JP6659026B2 - Low temperature joining method using copper particles - Google Patents

Low temperature joining method using copper particles Download PDF

Info

Publication number
JP6659026B2
JP6659026B2 JP2015202741A JP2015202741A JP6659026B2 JP 6659026 B2 JP6659026 B2 JP 6659026B2 JP 2015202741 A JP2015202741 A JP 2015202741A JP 2015202741 A JP2015202741 A JP 2015202741A JP 6659026 B2 JP6659026 B2 JP 6659026B2
Authority
JP
Japan
Prior art keywords
copper
particles
bonding
copper particles
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015202741A
Other languages
Japanese (ja)
Other versions
JP2017074598A (en
Inventor
西川 宏
宏 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2015202741A priority Critical patent/JP6659026B2/en
Publication of JP2017074598A publication Critical patent/JP2017074598A/en
Application granted granted Critical
Publication of JP6659026B2 publication Critical patent/JP6659026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は銅粒子を用いた接合方法に関し、より具体的には、取り扱いが容易なマイクロサイズの銅粒子を用いた低温接合方法に関する。   The present invention relates to a bonding method using copper particles, and more specifically, to a low-temperature bonding method using micro-sized copper particles that is easy to handle.

金属部品と金属部品とを機械的及び/又は電気的及び又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト及び異方導電性フィルム等が用いられている。これら導電性接着剤、銀ペースト及び異方導電性フィルム等は、金属部品だけでなく、セラミック部品や樹脂部品等を接合する場合に用いられることもある。例えば、LED等の発光素子の基板への接合、半導体チップの基板への接合、及びこれらの基板の更に放熱部材への接合等が挙げられる。   Conventionally, solder, a conductive adhesive, a silver paste, an anisotropic conductive film, and the like have been used to mechanically and / or electrically and / or thermally join a metal component to a metal component. These conductive adhesives, silver pastes, anisotropic conductive films, and the like are sometimes used when joining not only metal parts but also ceramic parts and resin parts. For example, bonding of a light emitting element such as an LED to a substrate, bonding of a semiconductor chip to a substrate, and bonding of these substrates to a heat radiating member and the like can be mentioned.

なかでも、はんだ並びに金属からなる導電フィラーを含む接着剤、ペースト及びフィルムは、電気的な接続を必要とする部分の接合に用いられている。更には、金属は一般的に熱伝導性が高いため、これらはんだ並びに導電フィラーを含む接着剤、ペースト及びフィルムは、放熱性を上げるために使用される場合もある。   Above all, adhesives, pastes and films containing conductive fillers made of solder and metal are used for joining portions that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes and films containing these solders and conductive fillers are sometimes used to enhance heat dissipation.

一方、例えば、LED等の発光素子を用いて高輝度の照明デバイスや発光デバイスを作製する場合、或いは、パワーデバイスと言われる高温で高効率の動作をする半導体素子を用いて半導体デバイスを作製する場合等には、発熱量が上がる傾向にある。デバイスや素子の効率を向上させて発熱を減らす試みも行われているが、現状では十分な成果が出ておらず、デバイスや素子の使用温度が上がっているのが実情である。   On the other hand, for example, when a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED, or a semiconductor device is manufactured using a semiconductor element called a power device that operates at high temperature and with high efficiency. In some cases, the calorific value tends to increase. Attempts have been made to reduce heat generation by improving the efficiency of devices and elements, but at present, sufficient results have not been achieved, and the actual use temperature of devices and elements has increased.

また、接合時におけるデバイスの損傷を防ぐという観点からは、低い接合温度(例えば350℃以下)で十分な接合強度を確保できる接合材が求められている。したがって、デバイスや素子等を接合するための接合材に対しては、接合温度の低下とともに、接合後におけるデバイスの動作による使用温度の上昇に耐えて十分な接合強度を維持できる耐熱性が求められているが、従来からの接合材では十分な対応ができないことが多い。例えば、はんだは、金属を融点以上に加熱する工程(リフロー工程)を経て部材同士を接合するが、一般的に融点はその組成に固有であるため、耐熱温度を上げようとすると加熱(接合)温度も上がってしまう。   Further, from the viewpoint of preventing damage to the device at the time of bonding, a bonding material capable of securing sufficient bonding strength at a low bonding temperature (for example, 350 ° C. or lower) is required. Therefore, a bonding material for bonding devices, elements, and the like is required to have a heat resistance that can withstand a rise in operating temperature due to device operation after bonding and maintain sufficient bonding strength as well as a bonding temperature. However, conventional bonding materials are often not sufficient. For example, solder joins members through a step of heating a metal to a temperature higher than its melting point (reflow step). Generally, the melting point is specific to its composition. The temperature also rises.

更に、はんだを用いて素子や基板を数層重ね合わせて接合する場合、重ね合わせる層の数だけ加熱工程を経る必要であり、既に接合した部分の溶融を防ぐためには、次の接合に用いるはんだの融点(接合温度)を下げる必要があり、また、重ね合わせる層の数だけはんだ組成の種類が必要になり、取扱いが煩雑になる。   Furthermore, when several layers of elements and substrates are joined together by using solder, it is necessary to go through a heating step by the number of layers to be overlapped, and to prevent melting of the already joined parts, the solder used for the next joining It is necessary to lower the melting point (joining temperature), and the number of types of solder composition is required as many as the number of layers to be superimposed, which complicates the handling.

他方、導電性接着剤、銀ペースト及び異方導電性フィルムでは、含有するエポキシ樹脂等の熱硬化を利用して部材同士を接合するが、得られたデバイスや素子の使用温度が上がると樹脂成分が分解、劣化することがある。例えば、特許文献1(特開2008−63688号公報)においては、接合材の主材として用いて被接合部材同士を接合した時により高い接合強度が得られるようにした微粒子が提案されているが、使用温度上昇時における樹脂成分の分解、劣化の問題は解消されていない。   On the other hand, in the case of a conductive adhesive, a silver paste and an anisotropic conductive film, members are joined to each other using thermosetting of an epoxy resin or the like contained therein. May be decomposed and deteriorated. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-63688) proposes fine particles that are used as a main material of a bonding material so that higher bonding strength can be obtained when the members to be bonded are bonded to each other. However, the problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.

また、高い使用温度において用いられる高温はんだには、従来より鉛を含むはんだが用いられている。鉛は有毒性があるため、はんだは鉛フリー化への流れが顕著である。高温はんだには他に良い代替材料が存在しないため、依然として鉛はんだが使用されているが、環境問題の観点から、鉛を使用しない接合材が切望されている。   Further, as a high-temperature solder used at a high use temperature, a solder containing lead has been conventionally used. Since lead is toxic, the flow of solder to lead-free is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used. However, from the viewpoint of environmental issues, a bonding material that does not use lead has been desired.

近年、高温はんだの代替材料として、銀、金などの貴金属を中心とする金属ナノ粒子を用いた接合材が開発されている(例えば、特開2012−046779)。しかしながら、金属ナノ粒子は高価であるだけでなく、金属ナノ粒子の焼結によって得られる接合層には金属ナノ粒子の分散剤や溶媒として使用される有機物が残留してしまう。また、金属ナノ粒子の焼結によって得られる接合層では結晶粒界の割合が大きくなってしまい、熱伝導性及び電気伝導性を低下させる原因となる。加えて、金属ナノ粒子を接合に用いる場合は有機物の蒸発により、接合中の体積変化が大きくなってしまうという問題が存在する。   In recent years, as a substitute for high-temperature solder, a bonding material using metal nanoparticles centered on a noble metal such as silver or gold has been developed (for example, JP-A-2012-046779). However, the metal nanoparticles are not only expensive, but also an organic substance used as a dispersant or a solvent for the metal nanoparticles remains in the bonding layer obtained by sintering the metal nanoparticles. Further, in the bonding layer obtained by sintering the metal nanoparticles, the ratio of the crystal grain boundaries increases, which causes a decrease in thermal conductivity and electrical conductivity. In addition, when metal nanoparticles are used for bonding, there is a problem that the volume change during bonding increases due to evaporation of organic substances.

特開2008−63688号公報JP 2008-63688 A 特開2012−046779号公報JP 2012-046779 A

以上のような状況に鑑み、本発明の目的は、接合層内の残留有機成分及び結晶粒界を低減することができ、熱伝導性、電気伝導性及び機械的特性に優れた接合部を得ることができる安価かつ簡便な接合方法を提供することにある。   In view of the above situation, an object of the present invention is to reduce a residual organic component and a crystal grain boundary in a bonding layer, and to obtain a bonding portion having excellent thermal conductivity, electric conductivity, and mechanical properties. It is an object of the present invention to provide an inexpensive and simple joining method that can be performed.

本発明者は、上記目的を達成すべく低温接合方法について鋭意研究を重ねた結果、適当な条件で酸化させたマイクロサイズの銅粒子を被接合面に介在させた状態で還元させること等が上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。   The present inventors have conducted intensive studies on low-temperature bonding methods in order to achieve the above object, and as a result, reducing micro-sized copper particles oxidized under appropriate conditions in a state interposed on the surface to be bonded, etc. The present inventors have found that the present invention is extremely effective in achieving the object, and have reached the present invention.

即ち、本発明は、
銅粒子を用いた接合方法であって、
前記銅粒子の平均粒径が1〜50μmであり、
前記銅粒子を酸化させて表面酸化銅粒子を得る第一工程と、
2つの被接合部材の間に前記表面酸化銅粒子を介在させた後、還元雰囲気下で加熱する第二工程と、を含むこと、
を特徴とする低温接合方法を提供する。
That is, the present invention
A joining method using copper particles,
The average particle size of the copper particles is 1 to 50 μm,
A first step of oxidizing the copper particles to obtain surface copper oxide particles,
After interposing the surface copper oxide particles between the two members to be joined, and then heating under a reducing atmosphere,
And a low-temperature bonding method characterized by the following.

