the ceramic substrate in which the electrode was formed, a mounting substrate, etc. are mentioned. An example of the lead frame is a copper alloy lead frame. Examples of the ceramic substrate on which the electrode is formed include a DBC (Direct Bond Copper: registered trademark) substrate and an active metal bonded (AMC: Active Metal Copper) substrate. Examples of the mounting substrate include an alumina substrate on which electrodes are formed, a low temperature co-fired ceramics (LTCC) substrate, a glass epoxy substrate, and the like.

以下、図面を参照しながら本発明の半導体装置の好適な実施形態について詳細に説明するが、本発明の半導体装置は前記図面に限定されるものではない。なお、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the semiconductor device of the present invention will be described in detail with reference to the drawings. However, the semiconductor device of the present invention is not limited to the drawings. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and duplicate descriptions are omitted.

図1は、本発明の半導体装置の一実施形態を示す模式図である。この半導体装置は、半導体素子1、上部基板2a、下部基板2b、接合層3a及び3b、信号端子5、ボンディングワイヤ6、ならびにモールド樹脂7を備えるものである。半導体素子1の上表面には、接合層3aを介して上部基板2aが接合されている。半導体素子1の下表面には、接合層3bを介して下部基板2bが接合されている。また、半導体素子1の上表面の一部と信号素子5とは、ボンディングワイヤ6によって電気的に接続されている。半導体素子1、上部基板2aの一部、下部基板2bの一部、接合層3a及び3b、信号端子5の一部、ならびにボンディングワイヤ6は、モールド樹脂7に覆われている。また、上部基板2aの突出部2c、下部基板2bの突出部2d、及び信号端子5の一部は、モールド樹脂7の外部に突出している。   FIG. 1 is a schematic view showing an embodiment of a semiconductor device of the present invention. This semiconductor device includes a semiconductor element 1, an upper substrate 2a, a lower substrate 2b, bonding layers 3a and 3b, a signal terminal 5, a bonding wire 6, and a molding resin 7. An upper substrate 2a is bonded to the upper surface of the semiconductor element 1 via a bonding layer 3a. A lower substrate 2b is bonded to the lower surface of the semiconductor element 1 through a bonding layer 3b. A part of the upper surface of the semiconductor element 1 and the signal element 5 are electrically connected by a bonding wire 6. The semiconductor element 1, a part of the upper substrate 2 a, a part of the lower substrate 2 b, the bonding layers 3 a and 3 b, a part of the signal terminal 5, and the bonding wire 6 are covered with a mold resin 7. Further, the protruding portion 2 c of the upper substrate 2 a, the protruding portion 2 d of the lower substrate 2 b, and a part of the signal terminal 5 protrude outside the mold resin 7.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の上表面及び上部基板2aの下表面のいずれか一方に本発明の接合材料を塗布して接合材料層を形成する。また、半導体素子1の下表面及び下部基板2bの上表面のいずれか一方に本発明の接合材料を塗布し接合材料層を形成する。これらの接合材料層の厚さとしては特に制限はないが、生産性や接合抵抗を考慮すると、1μm〜500μmが好ましく、50μm〜400μmがより好ましく、100μm〜300μmが特に好ましい。接合材料の塗布方法としては、例えば、スクリーン印刷法、インクジェット法、ディップ法、フレキソ印刷法などが挙げられる。また、このような塗布は、大気中もしくは不活性ガス雰囲気中で行うことができる。   Such a semiconductor device can be manufactured as follows. That is, first, the bonding material of the present invention is applied to one of the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a to form a bonding material layer. Also, the bonding material of the present invention is applied to either the lower surface of the semiconductor element 1 or the upper surface of the lower substrate 2b to form a bonding material layer. Although there is no restriction | limiting in particular as thickness of these joining material layers, when productivity and joining resistance are considered, 1 micrometer-500 micrometers are preferable, 50 micrometers-400 micrometers are more preferable, and 100 micrometers-300 micrometers are especially preferable. Examples of the method for applying the bonding material include a screen printing method, an ink jet method, a dip method, and a flexographic printing method. Moreover, such application | coating can be performed in air | atmosphere or inert gas atmosphere.

次に、半導体素子1の上表面と上部基板2aの下表面との間に接合材料層が配置されるように、半導体素子1と上部基板2aとを貼り合わせ、また、半導体素子1の下表面と下部基板2bの上表面との間に接合材料層が配置されるように、半導体素子1と下部基板2bとを貼り合わせる。このとき、接合材料層に気泡が入り込まないように、加圧してもよい。また、貼り合わせは真空中で行なってもよいが、本発明の接合材料は大気中でのCuナノ粒子の酸化が抑制されているため、大気中で貼り合わせを行うことができる。   Next, the semiconductor element 1 and the upper substrate 2a are bonded together so that the bonding material layer is disposed between the upper surface of the semiconductor element 1 and the lower surface of the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together so that the bonding material layer is disposed between the upper surface of the lower substrate 2b. At this time, pressure may be applied so that bubbles do not enter the bonding material layer. The bonding may be performed in a vacuum, but the bonding material of the present invention can be bonded in the air because the oxidation of Cu nanoparticles in the air is suppressed.

このようにして半導体素子1と上部基板2a及び半導体素子1と下部基板2bとを貼り合わせた接合体に加熱処理を施して接合材料を焼結させ、接合層3a及び3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3aを介して接合され、半導体素子1と下部基板2bとが接合層3bを介して接合される。本発明の接合材料により形成された前記接合層3a及び3bは、CuとNiとの混合物層であるため、接合強度に優れている。なお、本発明にかかる接合層においては、接合強度が低下しない範囲において、Cu−Ni合金が形成されていてもよい。   In this way, the bonded body in which the semiconductor element 1 and the upper substrate 2a and the semiconductor element 1 and the lower substrate 2b are bonded together is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thereby, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b. Since the bonding layers 3a and 3b formed of the bonding material of the present invention are a mixture layer of Cu and Ni, the bonding strength is excellent. In the bonding layer according to the present invention, a Cu—Ni alloy may be formed as long as the bonding strength does not decrease.

加熱処理の温度としては特に制限はないが、150〜450℃が好ましく、200〜400℃がより好ましい。加熱処理温度が前記下限未満になると、接合材料に含まれていた溶剤が接合層3a及び3b中に残存しやすく、十分な接合強度が得られない傾向にあり、他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   Although there is no restriction | limiting in particular as temperature of heat processing, 150-450 degreeC is preferable and 200-400 degreeC is more preferable. When the heat treatment temperature is less than the lower limit, the solvent contained in the bonding material tends to remain in the bonding layers 3a and 3b, and sufficient bonding strength tends not to be obtained. In some cases, the temperature exceeds the heat resistance temperature of the semiconductor element, the thermal stress increases, and warping or peeling tends to occur.

また、このような加熱処理は、不活性ガス又は還元性ガス雰囲気中で行うことが好ましい。更に、本発明の接合材料を用いると、無加圧で接合することができるが、加圧しながら接合することによって接合強度が向上する傾向にある。   Such heat treatment is preferably performed in an inert gas or reducing gas atmosphere. Furthermore, when the bonding material of the present invention is used, bonding can be performed without applying pressure, but bonding strength tends to be improved by bonding while applying pressure.

また、本発明の半導体装置においては、図2に示すように、半導体素子1と接合層3aとの間、上部基板2aと接合層3aとの間、半導体素子1と接合層3bとの間、下部基板2bと接合層3aとの間に、Ni、Co及びAgのうちの少なくとも1種の金属からなる密着層4a及び4bが配置されていることが好ましい。このような密着層を形成することによって、接合強度が更に向上する傾向にある。   In the semiconductor device of the present invention, as shown in FIG. 2, between the semiconductor element 1 and the bonding layer 3a, between the upper substrate 2a and the bonding layer 3a, between the semiconductor element 1 and the bonding layer 3b, It is preferable that adhesion layers 4a and 4b made of at least one of Ni, Co, and Ag are disposed between the lower substrate 2b and the bonding layer 3a. By forming such an adhesion layer, the bonding strength tends to be further improved.

このような密着層の厚さについては、1nm以上であれば高い接合強度が得られるため特に制限はないが、半導体装置の生産コストや密着層の電気抵抗などを考慮すると10μm以下が好ましい。また、生産コストをより低減するという観点から200nm以下がより好ましい。   The thickness of such an adhesion layer is not particularly limited because high bonding strength can be obtained if it is 1 nm or more, but it is preferably 10 μm or less in consideration of the production cost of the semiconductor device, the electric resistance of the adhesion layer, and the like. Moreover, 200 nm or less is more preferable from a viewpoint of reducing production cost more.

このような半導体装置は、以下のようにして製造することができる。すなわち、先ず、半導体素子1の両面、上部基板2aの下表面、及び下部基板2bの上表面に前記密着層を形成する。密着層の形成方法としては、スパッタ法、メッキ法、塗布法などが挙げられる。   Such a semiconductor device can be manufactured as follows. That is, first, the adhesion layer is formed on both surfaces of the semiconductor element 1, the lower surface of the upper substrate 2a, and the upper surface of the lower substrate 2b. Examples of the method for forming the adhesion layer include a sputtering method, a plating method, and a coating method.

