WO2017006531A1 - Joining composition and joining method - Google Patents

Joining composition and joining method Download PDF

Info

Publication number
WO2017006531A1
WO2017006531A1 PCT/JP2016/003031 JP2016003031W WO2017006531A1 WO 2017006531 A1 WO2017006531 A1 WO 2017006531A1 JP 2016003031 W JP2016003031 W JP 2016003031W WO 2017006531 A1 WO2017006531 A1 WO 2017006531A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
particles
bonding
temperature
coarse particles
Prior art date
Application number
PCT/JP2016/003031
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 久保田
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016542778A priority Critical patent/JPWO2017006531A1/en
Publication of WO2017006531A1 publication Critical patent/WO2017006531A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Definitions

  • the present invention relates to a bonding composition containing inorganic particles as a main component and an organic component as a minor component and a bonding method using the bonding composition, and more specifically, has a dense bonding layer and high bonding strength.
  • the present invention relates to a bonding composition capable of obtaining a bonded body at a relatively low bonding temperature and a bonding method using the same.
  • Solder is generally used as a bonding material for bonding various electronic components.
  • toxic lead is contained in high-temperature solder used at high operating temperatures, and there is a strong demand for lead-free bonding materials from the viewpoint of environmental protection and RoHS regulations.
  • the metal fine particles have low-temperature sintering properties
  • the fired layer basically has a melting point equivalent to that of bulk silver, so it is expected as a lead-free bonding material that can be used in a high-temperature environment. ing.
  • a bonding composition using low-temperature sinterability of metal fine particles, particularly silver fine particles, and a bonding method using the bonding composition have been attracting attention, and research and development have been actively promoted.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2011-21255
  • a composite nanometal paste characterized in that composite metal nanoparticles, metal nanofiller particles and metal filler particles are densely sintered when an organic coating layer is diffused by firing to form a metal layer. Yes.
  • a dense fired film can be obtained by filling the voids formed by metal particles having a large particle size with metal particles having a small particle size.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2011-71301
  • a step of placing at least one spacer on the member a step of applying the paste on the first member so as to cover the spacer; and a step of obtaining a laminate by placing the second member on the paste
  • the organic medium evaporates and the metal nanoparticles sinter while the laminate is heated at a temperature at which the dispersion medium evaporates but the organic substances do not evaporate, and the spacer is pressurized with a pressure that is plastically deformed.
  • a joining method using metal nanoparticles characterized by comprising a step of further heating at a temperature.
  • the thickness of the paste mainly composed of metal nanoparticles can be increased as much as necessary, and the metal nanoparticles are deformed in order to plastically deform the spacer. It is said that the paste mainly composed of can be pressed with a large pressing force, and densification can be enhanced.
  • metal particles having a large difference in particle size were used by filling the voids formed by the metal particles having a large particle size with metal particles having a small particle size.
  • a dense fired film can be obtained as compared with the case, relatively many defects remain in the fired film, and in order to obtain high bonding strength, it is indispensable to apply pressure at the time of bonding.
  • an object of the present invention is to provide a bonding composition capable of obtaining a bonded body having a dense bonding layer and high bonding strength at a relatively low bonding temperature and no pressure, and the use thereof. It is to provide a bonding method.
  • the present inventors have found that the use of inorganic particles having a large linear expansion coefficient, etc.
  • the inventors have found that the present invention is extremely effective in achieving the above-described object, and have reached the present invention.
  • the present invention is a bonding composition comprising inorganic particles and an organic component, and the inorganic particles irreversibly exceed the linear expansion coefficient of the inorganic substance constituting the inorganic particles as the temperature rises.
  • a bonding composition is provided that expands.
  • the inorganic particles include inorganic fine particles (micron particles) and inorganic coarse particles (nanoparticles), and the inorganic coarse particles become more inorganic as the temperature rises. It is preferable to irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the particles.
  • the particle size and combination of inorganic particles, inorganic fine particles and inorganic coarse particles are not particularly limited as long as the effects of the present invention are not impaired, and inorganic fine particles having low temperature sinterability and inorganic coarse particles having a large linear expansion coefficient are used. What is necessary is just to combine. Two or more kinds of inorganic fine particles and inorganic coarse particles may be combined.
  • the inorganic particles or inorganic coarse particles irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles, thereby reducing the distance between the inorganic particles that are the main components of the bonding composition.
  • densification proceeds very efficiently.
  • a dense bonding layer can be obtained by the sintering progressing due to the low-temperature sinterability of the inorganic fine particles.
  • a bonded body having high bonding strength can be obtained due to the dense bonding layer.
  • the term “irreversible expansion” is a concept that includes not only completely irreversible expansion but also expansion that slightly contracts as the temperature decreases.
  • the inorganic fine particles preferably have an average particle diameter of 1 nm to 1 ⁇ m.