ここで、第一工程と第二工程は連続的に施してもよく、その場合は平均粒径が1〜50μmの銅粒子を2つの被接合部材の間に介在させた後、当該第一工程及び当該第二工程を施せばよい。   Here, the first step and the second step may be performed continuously. In this case, after the copper particles having an average particle diameter of 1 to 50 μm are interposed between the two members to be joined, the first step is performed. And the second step may be performed.

本発明の低温接合方法においては、平均粒径が1〜50μmであるマイクロサイズの銅粒子を使用することで、金属ナノ粒子を用いた従来の接合用組成物で必須であった金属ナノ粒子の分散性を確保するための有機被覆層が不要となり、接合層内の在留有機成分及び接合プロセス中の接合層の体積変化を大幅に低減することができる。なお、接合すべき2つの金属部材の間に表面酸化銅粒子のみを配置してもよく、表面酸化銅粒子をテルピネオール等の適当な分散媒に分散させて接合用組成物とし、当該接合用組成物を被接合面に塗布してもよい。   In the low-temperature bonding method of the present invention, by using micro-sized copper particles having an average particle diameter of 1 to 50 μm, the metal nanoparticles, which are essential in the conventional bonding composition using metal nanoparticles, An organic coating layer for ensuring dispersibility is not required, and the organic components remaining in the bonding layer and the volume change of the bonding layer during the bonding process can be significantly reduced. In addition, only the surface copper oxide particles may be disposed between the two metal members to be bonded, and the surface copper oxide particles are dispersed in an appropriate dispersion medium such as terpineol to form a bonding composition. An object may be applied to the surface to be joined.

また、マイクロサイズの銅粒子を用いることで、ナノサイズの金属粒子と比較して接合層内の結晶粒界の割合を低下させることができるため、熱伝導性及び電気伝導性に優れた接合部を得ることができる。更に、マイクロサイズの銅粒子は一般的な金属ナノ粒子と比較して安価に製造することができるため、接合にかかるコストを大幅に低減することができる。   In addition, by using micro-sized copper particles, the ratio of crystal grain boundaries in the bonding layer can be reduced as compared with nano-sized metal particles, so that a joint having excellent thermal conductivity and electrical conductivity can be obtained. Can be obtained. Further, since micro-sized copper particles can be manufactured at a lower cost than general metal nanoparticles, the cost for bonding can be significantly reduced.

本発明者は、マイクロサイズの銅粒子の表面を酸化すると、当該表面がナノサイズの酸化銅粒子で被覆されることを見出した。一般的な銅板や銅箔等を酸化した場合、薄膜状の酸化被膜が形成されるところ、銅粒子の表面がナノサイズの酸化銅粒子で被覆される理由は必ずしも明らかになっていないが、銅粒子の表面エネルギー状態や幾何学的形状等が影響していると考えられる。   The present inventor has found that when the surface of the micro-sized copper particles is oxidized, the surface is covered with the nano-sized copper oxide particles. When a general copper plate or copper foil is oxidized, a thin oxide film is formed.However, the reason why the surface of the copper particles is coated with nano-sized copper oxide particles is not always clear. It is considered that the surface energy state and the geometrical shape of the particles have an influence.

更に、本発明者は、酸化銅で被覆された銅粒子を還元すると、銅ナノ粒子で被覆されたマイクロ銅粒子が得られることを見出し、被接合界面において当該銅ナノ粒子被覆マイクロ銅粒子をその場合成することによって低温接合方法を達成するという着想に至った。接合界面において生成した銅ナノ粒子同士の焼結が連続的に進行することで、良好な接合体を得ることができる。   Furthermore, the present inventors have found that reducing copper particles coated with copper oxide, micro copper particles coated with copper nanoparticles can be obtained, and the copper nano particles coated micro copper particles at the interface to be joined. In this case, the idea of achieving a low-temperature bonding method has been reached. By continuously sintering the copper nanoparticles generated at the bonding interface, a good bonded body can be obtained.

本発明の金属材の低温接合方法においては、前記第二工程において、マイクロ銅粒子表面の酸化銅粒子を還元する必要がある。ここで、当該酸化銅粒子を還元して銅ナノ粒子が形成される限りにおいて、還元雰囲気及び処理温度等は特に限定されず、還元雰囲気としてはギ酸雰囲気や水素を含む雰囲気等を用いることができるが、還元雰囲気をギ酸雰囲気とすることが好ましく、表面酸化銅粒子を150〜350℃のギ酸雰囲気下に1〜60分間保持すること、がより好ましい。表面酸化銅粒子を150〜350℃のギ酸雰囲気下に1〜60分間保持することで、マイクロ銅粒子の表面を被覆している酸化銅粒子を効率的かつ簡便に還元することができ、銅ナノ粒子被覆マイクロ銅粒子を得ることができる。また、水素を含む雰囲気ではなくギ酸雰囲気を用いることで、安全性を担保することができる。   In the method for joining metal materials at a low temperature according to the present invention, it is necessary to reduce the copper oxide particles on the surface of the micro copper particles in the second step. Here, as long as the copper oxide particles are reduced to form copper nanoparticles, the reducing atmosphere, the processing temperature, and the like are not particularly limited, and a formic acid atmosphere, an atmosphere containing hydrogen, or the like can be used as the reducing atmosphere. However, the reducing atmosphere is preferably a formic acid atmosphere, and more preferably, the surface copper oxide particles are kept in a formic acid atmosphere at 150 to 350 ° C. for 1 to 60 minutes. By keeping the surface copper oxide particles in a formic acid atmosphere at 150 to 350 ° C. for 1 to 60 minutes, the copper oxide particles covering the surface of the micro copper particles can be efficiently and simply reduced, and the copper nano particles can be reduced. Particle-coated micro copper particles can be obtained. In addition, by using a formic acid atmosphere instead of an atmosphere containing hydrogen, safety can be ensured.

また、本発明の銅粒子を用いた低温接合方法においては、前記第二工程を自重圧下で行うこと、が好ましい。従来の金属ナノ粒子を用いた接合方法においては、金属ナノ粒子焼結体によって接合層が形成されるため、十分な密度を得るためには加圧を伴った焼成プロセスが必要であり、加圧の印加は当該接合方法の適用範囲を大きく制限していた。これに対し、本発明の低温接合方法においては接合層の大部分をマイクロ銅粒子が占めることに加え、生成した銅ナノ粒子同士が速やかに焼成していくことから、無加圧下(自重圧下)においても良好な接合層を得ることができる。   In the low-temperature bonding method using copper particles of the present invention, it is preferable that the second step is performed under its own weight. In the conventional bonding method using metal nanoparticles, since a bonding layer is formed by a metal nanoparticle sintered body, a firing process accompanied by pressurization is necessary to obtain a sufficient density. Has greatly limited the applicable range of the joining method. On the other hand, in the low-temperature bonding method of the present invention, since most of the bonding layer is occupied by micro-copper particles, and the generated copper nanoparticles are rapidly fired, they are not pressurized (under their own weight pressure). In (2), a good bonding layer can be obtained.

更に、本発明の低温接合方法においては、前記第一工程において、前記銅粒子を200〜400℃の大気中に1〜60分間保持すること、が好ましい。マイクロ銅粒子表面における酸化反応が進行し過ぎた場合は緻密な酸化被膜が形成してしまい、接合用途に用いることができない。また、酸化反応が不十分な場合は酸化銅粒子を形成することができず、接合用途に用いることができない。これに対し、マイクロ銅粒子を200〜400℃の大気中に1〜60分間保持することで、第二工程における還元プロセスによって銅ナノ粒子となる酸化銅ナノ粒子で表面を被覆されたマイクロ銅粒子を得ることができる。   Furthermore, in the low-temperature bonding method of the present invention, it is preferable that in the first step, the copper particles are kept in the air at 200 to 400 ° C. for 1 to 60 minutes. If the oxidation reaction on the surface of the micro copper particles progresses too much, a dense oxide film is formed and cannot be used for bonding. When the oxidation reaction is insufficient, copper oxide particles cannot be formed and cannot be used for bonding. On the other hand, by holding the micro copper particles in the air at 200 to 400 ° C. for 1 to 60 minutes, the micro copper particles whose surfaces are coated with the copper oxide nanoparticles that become the copper nanoparticles by the reduction process in the second step Can be obtained.

また、本発明は、
銅粒子の表面の少なくとも一部が酸化銅粒子で被覆されており、
前記銅粒子の平均粒径が1〜50μmであり、
前記酸化銅粒子の平均粒径が1〜300nmであること、
を特徴とする低温接合用銅粒子も提供する。
Also, the present invention
At least a part of the surface of the copper particles is coated with copper oxide particles,
The average particle size of the copper particles is 1 to 50 μm,
The average particle diameter of the copper oxide particles is 1 to 300 nm,
Also provided is a copper particle for low-temperature bonding characterized by the following.

本発明の低温接合銅粒子は本発明の低温接合方法に好適に用いることができ、当該低温接合用銅粒子を用いることで本発明の低温接合方法の第一工程を省略することができる。つまり、接合すべき2つの金属部材の間に低温接合用銅粒子を介在させた後、還元雰囲気下で加熱することで、良好な接合体を得ることができる。   The low-temperature bonding copper particles of the present invention can be suitably used in the low-temperature bonding method of the present invention, and the first step of the low-temperature bonding method of the present invention can be omitted by using the low-temperature bonding copper particles. In other words, a good joined body can be obtained by interposing the low-temperature joining copper particles between the two metal members to be joined and then heating in a reducing atmosphere.