スパッタ法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物を真空チャンバーに挿入し、チャンバー内を減圧する。チャンバー内が真空状態になった後、アルゴンガスを導入し、被塗布物側にRFプラズマを生成して被塗布物表面の不純物の除去を行う。その後、形成する密着層の材料(例えば、Ni、Co、又はAg)のターゲットを用いてRFスパッタ法を行う。これにより、被塗布物表面に密着層を形成することができる。密着層を形成する際の被塗布物の温度としては特に制限はないが、例えば、室温(25℃程度)〜450℃が好ましい。被塗布物の温度が前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   In the case of forming an adhesion layer by sputtering, first, an object to be coated such as a semiconductor element or a substrate is inserted into a vacuum chamber, and the inside of the chamber is decompressed. After the inside of the chamber is in a vacuum state, argon gas is introduced, and RF plasma is generated on the object to be coated to remove impurities on the surface of the object to be coated. Thereafter, RF sputtering is performed using a target of the material of the adhesion layer to be formed (for example, Ni, Co, or Ag). Thereby, an adhesion layer can be formed on the surface of an object to be coated. Although there is no restriction | limiting in particular as a temperature of the to-be-coated object at the time of forming a contact | glue layer, For example, room temperature (about 25 degreeC)-450 degreeC are preferable. If the temperature of the object to be coated exceeds the upper limit, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping or peeling tends to occur.

また、塗布法により密着層を形成する場合には、先ず、半導体素子や基板などの被塗布物に、大気中もしくは不活性ガス雰囲気中でインクジェット法、スピンコート法、ディップ法、スクリーン印刷法などの手法によって、形成する密着層の材料(例えば、Ni、Co、又はAg)を含むペースト又はインクを塗布する。ペーストやインクとしては、金属粒子と溶剤などを混合して調製したものを使用してもよいし、金属粒子を含む市販のペーストを使用してもよい。ニッケル粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のニッケルナノ粒子分散液、大研化学工業(株)製「MM12−800TO」などが挙げられる。コバルト粒子を含む市販のペーストとしては、例えば、立山科学工業(株)製のコバルトナノ粒子分散液などが挙げられる。銀粒子を含む市販のペーストとしては、例えば、住友電気工業(株)製「AGIN−W4A」、ハリマ化成(株)製「NPS−J−HTB」などが挙げられる。このようにペーストを塗布した被塗布物を不活性ガス又は還元性ガス雰囲気中で加熱処理することにより前記密着層が形成される。なお、不活性ガス又は還元性ガス雰囲気中での加熱処理の前に酸化雰囲気中で加熱処理を行なってもよい。加熱処理における雰囲気温度としては特に制限はないが、150〜450℃が好ましい。雰囲気温度が前記下限未満になると、ペースト中の有機成分(例えば、有機溶媒、有機修飾剤)の揮発除去が不十分となり、密着層中の有機成分の含有量が多くなる傾向にある。他方、前記上限を超えると、半導体素子の耐熱温度を超える場合があり、熱応力が増大し、反りや剥離が発生しやすい傾向にある。   When the adhesion layer is formed by a coating method, first, an inkjet method, a spin coating method, a dip method, a screen printing method, or the like is applied to an object to be coated such as a semiconductor element or a substrate in the air or in an inert gas atmosphere. The paste or ink containing the material (for example, Ni, Co, or Ag) of the adhesion layer to be formed is applied by the above method. As the paste or ink, a paste prepared by mixing metal particles and a solvent may be used, or a commercially available paste containing metal particles may be used. Examples of commercially available pastes containing nickel particles include nickel nanoparticle dispersions manufactured by Tateyama Kagaku Kogyo Co., Ltd., “MM12-800TO” manufactured by Daiken Chemical Industries, Ltd., and the like. Examples of commercially available pastes containing cobalt particles include cobalt nanoparticle dispersions manufactured by Tateyama Science Co., Ltd. Examples of commercially available pastes containing silver particles include “AGIN-W4A” manufactured by Sumitomo Electric Industries, Ltd. and “NPS-J-HTB” manufactured by Harima Chemical Co., Ltd. Thus, the said adhesion layer is formed by heat-processing the to-be-coated object which apply | coated the paste in inert gas or reducing gas atmosphere. Note that heat treatment may be performed in an oxidizing atmosphere before heat treatment in an inert gas or reducing gas atmosphere. Although there is no restriction | limiting in particular as atmospheric temperature in heat processing, 150-450 degreeC is preferable. When the atmospheric temperature is lower than the lower limit, the organic components (for example, organic solvent and organic modifier) in the paste are not sufficiently volatilized and removed, and the content of the organic components in the adhesion layer tends to increase. On the other hand, when the upper limit is exceeded, the heat resistance temperature of the semiconductor element may be exceeded, the thermal stress increases, and warping and peeling tend to occur.

次に、このようにして形成した密着層の表面に、図1に示した半導体装置の場合と同様に、本発明の接合材料を用いて接合材料層を形成し、半導体素子1と上部基板2a、半導体素子1と下部基板2bとを貼り合わせ、得られた接合体に加熱処理を施して接合材料を焼結させ、接合層3a及び3bを形成する。これにより、半導体素子1と上部基板2aとが接合層3a及び密着層4a及び4bを介して接合され、半導体素子1と下部基板2bとが接合層3b及び密着層4a及び4bを介して接合される。このようにNi、Co及びAgのうちの少なくとも1種の金属からなる密着層を形成することによって、接合強度が更に向上する傾向にある。   Next, as in the case of the semiconductor device shown in FIG. 1, a bonding material layer is formed on the surface of the adhesion layer thus formed using the bonding material of the present invention, and the semiconductor element 1 and the upper substrate 2a. The semiconductor element 1 and the lower substrate 2b are bonded together, and the obtained bonded body is subjected to heat treatment to sinter the bonding material, thereby forming the bonding layers 3a and 3b. Thus, the semiconductor element 1 and the upper substrate 2a are bonded via the bonding layer 3a and the adhesion layers 4a and 4b, and the semiconductor element 1 and the lower substrate 2b are bonded via the bonding layer 3b and the adhesion layers 4a and 4b. The Thus, by forming the adhesion layer made of at least one metal of Ni, Co, and Ag, the bonding strength tends to be further improved.

なお、前記密着層を形成することによって、接合強度が更に向上する理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、Niなどの金属表面に形成されている不働態の酸化物層は薄く、容易に還元されるとともに、Niなどの金属層にはCuナノ粒子表面の酸化物層を還元する作用もある。また、Niなどの金属層は焼結時のCuナノ粒子との濡れ性が非常に大きいため、無加圧でも高い接合強度を有する密着層を形成することができる、と推察される。   The reason why the bonding strength is further improved by forming the adhesion layer is not necessarily clear, but the present inventors speculate as follows. That is, the passive oxide layer formed on the metal surface such as Ni is thin and easily reduced, and the metal layer such as Ni also has an action of reducing the oxide layer on the surface of the Cu nanoparticles. In addition, since a metal layer such as Ni has very high wettability with Cu nanoparticles during sintering, it is presumed that an adhesion layer having high bonding strength can be formed even without pressure.

以上、半導体素子を上部電極と下部電極とで挟持する場合(図1及び図2)を例に本発明の半導体装置を説明したが、本発明の半導体装置はこれらに限定されるものではなく、例えば、図3及び図4に示すように、半導体素子の一方の面のみを接合層を介して基板と接合した半導体装置などが挙げられる。   As described above, the semiconductor device of the present invention has been described by taking the case where the semiconductor element is sandwiched between the upper electrode and the lower electrode (FIGS. 1 and 2) as an example, but the semiconductor device of the present invention is not limited to these, For example, as shown in FIGS. 3 and 4, a semiconductor device in which only one surface of a semiconductor element is bonded to a substrate through a bonding layer can be given.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例で使用した接合材料は以下の方法により調製した。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In addition, the joining material used by the Example and the comparative example was prepared with the following method.