  • the average particle size of the inorganic fine particles By setting the average particle size of the inorganic fine particles to 1 nm or more, a decrease in the density of the bonding layer due to an increase in the volume ratio of the organic matter can be suppressed, and by setting the average particle size of the inorganic fine particles to 1 ⁇ m or less, The melting point of the fine particles is sufficiently lowered, and firing at a low temperature can be achieved.
  • the expansion occurs due to internal foaming of the inorganic coarse particles.
  • Inorganic coarse particles that irreversibly expand due to oxidation or density change inside the particles can also be used, but by using the inorganic coarse particles that foam internally, irreversible large heat is more reliably applied to the inorganic coarse particles. Swelling can be developed.
  • the inorganic coarse particles have an average particle size of 1 ⁇ m to 50 ⁇ m.
  • the average particle size of the inorganic coarse particles it is possible to ensure good dispersibility of the inorganic coarse particles and to sufficiently increase the average particle size difference from the inorganic fine particles. Can be densified. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic coarse particle shall be 50 micrometers or less.
  • the inorganic coarse particles contain an organic substance. Due to the organic matter contained inside the inorganic coarse particles, the inorganic matter decomposes due to the temperature rise during the joining process and gas is generated (internal foaming), causing the irreversible large thermal expansion of the inorganic particles. be able to.
  • the inorganic coarse particles are preferably reduced powder.
  • the reduced powder can leave organic substances or the like inside depending on the manufacturing process conditions.
  • the crystallite diameter is set to several tens of nanometers in order to impart low temperature sinterability, it is necessary to synthesize under unstable process conditions, and the remaining organic matter becomes remarkable. That is, it is assumed that by heating the reduced powder in which organic matter remains inside, it can be irreversibly expanded beyond the linear expansion coefficient of the inorganic substance constituting the reduced powder.
  • the constituent elements of the inorganic particles are not particularly limited as long as the effects of the present invention are not impaired.
  • gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements ruthenium, Rhodium, palladium, osmium, iridium and platinum.
  • the constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more.
  • the methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used. However, it is preferable that the inorganic particles are silver particles. In addition, by using inorganic particles as silver particles, a good bonded body can be obtained under low-temperature and no-pressure bonding conditions.
  • the inorganic coarse particles exceed the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles and irreversibly expand.
  • the bonding temperature using the bonding composition of the present invention is a relatively low temperature of 150 to 250 ° C., and the inorganic coarse particles exhibit a large expansion within the temperature range, whereby a good bonded body can be obtained. it can.
  • the bonding temperature in the process it may be 250 ° C. or higher.
  • the present invention is a bonding method using the bonding composition of the present invention, Setting the joining temperature to a temperature equal to or higher than the temperature at which the internal foaming occurs, and lower than the temperature at which openings are formed in the inorganic coarse particles by the internal foaming; A bonding method characterized by the above is also provided.
  • the bonding temperature By setting the bonding temperature to a temperature that is higher than the temperature at which internal foaming occurs in the inorganic coarse particles contained in the bonding composition and less than the temperature at which openings are formed in the inorganic coarse particles by the internal foaming, a good bonded body can be efficiently produced Can get to. More specifically, by setting the bonding temperature to be equal to or higher than the temperature at which internal foaming occurs in the inorganic coarse particles, the distance between the inorganic particles that are the main components of the bonding composition is reduced, and the bonding layer is highly densified. Can be advanced.
  • the above-described internal foaming effect can be fully utilized, and defects (openings) are formed on the surface of the inorganic coarse particles. It is possible to suppress the densification of the bonding layer and the decrease in strength of the bonding layer.
  • substantially the conditions may be set in which the gas generated inside the particles by foaming is not released into the bonding layer by penetration.
  • the gas generated inside the particles by foaming is not released into the bonding layer by penetration.
  • inorganic coarse particles penetrate at 220 ° C, but when mixed with inorganic fine particles, the penetration temperature shifts to the high temperature side due to the effect of inorganic fine particles fused to the surface of the inorganic coarse particles. Therefore, the temperature on the high temperature side may be sufficient.
  • the temperature on the high temperature side may be used as long as it does not affect the peeling progress of the bonding layer even if it penetrates.
  • the expansion behavior is time dependent and should be taken into account. In the examples described later, the bonding strength decreased after a short time and a long time. However, since the former did not progress to the proper range, the latter was excessively foamed and affected by penetration. This is thought to be due to the accident.
  • the bonding method of the present invention it is preferable to perform bonding under no pressure condition.
  • the material to be bonded may be damaged by the pressure.
  • the rigidity of the material to be joined there are cases where it is difficult to apply a sufficiently uniform pressure.
  • the bonding composition of the present invention provides sufficient bonding strength even under no pressure due to the large thermal expansion of the inorganic coarse particles, from the viewpoint of preventing damage to the materials to be bonded, under no pressure conditions. It is preferable to perform bonding.
  • the bonding method of the present invention it is preferable to perform bonding in an atmosphere containing oxygen.