本発明の低温接合用銅粒子は、前記銅粒子が扁平状であること、が好ましい。扁平状の銅粒子を用いることで、被接合界面において銅粒子が水平方向に配向して密に充填されるため、緻密な接合層を容易に得ることができる。なお、銅粒子が扁平状の場合、平均粒径は直径の最大値に関する平均値となる。   In the copper particles for low-temperature bonding of the present invention, the copper particles are preferably flat. By using the flat copper particles, the copper particles are horizontally oriented and densely filled at the interface to be bonded, so that a dense bonding layer can be easily obtained. When the copper particles are flat, the average particle diameter is an average value regarding the maximum value of the diameter.

本発明の低温接合用銅粒子は、例えば、平均粒径が1〜50μmの銅粒子を200〜400℃の大気中に1〜60分間保持すること、で得ることができる。一般的な銅板等を酸化させた場合は表面に緻密な酸化被膜が形成されるが、平均粒径が1〜50μmの銅粒子を酸化することで、多数の酸化銅ナノ粒子で被覆されたマイクロ銅粒子を得ることができる。   The copper particles for low-temperature bonding of the present invention can be obtained, for example, by holding copper particles having an average particle size of 1 to 50 μm in the air at 200 to 400 ° C. for 1 to 60 minutes. When a general copper plate or the like is oxidized, a dense oxide film is formed on the surface. However, by oxidizing copper particles having an average particle diameter of 1 to 50 μm, a microparticle coated with a large number of copper oxide nanoparticles is formed. Copper particles can be obtained.

本発明によれば、接合層内の残留有機成分及び結晶粒界を低減することができ、熱伝導性、電気伝導性及び機械的特性に優れた接合部を得ることができる安価かつ簡便な接合方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the residual organic component in a joining layer and a crystal grain boundary can be reduced, and the inexpensive and simple joining which can obtain the joining part excellent in thermal conductivity, electrical conductivity, and mechanical characteristics can be obtained. A method can be provided.

本発明の低温接合方法の工程図である。It is a process drawing of the low-temperature bonding method of the present invention. 本発明の低温接合用銅粒子の概略断面図である。It is a schematic sectional drawing of the copper particle for low temperature joining of this invention. 実施例及び比較例で用いた扁平状銅粒子のSEM写真である。It is a SEM photograph of the flat copper particle used in the example and the comparative example. 実施例における表面酸化銅粒子のSEM写真(低倍)である。It is a SEM photograph (low magnification) of the surface copper oxide particle in an example. 実施例における表面酸化銅粒子のSEM写真(高倍)である。It is a SEM photograph (high magnification) of the surface copper oxide particle in an example. 実施例における低温接合用銅粒子のSEM写真(低倍)である。It is a SEM photograph (low magnification) of the copper particles for low-temperature joining in an example. 実施例における低温接合用銅粒子のSEM写真(高倍)である。It is a SEM photograph (high magnification) of the copper particles for low temperature bonding in an example. 実施例における還元処理前の表面酸化銅粒子のSEM−EDSスペクトルである。It is a SEM-EDS spectrum of surface copper oxide particles before reduction processing in an example. 実施例における還元処理後の表面酸化銅粒子のSEM−EDSスペクトルである。It is a SEM-EDS spectrum of the surface copper oxide particle after reduction processing in an example. 実施例における還元処理前後の表面酸化銅粒子のXRDパターンである。It is an XRD pattern of the surface copper oxide particle before and behind the reduction treatment in an example. 実施例及び比較例で用いた接合試験片の概略図である。It is the schematic of the joining test piece used by the Example and the comparative example. 実施例で得られた接合層断面のSEM写真である。5 is an SEM photograph of a cross section of a bonding layer obtained in an example. 実施例及び比較例で得られた接合継手のせん断強度を示すグラフである。It is a graph which shows the shear strength of the joint obtained in the Example and the comparative example. 比較例における酸化処理後の銅粒子のSEM写真である。It is a SEM photograph of the copper particle after the oxidation process in a comparative example. 比較例における還元処理後の銅粒子のSEM写真である。It is a SEM photograph of the copper particle after reduction processing in a comparative example. 比較例における酸化処理後及び還元処理後の銅粒子のXRDパターンである。It is an XRD pattern of the copper particle after an oxidation process and a reduction process in a comparative example. 比較例で得られた接合層断面のSEM写真である。5 is an SEM photograph of a cross section of a bonding layer obtained in a comparative example.

以下、本発明の金属材の低温接合方法及び低温接合用銅粒子の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。   Hereinafter, a preferred embodiment of the low-temperature bonding method for metal materials and the copper particles for low-temperature bonding of the present invention will be described in detail. Note that, in the following description, only one embodiment of the present invention is shown, and the present invention is not limited by these embodiments, and duplicate description may be omitted.

≪低温接合方法≫
図1は、本発明の低温接合方法の工程図である。本発明の低温接合方法は、銅粒子の酸化及び還元を利用して接合を達成する方法であり、銅粒子を酸化させる第一工程(S01)と、表面酸化銅粒子を還元すると共に接合を行う第二工程(S02)と、を含むものである。
≪Low temperature joining method≫
FIG. 1 is a process chart of the low-temperature bonding method of the present invention. The low-temperature bonding method of the present invention is a method of achieving bonding by using oxidation and reduction of copper particles. The first step (S01) of oxidizing copper particles and reducing and bonding surface copper oxide particles are performed. And a second step (S02).

(1)第一工程(S01:銅粒子への酸化処理)
第一工程(S01)は、平均粒径が1〜50μmの銅粒子(マイクロ銅粒子)に酸化処理を施すことで、表面酸化銅粒子を得る工程である。マイクロ銅粒子に対して酸化処理を施すことで、表面に酸化銅ナノ粒子を形成することができる。
(1) First step (S01: oxidation treatment to copper particles)
The first step (S01) is a step of obtaining surface copper oxide particles by oxidizing copper particles (micro copper particles) having an average particle diameter of 1 to 50 μm. By subjecting the micro copper particles to an oxidation treatment, copper oxide nanoparticles can be formed on the surface.

マイクロ銅粒子への酸化処理によって酸化銅ナノ粒子被覆マイクロ銅粒子が得られる理由は必ずしも明らかにはなっていないが、マイクロ銅粒子の表面エネルギー状態及び幾何学的形状等により酸化銅ナノ粒子の生成サイトがマイクロ銅粒子の表面に多数存在することが原因の一つであると考えられる。   The reason why the oxidation treatment of the micro copper particles gives the copper oxide nanoparticles coated micro copper particles is not always clear, but the formation of copper oxide nanoparticles depends on the surface energy state and the geometric shape of the micro copper particles. It is considered that one of the causes is that many sites exist on the surface of the micro copper particles.

銅粒子の平均粒径を1μm以上とすることで粒子同士の凝集を防止することができ、金属ナノ粒子を用いた従来の接合用組成物で必須であった金属ナノ粒子の分散性を確保するための有機被覆層が不要となり、接合層内の残留有機成分及び接合プロセス中の接合層の体積変化を大幅に低減することができる。加えて、金属ナノ粒子と比較して接合層内の結晶粒界の割合を低下させることができるため、熱伝導性及び電気伝導性に優れた接合部を得ることができる。更に、金属ナノ粒子と比較して製造が容易であり、安価に購入することができる。   By setting the average particle size of the copper particles to 1 μm or more, the aggregation of the particles can be prevented, and the dispersibility of the metal nanoparticles, which is essential in the conventional bonding composition using the metal nanoparticles, is ensured. This eliminates the need for an organic coating layer, and can significantly reduce residual organic components in the bonding layer and changes in volume of the bonding layer during the bonding process. In addition, the ratio of the crystal grain boundaries in the bonding layer can be reduced as compared with the metal nanoparticles, so that a bonding portion excellent in thermal conductivity and electrical conductivity can be obtained. Furthermore, it is easier to manufacture than metal nanoparticles and can be purchased at low cost.

また、銅粒子の平均粒径を50μm以下とすることで、接合層を緻密な組織とすることができることに加え、微小な部材を接合する必要がある電子デバイスの製造に好適に用いることができる。なお、銅粒子の平均粒径は、レーザー方式のパーティクルカウンターにより測定することができるし、あるいは電子顕微鏡写真から実測することもでき、さらには、当該電子顕微鏡写真から、画像処理装置を用いて算出することもできる。   Further, by setting the average particle size of the copper particles to 50 μm or less, the bonding layer can have a dense structure, and can be suitably used for manufacturing an electronic device that needs to bond minute members. . The average particle size of the copper particles can be measured by a laser type particle counter, or can be actually measured from an electron micrograph, and further calculated from the electron micrograph using an image processing device. You can also.

なお、銅粒子の平均粒径は5〜40μmであることがより好ましく、10〜30μmであることが最も好ましい。銅粒子の平均粒径をこれらの範囲とすることで、上述の効果をより明確に発現することができる。   The average particle size of the copper particles is more preferably 5 to 40 μm, and most preferably 10 to 30 μm. By setting the average particle size of the copper particles in these ranges, the above-described effects can be more clearly exhibited.