(調製例1−1)
<Cuナノ粒子の調製1−1>
Cuナノ粒子は、特開2012−46779号公報に記載の方法に従って調製した。すなわち、フラスコにエチレングリコール(HO(CHOH)300mlを入れ、これに炭酸銅(CuCO・Cu(OH)・HO)30mmolを添加したところ、炭酸銅はエチレングリコールにほとんど溶解せずに沈殿した。これに、オクタン酸(C15COOH)30mmol及びオクチルアミン(C17NH)30mmolを添加した後、窒素ガスを1L/minで流しながら、エチレングリコールの沸点で1時間加熱還流させたところ、微粒子が生成した。得られた微粒子をヘキサン中に分散させて回収し、アセトン及びエタノールを順次添加して洗浄した後、遠心分離(3000rpm、20min)により回収し、真空乾燥(35℃、30min)を施した。
(Preparation Example 1-1)
<Preparation of Cu nanoparticles 1-1>
Cu nanoparticles were prepared according to the method described in JP 2012-46779 A. That is, when 300 ml of ethylene glycol (HO (CH 2 ) 2 OH) was placed in a flask and 30 mmol of copper carbonate (CuCO 3 · Cu (OH) 2 · H 2 O) was added thereto, the copper carbonate was hardly added to ethylene glycol. It precipitated without dissolving. To this was added 30 mmol of octanoic acid (C 7 H 15 COOH) and 30 mmol of octylamine (C 8 H 17 NH 2 ), and then the mixture was heated to reflux for 1 hour at the boiling point of ethylene glycol while flowing nitrogen gas at 1 L / min. As a result, fine particles were formed. The obtained fine particles were dispersed in hexane and collected, and acetone and ethanol were sequentially added and washed, and then collected by centrifugation (3000 rpm, 20 min), followed by vacuum drying (35 ° C., 30 min).

得られた微粒子について、X線回折装置((株)リガク製「試料水平型強力X線回折装置RINT−TTR」)を用い、X線源:CuKα線(λ=0.15418nm)、管電圧:50kV、管電流:300mAの条件で粉末X線回折(XRD)測定を行なった。得られたXRDスペクトルから金属成分を同定し、Cuが主成分であることを確認した。   About the obtained fine particles, an X-ray diffractometer (“Rigaku Co., Ltd.“ sample horizontal strong X-ray diffractometer RINT-TTR ”) was used, X-ray source: CuKα ray (λ = 0.15418 nm), tube voltage: Powder X-ray diffraction (XRD) measurement was performed under the conditions of 50 kV and tube current: 300 mA. The metal component was identified from the obtained XRD spectrum, and it was confirmed that Cu was the main component.

また、得られたCu微粒子をヘキサンに分散させ、この分散液をエラスチックカーボン支持膜(高分子材料膜(15〜20nm厚)+カーボン膜(20〜25nm厚))付きCuマイクログリッド(応研商事(株)製)上に滴下した後、自然乾燥させて観察用試料を作製した。この観察用試料を、透過型電子顕微鏡(TEM、日本電子(株)製「JEM−2000EX」)を用いて加速電圧200kVで観察した。このTEM観察において、無作為に200個のCu微粒子を抽出し、その直径を測定したところ、これらの平均粒子径は300nmであった。得られた結果を表1に示す。なお、Cu微粒子の粒子径は全て1000nm以下であった。   Further, the obtained Cu fine particles are dispersed in hexane, and this dispersion is dispersed into an elastic carbon support film (polymer material film (15 to 20 nm thickness) + carbon film (20 to 25 nm thickness)) Cu microgrid (Oken Corporation ( The sample for observation was produced by dripping on the product) and air-drying. This observation sample was observed at an accelerating voltage of 200 kV using a transmission electron microscope (TEM, “JEM-2000EX” manufactured by JEOL Ltd.). In this TEM observation, 200 Cu fine particles were randomly extracted and the diameter thereof was measured. As a result, the average particle diameter was 300 nm. The obtained results are shown in Table 1. In addition, all the particle diameters of Cu fine particles were 1000 nm or less.

(調製例1−2〜1−4)
<Cuナノ粒子の調製1−2〜1−4>
オクタン酸に代えて表1に示す脂肪酸を、オクチルアミンに代えて表1に示す脂肪族アミンを用い、表1に示す割合とした以外は調製例1−1と同様にしてCu微粒子を調製した。得られた微粒子について、調製例1−1と同様にして粉末X線回折(XRD)測定を行ない、いずれもCuが主成分であることを確認した。次に、得られたCu微粒子を用い、調製例1−1と同様にして観察用試料を作製し、調製例1−1と同様にしてTEM観察を行い、平均粒子径を求めた。得られた結果を表1に示す。なお、Cu微粒子の粒子径は調製例1−2〜1−4のいずれにおいても全て1000nm以下であった。
(Preparation Examples 1-2 to 1-4)
<Preparation of Cu nanoparticles 1-2 to 1-4>
Cu fine particles were prepared in the same manner as in Preparation Example 1-1 except that the fatty acids shown in Table 1 were used instead of octanoic acid, the aliphatic amines shown in Table 1 were used instead of octylamine, and the ratios shown in Table 1 were used. . About the obtained microparticles | fine-particles, the powder X-ray-diffraction (XRD) measurement was performed like preparation example 1-1, and all confirmed that Cu was a main component. Next, using the obtained Cu fine particles, an observation sample was prepared in the same manner as in Preparation Example 1-1, and TEM observation was performed in the same manner as in Preparation Example 1-1 to obtain an average particle size. The obtained results are shown in Table 1. In addition, all the particle diameters of Cu fine particles were 1000 nm or less in any of Preparation Examples 1-2 to 1-4.

(調製例2−1〜2−5)
<微細CuNi合金ナノ粒子の調製2−1〜2−5>
フラスコにオレイルアミン(OA、C1835NH)30mmol及びCuアセチルアセトナト(Cu(acac)、Cu(C)1.7mmolを入れ、窒素ガスを0.4L/minで流しながら、200℃で1時間撹拌して合成反応を行い、Cu微粒子を含むオレイルアミン分散液を得た。
(Preparation Examples 2-1 to 2-5)
<Preparation of Fine CuNi Alloy Nanoparticles 2-1 to 2-5>
The flask was charged with 30 mmol of oleylamine (OA, C 18 H 35 NH 2 ) and 1.7 mmol of Cu acetylacetonate (Cu (acac) 2 , Cu (C 5 H 7 O 2 ) 2 ), and 0.4 L / nitrogen gas was added. The synthesis reaction was performed by stirring at 200 ° C. for 1 hour while flowing at min to obtain an oleylamine dispersion containing Cu fine particles.

得られたオレイルアミン分散液を水冷した後、トリオクチルホスフィン(TOP、P(C17)2.4mmol及び塩化ニッケル(NiCl)を表2に示す量を添加し、窒素ガスを0.4L/minで流しながら200℃で1時間撹拌して合成反応を行い、生成物を得た。得られた生成物をヘキサンで洗浄後、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。 The obtained oleylamine dispersion was cooled with water, 2.4 mmol of trioctylphosphine (TOP, P (C 8 H 17 ) 3 ) and nickel chloride (NiCl 2 ) were added in the amounts shown in Table 2, and nitrogen gas was reduced to 0. The mixture was stirred at 200 ° C. for 1 hour while flowing at 4 L / min to carry out a synthesis reaction to obtain a product. The obtained product was washed with hexane, and then centrifuged (3000 rpm, 20 min) to collect fine particles, followed by vacuum drying (35 ° C., 30 min).

(調製例2−6)
<比較用微細Cuナノ粒子の調製2−6>
塩化ニッケル(NiCl)を添加しない以外は調製例2−1〜2−5と同様にして、比較用微細Cuナノ粒子を調製した。
(Preparation Example 2-6)
<Preparation 2-6 of fine Cu nanoparticles for comparison>
Comparative fine Cu nanoparticles were prepared in the same manner as Preparation Examples 2-1 to 2-5 except that nickel chloride (NiCl 2 ) was not added.

(調製例2−7)
<比較用CuSnナノ粒子の調製2−7>
フラスコにテトラヒドロフラン(THF)10mlを入れ、これに塩化スズ(SnCl)1.7mmol、オレイルアミン(C1835NH)32mmol及びテトラブチルアンモニウムボロハイドライド(TBABH)3.6mmolを添加した後、窒素ガスを0.1L/minで流しながら、60℃で1時間撹拌して合成反応を行い、微粒子を含むTHF分散液を得た。
(Preparation Example 2-7)
<Preparation 2-7 of Cu 6 Sn 5 nanoparticles for comparison>
After adding 10 ml of tetrahydrofuran (THF) to the flask, 1.7 mmol of tin chloride (SnCl 2 ), 32 mmol of oleylamine (C 18 H 35 NH 2 ) and 3.6 mmol of tetrabutylammonium borohydride (TBABH) were added, and then nitrogen was added. While flowing gas at 0.1 L / min, the mixture was stirred at 60 ° C. for 1 hour to carry out a synthesis reaction to obtain a THF dispersion containing fine particles.

このTHF分散液に遠心分離(3000rpm、20min)を施し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施して、Sn微粒子を得た。   The THF dispersion was subjected to centrifugation (3000 rpm, 20 min), and the resulting precipitate was dispersed in ethanol, and then centrifuged again (3000 rpm, 20 min) to collect fine particles, followed by vacuum drying (35 ° C. , 30 min) to obtain Sn fine particles.