  • organic matter is present inside the inorganic coarse particles contained in the bonding composition, internal foaming occurs due to an oxidation reaction between the organic matter and oxygen in the atmosphere, exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles.
  • the inorganic coarse particles can be irreversibly expanded.
  • a bonding composition capable of obtaining a bonded body having a dense bonding layer and high bonding strength at a relatively low bonding temperature and no pressure, and a bonding method using the same. it can.
  • the bonding composition of the present embodiment includes inorganic particles and an organic component, and the inorganic particles include inorganic fine particles and inorganic coarse particles. These components will be described below.
  • the average particle size of the inorganic fine particles in the bonding composition of the present embodiment is not particularly limited as long as it does not impair the effects of the present invention. It preferably has an average particle diameter, and may be, for example, 1 nm to 1 ⁇ m. Further, it is preferably 2 nm to 200 nm. If the average particle size of the inorganic fine particles is 1 nm or more, the inorganic fine particles have good low-temperature sinterability, and the production of the inorganic fine particles is practical and not expensive. Moreover, if it is 200 nm or less, the dispersibility of an inorganic fine particle does not change easily over time, and it is preferable.
  • the particle size of the inorganic fine particles in the bonding composition of the present embodiment may not be constant.
  • the bonding composition includes a dispersing agent, which will be described later, as an optional component, it may contain a metal particle component having an average particle size of more than 200 nm.
  • a metal particle component having an average particle diameter of more than 200 nm may be included as long as the component is not significantly impaired.
  • the particle size of the inorganic fine particles in the bonding composition of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method.
  • the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate.
  • RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2 ⁇ in the range of 30 to 80 ° by the diffraction method.
  • the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center.
  • the crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
  • D K ⁇ / Bcos ⁇
  • K Scherrer constant (0.9)
  • wavelength of X-ray
  • B half width of diffraction line
  • Bragg angle.
  • constituent elements of the inorganic fine particles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum). At least one of them.
  • the constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver.
  • These elements may be used singly or in combination of two or more.
  • the methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
  • the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but it is made of silver and other metals in consideration of migration problems. By using the bonding composition, migration can be made difficult to occur.
  • the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
  • an organic protective layer is preferably formed on at least a part of the surface of the inorganic fine particles, and at least one of the surfaces of the inorganic fine particles. It is more preferable that a short chain amine is attached to the part, and it is more preferable that an amine having 4 to 7 carbon atoms is attached to at least a part of the surface of the inorganic fine particles.
  • a trace amount of organic matter contained as an impurity from the beginning a trace amount of organic matter mixed in the manufacturing process described later, a residual reducing agent that could not be removed in the cleaning process, a residual dispersant, etc.
  • a trace amount of organic matter may be attached.
  • an organic protective layer is required on at least a part of the surface of the inorganic particles.
  • the amine can be suitably used as an organic protective layer because the functional group is adsorbed to the surface of the inorganic particles with an appropriate strength.
  • the amine having 4 to 7 carbon atoms may be linear or branched as long as it has 4 to 7 carbon atoms, and may have a side chain.
  • alkylamines such as butylamine, pentylamine, hexylamine and hexylamine (which may have a linear alkylamine or a side chain), cycloalkylamines such as cyclopentylamine and cyclohexylamine, and allylamines such as aniline
  • secondary amines such as primary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline.
  • the short chain amine may be a compound containing a functional group other than an amine, such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal temperature and pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • the amine is not particularly limited as long as the effects of the present invention can be obtained.
  • An amine other than the short chain amine for example, a long chain amine such as alkoxyamine or dodecylamine is used for improving the dispersibility. May be.
  • alkylamines such as oleylamine, butylamine, pentylamine, hexylamine, hexylamine (linear alkylamine, which may have a side chain), N- (3-methoxypropyl) propane-1,3 -Primary amines such as diamines, 2-methoxyethylamines, 3-methoxypropylamines, 3-ethoxypropylamines and other alkoxyamines, cyclopentylamines, cyclohexylamines and other cycloalkylamines, anilines and other primary amines, dipropylamines, Secondary amines such as dibutylamine, piperidine and hexamethyleneimine, tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline, octylamine, etc. No It can be exemplified
  • the inorganic fine particles in the bonding composition of the present embodiment may contain a carboxylic acid in addition to the short chain amine as long as the effects of the present invention are not impaired.
  • the carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties.
  • the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic fine particles (that is, when at least a part of the surface of the inorganic fine particles is coated), the solvent and the inorganic fine particles can sufficiently have an affinity. And aggregation of the inorganic fine particles can be prevented (dispersibility is improved).
  • carboxylic acid compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid.
  • a part of carboxyl groups of the carboxylic acid may form a salt with a metal ion.
  • 2 or more types of metal ions may be contained.
  • the carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group.
  • the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups.
  • the said carboxylic acid may be used independently, respectively and may use 2 or more types together.