本発明の低温接合方法に用いる銅粒子の形状は特に限定されないが、扁平状であることが好ましい。扁平状の銅粒子を用いることで、被接合界面において銅粒子が水平方向に配向して密に充填されるため、緻密な接合層を容易に得ることができる。なお、銅粒子が扁平状の場合、平均粒径は直径の最大値に関する平均値となる。   The shape of the copper particles used in the low-temperature bonding method of the present invention is not particularly limited, but is preferably flat. By using the flat copper particles, the copper particles are horizontally oriented and densely filled at the interface to be bonded, so that a dense bonding layer can be easily obtained. When the copper particles are flat, the average particle diameter is an average value regarding the maximum value of the diameter.

マイクロ銅粒子の表面に、銅ナノ粒子を包含する酸化銅ナノ粒子を形成できる限りにおいて、酸化処理の方法は特に限定されないが、マイクロ銅粒子を200〜400℃の大気中に1〜60分間保持することが好ましい。酸化温度を200℃以上とすることでマイクロ銅粒子表面の酸化を確実に進行させることができ、400℃以下とすることで緻密な酸化被膜の形成を抑制することができる。また、保持時間を1分以上とすることでマイクロ銅粒子表面の少なくとも一部分を酸化銅ナノ粒子で被覆することができ、60分以下とすることでマイクロ銅粒子表面への緻密な酸化被膜の形成を防止することができる。   The method of oxidation treatment is not particularly limited as long as copper oxide nanoparticles including copper nanoparticles can be formed on the surface of the micro copper particles, but the micro copper particles are kept in the air at 200 to 400 ° C. for 1 to 60 minutes. Is preferred. By setting the oxidation temperature to 200 ° C. or higher, oxidation of the surface of the micro copper particles can be surely progressed, and by setting the temperature to 400 ° C. or lower, formation of a dense oxide film can be suppressed. By setting the holding time to 1 minute or more, at least a part of the surface of the micro copper particles can be coated with the copper oxide nanoparticles, and by setting the holding time to 60 minutes or less, formation of a dense oxide film on the surface of the micro copper particles. Can be prevented.

なお、第一工程(S01)は第二工程(S02)と連続的に施してもよく、その場合は2つの被接合部材の間にマイクロ銅粒子を介在させた後、第一工程(S01)及び第二工程(S02)を施せばよい。   The first step (S01) may be performed continuously with the second step (S02). In this case, after the micro copper particles are interposed between the two members to be joined, the first step (S01) And the second step (S02).

(2)第二工程(S02:表面酸化銅粒子の還元及び接合)
第二工程(S02)は、第一工程(S01)で得られた表面酸化銅粒子を還元して銅ナノ粒子で被覆されたマイクロ銅粒子を生成すると共に接合を行う工程である。
(2) Second step (S02: reduction and bonding of surface copper oxide particles)
The second step (S02) is a step in which the surface copper oxide particles obtained in the first step (S01) are reduced to produce micro copper particles coated with copper nanoparticles and to perform bonding.

第一工程(S01)で得られた表面酸化銅粒子を被接合界面に配置し、当該表面酸化銅粒子の還元によって銅ナノ粒子被覆マイクロ銅粒子を生成しつつ当該銅ナノ粒子同士を焼結することで、良好な接合層を得ることができる。 The surface copper oxide particles obtained in the first step (S01) are arranged at the interface to be joined, and the copper nanoparticles are sintered while reducing the surface copper oxide particles to produce copper nanoparticles-coated micro copper particles. Thereby, a good bonding layer can be obtained.

ここで、被接合界面への配置(塗布)を容易にするために、表面酸化銅粒子を従来公知の種々の分散媒に分散させた接合用組成物を調整し、当該接合用組成物を用いてもよい。分散媒としては、例えば、ターピネオール等を用いることができる。   Here, in order to facilitate the arrangement (application) at the interface to be joined, a joining composition in which surface copper oxide particles are dispersed in various conventionally known dispersion media is prepared, and the joining composition is used. You may. As the dispersion medium, for example, terpineol or the like can be used.

被接合界面への「塗布」とは、表面酸化銅粒子又は接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の表面酸化銅粒子又は接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。   “Coating” on the interface to be bonded is a concept that includes a case where the surface copper oxide particles or the bonding composition are applied in a plane and a case where the composition is applied linearly (drawn). The shape of the coating film made of the surface copper oxide particles or the bonding composition before being applied and baked by heating can be a desired shape. Therefore, in the bonded body of the present embodiment after firing by heating, the concept includes both the planar bonding layer and the linear bonding layer, and the planar bonding layer and the linear bonding layer are continuous. May be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.

なお、上述のとおり、本発明者は、表面がナノサイズの酸化銅粒子で被覆されたマイクロ銅粒子を還元すると、銅ナノ粒子で被覆されたマイクロ銅粒子が得られることを見出し、被接合界面において当該銅ナノ粒子被覆マイクロ銅粒子をその場合成することによる金属材の低温接合方法を着想するに至った。接合界面において生成した銅ナノ粒子同士の焼結が連続的に進行することで、良好な接合体を得ることができる。   As described above, the present inventor has found that when micro copper particles whose surface is coated with nano-sized copper oxide particles are reduced, micro copper particles coated with copper nanoparticles are obtained, In this case, a low-temperature bonding method of a metal material by forming the copper nanoparticle-coated micro copper particles in that case has been conceived. By continuously sintering the copper nanoparticles generated at the bonding interface, a good bonded body can be obtained.

第一工程(S01)で得られた表面酸化銅粒子を適当な条件で還元すると、銅ナノ粒子で被覆されたマイクロ銅粒子を得ることができる。マイクロ銅粒子の表面を被覆する酸化銅ナノ粒子を還元でき、当該酸化銅ナノ粒子を銅ナノ粒子とすることができる限りにおいて、還元条件は限定されず、還元雰囲気としてはギ酸雰囲気や水素を含む雰囲気等を用いることができるが、還元雰囲気をギ酸雰囲気とすることが好ましく、表面酸化銅粒子を150〜350℃のギ酸雰囲気下に1〜60分間保持すること、がより好ましい。   When the surface copper oxide particles obtained in the first step (S01) are reduced under appropriate conditions, micro copper particles coated with copper nanoparticles can be obtained. The reduction conditions are not limited as long as the copper oxide nanoparticles covering the surface of the micro copper particles can be reduced and the copper oxide nanoparticles can be copper nanoparticles, and the reducing atmosphere includes a formic acid atmosphere and hydrogen. Although an atmosphere or the like can be used, the reducing atmosphere is preferably a formic acid atmosphere, and more preferably, the surface copper oxide particles are kept in a formic acid atmosphere at 150 to 350 ° C. for 1 to 60 minutes.

還元雰囲気としてギ酸雰囲気を用いることで、作業の安全性を担保することができることに加え、銅ナノ粒子の生成に好適な還元速度等を容易に実現することができる。   By using a formic acid atmosphere as the reducing atmosphere, the safety of operation can be ensured, and a reduction rate or the like suitable for the production of copper nanoparticles can be easily realized.

ギ酸雰囲気下における保持温度を150℃以上とすることで、表面酸化銅粒子の還元を進めることができ、350℃以下とすることで、酸化銅ナノ粒子の還元によって生成した銅ナノ粒子の部分的かつ急激な粒成長に起因する、接合層における空隙の形成等を抑制することができる。更に、保持温度を150℃以上とすることで銅ナノ粒子の焼成プロセスを進行させることができ、350℃以下とすることで、各種電子デバイスの接合用途に好適に用いることができる。   By reducing the holding temperature in a formic acid atmosphere to 150 ° C. or higher, reduction of surface copper oxide particles can be promoted, and by setting the temperature to 350 ° C. or lower, partial reduction of copper nanoparticles generated by reduction of copper oxide nanoparticles In addition, it is possible to suppress the formation of voids and the like in the bonding layer due to rapid grain growth. Further, by setting the holding temperature to 150 ° C. or higher, the sintering process of the copper nanoparticles can be advanced, and by setting the temperature to 350 ° C. or lower, it can be suitably used for bonding various electronic devices.

また、本発明の低温接合方法においては、第二工程(S02)を自重圧下で行うこと、が好ましい。従来の金属ナノ粒子を用いた接合方法においては、金属ナノ粒子焼結体によって接合層が形成されるため、十分な密度を得るためには加圧を伴った焼成プロセスが必要であり、加圧の印加は当該接合方法の適用範囲を大きく制限していた。これに対し、本発明の低温接合方法においては接合層の大部分をマイクロ銅粒子が占めることに加え、生成した銅ナノ粒子同士が速やかに焼成していくことから、無加圧下(自重圧下)においても良好な接合層を得ることができる。   In the low-temperature bonding method of the present invention, it is preferable that the second step (S02) is performed under its own weight. In the conventional bonding method using metal nanoparticles, since a bonding layer is formed by a metal nanoparticle sintered body, a firing process accompanied by pressurization is necessary to obtain a sufficient density. Has greatly limited the applicable range of the joining method. On the other hand, in the low-temperature bonding method of the present invention, since most of the bonding layer is occupied by micro-copper particles, and the generated copper nanoparticles are rapidly fired, they are not pressurized (under their own weight pressure). In (2), a good bonding layer can be obtained.

本実施形態において用いることのできる被接合部材としては、接合用組成物を塗布して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した部材であるのが好ましい。   The member to be joined that can be used in the present embodiment is not particularly limited, as long as it can be joined by applying the composition for joining and baking by heating. It is preferable that the member has heat resistance to the extent that it does not.