次に、フラスコにエチレングリコール18mLを入れ、これに得られたSn微粒子0.17g(1.4mmol)を添加し、Cuアセチルアセトナト1.2mmolを添加した後、超音波処理(出力:100W)を施してSnナノ粒子を分散させた。次に、窒素ガスを0.1L/minで流しながら、100℃で3時間撹拌して合成反応を行い、CuSnナノ粒子を含むエチレングリコール分散液を得た。 Next, 18 mL of ethylene glycol was placed in the flask, 0.17 g (1.4 mmol) of the obtained Sn fine particles were added thereto, and 1.2 mmol of Cu acetylacetonate was added, followed by sonication (output: 100 W). To disperse Sn nanoparticles. Next, while flowing nitrogen gas at 0.1 L / min, the mixture was stirred at 100 ° C. for 3 hours to carry out a synthesis reaction to obtain an ethylene glycol dispersion containing Cu 6 Sn 5 nanoparticles.

このエチレングリコール分散液に遠心分離(3000rpm、20min)を施して洗浄し、得られた沈殿物をエタノールに分散させた後、再度、遠心分離(3000rpm、20min)を施して微粒子を回収し、真空乾燥(35℃、30min)を施した。   The ethylene glycol dispersion is subjected to centrifugation (3000 rpm, 20 min) and washed, and the resulting precipitate is dispersed in ethanol, and then centrifuged (3000 rpm, 20 min) again to collect fine particles, and vacuum is applied. Drying (35 ° C., 30 min) was performed.

(調製例2−1〜2−7の評価試験)
調製例2−1〜2−7により得られた微粒子について、評価試験を行った。
(Evaluation test of Preparation Examples 2-1 to 2-7)
An evaluation test was performed on the fine particles obtained in Preparation Examples 2-1 to 2-7.

先ず、調製例2−1〜2−6により得られた微粒子について、各微粒子の成分の同定を、調製例1−1と同様にして粉末X線回折(XRD)測定により行った。得られたXRDスペクトルを、図5に示す。   First, with respect to the fine particles obtained in Preparation Examples 2-1 to 2-6, the components of each fine particle were identified by powder X-ray diffraction (XRD) measurement in the same manner as in Preparation Example 1-1. The obtained XRD spectrum is shown in FIG.

図5に示した結果から明らかなように、Niを添加しなかったCuナノ粒子(調製例2−6)はCu以外にもCuOが見られたが、塩化ニッケルの添加量が0.05mmol(調製例2−1)ではCuOのピークが弱くなり、塩化ニッケルの添加量が0.3mmol以上(調製例2−2〜2−5)のNi添加量ではCuOのピークはほとんど見られなくなり、耐酸化性が向上することが確認された。また、Ni添加量を増やすにつれて、各粒子のピークはCuからNiのピーク位置に徐々にシフトしていくことが確認された。 As is apparent from the results shown in FIG. 5, Cu 2 O other than Cu was found in the Cu nanoparticles to which Ni was not added (Preparation Example 2-6), but the addition amount of nickel chloride was 0.00. At 05 mmol (Preparation Example 2-1), the peak of Cu 2 O becomes weak, and when the addition amount of nickel chloride is 0.3 mmol or more (Preparation Examples 2-2 to 2-5), the peak of Cu 2 O is It was confirmed that the oxidation resistance was improved with almost no observation. It was also confirmed that the peak of each particle gradually shifted from Cu to the peak position of Ni as the amount of Ni added was increased.

次に、調製例2−1〜2−6により得られた微粒子について、各微粒子の平均粒子径を、調製例1−1と同様にしてTEM観察を行い、平均粒子径を求めた。得られた結果を表2に示す。また、調製例2−1〜2−6で作製した微細CuNi合金ナノ粒子の透過型電子顕微鏡(TEM)写真(スケールバー:50nm)を、調製例2−1は図6に、調製例2−2は図7に、調製例2−3は図8に、調製例2−4は図9に、調製例2−5は図10に、調製例2−6は図11に、それぞれ示す。   Next, with respect to the fine particles obtained in Preparation Examples 2-1 to 2-6, the average particle size of each fine particle was observed by TEM in the same manner as in Preparation Example 1-1 to obtain the average particle size. The obtained results are shown in Table 2. Further, a transmission electron microscope (TEM) photograph (scale bar: 50 nm) of the fine CuNi alloy nanoparticles prepared in Preparation Examples 2-1 to 2-6, Preparation Example 2-1 in FIG. 2 is shown in FIG. 7, Preparation Example 2-3 is shown in FIG. 8, Preparation Example 2-4 is shown in FIG. 9, Preparation Example 2-5 is shown in FIG. 10, and Preparation Example 2-6 is shown in FIG.

また、調製例2−7により得られた比較用CuSnナノ粒子について、上記と同様にして測定試験を行い、XRDスペクトルからCuSnが主成分であることが、TEM観察の結果から平均粒子径が10nmであることが確認された。 In addition, the comparative Cu 6 Sn 5 nanoparticles obtained in Preparation Example 2-7 were subjected to a measurement test in the same manner as described above, and the result of TEM observation that Cu 6 Sn 5 was the main component from the XRD spectrum. From the results, it was confirmed that the average particle size was 10 nm.

次いで、調製例2−1〜2−6により得られた微粒子について、ナノ粒子中のNi比率の組成分析を、高周波誘導結合プラズマ発光(ICP)分析装置(リガク社製、型式:CIROS−120EOP)を用い、誘導結合プラズマ発光分光分析(ICP−OES)により行った。得られた結果を表2に示す。   Next, for the fine particles obtained in Preparation Examples 2-1 to 2-6, composition analysis of the Ni ratio in the nanoparticles was performed using a high frequency inductively coupled plasma emission (ICP) analyzer (manufactured by Rigaku Corporation, model: CIROS-120EOP). Was performed by inductively coupled plasma optical emission spectrometry (ICP-OES). The obtained results are shown in Table 2.

(実施例1−1)
調製例1−2で調製したCuナノ粒子と調製例2−3で調製した微細CuNi合金ナノ粒子とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して95質量%のCuナノ粒子と5質量%の微細CuNi合金ナノ粒子を含有する混合粉末を調製した。この混合粉末0.4gにデカノール20μL及びテルピネオール20μLを添加し、自転・公転ミキサーにより撹拌して接合材料ペーストを調製した。
(Example 1-1)
Cu nanoparticles prepared in Preparation Example 1-2 and fine CuNi alloy nanoparticles prepared in Preparation Example 2-3 were ground and mixed in a mortar, and 95% by mass of Cu nanoparticles and 5% with respect to all metal nanoparticles. A mixed powder containing mass% fine CuNi alloy nanoparticles was prepared. To 0.4 g of this mixed powder, 20 μL of decanol and 20 μL of terpineol were added and stirred by a rotating / revolving mixer to prepare a bonding material paste.

<接合強度測定>
リードフレームや半導体素子などにより構成される半導体装置において、接合層の接合強度を直接測定することは困難である。従って、得られた接合材料により形成される接合層の接合強度は、図12に示すせん断強度測定用接合体を用いて、以下の方法により測定した。
<Bonding strength measurement>
In a semiconductor device composed of a lead frame, a semiconductor element, etc., it is difficult to directly measure the bonding strength of the bonding layer. Therefore, the bonding strength of the bonding layer formed from the obtained bonding material was measured by the following method using the bonded body for measuring shear strength shown in FIG.

先ず、無酸素銅(C1020)からなる試験片8a(直径5mmφ×高さ2mm)の一方の面及び無酸素銅(C1020)からなる試験片8b(10mm×22mm×3mm)の一方の面にそれぞれRFスパッタリング法により厚さ40nmのNi密着層10a及び10bを形成した。   First, on one surface of a test piece 8a (diameter 5 mmφ × height 2 mm) made of oxygen-free copper (C1020) and on one surface of a test piece 8b (10 mm × 22 mm × 3 mm) made of oxygen-free copper (C1020), respectively. Ni adhesion layers 10a and 10b having a thickness of 40 nm were formed by RF sputtering.

次に、試験片8b上のNi密着層10bの表面に、メタルマスク(直径5mmφ×厚さ0.15mm)を用いて接合材料ペーストを塗布し、接合材料層(直径5mmφ×厚さ150μm)を形成した。この接合材料層と試験片8a上のNi密着層10aとが接するように試験片8aと試験片8bとを貼り合わせ、水素雰囲気中、無加圧の条件下、200℃で10分間予備加熱した後、接合温度250℃で5分間の加熱処理を施し、試験片8aと試験片8bが接合層9により接合された、せん断強度測定用接合体(図12)を作製した。   Next, a bonding material paste is applied to the surface of the Ni adhesion layer 10b on the test piece 8b using a metal mask (diameter 5 mmφ × thickness 0.15 mm), and a bonding material layer (diameter 5 mmφ × thickness 150 μm) is applied. Formed. The test piece 8a and the test piece 8b were bonded so that the bonding material layer and the Ni adhesion layer 10a on the test piece 8a were in contact with each other, and preheated at 200 ° C. for 10 minutes in a hydrogen atmosphere under no pressure. Then, the heat processing for 5 minutes were performed at the joining temperature of 250 degreeC, and the joined body for shear strength measurement (FIG. 12) with which the test piece 8a and the test piece 8b were joined by the joining layer 9 was produced.