  • the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
  • amines and carboxylic acids form amides. Since the amide group is also appropriately adsorbed on the surface of the inorganic fine particle, the amide group may be attached to the surface of the inorganic fine particle.
  • the content of the organic component in the colloid is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting inorganic fine particle dispersion tends to be improved, and if it is 50% by mass or less, the bonding composition containing inorganic fine particles is heated. There exists a tendency for the electroconductivity of the sintered body obtained by this to be good.
  • a more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
  • (1-3) Inorganic coarse particles The inorganic coarse particles in the bonding composition of the present embodiment expand irreversibly with the temperature rise exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. It is. As described above, the inorganic coarse particles irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles, thereby reducing the distance between the inorganic particles that are the main components of the bonding composition. Thus, densification proceeds very efficiently.
  • the large expansion of the inorganic coarse particles is preferably caused by internal foaming of the inorganic coarse particles.
  • inorganic coarse particles that irreversibly expand due to oxidation, density changes inside the particles, etc.
  • the use of inorganic foam particles that expand internally ensures more reliable and irreversible heat to the inorganic coarse particles. Swelling can be developed.
  • the linear expansion coefficient of the inorganic coarse particles in the bonding composition of the present embodiment can be determined by, for example, TMA measurement.
  • the linear expansion coefficient can be calculated by raising the temperature of the silver coarse particles to a predetermined temperature in the air or in an inert gas atmosphere and measuring the expansion / contraction behavior.
  • the linear expansion coefficient obtained by the measurement exceeds the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles.
  • the thermal expansion of the inorganic coarse particles is affected by plastic deformation and oxidation due to internal foaming, and becomes irreversible thermal expansion (so-called thermal expansion due to the effect of pure temperature increase is accompanied by the temperature decrease). Reversibly change).
  • the inorganic coarse particles preferably expand irreversibly in the temperature range from 150 ° C. to 250 ° C., exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles.
  • the bonding temperature using the bonding composition of the present invention is a relatively low temperature of 150 to 250 ° C., and the inorganic coarse particles exhibit a large expansion within the temperature range, whereby a good bonded body can be obtained. it can.
  • the method for measuring the particle size of inorganic coarse particles will be described.
  • D50 measured on a volume basis by the laser diffraction scattering method may be used as the average particle size.
  • the arithmetic average value of the particle diameters of about 50 to 100 particles from an electron micrograph taken using a scanning electron microscope may be used as the particle diameter.
  • the average particle diameter (P L ) of the inorganic particles can be measured by a dynamic light scattering method or a small angle X-ray scattering method.
  • a dynamic light scattering method or a small angle X-ray scattering method.
  • P L it can be measured from a photograph taken using a scanning electron microscope or a transmission electron microscope.
  • the average particle diameter can be expressed by a volume-based median diameter (D50) measured by a dynamic light scattering particle size distribution measuring device LB-550 manufactured by Horiba, Ltd. Specifically, a few samples of the inorganic particle dispersion are dropped into 10 ml of the dispersion medium, and the sample for measurement is prepared by vibrating by hand or by ultrasonic dispersion. Next, 3 ml of the measurement sample is put into the cell of LB-550 and measured under the following conditions.
  • D50 volume-based median diameter
  • the particle diameter of the inorganic coarse particles is not particularly limited as long as it is larger than the particle diameter of the inorganic fine particles, but the average particle diameter is preferably 1 to 50 ⁇ m.
  • the average particle size of the inorganic coarse particles is 1 ⁇ m or more, it is possible to ensure good dispersibility of the inorganic coarse particles and to sufficiently increase the average particle size difference from the inorganic fine particles. Can be densified. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic coarse particle shall be 50 micrometers or less.
  • a more preferable particle size of the inorganic coarse particles is 1 to 5 ⁇ m.
  • the inorganic coarse particles have a small crystallite size with respect to the particle size, and the crystallite size becomes large even when fired at a low temperature such as 250 to 300 ° C. Therefore, it is thought that inorganic coarse particles expand
  • the inorganic coarse particles of reduced powder have a hydrophobic surface (because they are covered with a hydrophobic organic component), and thus have good affinity with amine-coated nanoparticles. It is considered that it exhibits good dispersibility and improves bonding characteristics.
  • the mixing ratio of the inorganic coarse particles and the inorganic fine particles may be 30/70 to 70/30 (weight), and preferably 50/50 to 70/30 (weight). If the inorganic coarse particles are increased, the bonding interface and the contact surface between the particles are decreased, and there is a possibility that the bonding strength is lowered when bonding is performed without applying pressure. On the other hand, if the amount of inorganic fine particles increases too much, the interface and the contact surface between the particles increase, but since the specific surface area of the particles increases, the volatilized organic component tends to increase, and the volume shrinkage due to sintering also increases. There is a risk that voids frequently occur in the layer.