被接合部材を構成する材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は金属等を挙げることができるが、なかでも、金属製の被接合部材が好ましい。金属製の被接合部材が好ましいのは、耐熱性に優れているとともに、銅粒子との親和性に優れているからである。金属製の被接合部材としては、例えば、アルミニウム及びアルミニウム合金、鉄及び鉄合金、チタン及びチタン合金、ステンレス、銅及び銅合金等を挙げることができるが、なかでも、電導性・熱伝導性・展延性に優れているという理由から、銅及び銅合金を用いることが好ましい。   Examples of a material forming the member to be joined include polyesters such as polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). , Polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass or metal, among which metal-to-be-joined members are preferred. The metal member to be joined is preferred because it has excellent heat resistance and excellent affinity with copper particles. Examples of the metal member to be joined include aluminum and aluminum alloys, iron and iron alloys, titanium and titanium alloys, stainless steel, copper and copper alloys, and among others, electrical conductivity, heat conductivity, It is preferable to use copper and a copper alloy because of excellent extensibility.

また、被接合部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された部材や親水化処理等の表面処理を施した部材を用いてもよい。   The member to be joined may be in various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be appropriately selected. A member provided with a surface layer or a member subjected to a surface treatment such as a hydrophilization treatment may be used for the purpose of improving the adhesiveness or adhesion or for other purposes.

表面酸化銅粒子又は接合用組成物を被接合部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。   In the step of applying the surface copper oxide particles or the bonding composition to the member to be bonded, various methods can be used.As described above, for example, dipping, screen printing, spraying, bar coating, It can be appropriately selected from spin coating, ink jet, dispenser, pin transfer, coating by brush, casting, flexo, gravure, and syringe.

上記のように塗布した後の塗膜を、被接合部材を損傷させない範囲で、例えば350℃以下の温度に加熱することにより焼成し、本実施形態の接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の表面酸化銅粒子又は接合用組成物を用いるため、被接合部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。   The coated film that has been applied as described above is fired by heating it to a temperature of, for example, 350 ° C. or less within a range that does not damage the member to be bonded, and the bonded body of this embodiment can be obtained. In the present embodiment, as described above, since the surface copper oxide particles or the bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded can be obtained, and a strong bonding can be obtained. Strength can be obtained more reliably.

本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。   In the present embodiment, when the bonding composition contains a binder component, from the viewpoint of improving the strength of the bonding layer and improving the bonding strength between the members to be bonded, the binder component also sinters. The main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the baking conditions may be controlled to remove all of the binder component.

上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合部材上に塗布又は描画した上記表面酸化銅粒子又は接合用組成物の温度が、例えば150〜350℃となるように焼成することによって接合することができる。ここで、上記焼成後の接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。   The method of performing the baking is not particularly limited, for example, using a conventionally known oven or the like, the temperature of the surface copper oxide particles or the bonding composition applied or drawn on the member to be bonded is, for example, 150 to Bonding can be performed by firing at 350 ° C. Here, in the bonding composition after the calcination, the remaining amount of the organic substance is preferably as small as possible in terms of obtaining a bonding strength as high as possible, but a part of the organic substance remains as long as the effect of the present invention is not impaired. It does not matter.

なお、本発明の接合方法で用いる接合用組成物には、有機物が含まれているが、従来の例えばエポキシ樹脂等の熱硬化を利用したものと異なり、有機物の作用によって焼成後の接合強度を得るものではなく、前述したように銅粒子の融着によって十分な接合強度が得られるものである。このため、接合後において、接合温度よりも高温の使用環境に置かれて残存した有機物が劣化ないし分解・消失した場合であっても、接合強度の低下するおそれはなく、したがって耐熱性に優れている。   Although the bonding composition used in the bonding method of the present invention contains an organic substance, the bonding strength after firing is reduced by the action of the organic substance, unlike conventional ones utilizing thermosetting of, for example, an epoxy resin. However, as described above, sufficient bonding strength can be obtained by fusion of the copper particles. Therefore, even after the joining, even if the remaining organic matter is degraded or decomposed / disappeared by being placed in a use environment higher than the joining temperature, there is no possibility that the joining strength is reduced, and therefore, the heat resistance is excellent. I have.

本発明の接合方法で用いる表面酸化銅粒子又は接合用組成物によれば、例えば150〜350℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士を接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。   According to the surface copper oxide particles or the bonding composition used in the bonding method of the present invention, for example, bonding having a bonding layer that exhibits high conductivity can be realized even by firing at a low temperature of about 150 to 350 ° C. Thus, the members to be joined which are relatively weak to heat can be joined. Further, the firing time is not particularly limited, and may be any firing time that can be joined according to the firing temperature.

本実施形態においては、上記被接合部材と接合層との密着性を更に高めるため、上記被接合部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。   In the present embodiment, the surface treatment of the member to be joined may be performed in order to further enhance the adhesion between the member to be joined and the joining layer. Examples of the surface treatment method include a method of performing a dry treatment such as a corona treatment, a plasma treatment, a UV treatment, and an electron beam treatment, and a method of previously providing a primer layer or a conductive paste receiving layer on a base material.

≪低温接合用銅粒子≫
図2は、本発明の低温接合用銅粒子の概略断面図である。本発明の低温接合用銅粒子2は、銅粒子4の表面が酸化銅粒子6で被覆されていること、を特徴としている。低温接合用銅粒子2を被接合界面に配置し、適当な還元雰囲気下で保持することで接合を達成することができる。なお、酸化銅粒子6は銅粒子4の表面に担持されていることから低温接合用銅粒子2の取り扱いが容易であり、被接合界面において銅粒子4と酸化銅粒子6とを均一に分散(配置)することができる。換言すると、金属ナノ粒子を用いた従来の接合用組成物で問題となっている金属ナノ粒子等の凝集及び偏在を解消することができる。
銅 Copper particles for low temperature bonding 接合
FIG. 2 is a schematic sectional view of the copper particles for low-temperature bonding of the present invention. The copper particles 2 for low-temperature bonding of the present invention are characterized in that the surfaces of the copper particles 4 are covered with copper oxide particles 6. Bonding can be achieved by arranging the copper particles 2 for low-temperature bonding at the interface to be bonded and maintaining them under an appropriate reducing atmosphere. Since the copper oxide particles 6 are carried on the surfaces of the copper particles 4, the handling of the low-temperature bonding copper particles 2 is easy, and the copper particles 4 and the copper oxide particles 6 are uniformly dispersed at the interface to be bonded ( Arrangement). In other words, it is possible to eliminate aggregation and uneven distribution of metal nanoparticles and the like, which are problems in the conventional bonding composition using metal nanoparticles.

還元によって酸化銅粒子6から銅ナノ粒子が生成し、当該銅ナノ粒子同士の焼結によって接合層が形成される接合条件を用いることで良好な接合体を得ることができる。当該接合条件としては、例えば、本発明の低温接合方法の第二工程(S02)を用いることができる。   Copper nanoparticles are generated from the copper oxide particles 6 by the reduction, and a good bonded body can be obtained by using bonding conditions in which a bonding layer is formed by sintering the copper nanoparticles. As the bonding conditions, for example, the second step (S02) of the low-temperature bonding method of the present invention can be used.

銅粒子4の平均粒径は1〜50μmであり、平均粒径が1μm以上となっていることから低温接合用銅粒子2同士の凝集を防止することができ、金属ナノ粒子を用いた従来の接合用組成物で必須であった金属ナノ粒子の分散性を確保するための有機被覆層が不要となり、接合層内の残留有機成分及び接合プロセス中の接合層の体積変化を大幅に低減することができる。加えて、金属ナノ粒子と比較して接合層内の結晶粒界の割合を低下させることができるため、熱伝導性及び電気伝導性に優れた接合部を得ることができる。更に、金属ナノ粒子と比較して製造が容易であり、安価に購入することができる。   The average particle diameter of the copper particles 4 is 1 to 50 μm, and since the average particle diameter is 1 μm or more, aggregation of the copper particles 2 for low-temperature bonding can be prevented. Eliminates the need for an organic coating layer to ensure the dispersibility of metal nanoparticles, which was essential in bonding compositions, and significantly reduces residual organic components in the bonding layer and changes in the volume of the bonding layer during the bonding process. Can be. In addition, the ratio of the crystal grain boundaries in the bonding layer can be reduced as compared with the metal nanoparticles, so that a bonding portion excellent in thermal conductivity and electrical conductivity can be obtained. Furthermore, it is easier to manufacture than metal nanoparticles and can be purchased at low cost.

また、銅粒子4の平均粒径を50μm以下とすることで、接合層を緻密な組織とすることができることに加え、微小な部材を接合する必要がある電子デバイスの製造に好適に用いることができる。なお、銅粒子4の平均粒径は、レーザー方式のパーティクルカウンターにより測定することができるし、あるいは電子顕微鏡写真から実測することもでき、さらには、当該電子顕微鏡写真から、画像処理装置を用いて算出することもできる。なお、銅粒子4の平均粒径は5〜40μmであることがより好ましく、10〜30μmであることが最も好ましい。   Further, by setting the average particle size of the copper particles 4 to 50 μm or less, the bonding layer can have a dense structure, and can be suitably used for manufacturing an electronic device that needs to bond minute members. it can. The average particle size of the copper particles 4 can be measured by a laser type particle counter, or can be actually measured from an electron micrograph, and further, from the electron micrograph, using an image processing device. It can also be calculated. The average particle size of the copper particles 4 is more preferably 5 to 40 μm, and most preferably 10 to 30 μm.

銅粒子4の形状は特に限定されないが、扁平状であることが好ましい。扁平状の銅粒子4を用いることで、被接合界面において銅粒子4が水平方向に配向して密に充填されるため、緻密な接合層を容易に得ることができる。なお、銅粒子4が扁平状の場合、平均粒径は直径の最大値に関する平均値となる。   The shape of the copper particles 4 is not particularly limited, but is preferably flat. By using the flat copper particles 4, the copper particles 4 are oriented horizontally in the interface to be bonded and are densely filled, so that a dense bonding layer can be easily obtained. When the copper particles 4 are flat, the average particle diameter is an average value regarding the maximum value of the diameter.