このようにして3個のせん断強度測定用接合体を作製し、これらのせん断強度を、インストロン型万能試験機(インストロン社製)を用いて、室温(20℃)、剪断速度1mm/分でそれぞれ測定し、これらの平均値を接合材料により形成された接合層の接合強度とした。その結果を表3に示す。また、接合層(混合物層)に含まれるNiの含有量を表3に示す。   In this way, three joined bodies for measuring shear strength were prepared, and these shear strengths were measured at room temperature (20 ° C.) and shear rate of 1 mm / min using an Instron universal testing machine (Instron). The average value of these values was taken as the bonding strength of the bonding layer formed of the bonding material. The results are shown in Table 3. Table 3 shows the Ni content in the bonding layer (mixture layer).

(実施例1−2〜1−5)
Cuナノ粒子として表3の「Cuナノ粒子(A)」に示したもの及び微細CuNi合金ナノ粒子として表3の「微細CuNi合金ナノ粒子又は微細Cuナノ粒子(B)」に示した微細CuNi合金ナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製した。得られた接合材料ペーストについて、実施例1−1と同様にして接合強度測定を行なった。得られた結果を表3に示す。
(Examples 1-2 to 1-5)
As Cu nanoparticles, those shown in “Cu nanoparticles (A)” in Table 3 and as fine CuNi alloy nanoparticles, fine CuNi alloys shown in “fine CuNi alloy nanoparticles or fine Cu nanoparticles (B)” in Table 3 A bonding material paste was prepared in the same manner as in Example 1-1 except that the nanoparticles were used. About the obtained joining material paste, it carried out similarly to Example 1-1, and performed joint strength measurement. The obtained results are shown in Table 3.

(実施例1−6〜1−10)
Cuナノ粒子として表3の「Cuナノ粒子(A)」に示したもの及び微細CuNi合金ナノ粒子として表3の「微細CuNi合金ナノ粒子又は微細Cuナノ粒子(B)」に示した微細CuNi合金ナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製した。得られた接合材料ペーストについて、接合温度を300℃とした以外は実施例1−1と同様にして接合強度測定を行なった。得られた結果を表3に示す。
(Examples 1-6 to 1-10)
As Cu nanoparticles, those shown in “Cu nanoparticles (A)” in Table 3 and as fine CuNi alloy nanoparticles, fine CuNi alloys shown in “fine CuNi alloy nanoparticles or fine Cu nanoparticles (B)” in Table 3 A bonding material paste was prepared in the same manner as in Example 1-1 except that the nanoparticles were used. About the obtained joining material paste, joining strength measurement was performed like Example 1-1 except joining temperature having been 300 degreeC. The obtained results are shown in Table 3.

(比較例1−1)
微細CuNi合金ナノ粒子を混合しなかった以外は実施例1−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Comparative Example 1-1)
A bonding material paste was prepared in the same manner as in Example 1-1 except that fine CuNi alloy nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 3.

(比較例1−2)
微細CuNi合金ナノ粒子に代えて調製例2−6の微細Cuナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Comparative Example 1-2)
A bonding material paste was prepared in the same manner as in Example 1-1 except that the fine Cu nanoparticles of Preparation Example 2-6 were used in place of the fine CuNi alloy nanoparticles, and a bonded body for measuring shear strength was prepared. Thus, the bonding strength of the bonding layer was obtained. The results are shown in Table 3.

(比較例1−3)
微細CuNi合金ナノ粒子に代えて調製例2−7のCuSnナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Comparative Example 1-3)
A bonding material paste was prepared in the same manner as in Example 1-1, except that the Cu 6 Sn 5 nanoparticles of Preparation Example 2-7 were used instead of the fine CuNi alloy nanoparticles, and a bonded body for measuring shear strength was further prepared. The bonding strength of the bonding layer was determined by manufacturing. The results are shown in Table 3.

(比較例1−4)
調製例1−2のCuナノ粒子に代えて調製例1−4のCuナノ粒子を用い、調製例2−4の微細CuNi合金ナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表3に示す。
(Comparative Example 1-4)
Joining in the same manner as in Example 1-1 except that the Cu nanoparticles of Preparation Example 1-4 were used instead of the Cu nanoparticles of Preparation Example 1-2, and the fine CuNi alloy nanoparticles of Preparation Example 2-4 were used. A material paste was prepared, and a bonded body for shear strength measurement was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 3.

(比較例1−5)
微細CuNi合金ナノ粒子を混合しなかった以外は実施例1−1と同様にして接合材料ペーストを調製した。得られた接合材料ペーストについて、接合温度を300℃とした以外は実施例1−1と同様にして接合強度測定を行なった。得られた結果を表3に示す。
(Comparative Example 1-5)
A bonding material paste was prepared in the same manner as in Example 1-1 except that the fine CuNi alloy nanoparticles were not mixed. About the obtained joining material paste, joining strength measurement was performed like Example 1-1 except joining temperature having been 300 degreeC. The obtained results are shown in Table 3.

(比較例1−6)
微細CuNi合金ナノ粒子に代えて調製例2−6の微細Cuナノ粒子を用いた以外は実施例1−1と同様にして接合材料ペーストを調製した。得られた接合材料ペーストについて、接合温度を300℃とした以外は実施例1−1と同様にして接合強度測定を行なった。得られた結果を表3に示す。
(Comparative Example 1-6)
A joining material paste was prepared in the same manner as in Example 1-1 except that the fine Cu nanoparticles of Preparation Example 2-6 were used instead of the fine CuNi alloy nanoparticles. About the obtained joining material paste, joining strength measurement was performed like Example 1-1 except joining temperature having been 300 degreeC. The obtained results are shown in Table 3.

<接合強度測定試験の結果>
表3に示した実施例1−1〜1−10の結果と比較例1−1〜1−6の結果との比較から明らかなように、実施例1−1〜1−10の接合材料ペーストは、接合温度が同じ比較用接合材料ペーストに対して接合強度が高い接合層が得られていることが確認された。この結果から、本実施例では、接合強度が高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料が得られていることが確認された。
<Results of bond strength measurement test>
As is clear from the comparison between the results of Examples 1-1 to 1-10 and the results of Comparative Examples 1-1 to 1-6 shown in Table 3, the bonding material pastes of Examples 1-1 to 1-10 It was confirmed that a bonding layer having a high bonding strength with respect to the comparative bonding material paste having the same bonding temperature was obtained. From this result, it was confirmed in this example that a bonding material capable of forming a bonding layer having high bonding strength at a low temperature (specifically, 300 ° C. or lower) was obtained.

一方、比較例では、Cuナノ粒子(平均粒子径150nm)のみの接合材料により形成された接合層は、接合温度250℃で接合強度が11.7MPa(比較例1−1)、接合温度300℃で接合強度が18.6MPa(比較例1−5)であり、いずれも接合強度が低いことが確認された。また、調製例1−2のCuナノ粒子に対してNiを添加していない調製例2−6の微細Cuナノ粒子を添加した接合材料により形成された接合層は、接合温度250℃で接合強度が3.6MPa(比較例1−2)、接合温度300℃で接合強度が14.8MPa(比較例1−6)であり、いずれも接合強度が低いことが確認された。更に、調製例1−2のCuナノ粒子に対して、調製例2−7のCuSnナノ粒子を添加した接合材料により形成された接合層(比較例1−3)は、接合温度250℃で接合強度が7.4MPaと接合強度が低いことが確認された。これに対して、調製例1−2のCuナノ粒子に対して、微細CuNi合金ナノ粒子を添加した接合材料により形成された接合層は、接合温度250℃(実施例1−1〜1−3)及び接合温度300℃(実施例1−6〜1−10)ともにいずれの場合も、調製例1−2のCuナノ粒子のみの接合材料により形成された接合層(比較例1−1)の場合よりも接合強度が向上することが確認された。 On the other hand, in the comparative example, the bonding layer formed of the bonding material composed only of Cu nanoparticles (average particle diameter 150 nm) has a bonding temperature of 250 ° C., a bonding strength of 11.7 MPa (Comparative Example 1-1), and a bonding temperature of 300 ° C. The bonding strength was 18.6 MPa (Comparative Example 1-5), and it was confirmed that both had low bonding strength. Moreover, the joining layer formed with the joining material which added the fine Cu nanoparticle of the preparation example 2-6 which did not add Ni with respect to Cu nanoparticle of the preparation example 1-2 is joining strength at the joining temperature of 250 degreeC. Was 3.6 MPa (Comparative Example 1-2), the bonding strength was 14.8 MPa (Comparative Example 1-6) at a bonding temperature of 300 ° C., and it was confirmed that both had low bonding strength. Furthermore, the bonding layer (Comparative Example 1-3) formed of the bonding material obtained by adding the Cu 6 Sn 5 nanoparticles of Preparation Example 2-7 to the Cu nanoparticles of Preparation Example 1-2 has a bonding temperature of 250. It was confirmed that the bonding strength was low at 7.4 MPa at ℃. On the other hand, the bonding layer formed of the bonding material obtained by adding fine CuNi alloy nanoparticles to the Cu nanoparticles of Preparation Example 1-2 has a bonding temperature of 250 ° C. (Examples 1-1 to 1-3). ) And a bonding temperature of 300 ° C. (Examples 1-6 to 1-10) in both cases, the bonding layer (Comparative Example 1-1) formed of the bonding material only of Cu nanoparticles of Preparation Example 1-2. It was confirmed that the bonding strength was improved as compared with the case.