  • the inorganic coarse particles in the bonding composition of the present embodiment contain an organic substance inside the inorganic coarse particles. Due to the organic matter contained inside the inorganic coarse particles, the inorganic matter decomposes due to the temperature rise during the joining process and gas is generated (internal foaming), causing the inorganic particles to exhibit large irreversible thermal expansion. be able to.
  • the inorganic coarse particles in the bonding composition of the present embodiment are reduced powder.
  • the reduced powder can leave organic substances or the like inside depending on the manufacturing process conditions.
  • the crystallite diameter is set to several tens of nanometers in order to impart low temperature sinterability, it is necessary to synthesize under unstable process conditions, and the remaining organic matter becomes remarkable. That is, it is assumed that by heating the reduced powder in which organic matter remains inside, it can be irreversibly expanded beyond the linear expansion coefficient of the inorganic substance constituting the reduced powder.
  • the reduced powder for example, silver coarse particles manufactured by Mitsui Metal Mining Co., Ltd. can be used as the reduced powder.
  • Examples of the constituent elements of the inorganic coarse particles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum). At least one of them can be mentioned.
  • the constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
  • the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver and other metals are considered in consideration of migration problems.
  • the bonding composition comprising: migration can be made difficult to occur.
  • the “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
  • the combination of the inorganic coarse particles and the inorganic fine particles in the bonding composition of the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, and the inorganic fine particles having low temperature sinterability and a large linear expansion coefficient are used. What is necessary is just to combine with the inorganic coarse particle which has. Two or more kinds of inorganic fine particles and inorganic coarse particles may be combined.
  • the bonding composition of the present embodiment has an appropriate viscosity, adhesiveness, and drying property in accordance with the intended use within a range not impairing the effects of the present invention.
  • a dispersion medium for example, an oligomer component that serves as a binder, a resin component, and an organic solvent (a part of the solid content may be dissolved or dispersed. )
  • Optional components such as surfactants, thickeners or surface tension modifiers may be added. Such optional components are not particularly limited.
  • dispersion medium of the optional components various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
  • hydrocarbon examples include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons, and the like, and each may be used alone or in combination of two or more.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • cyclic hydrocarbons examples include toluene and xylene.
  • Examples of the alicyclic hydrocarbons include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, cymene, Examples include dihydrocymene, mossene, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, cyclohexane and the like.
  • Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin.
  • Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
  • unsaturated hydrocarbons having a hydroxyl group are preferred. Hydroxyl groups are easily coordinated on the surface of the inorganic particles, and aggregation of the inorganic particles can be suppressed.
  • the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid.
  • it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
  • the unsaturated hydrocarbon is preferably ricinoleic acid.
  • Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • aliphatic alcohol examples include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C 6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • cyclic alcohols examples include cresol and eugenol.
  • alicyclic alcohol for example, cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
  • cycloalkanol such as cyclohexanol, terpineol (including ⁇ , ⁇ , ⁇ isomers, or any mixture thereof)
  • terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
  • the content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
  • polymer dispersant a commercially available polymer dispersant can be used.
  • examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse.
  • Dispersic (DISPERBYK) 142 Dispersic 184, Dispersic 190, Dispersic 2155 EFKA-46, EFKA-47, EFKA-48, EFKA-49 (manufactured by EFKA Chemical); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 (manufactured by EFKA Chemical); Ajisper PB711, Ajisper PA111, Ajisper PB811, Ajisper PW911 (manufactured by Ajinomoto Co.); Florene DOPA-15B, Florene DOPA-22, Florene DOPA- 17, Floren TG-730W, Floren G-700, Floren TG-720W (manufactured by Kyoeisha Chemical Industry Co., Ltd.), and the
  • Solsperse 11200 From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
  • the content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
  • the resin component examples include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
  • organic solvent other than those mentioned as the above dispersion medium examples include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
  • the thickener examples include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
  • clay minerals such as clay, bentonite or hectorite
  • emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose.
  • Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysacc
  • a surfactant different from the above organic components may be added.
  • the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying.
  • the surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
  • heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
  • the bonding composition of the present embodiment includes inorganic colloid particles in which inorganic fine particles are colloidal as a main component.
  • an organic component is formed on a part of the surface of the inorganic particles.
  • inorganic colloidal particles having inorganic particles as a core and the surface thereof being coated with an organic component are preferable.
  • a person skilled in the art can appropriately prepare the inorganic colloidal particles having the above-described form using a well-known technique in this field.
  • the bonding composition of the present embodiment is a fluid mainly composed of colloidal particles composed of inorganic fine particles and organic components, and inorganic coarse particles added thereto, and the organic particles constituting the inorganic fine particles and inorganic colloidal particles.
  • an organic component that does not constitute the inorganic colloidal particles, a dispersion medium, a residual reducing agent, or the like may be included.