酸化銅粒子6の平均粒径は1〜300nmであり、平均粒径を1nm以上とすることで還元によって酸化銅粒子6から銅ナノ粒子を生成することができ、平均粒径を300nm以下とすることで低温(例えば、150〜350℃)における良好な焼結性を担保することができる。酸化銅粒子6の平均粒径は、電子顕微鏡写真やガス吸着を用いた粒子径分布測定法を用いて実測することができ、さらには、当該電子顕微鏡写真から、画像処理装置を用いて算出することもできる。   The average particle diameter of the copper oxide particles 6 is 1 to 300 nm, and by making the average particle diameter 1 nm or more, copper nanoparticles can be generated from the copper oxide particles 6 by reduction, and the average particle diameter is 300 nm or less. Thereby, good sinterability at a low temperature (for example, 150 to 350 ° C.) can be secured. The average particle size of the copper oxide particles 6 can be actually measured using an electron micrograph or a particle size distribution measuring method using gas adsorption, and further calculated from the electron micrograph using an image processing device. You can also.

なお、本発明の低温接合用銅粒子2は、上述の本発明の低温接合方法の第一工程(S01)によって、容易に得ることができる。   The low-temperature bonding copper particles 2 of the present invention can be easily obtained by the first step (S01) of the above-described low-temperature bonding method of the present invention.

また、本発明の低温接合用銅粒子2を用いる場合の接合条件としては、上述の本発明の低温接合方法の第二工程(S02)に記載の条件を好適に用いることができる。   In addition, as the bonding conditions when using the copper particles 2 for low-temperature bonding of the present invention, the conditions described in the second step (S02) of the above-described low-temperature bonding method of the present invention can be suitably used.

本発明の低温接合用銅粒子2はそのまま接合材として用いることができるが、必要に応じてその他の成分と混合して接合用組成物としてもよい。以下において、接合用組成物の調整に用いることができる各成分について説明する。   The copper particles 2 for low-temperature bonding of the present invention can be used as a bonding material as they are, but may be mixed with other components to form a bonding composition as needed. Hereinafter, each component that can be used for adjusting the bonding composition will be described.

低温接合用銅粒子2を分散させる有機溶媒は、本発明の効果を損なわない範囲で種々の有機溶媒を用いることができる。有機溶剤としては、例えば、テルペン系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、セロソルブ系溶剤、カルビトール系溶剤等が挙げられる。より具体的には、ターピネオール、メチルエチルケトン、アセトン、イソプロパノール、ブチルカービトール、デカン、ウンデカン、テトラデカン、ベンゼン、トルエン、ヘキサン、ジエチルエーテル、ケロシン等の有機溶媒を用いることができる。   As the organic solvent in which the low-temperature bonding copper particles 2 are dispersed, various organic solvents can be used as long as the effects of the present invention are not impaired. Examples of the organic solvent include terpene solvents, ketone solvents, alcohol solvents, ester solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cellosolve solvents, carbitol solvents, and the like. Is mentioned. More specifically, organic solvents such as terpineol, methyl ethyl ketone, acetone, isopropanol, butyl carbitol, decane, undecane, tetradecane, benzene, toluene, hexane, diethyl ether, and kerosene can be used.

本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、分散媒や、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。   The bonding composition of the present embodiment, in addition to the above components, imparts a function such as appropriate viscosity, adhesion, drying property, or printability according to the purpose of use within a range that does not impair the effects of the present invention. For this purpose, a dispersion medium, an oligomer component serving as a binder, a resin component, an organic solvent (a part of solid content may be dissolved or dispersed), a surfactant, a thickener or a surface tension are used. Optional components such as a regulator may be added. Such optional components are not particularly limited.

任意成分のうちの分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。   As the dispersion medium among the optional components, various ones can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.

炭化水素としては、脂肪族炭化水素、環状炭化水素及び脂環式炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the hydrocarbon include an aliphatic hydrocarbon, a cyclic hydrocarbon, and an alicyclic hydrocarbon, and each may be used alone or two or more of them may be used in combination.

脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。   Examples of the aliphatic hydrocarbon include, for example, saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.

環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。   Examples of the cyclic hydrocarbon include toluene, xylene and the like.

更に、脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、ジヒドロサイメン、モスレン、イソテルピネン、イソターピネン(イソテルピネンともいう。)、クリトメン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。   Further, as alicyclic hydrocarbons, for example, limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandrene, mentadien, teleben, Examples include dihydrocymene, moslen, isoterpinene, isoterpinene (also referred to as isoterpinene), klitmen, kautusin, kagepten, oilymen, pinene, turpentine, menthan, pinane, terpene, cyclohexane, and the like.

また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。   Alcohol is a compound containing one or more OH groups in its molecular structure, and includes aliphatic alcohols, cyclic alcohols and alicyclic alcohols, each of which may be used alone or in combination of two or more. Is also good. Further, a part of the OH group may be derived to an acetoxy group or the like as long as the effect of the present invention is not impaired.

脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1−オクタノール、2−オクタノール、3−オクタノール等)、デカノール(1−デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2−エチル−1−ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6−30脂肪族アルコール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (such as 1-octanol, 2-octanol and 3-octanol), decanol (such as 1-decanol), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, and 2-ethyl-1-. Saturated or unsaturated C 6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol, and oleyl alcohol are exemplified.

環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。   Examples of the cyclic alcohol include cresol and eugenol.

更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール等が挙げられる。   Examples of the alicyclic alcohol include, for example, cycloalkanols such as cyclohexanol, terpineols (including α, β, γ isomers or any mixture thereof), and terpene alcohols such as dihydroterpineol (monoterpene alcohols and the like). ), Dihydroterpineol, myrtenol, sobrelol, menthol, carveol, perillyl alcohol, pinocalveol, sobrelol, berbenol and the like.

本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1〜30質量%であるのが好ましい。分散媒の含有量が1〜30質量%であれば、接合用組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1〜20質量%であり、更に好ましい含有量は1〜15質量%である。   The content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 mass. %. When the content of the dispersion medium is from 1 to 30% by mass, the effect of adjusting the viscosity within a range that can be easily used as the bonding composition can be obtained. The more preferable content of the dispersion medium is 1 to 20% by mass, and the more preferable content is 1 to 15% by mass.

樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the resin component include a polyester resin, a polyurethane resin such as blocked isocyanate, a polyacrylate resin, a polyacrylamide resin, a polyether resin, a melamine resin, a terpene resin, and the like. May be used alone or in combination of two or more.

有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n−プロピルアルコール、2−プロピルアルコール、1,3−プロパンジオール、1,2−プロパンジオール、1,4−ブタンジオール、1,2,6−ヘキサントリオール、1−エトキシ−2−プロパノール、2−ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、グリセリン又はアセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   Examples of the organic solvent, excluding those mentioned as the dispersion medium, include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight-average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethylsulfoxide, N- Chill-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.

増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。   As the thickener, for example, clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resin, acrylic emulsion resin, polyurethane emulsion resin or blocked isocyanate, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose And cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, and polysaccharides such as xanthan gum and guar gum. These may be used alone or in combination of two or more.

また、上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の金属コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。   Further, a surfactant different from the organic component may be added. In a multi-component solvent-based metal colloid dispersion liquid, the surface of the coating film becomes rough and the solid content tends to be uneven due to the difference in the evaporation rate during drying. By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition capable of forming a uniform conductive film can be obtained.

本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。   The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used. And quaternary ammonium salts. Since the effect can be obtained with a small addition amount, a fluorine-based surfactant is preferable.

なお、有機成分量を所定の範囲に調整する方法は、加熱を行って調整するのが簡便である。また、導電粉を作製する際に添加する有機成分の量を調整することで行ってもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分量の微調整のために、アミン(及びカルボン酸)を後で加えることもできる。   It should be noted that the method of adjusting the amount of the organic component within a predetermined range is easy to adjust by heating. Alternatively, it may be performed by adjusting the amount of the organic component added when producing the conductive powder. Heating can be performed with an oven, an evaporator, or the like, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in the air or in an inert atmosphere. Further, an amine (and carboxylic acid) can be added later for fine adjustment of the amount of the organic component.

本実施形態の接合用組成物の粘度は、固形分の濃度は本発明の効果を損なわない範囲で適宜調整すればよいが、例えば0.01〜5000Pa・Sの粘度範囲であればよく、0.1〜1000Pa・Sの粘度範囲がより好ましく、1〜100Pa・Sの粘度範囲であることが特に好ましい。当該粘度範囲とすることにより、被接合材に接合用組成物を塗布する方法として幅広い方法を適用することができる。   The viscosity of the bonding composition of the present embodiment may be adjusted as appropriate as long as the concentration of the solid content is within a range that does not impair the effects of the present invention. For example, the viscosity may be 0.01 to 5000 Pa · S. A viscosity range of 1 to 1000 Pa · S is more preferable, and a viscosity range of 1 to 100 Pa · S is particularly preferable. By setting the viscosity range, a wide range of methods can be applied as a method of applying the bonding composition to the material to be bonded.

粘度の調整は、導電粉の粒径の調整、有機物の含有量の調整、分散媒その他の成分の添加量の調整、各成分の配合比の調整、増粘剤の添加等によって行うことができる。金属接合用組成物の粘度は、例えば、コーンプレート型粘度計(例えばアントンパール社製のレオメーターMCR301)により測定することができる。   The viscosity can be adjusted by adjusting the particle size of the conductive powder, adjusting the content of the organic substance, adjusting the addition amount of the dispersion medium and other components, adjusting the mixing ratio of each component, adding a thickener, and the like. . The viscosity of the metal bonding composition can be measured by, for example, a cone plate type viscometer (for example, Rheometer MCR301 manufactured by Anton Paar).