以上の結果から、粒子径及び平均粒子径が特定の範囲のCuナノ粒子と平均粒子径が特定の範囲の微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物を含有する接合材料は、該材料により形成される接合層の接合強度が向上することが確認された。これは、Niを添加することにより、微細Cuナノ粒子の耐酸化性が向上するためによると考えられる。一方、Niを添加しなかった微細Cuナノ粒子や、Ni以外のSnを添加した微細Cuナノ粒子では、粒子が酸化しやすいため、接合強度の向上は期待できないことが確認された。   From the above results, the bonding material containing a mixture of metal nanoparticles composed of Cu nanoparticles having a specific range of particle diameter and average particle size and fine CuNi alloy nanoparticles having a specific range of average particle diameter depends on the material. It was confirmed that the bonding strength of the formed bonding layer was improved. This is presumably because the addition of Ni improves the oxidation resistance of the fine Cu nanoparticles. On the other hand, it was confirmed that in the case of fine Cu nanoparticles to which Ni was not added or fine Cu nanoparticles to which Sn other than Ni was added, the particles were likely to oxidize, so that improvement in bonding strength could not be expected.

次に、接合材料における金属ナノ粒子混合物中のCuナノ粒子の粒子径に着目し、調製例1−2のCuナノ粒子(平均粒子径150nm)から粒子径が変化した場合について考察する。調製例1−4のCuナノ粒子(平均粒子径20nm)に対して調製例2−4の微細CuNi合金ナノ粒子(平均粒子径15.1nm)を添加した接合材料により形成された接合層(比較例1−4)は、接合温度250℃で接合強度が0.93MPaであったのに対し、調製例1−1のCuナノ粒子(平均粒子径300nm)及び調製例1−3のCuナノ粒子(平均粒子径60nm)に対して調製例2−4の微細CuNi合金ナノ粒子(平均粒子径15.1nm)を添加した接合材料により形成された接合層は、接合温度250℃で接合強度が13.1MPa(実施例1−4)及び接合温度250℃で接合強度が11.8MPa(実施例1−5)と、いずれも調製例1−2のCuナノ粒子のみの接合材料により形成された接合層(比較例1−1)よりも接合強度が高くなることが確認された。また、微細CuNi合金ナノ粒子の平均粒子径に対するCuナノ粒子の平均粒子径の比が4〜20の場合において接合強度の向上が見られることが確認された。   Next, focusing on the particle diameter of Cu nanoparticles in the metal nanoparticle mixture in the bonding material, the case where the particle diameter is changed from the Cu nanoparticles of Preparation Example 1-2 (average particle diameter 150 nm) will be considered. A bonding layer formed by a bonding material in which the fine CuNi alloy nanoparticles of Preparation Example 2-4 (average particle diameter of 15.1 nm) are added to the Cu nanoparticles of Preparation Example 1-4 (average particle diameter of 20 nm) (Comparison) In Example 1-4), the bonding strength was 0.93 MPa at a bonding temperature of 250 ° C., whereas the Cu nanoparticles of Preparation Example 1-1 (average particle size 300 nm) and the Cu nanoparticles of Preparation Example 1-3 The bonding layer formed of the bonding material obtained by adding the fine CuNi alloy nanoparticles (average particle diameter 15.1 nm) of Preparation Example 2-4 to (average particle diameter 60 nm) has a bonding temperature of 250 ° C. and a bonding strength of 13. .1 MPa (Example 1-4) and a bonding temperature of 250 ° C. and a bonding strength of 11.8 MPa (Example 1-5), both of which were formed by the bonding material of only Cu nanoparticles of Preparation Example 1-2 Layer (Comparative Example 1-1 The bonding strength is higher than has been confirmed. It was also confirmed that the bonding strength was improved when the ratio of the average particle diameter of the Cu nanoparticles to the average particle diameter of the fine CuNi alloy nanoparticles was 4-20.

以上の結果から、Cuナノ粒子の平均粒子径が50nm〜1000nmの範囲でかつ微細CuNi合金ナノ粒子の平均粒子径が1nm〜50nmの範囲にある接合材料の場合、該材料により形成された接合層の接合強度の向上が見られることが確認された。なお、Cuナノ粒子の粒子径が50nm未満の場合は、Cuナノ粒子の耐酸化性が不十分であるため、接合層の焼結が不十分となり強度が低下したと考えられる。また、Cuナノ粒子と微細CuNi合金ナノ粒子の平均粒子径の比が4〜20である接合材料において、該材料により形成された接合層の接合強度の向上が見られることが確認された。   From the above results, in the case of a bonding material in which the average particle diameter of Cu nanoparticles is in the range of 50 nm to 1000 nm and the average particle diameter of fine CuNi alloy nanoparticles is in the range of 1 nm to 50 nm, the bonding layer formed of the material It was confirmed that the joint strength was improved. In addition, when the particle diameter of Cu nanoparticle is less than 50 nm, since the oxidation resistance of Cu nanoparticle is inadequate, sintering of a joining layer becomes inadequate and it is thought that intensity | strength fell. Moreover, it was confirmed that in the bonding material in which the ratio of the average particle diameter of the Cu nanoparticles and the fine CuNi alloy nanoparticles is 4 to 20, the bonding strength of the bonding layer formed of the material is improved.

(実施例2−1〜2−9)
調製例1−2で調製したCuナノ粒子と調製例2−4で調製した微細CuNi合金ナノ粒子とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して99.9〜71.0質量%のCuナノ粒子と0.1〜29.0質量%の微細CuNi合金ナノ粒子を含有する混合粉末を調製した(実施例2−1〜2−9)。この混合粉末0.4gにデカノール20μL及びテルピネオール20μLを添加し、自転・公転ミキサーにより撹拌して接合材料ペーストを調製した。得られた接合材料ペーストについて、実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度測定を行なった。得られた結果を表4に示す。
(Examples 2-1 to 2-9)
The Cu nanoparticles prepared in Preparation Example 1-2 and the fine CuNi alloy nanoparticles prepared in Preparation Example 2-4 are ground and mixed in a mortar, and 99.9 to 71.0% by mass based on the total metal nanoparticles. Mixed powders containing 0.1 to 29.0 mass% fine CuNi alloy nanoparticles were prepared (Examples 2-1 to 2-9). To 0.4 g of this mixed powder, 20 μL of decanol and 20 μL of terpineol were added and stirred by a rotating / revolving mixer to prepare a bonding material paste. About the obtained joining material paste, the joined body for shear strength measurement was produced like Example 1-1, and the joining strength measurement of the joining layer was performed. Table 4 shows the obtained results.

(比較例2−1)
微細CuNi合金ナノ粒子を混合しなかった以外は実施例2−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 2-1)
A bonding material paste was prepared in the same manner as in Example 2-1, except that the fine CuNi alloy nanoparticles were not mixed, and a bonded body for shear strength measurement was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 4.

(比較例2−2)
調製例1−2で調製したCuナノ粒子の含有量が70.0質量%及び調製例2−4で調製した微細CuNi合金ナノ粒子の含有量が30.0質量%からなる混合粉末を調製した以外は、実施例2−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 2-2)
A mixed powder comprising 70.0% by mass of Cu nanoparticles prepared in Preparation Example 1-2 and 30.0% by mass of fine CuNi alloy nanoparticles prepared in Preparation Example 2-4 was prepared. Except for the above, a bonding material paste was prepared in the same manner as in Example 2-1, and a bonded body for shear strength measurement was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 4.

(比較例2−3)
Cuナノ粒子を混合しなかった以外は実施例2−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表4に示す。
(Comparative Example 2-3)
A bonding material paste was prepared in the same manner as in Example 2-1 except that Cu nanoparticles were not mixed, and a bonded body for measuring shear strength was prepared to determine the bonding strength of the bonding layer. The results are shown in Table 4.

<接合強度測定試験の結果>
表4に示した実施例2−1〜2−9の結果と比較例2−1〜2−3の結果との比較から明らかなように、実施例2−1〜2−9の接合材料ペーストは、微細CuNi合金ナノ粒子の含有量を0.1〜29質量%の範囲とすることにより、すなわち、Cuナノ粒子の含有量をCuナノ粒子及び微細CuNi合金ナノ粒子の合計量に対して99.9〜71質量%の範囲とすることにより、低温において接合強度が高い接合層が得られることが確認された。この結果から、本実施例では、接合強度が高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料が得られることが確認された。
<Results of bond strength measurement test>
As is clear from the comparison between the results of Examples 2-1 to 2-9 and the results of Comparative Examples 2-1 to 2-3 shown in Table 4, the bonding material pastes of Examples 2-1 to 2-9 Has a content of fine CuNi alloy nanoparticles in the range of 0.1 to 29% by mass, that is, the content of Cu nanoparticles is 99% of the total amount of Cu nanoparticles and fine CuNi alloy nanoparticles. It was confirmed that a bonding layer having a high bonding strength at low temperatures can be obtained by setting the content in the range of .9 to 71% by mass. From this result, it was confirmed in this example that a bonding material capable of forming a bonding layer having high bonding strength at a low temperature (specifically, 300 ° C. or lower) can be obtained.