  • this joining step it is possible to apply pressure in the direction in which the first member to be joined and the second member to be joined are opposed to each other, but in the joining method of this embodiment, no external pressure is applied. Is preferred. When external pressure is applied at the time of bonding, particularly when an electronic component or the like is bonded, the material to be bonded may be damaged by the pressure. Further, depending on the rigidity of the material to be joined, there are cases where it is difficult to apply a sufficiently uniform pressure.
  • the bonding composition of the present embodiment provides sufficient bonding strength even under no pressure due to the large thermal expansion of the inorganic coarse particles, from the viewpoint of preventing damage to the materials to be bonded, no pressure condition It is preferable to perform the joining. In addition, when firing, the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
  • the bonding method of this embodiment it is preferable to perform bonding in an atmosphere containing oxygen.
  • organic matter is present inside the inorganic coarse particles contained in the bonding composition, internal foaming occurs due to an oxidation reaction between the organic matter and oxygen in the atmosphere, exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles.
  • the inorganic coarse particles can be irreversibly expanded.
  • the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with a high joining strength without applying external pressure at a relatively low joining temperature (a joined body can be obtained).
  • dispersion medium of the bonding composition of the present invention various media can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
  • aliphatic hydrocarbon examples include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
  • Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced
  • aliphatic alcohol examples include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
  • “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape.
  • the shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer.
  • the bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
  • the first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
  • Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
  • Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable.
  • the metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
  • the member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible.
  • the thickness of the substrate can also be selected as appropriate.
  • a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
  • various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet , Dispenser method, pin transfer method, stamping method, brush application method, casting method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method, etc. be able to.
  • the coated film after coating as described above can be baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and a bonded body can be obtained.
  • a bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
  • the binder component when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members.
  • the main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
  • the method for performing the baking is not particularly limited.
  • the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 150 to 250 ° C. Can be joined by firing.
  • the lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention.
  • the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
  • the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin. As described above, sufficient bonding strength can be obtained by fusing the fused metal particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
  • the bonding composition of the present embodiment it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of about 150 to 250 ° C., for example. Members can be joined together.
  • the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
  • the surface of the member to be bonded may be subjected to a surface treatment.
  • the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
  • Example 1 8.0 g of 3-ethoxypropylamine (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.40 g of dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and fully mixed with a magnetic stirrer. Stir. Here, 6.0 g of silver oxalate was added with stirring to increase the viscosity. The resulting viscous material was placed in a constant temperature bath at 120 ° C. and allowed to react for about 15 minutes. After stirring by adding 10 ml of methanol, silver nanoparticles were precipitated and separated by centrifugation, and the supernatant was discarded. This operation was repeated once more to obtain silver nanoparticles (inorganic fine particles).
  • the bonding composition was applied to a silver-plated copper plate (20 mm square) in a 5 mm square using a metal mask, and a gold-plated Si chip (bottom area 5 mm ⁇ 5 mm) was laminated thereon. did.
  • the obtained laminate was placed in a reflow furnace (manufactured by Thin Apex) and subjected to a firing treatment in the atmosphere. During the firing treatment, no pressure was applied and no pressure was applied.
  • a bonding strength test was performed at room temperature using a bond tester (manufactured by Reska). Table 2 shows the bonding temperature, the bonding time, and the obtained bonding strength.
  • Example 2 As silver coarse particles, 6 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., SPN20J, D50: 2.5 ⁇ m) produced by the reduction method and coarse silver particles (Mitsui Metal Mining Co., Ltd.) produced by the reduction method ), MD30A, D50: 3.8 ⁇ m) 2 g, and 2 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., MD40A, D50: 8.1 ⁇ m) produced by the reduction method. 1 was obtained in the same manner as in Example 1. Further, the silver coarse particles and the practical bonding composition 2 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
  • Example 3 The joining composition was carried out in the same manner as in Example 1 except that 10 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., MD30A, D50: 3.8 ⁇ m) produced by the reduction method was used as the coarse silver particles. 3 was obtained. Further, the silver coarse particles and the practical bonding composition 3 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
  • Example 4 The bonding composition was carried out in the same manner as in Example 1 except that 10 g of silver coarse particles (Mitsui Metal Mining Co., Ltd., SL03, D50: 4.2 ⁇ m) produced by the reduction method was used as the silver coarse particles. 4 was obtained. Further, the silver coarse particles and the practical bonding composition 4 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
  • Comparative example 2 As the silver coarse particles, 6 g of silver coarse particles (Fukuda Metal Foil Powder Co., Ltd., Ag-HWQ5, D50: 5.0 ⁇ m) manufactured by the atomizing method and silver coarse particles (Fukuda manufactured by the atomizing method). Comparative bonding composition 2 was obtained in the same manner as in Example 1 except that 4 g of Metal Foil Powder Industry Co., Ltd., Ag-HWQ10, D50: 10.0 ⁇ m) was used. Further, the silver coarse particles and the comparative bonding composition 2 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
  • the coarse silver particles produced by the reduction method used in the practical bonding compositions 1 to 4 as examples of the present invention have a linear expansion coefficient larger than that of silver. .