本実施形態の接合用組成物は、低温接合用銅粒子2及び上述の有機溶媒等を従来公知の種々の方法で均一に混合することにより得ることができる。なお、混合方法は、乾式混合であっても良いし、溶媒等を用いて湿式混合を実施しても良い。   The bonding composition of the present embodiment can be obtained by uniformly mixing the low-temperature bonding copper particles 2 and the above-mentioned organic solvent and the like by various conventionally known methods. The mixing method may be dry mixing or wet mixing using a solvent or the like.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、上記実施形態においては、導電粉として低温接合用粒子2のみを使用した場合について説明したが、例えば、接合用組成物にその他の金属ナノ粒子等を適宜添加して使用することもできる。   As described above, the representative embodiments of the present invention have been described, but the present invention is not limited to only these embodiments. For example, in the above embodiment, the case where only the low-temperature bonding particles 2 are used as the conductive powder has been described. However, for example, other metal nanoparticles or the like may be appropriately added to the bonding composition and used.

以下、実施例において本発明の低温接合方法及び低温接合用銅粒子について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, the low-temperature bonding method and the low-temperature bonding copper particles of the present invention will be further described in examples, but the present invention is not limited to these examples.

≪実施例≫
図3に示す平均粒径8μmの扁平状の銅粒子(三井金属鉱業株式会社製のフレーク状銅粉:1400YP)を300℃の大気中に20分間保持し、表面酸化銅粒子を得た(第一工程(S01))。当該表面酸化銅粒子のSEM写真を図4及び図5に示す。なお、図5は図4において破線で囲まれた領域の高倍率写真である。酸化処理によって、銅粒子の表面に平均粒径が約200nmの粒子が生成していることが分かる。SEM観察には株式会社日立ハイテクノロジーズの超高分解能分析走査電子顕微鏡SU−70を用いた。
<< Example >>
The flat copper particles having an average particle size of 8 μm (flake copper powder manufactured by Mitsui Mining & Smelting Co., Ltd .: 1400 YP) shown in FIG. One step (S01)). FIGS. 4 and 5 show SEM photographs of the surface copper oxide particles. FIG. 5 is a high-magnification photograph of a region surrounded by a broken line in FIG. It can be seen that particles having an average particle size of about 200 nm are formed on the surface of the copper particles by the oxidation treatment. For SEM observation, an ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Technologies Corporation was used.

次に、表面酸化銅粒子を300℃のギ酸雰囲気下に10分間保持し、表面酸化銅粒子を還元することで低温接合用粒子を得た(表面酸化銅粒子を被接合部材の間に配置すれば、第二工程(S02)に相当)。当該低温接合用銅粒子のSEM写真を図6及び図7に示す。なお、図7は図6において破線で囲まれた領域の高倍率写真である。還元処理によって、銅粒子の表面に平均粒径が約150nmの粒子が生成していることが分かる。   Next, the surface copper oxide particles were held in a formic acid atmosphere at 300 ° C. for 10 minutes, and the surface copper oxide particles were reduced to obtain low-temperature bonding particles (the surface copper oxide particles were placed between the members to be bonded. For example, it corresponds to the second step (S02)). FIGS. 6 and 7 show SEM photographs of the copper particles for low-temperature bonding. FIG. 7 is a high-magnification photograph of a region surrounded by a broken line in FIG. It can be seen that particles having an average particle size of about 150 nm are generated on the surfaces of the copper particles by the reduction treatment.

図8及び図9に、還元処理前後における表面酸化銅粒子からのSEM−EDSスペクトルを示す。図8では酸素に起因するピークが観察されているが、図9では当該ピークが消失していることから、上記酸化処理によって銅粒子の表面が酸化され、上記還元処理によって酸化物が還元されていることが分かる。なお、SEM−EDS測定には株式会社日立ハイテクノロジーズの超高分解能分析走査電子顕微鏡SU−70に備え付けたOxford Instruments社製のINCA Penta FETx3を用いた。   8 and 9 show SEM-EDS spectra from the surface copper oxide particles before and after the reduction treatment. In FIG. 8, a peak due to oxygen is observed, but in FIG. 9, since the peak disappears, the surface of the copper particles is oxidized by the oxidation treatment, and the oxide is reduced by the reduction treatment. You can see that there is. The SEM-EDS measurement was performed using an INCA Penta FETx3 manufactured by Oxford Instruments Inc., which was provided in an ultra-high resolution analytical scanning electron microscope SU-70 manufactured by Hitachi High-Technologies Corporation.

図10に、還元処理前後における表面酸化銅粒子からのXRDパターンを示す。還元処理前のパターンには酸化銅(CuO及びCuO)に起因するピークが確認できるが、還元処理後のパターンにおいては銅(Cu)に起因するパターンのみとなっている。なお、XRD測定には株式会社リガク社製のUltimaIVを用い、加速電圧を40kKとしてCu−Kα線(λ=1.5405Å)を用いた。 FIG. 10 shows XRD patterns from the surface copper oxide particles before and after the reduction treatment. A peak due to copper oxide (CuO 2 and CuO) can be confirmed in the pattern before the reduction treatment, but only a pattern due to copper (Cu) in the pattern after the reduction treatment. In addition, the XRD measurement was performed using Ultima IV manufactured by Rigaku Co., Ltd., and Cu-Kα radiation (λ = 1.5405 °) was used at an acceleration voltage of 40 kK.

以上の結果から、酸化処理(第一工程(S01))によって銅粒子の表面に酸化銅ナノ粒子が生成し、還元処理(第二工程(S02))によって、銅ナノ粒子で被覆された銅粒子が得られていることが分かる。   From the above results, copper oxide nanoparticles are generated on the surfaces of the copper particles by the oxidation treatment (first step (S01)), and the copper particles coated with the copper nanoparticles by the reduction treatment (second step (S02)) It can be seen that is obtained.

次に、図3に示す銅粒子を用いて無酸素銅同士の接合を行った。接合試験に用いた無酸素銅からなる接合試験片の形状を図11に示す。それぞれの試験片の接合面はRmax=3.2Sとなるように旋盤加工により仕上げ、アセトン中での超音波洗浄と塩酸中での酸洗いを行った後、水洗と乾燥を経て試験に供した。大きい方の円板試験片の接合面にターピネオールと銅粒子を混合して得られた接合用組成物(銅粒子:80質量%)を一定量塗布し、小さい方の試験片を重ねて軽く圧しつけながら接合用組成物が接合面全体に広がるように接合試験片を調整した。当該試験片を300℃の大気中で20分間保持(第一工程(S01))した後、300℃のギ酸雰囲気下で10分間保持(第二工程(S02))して接合を行った。なお、接合に際しては加圧を行うことなく、無加圧(接合試験片の自重のみ)条件とした。試験後は直ちに試験片を空冷した。   Next, oxygen-free copper was joined together using the copper particles shown in FIG. FIG. 11 shows the shape of a bonding test piece made of oxygen-free copper used in the bonding test. The joint surface of each test piece was finished by lathe processing so that Rmax = 3.2S, ultrasonically washed in acetone and pickled in hydrochloric acid, and then subjected to a test after washing with water and drying. . A fixed amount of a bonding composition (copper particles: 80% by mass) obtained by mixing terpineol and copper particles is applied to the bonding surface of the larger disc test piece, and the smaller test piece is overlaid and lightly pressed. The bonding test piece was adjusted so that the bonding composition spread over the entire bonding surface while rubbing. After holding the test piece in the air at 300 ° C. for 20 minutes (first step (S01)), bonding was performed by holding it in a formic acid atmosphere at 300 ° C. for 10 minutes (second step (S02)). It should be noted that no pressure was applied during the joining, and no pressure was applied (only the weight of the joining test piece). Immediately after the test, the test pieces were air-cooled.

得られた接合体に関し、接合層断面のSEM写真を図12に示す。接合界面に扁平状の銅粒子が配向して高充填されており、緻密な接合層が得られていることが分かる。図12の右上に拡大写真を示しているが、銅粒子の周囲で銅ナノ粒子の焼結が進行している様子が観察できる。   FIG. 12 shows an SEM photograph of a cross section of the bonding layer of the obtained bonded body. It can be seen that flat copper particles are oriented and highly filled at the bonding interface, and a dense bonding layer is obtained. An enlarged photograph is shown in the upper right of FIG. 12, and it can be observed that sintering of the copper nanoparticles progresses around the copper particles.

接合試験により得られた接合体について、ボンドテスターを用いてせん断試験を行い、接合強度を求めた。得られたせん断強度を図13に示す。なお、接合体は3つ作製し、それぞれの接合体についてせん断試験を行った。せん断試験機には株式会社レスカ社製の継手強度試験機(STR−1000)を用い、せん断速度:1mm/min及びせん断高さ:0.2mmの条件で試験を行った。   About the joined body obtained by the joining test, a shear test was performed using a bond tester to determine the joining strength. FIG. 13 shows the obtained shear strength. In addition, three joined bodies were produced, and a shear test was performed on each of the joined bodies. A test was conducted using a joint strength tester (STR-1000) manufactured by Resca Co., Ltd. as a shear tester under the conditions of a shear rate of 1 mm / min and a shear height of 0.2 mm.