一方、調製例2−4の微細CuNi合金ナノ粒子を添加しなかった接合材料により形成された接合層(比較例2−1)、及び、微細CuNi合金ナノ粒子の添加量を30質量%とした接合材料により形成された接合層(比較例2−2)は、いずれも接合強度が低いことが確認された。また、調製例2−4の微細CuNi合金ナノ粒子のみからなる接合材料により形成された接合層(比較例2−3)は、ほとんど強度が出ず、容易に破断したことが確認された。   On the other hand, the amount of addition of the bonding layer (Comparative Example 2-1) formed of the bonding material to which the fine CuNi alloy nanoparticles of Preparation Example 2-4 were not added and the fine CuNi alloy nanoparticles was 30% by mass. It was confirmed that all of the bonding layers (Comparative Example 2-2) formed of the bonding material have low bonding strength. In addition, it was confirmed that the bonding layer (Comparative Example 2-3) formed of the bonding material composed only of the fine CuNi alloy nanoparticles of Preparation Example 2-4 did not exhibit any strength and was easily broken.

以上の結果から、微細CuNi合金ナノ粒子の含有量を0.1〜29質量%とすることにより、低温において接合強度が高い接合層が得られることが確認された。また、微細CuNi合金ナノ粒の含有量は0.1〜29質量%であることが好ましく、1〜27質量%であることがより好ましいことが確認された。   From the above results, it was confirmed that a bonding layer having a high bonding strength at a low temperature can be obtained by setting the content of fine CuNi alloy nanoparticles to 0.1 to 29% by mass. Moreover, it was confirmed that the content of the fine CuNi alloy nanoparticles is preferably 0.1 to 29% by mass, and more preferably 1 to 27% by mass.

(実施例3−1〜3−3)
調製例1−2で調製したCuナノ粒子と調製例2−4で調製した微細CuNi合金ナノ粒子とを乳鉢ですりつぶして混合し、全金属ナノ粒子に対して95.0質量%のCuナノ粒子と5.0質量%の微細CuNi合金ナノ粒子を含有する混合粉末を調製した。
(Examples 3-1 to 3-3)
The Cu nanoparticles prepared in Preparation Example 1-2 and the fine CuNi alloy nanoparticles prepared in Preparation Example 2-4 were ground and mixed in a mortar, and 95.0 mass% Cu nanoparticles with respect to all metal nanoparticles. And a mixed powder containing 5.0% by mass of fine CuNi alloy nanoparticles were prepared.

次に、このCuナノ粒子−微細CuNi合金ナノ粒子混合粉末に、粒子径が1μm超のCu粒子からなりかつ平均粒子径が5μmのCuミクロン粒子を表5に示す量で混合した粉末0.3gに対して、デカノール15μL、テルピネオール15μLを添加し、自転・公転ミキサーにより撹拌して接合材料ペースト(金属ナノ粒子混合物)を調製した。得られた接合材料ペーストについて、実施例1−1と同様にしてせん断強度測定用接合体を作製して接合層の接合強度測定を行なった。得られた結果を表5に示す。   Next, this Cu nanoparticle-fine CuNi alloy nanoparticle mixed powder was mixed with 0.3 g of a powder comprising Cu particles having a particle diameter of more than 1 μm and an average particle diameter of 5 μm in the amount shown in Table 5. On the other hand, 15 μL of decanol and 15 μL of terpineol were added and stirred by a rotation / revolution mixer to prepare a bonding material paste (metal nanoparticle mixture). About the obtained joining material paste, the joined body for shear strength measurement was produced like Example 1-1, and the joining strength measurement of the joining layer was performed. The results obtained are shown in Table 5.

(比較例3−1)
Cuナノ粒子−微細CuNi合金ナノ粒子混合粉末に対してCuミクロン粒子の混合量を90.0質量%とした以外は実施例3−1と同様にして接合材料ペーストを調製し、更に、せん断強度測定用接合体を作製して接合層の接合強度を求めた。その結果を表5に示す。
(Comparative Example 3-1)
A bonding material paste was prepared in the same manner as in Example 3-1, except that the amount of Cu micron particles mixed with the Cu nanoparticle-fine CuNi alloy nanoparticle mixed powder was 90.0% by mass. A bonded body for measurement was prepared, and the bonding strength of the bonding layer was determined. The results are shown in Table 5.

<接合強度測定試験の結果>
表5に示した結果から明らかなように、接合材料(Cuナノ粒子−微細CuNi合金ナノ粒子混合粉末からなる金属ナノ粒子混合物+Cuミクロン粒子)におけるCuミクロン粒子の含有量を25〜85質量%とした接合材料により形成された接合層(実施例3−1〜3−3)の接合強度は、Cuミクロン粒子の含有量を90.0質量%とした接合材料により形成された接合層(比較例3−1)、及び調製例1−2で調製したCuナノ粒子のみの接合材料により形成された接合層(比較例2−1)の接合強度に比べて、高くなることが確認された。
<Results of bond strength measurement test>
As is clear from the results shown in Table 5, the content of Cu micron particles in the bonding material (metal nanoparticle mixture consisting of Cu nanoparticle-fine CuNi alloy nanoparticle mixed powder + Cu micron particle) is 25 to 85% by mass. The bonding strength of the bonding layers (Examples 3-1 to 3-3) formed by the bonding material formed was determined by the bonding layer (comparative example) formed by the bonding material in which the content of Cu micron particles was 90.0% by mass. It was confirmed that the bonding strength of the bonding layer (Comparative Example 2-1) formed of the bonding material of only Cu nanoparticles prepared in 3-1) and Preparation Example 1-2 was increased.

以上の結果から、接合材料におけるCuミクロン粒子の含有量を全金属粉末の85質量%以下とした接合材料に場合においても、調製例1−2で調製したCuナノ粒子のみの接合材料(比較例2−1)よりも、接合強度が高い接合層を低温(具体的には300℃以下)で形成することが可能であることが確認された。   From the above results, even in the case of the bonding material in which the content of Cu micron particles in the bonding material is 85% by mass or less of the total metal powder, the bonding material of only Cu nanoparticles prepared in Preparation Example 1-2 (Comparative Example) It was confirmed that a bonding layer having higher bonding strength than that of (2-1) can be formed at a low temperature (specifically, 300 ° C. or lower).

以上より、表3及び表4に示した実施例1−1〜1−10及び実施例2−1〜2−9の結果と、比較例1−1〜1−6及び比較例2−1〜2−9の結果との比較から明らかなように、実施例1−1〜1−10及び実施例2−1〜2−9の接合材料ペーストは、粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が50nm〜1000nmであるCuナノ粒子と、平均粒子径が1nm〜50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物を含有しており、金属ナノ粒子混合物における微細CuNi合金ナノ粒子の含有量が0.1〜29質量%であり、かつ、金属ナノ粒子混合物の含有量が15質量%以上の範囲に含有する接合材料とすることにより、接合強度が高い接合層を低温(具体的には300℃以下)で形成することが可能な接合材料とすることができることが確認された。   From the above, the results of Examples 1-1 to 1-10 and Examples 2-1 to 2-9 shown in Table 3 and Table 4, and Comparative Examples 1-1 to 1-6 and Comparative Examples 2-1 to 2-1 As is clear from the comparison with the results of 2-9, the bonding material pastes of Examples 1-1 to 1-10 and Examples 2-1 to 2-9 are composed of Cu particles having a particle diameter of 1000 nm or less and A metal nanoparticle mixture comprising Cu nanoparticles having an average particle diameter of 50 nm to 1000 nm and fine CuNi alloy nanoparticles having an average particle diameter of 1 nm to 50 nm is contained, and the fine CuNi alloy nanoparticle in the metal nanoparticle mixture By using a bonding material having a particle content of 0.1 to 29% by mass and a metal nanoparticle mixture content of 15% by mass or more, a bonding layer having high bonding strength can be obtained at a low temperature ( Specifically, below 300 ° C) It was confirmed that can be joined material capable of forming.

以上説明したように、本発明によれば、接合強度が十分に高い接合層を無加圧、低温(具体的には300℃以下)で形成することが可能な接合材料を得ることができる。したがって、本発明の接合材料は、低温や無加圧での半導体素子の接合技術において接合材料として有用である。   As described above, according to the present invention, it is possible to obtain a bonding material capable of forming a bonding layer having a sufficiently high bonding strength at no pressure and at a low temperature (specifically, 300 ° C. or lower). Therefore, the bonding material of the present invention is useful as a bonding material in a bonding technique for semiconductor elements at a low temperature or no pressure.