  • Mitsui Mining & Mining Co., Ltd., SPN20J is 2096 at 230 ° C
  • Mitsui Mining & Mining Co., Ltd. MD30A is 300 at 220 ° C
  • Mitsui Mining & Mining Co., Ltd. MD40A is 1600 at 200 ° C, which is extremely high.
  • the value is shown.
  • the linear expansion coefficient of the coarse silver particles produced by the atomization method is about 20, which is a value equivalent to the linear expansion coefficient of silver.
  • FIG. 2 shows a scanning electron micrograph of a cross-section of a green coarse particle compact that has not been fired and is fired in the air.
  • the coarse silver particles produced by the reduction method (Mitsui Mining & Smelting Co., Ltd., SPN20J) have no bubbles inside when unfired, but internal bubbles are generated by firing at 220 ° C. or higher.
  • the silver coarse particles (Fukuda Metal Foil Powder Co., Ltd., Ag-HWQ5) produced by the atomizing method, no internal bubbles are generated even when firing at 250 ° C.
  • FIG. 3 shows a scanning electron micrograph of the cross section of the coarse silver particle compact showing the influence of the firing atmosphere on the internal foaming.
  • the coarse silver particles produced by the reduction method (Mitsui Mining & Smelting Co., Ltd., SPN20J) generate internal bubbles by firing at 220 ° C. or higher in the atmosphere, but the firing atmosphere is nitrogen. In this case, no internal bubbles are generated even when the temperature is raised to 250 ° C.
  • the results show that in the coarse silver particles (Mitsui Metal Mining Co., Ltd., SPN20J) produced by the reduction method, internal foaming occurs due to oxidative decomposition of organic substances present inside the particles.
  • the laminate obtained by using the practical bonding compositions 1 to 4 has a high bonding strength of 24 to 43 MPa even under non-pressurized and low-temperature bonding conditions. Moreover, the void ratio of the bonding layer is clearly reduced as compared with the bonding layers obtained using the comparative bonding compositions 5 and 6.
  • the void ratio of the bonding layer was 20% and the bonding strength was relatively low at 25 MPa. This is probably because the opening was formed in the coarse particles.
  • the strength of the laminate obtained by using the bonding composition 1 containing a large amount of Mitsui Metal Mining Co., Ltd. and SPN20J is high (43 MPa).
  • SPN20J has an extremely high coefficient of linear expansion at 230 ° C. of 2096, so it is considered that the effects of the present invention were clearly expressed.

Abstract

Provided are a joining composition and a joining method using the joining composition in which a joining body having a dense joining layer and high joining strength can be obtained at a relatively low joining temperature without applied pressure. A joining composition containing inorganic particles and an organic component, the joining composition characterized in that the inorganic particles include inorganic microparticles and inorganic coarse particles, and the inorganic coarse particles irreversibly expand beyond the coefficient of linear expansion of an inorganic substance constituting the inorganic coarse particles in accompaniment with an increase in temperature.

Description

接合用組成物及び接合方法Bonding composition and bonding method
 本発明は、無機粒子を主成分、有機成分を副成分とする接合用組成物及び当該接合用組成物を用いた接合方法に関し、より具体的には、緻密な接合層と高い接合強度を有する接合体を、比較的低い接合温度で得ることができる接合用組成物及びそれを用いた接合方法に関する。 The present invention relates to a bonding composition containing inorganic particles as a main component and an organic component as a minor component and a bonding method using the bonding composition, and more specifically, has a dense bonding layer and high bonding strength. The present invention relates to a bonding composition capable of obtaining a bonded body at a relatively low bonding temperature and a bonding method using the same.
 各種電子部品を接合するための接合材には、はんだを用いることが一般的である。ここで、高い使用温度において用いられる高温はんだには有毒性がある鉛が含まれており、環境保全の観点やRoHS規制により、接合材の鉛フリー化が切望されている。 は ん だ Solder is generally used as a bonding material for bonding various electronic components. Here, toxic lead is contained in high-temperature solder used at high operating temperatures, and there is a strong demand for lead-free bonding materials from the viewpoint of environmental protection and RoHS regulations.
 しかしながら、高温はんだには適当な代替材料が存在しないため、依然として鉛を含有する高温はんだが使用されているのが現状である。また、はんだの融点は低いことから、動作温度の高い炭化ケイ素や窒化ガリウム等のパワーデバイスへの適用は困難であった。 However, since there is no suitable alternative material for high-temperature solder, the current situation is that high-temperature solder containing lead is still used. In addition, since the melting point of solder is low, it has been difficult to apply it to power devices such as silicon carbide and gallium nitride having high operating temperatures.