接合体のせん断強度は約30MPaであり、実用上十分に高い強度を有していることが分かる。加えて、各接合継手における強度のばらつきも小さく、信頼性の高い接合体が得られている。   The shear strength of the joined body is about 30 MPa, which indicates that the joined body has a sufficiently high strength for practical use. In addition, there is little variation in strength in each joint, and a highly reliable joined body is obtained.

≪比較例≫
図3に示す銅粒子を130℃の大気中で5分間保持して酸化処理を施した後、300℃のギ酸雰囲気下で60分間保持して還元処理を施した。酸化処理後及び還元処理後の銅粒子のSEM写真を図14及び図15にそれぞれ示す。酸化処理後及び還元処理後の銅粒子の表面は平滑な状況となっており、酸化銅粒子及び銅ナノ粒子の生成は認められない。
<< Comparative Example >>
After the copper particles shown in FIG. 3 were held in an atmosphere at 130 ° C. for 5 minutes to be oxidized, a reduction treatment was performed by holding them in a formic acid atmosphere at 300 ° C. for 60 minutes. FIGS. 14 and 15 show SEM photographs of the copper particles after the oxidation treatment and the reduction treatment, respectively. The surfaces of the copper particles after the oxidation treatment and after the reduction treatment are in a smooth state, and the formation of copper oxide particles and copper nanoparticles is not recognized.

酸化処理後及び還元処理後の銅粒子のXRDパターンを図16に示す。何れの場合も銅(Cu)に起因するピークのみとなっており、銅粒子への酸化処理条件が適切でない場合は酸化銅粒子が生成しないことが分かる。   FIG. 16 shows the XRD patterns of the copper particles after the oxidation treatment and the reduction treatment. In each case, only the peak attributed to copper (Cu) was obtained, and it was found that copper oxide particles were not generated when the conditions for oxidizing the copper particles were not appropriate.

図3に示す銅粒子を130℃の大気中で5分間保持して酸化処理を施した後、300℃のギ酸雰囲気下で60分間保持して還元処理を施したものと、ターピネオールと、を混合して接合用組成物を調整した以外は実施例と同様にして接合体を得た。   After the copper particles shown in FIG. 3 are oxidized by holding them in the air at 130 ° C. for 5 minutes, the particles subjected to the reduction treatment by holding them in a formic acid atmosphere at 300 ° C. for 60 minutes are mixed with terpineol. Then, a joined body was obtained in the same manner as in Example except that the joining composition was adjusted.

実施例と同様にして測定した接合体の接合強度及び接合層断面のSEM写真を、図13及び図17にそれぞれ示す。せん断強度は10MPa弱であり、本発明の低温接合方法を用いて得られた接合体と比較すると大幅に低い値となっている。また、接合層の緻密化が殆ど進行しておらず、銅粒子同士の接合力が不十分であることから断面試料作製時に銅粒子が部分的に脱落している。以上の結果から、表面が銅ナノ粒子で被覆されていない銅粒子のみを用いても、良好な接合体が得られないことが分かる。   FIGS. 13 and 17 show SEM photographs of the joint strength and the cross section of the joint layer of the joined body measured in the same manner as in the example. The shear strength is slightly less than 10 MPa, which is significantly lower than that of the joined body obtained by using the low-temperature joining method of the present invention. Further, the densification of the bonding layer has hardly progressed, and the bonding force between the copper particles is insufficient, so that the copper particles are partially dropped during the preparation of the cross-sectional sample. From the above results, it can be seen that a good bonded body cannot be obtained even if only the copper particles whose surface is not coated with the copper nanoparticles are used.

2・・・低温接合用銅粒子、
4・・・銅粒子、
6・・・酸化銅粒子。
2 ... Copper particles for low-temperature bonding,
4 ... copper particles,
6 ... Copper oxide particles.

Claims (7)

銅粒子を用いた接合方法であって、
前記銅粒子の平均粒径が1〜50μmであり、
前記銅粒子を酸化させて表面酸化銅粒子を得る第一工程と、
2つの被接合部材の間に前記表面酸化銅粒子を介在させた後、還元雰囲気下で加熱し、銅ナノ粒子被覆マイクロ銅粒子を生成しつつ前記銅ナノ粒子同士を焼結する第二工程と、を含むこと、
を特徴とする低温接合方法。
A joining method using copper particles,
The average particle size of the copper particles is 1 to 50 μm,
A first step of oxidizing the copper particles to obtain surface copper oxide particles,
After interposing the surface copper oxide particles between two members to be joined, heating under a reducing atmosphere, and sintering the copper nanoparticles while generating copper nanoparticle-coated micro copper particles; and , Including
A low-temperature bonding method characterized by the following.
前記第二工程において、還元雰囲気をギ酸雰囲気とすること、
を特徴とする請求項1に記載の低温接合方法。
In the second step, the reducing atmosphere is a formic acid atmosphere,
The low-temperature bonding method according to claim 1, wherein:
前記第二工程において、前記表面酸化銅粒子を150〜350℃で1〜60分間保持すること、
を特徴とする請求項1又は2に記載の低温接合方法。
In the second step, holding the surface copper oxide particles at 150 to 350 ° C. for 1 to 60 minutes,
The low-temperature bonding method according to claim 1, wherein:
前記第二工程を自重圧下で行うこと、
を特徴とする請求項1〜3のうちのいずれかに記載の低温接合方法。
Performing the second step under its own weight pressure,
The low-temperature bonding method according to claim 1, wherein:
前記第一工程において、前記銅粒子を200〜400℃の大気中に1〜60分間保持すること、
を特徴とする請求項1〜4のうちのいずれかに記載の低温接合方法。
In the first step, holding the copper particles in the air at 200 to 400 ° C. for 1 to 60 minutes,
The low-temperature bonding method according to claim 1, wherein:
銅粒子の表面の少なくとも一部が酸化銅粒子で被覆されており、
前記銅粒子の平均粒径が1〜50μmであり、
前記酸化銅粒子の平均粒径が1〜300nmであること、
を特徴とする低温接合用銅粒子。
At least a part of the surface of the copper particles is coated with copper oxide particles,
The average particle size of the copper particles is 1 to 50 μm,
The average particle diameter of the copper oxide particles is 1 to 300 nm,
Copper particles for low-temperature bonding characterized by the following.
前記銅粒子が扁平状であること、
を特徴とする請求項6に記載の低温接合用銅粒子。
The copper particles are flat,
The low-temperature bonding copper particles according to claim 6, wherein:
JP2015202741A 2015-10-14 2015-10-14 Low temperature joining method using copper particles Active JP6659026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202741A JP6659026B2 (en) 2015-10-14 2015-10-14 Low temperature joining method using copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202741A JP6659026B2 (en) 2015-10-14 2015-10-14 Low temperature joining method using copper particles

Publications (2)

Publication Number Publication Date
JP2017074598A JP2017074598A (en) 2017-04-20
JP6659026B2 true JP6659026B2 (en) 2020-03-04

Family

ID=58549729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202741A Active JP6659026B2 (en) 2015-10-14 2015-10-14 Low temperature joining method using copper particles

Country Status (1)

Country Link
JP (1) JP6659026B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093427A1 (en) * 2017-11-08 2019-05-16 日立化成株式会社 Method for producing joined body, and joining material
WO2019188511A1 (en) 2018-03-29 2019-10-03 ハリマ化成株式会社 Copper paste, bonding method, and method for producing bonded body
CN109483092B (en) * 2018-12-12 2020-03-13 中国矿业大学 Preparation method of welding material based on copper nanoparticles
EP3943215A4 (en) 2019-03-22 2022-12-14 Harima Chemicals, Inc. Metal paste, bonding method and method for producing bonded body
CN110369911A (en) * 2019-06-27 2019-10-25 上海三一重机股份有限公司 A kind of copper nano-weld material and preparation method thereof
CN111375774B (en) * 2020-04-29 2023-02-21 西安稀有金属材料研究院有限公司 Preparation method of graphite-copper-molybdenum-based composite material for electronic packaging

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264240B2 (en) * 1998-01-30 2002-03-11 三菱マテリアル株式会社 Method for producing copper tube having copper porous layer
JP5301385B2 (en) * 2008-10-29 2013-09-25 ニホンハンダ株式会社 Metal member bonding agent, metal member assembly manufacturing method, metal member assembly, and electric circuit connecting bump manufacturing method
WO2013125022A1 (en) * 2012-02-24 2013-08-29 株式会社日立製作所 Semiconductor device
TWI463710B (en) * 2012-10-05 2014-12-01 Subtron Technology Co Ltd Mrthod for bonding heat-conducting substraye and metal layer

Also Published As

Publication number Publication date
JP2017074598A (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6659026B2 (en) Low temperature joining method using copper particles
TWI651149B (en) Metal bonding composition
JP6766160B2 (en) Composition for metal bonding
JP6021816B2 (en) Bonding composition
JP6736782B2 (en) Composition for bonding
JP6262139B2 (en) Bonding composition
JP6467114B1 (en) Method for producing metal bonded laminate
TW201542731A (en) Bonding composition and metal bonded article using the same
JP2017155166A (en) Joining composition
JP6163616B1 (en) Bonding composition
JP6380791B2 (en) Joining method using micro-sized silver particles
WO2017006531A1 (en) Joining composition and joining method
JP6347385B2 (en) Copper material joining method
WO2018030173A1 (en) Bonding composition and method for preparing same
TW201615785A (en) Bonding composition
JP6406546B2 (en) Joining method
JP6669420B2 (en) Bonding composition
JP6433324B2 (en) Joining method
JP6085724B2 (en) Bonding composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200129

R150 Certificate of patent or registration of utility model

Ref document number: 6659026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250