1:半導体素子、2:基板、2a:上部基板、2b:下部基板、2c,2d:各基板の突出部、3,3a,3b:接合層、4a,4b:密着層、5:信号端子、6:ボンディングワイヤ、7:モールド樹脂、8a,8b:試験片、9:接合層、10a,10b:密着層。   1: semiconductor element, 2: substrate, 2a: upper substrate, 2b: lower substrate, 2c, 2d: protruding portion of each substrate, 3, 3a, 3b: bonding layer, 4a, 4b: adhesion layer, 5: signal terminal, 6: bonding wire, 7: mold resin, 8a, 8b: test piece, 9: bonding layer, 10a, 10b: adhesion layer.

Claims (7)

粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が60nm〜300nmであるCuナノ粒子と、平均粒子径が1nm〜50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物を含有しており、前記金属ナノ粒子混合物における前記微細CuNi合金ナノ粒子の含有量が0.1〜29質量%であり、かつ、前記金属ナノ粒子混合物の含有量が15質量%以上であることを特徴とする接合材料。 Containing a metal nanoparticle mixture comprising Cu nanoparticles having a particle diameter of 1000 nm or less and an average particle diameter of 60 nm to 300 nm and fine CuNi alloy nanoparticles having an average particle diameter of 1 nm to 50 nm. The content of the fine CuNi alloy nanoparticles in the metal nanoparticle mixture is 0.1 to 29% by mass, and the content of the metal nanoparticle mixture is 15% by mass or more. Bonding material. 前記微細CuNi合金ナノ粒子の平均粒子径に対する前記Cuナノ粒子の平均粒子径の比が2〜60であることを特徴とする請求項1に記載の接合材料。   The bonding material according to claim 1, wherein a ratio of an average particle diameter of the Cu nanoparticles to an average particle diameter of the fine CuNi alloy nanoparticles is 2 to 60. 前記微細CuNi合金ナノ粒子に含まれるNiの含有量が2〜90質量%であることを特徴とする請求項1又は2に記載の接合材料。   The joining material according to claim 1 or 2, wherein the content of Ni contained in the fine CuNi alloy nanoparticles is 2 to 90 mass%. 粒子径が1000nm以下のCu粒子からなりかつ平均粒子径が50nm〜1000nmであるCuナノ粒子と、平均粒子径が1nm〜50nmである微細CuNi合金ナノ粒子とからなる金属ナノ粒子混合物、及び、粒子径が1μm超のCu粒子からなりかつ平均粒子径が1μm超200μm以下であるCuミクロン粒子を含有しており、前記金属ナノ粒子混合物における前記微細CuNi合金ナノ粒子の含有量が0.1〜29質量%であり、前記金属ナノ粒子混合物の含有量が15質量%以上であり、かつ、前記Cuミクロン粒子の含有量が85質量%以下であることを特徴とする接合材料。 Metal nanoparticle mixture comprising Cu nanoparticles having a particle diameter of 1000 nm or less and an average particle diameter of 50 nm to 1000 nm, and fine CuNi alloy nanoparticles having an average particle diameter of 1 nm to 50 nm, and particles Cu microparticles comprising Cu particles having a diameter of more than 1 μm and an average particle diameter of more than 1 μm and not more than 200 μm are contained, and the content of the fine CuNi alloy nanoparticles in the metal nanoparticle mixture is 0.1 to 29 is the mass%, the metal content of the nanoparticle mixture is at least 15 wt%, and junction material you wherein the content of the Cu-micron particles is more than 85 wt%. 半導体素子、基板、及び前記半導体素子と前記基板とを接合する接合層を備えており、
前記接合層が請求項1〜4のうちのいずれか一項に記載の接合材料により形成されたCuとCuNi合金との混合物層であることを特徴とする半導体装置。
A semiconductor element, a substrate, and a bonding layer for bonding the semiconductor element and the substrate;
A semiconductor device, wherein the bonding layer is a mixture layer of Cu and a CuNi alloy formed of the bonding material according to claim 1.
前記混合物層に含まれるNiの含有量が0.0003〜26.1質量%であることを特徴とする請求項5に記載の半導体装置。   The semiconductor device according to claim 5, wherein a content of Ni contained in the mixture layer is 0.0003 to 26.1 mass%. 前記混合物層の両面にNi、Co及びAgからなる群から選択される少なくとも1種の金属からなる密着層を更に備えており、
一方の密着層が前記半導体素子の接合部に接するように配置され、他方の密着層が前記基板の接合部に接するように配置されていることを特徴とする請求項5又は6に記載の半導体装置。
Further comprising an adhesion layer made of at least one metal selected from the group consisting of Ni, Co and Ag on both surfaces of the mixture layer,
7. The semiconductor according to claim 5, wherein one adhesion layer is disposed so as to be in contact with a bonding portion of the semiconductor element, and the other adhesion layer is disposed so as to be in contact with a bonding portion of the substrate. apparatus.
JP2014015155A 2014-01-30 2014-01-30 Bonding material and semiconductor device using the same Expired - Fee Related JP6270241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015155A JP6270241B2 (en) 2014-01-30 2014-01-30 Bonding material and semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015155A JP6270241B2 (en) 2014-01-30 2014-01-30 Bonding material and semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2015141860A JP2015141860A (en) 2015-08-03
JP6270241B2 true JP6270241B2 (en) 2018-01-31

Family

ID=53772092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015155A Expired - Fee Related JP6270241B2 (en) 2014-01-30 2014-01-30 Bonding material and semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6270241B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6617049B2 (en) * 2016-02-18 2019-12-04 株式会社豊田中央研究所 Conductive paste and semiconductor device
JP7198479B2 (en) * 2018-08-31 2023-01-04 学校法人早稲田大学 Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
CN110331325B (en) * 2019-07-19 2020-11-17 西安理工大学 Nano-alumina reinforced copper-based composite material and preparation method thereof
JPWO2022185600A1 (en) * 2021-03-02 2022-09-09

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821396B2 (en) * 2006-03-27 2011-11-24 住友金属鉱山株式会社 Conductive composition and method for forming conductive film
US20090274834A1 (en) * 2008-05-01 2009-11-05 Xerox Corporation Bimetallic nanoparticles for conductive ink applications
JP2010077501A (en) * 2008-09-26 2010-04-08 Kyocera Corp Nickel-copper alloy powder, method for producing the same, conductive paste and electronic component
JP5502434B2 (en) * 2008-11-26 2014-05-28 三ツ星ベルト株式会社 Bonding agent for inorganic material and bonded body of inorganic material
JP5342603B2 (en) * 2011-05-23 2013-11-13 福田金属箔粉工業株式会社 Method for forming copper fine particles for copper paste and copper fired film
JP2013108140A (en) * 2011-11-22 2013-06-06 Nippon Steel & Sumikin Chemical Co Ltd Metal particulate composition and method for producing the same
JP6211245B2 (en) * 2012-02-01 2017-10-11 株式会社 ナノ・キューブ・ジャパン Conductive material and method for producing the same

Also Published As

Publication number Publication date
JP2015141860A (en) 2015-08-03

Similar Documents

Publication Publication Date Title
US11699632B2 (en) Methods for attachment and devices produced using the methods
JP6153077B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
KR101709302B1 (en) Low-temperature-sinterable bonding material, and bonding method using the bonding material
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
KR102219208B1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP5557698B2 (en) Sintered bonding agent, manufacturing method thereof and bonding method using the same
JP6270241B2 (en) Bonding material and semiconductor device using the same
KR20170020861A (en) Multilayered metal nano and micron particles
WO2019021637A1 (en) Method for producing metal bonded laminate
Kim et al. Pressure-assisted sinter-bonding characteristics at 250° C in air using bimodal Ag-coated Cu particles
Choi et al. Characterization of the die-attach process via low-temperature reduction of Cu formate in air
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
TWI690946B (en) Conductive paste
Yuan et al. Submicron Cu@ glass core-shell powders for the preparation of conductive thick films on ceramic substrates
JP2021529258A (en) Nanocopper pastes and films for sintered die attach and similar applications
JP6947280B2 (en) Silver paste and its manufacturing method and joint manufacturing method
JP2016188419A (en) Nickel particle composition, joint material and joint method using the same
Yao et al. Synthesis of Air-Sinterable Copper Nanoparticles for Die-Attachment
Li et al. Low temperature sintering of dendritic cu based pastes for power semiconductor device interconnection
JP5124822B2 (en) Method for producing composite metal powder and dispersion thereof
CN111415903B (en) Interconnection method based on reactive paste
Fan et al. Copper nanoplates based conductive paste as die attachment materials for power semiconductor device package
JP2017128782A (en) Nickel fine particle-containing composition and joining material
Wang et al. Copper submicron particle pastes with organic compounds as anti-oxidative additive for Cu–Cu bonding in air

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6270241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171224

LAPS Cancellation because of no payment of annual fees