 ここで、金属微粒子は低温焼結性を有しており、焼成層は基本的にバルク銀と同等の融点を有することから、高温環境下で使用することができる鉛フリーの接合材として期待されている。近年では、金属微粒子、特に銀微粒子の低温焼結性を利用した接合用組成物や当該接合用組成物を用いた接合方法が注目され、盛んに研究開発が進められている。 Here, the metal fine particles have low-temperature sintering properties, and the fired layer basically has a melting point equivalent to that of bulk silver, so it is expected as a lead-free bonding material that can be used in a high-temperature environment. ing. In recent years, a bonding composition using low-temperature sinterability of metal fine particles, particularly silver fine particles, and a bonding method using the bonding composition have been attracting attention, and research and development have been actively promoted.
 例えば、特許文献1(特開2011-21255号公報)においては、平均粒径X(nm)の金属核の周囲に有機被覆層を形成した複合金属ナノ粒子と、平均粒径d(nm)の金属ナノフィラー粒子と、平均粒径D(nm)の金属フィラー粒子を金属成分として含有し、X<d<Dの第1関係及びX<d<100(nm)の第2関係を有し、焼成により有機被覆層が気散して金属層が形成されるときに複合金属ナノ粒子と金属ナノフィラー粒子と金属フィラー粒子が緻密に焼結することを特徴とする複合ナノ金属ペーストが開示されている。当該複合ナノ金属ペーストにおいては、粒径が大きな金属粒子同士が形成する空隙に粒径が小さな金属粒子が充填されることで、緻密な焼成膜が得られるとしている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2011-21255), composite metal nanoparticles in which an organic coating layer is formed around a metal core having an average particle diameter X (nm), and an average particle diameter d (nm) Containing metal nanofiller particles and metal filler particles having an average particle diameter D (nm) as a metal component, having a first relationship of X <d <D and a second relationship of X <d <100 (nm), Disclosed is a composite nanometal paste characterized in that composite metal nanoparticles, metal nanofiller particles and metal filler particles are densely sintered when an organic coating layer is diffused by firing to form a metal layer. Yes. In the composite nanometal paste, a dense fired film can be obtained by filling the voids formed by metal particles having a large particle size with metal particles having a small particle size.
 更に、特許文献2(特開2011-71301号公報)においては、有機物で被覆されている金属ナノ粒子を分散媒に分散させたペーストを用いて複数の部材を接合する接合方法において、 第1の部材に、少なくとも1本のスペーサを載せる工程と、このスペーサに被せるようにして、第1の部材上に前記ペーストを塗布する工程と、このペーストに第2の部材を載せて積層体を得る工程と、分散媒が蒸発するが有機物は蒸発しない温度で、積層体を加熱する工程と、スペーサが塑性変形する大きさの加圧力で加圧しながら、有機物が蒸発し且つ金属ナノ粒子が焼結する温度で、更に加熱する工程と、からなることを特徴とする金属ナノ粒子を用いた接合方法、が開示されている。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-71301), in a joining method for joining a plurality of members using a paste in which metal nanoparticles coated with an organic substance are dispersed in a dispersion medium, A step of placing at least one spacer on the member; a step of applying the paste on the first member so as to cover the spacer; and a step of obtaining a laminate by placing the second member on the paste The organic medium evaporates and the metal nanoparticles sinter while the laminate is heated at a temperature at which the dispersion medium evaporates but the organic substances do not evaporate, and the spacer is pressurized with a pressure that is plastically deformed. There is disclosed a joining method using metal nanoparticles, characterized by comprising a step of further heating at a temperature.
 上記特許文献2に記載の接合方法においては、スペーサを採用したため、金属ナノ粒子を主体とするペーストの膜厚を必要なだけ厚くすることができることに加え、スペーサを塑性変形させるため、金属ナノ粒子を主体とするペーストを、大きな加圧力で加圧することができ、緻密化を高めることができる、としている。 In the joining method described in Patent Document 2, since a spacer is employed, the thickness of the paste mainly composed of metal nanoparticles can be increased as much as necessary, and the metal nanoparticles are deformed in order to plastically deform the spacer. It is said that the paste mainly composed of can be pressed with a large pressing force, and densification can be enhanced.
特開2011-21255号公報JP 2011-21255 A 特開2011-71301号公報JP 2011-71301 A
 しかしながら、上記特許文献1の複合ナノ金属ペーストにおいては、粒径が大きな金属粒子同士が形成する空隙に粒径が小さな金属粒子が充填されることで、粒径に大差がない金属粒子を用いた場合と比較して緻密な焼成膜が得られるものの、焼成膜には比較的多くの欠陥が残存し、高い接合強度を得るためには接合時における圧力の印加が不可欠である。 However, in the composite nanometal paste of Patent Document 1 described above, metal particles having a large difference in particle size were used by filling the voids formed by the metal particles having a large particle size with metal particles having a small particle size. Although a dense fired film can be obtained as compared with the case, relatively many defects remain in the fired film, and in order to obtain high bonding strength, it is indispensable to apply pressure at the time of bonding.
 また、上記特許文献2の接合方法においても、焼成膜の緻密化にはスペーサを塑性変形させる程の大きな加圧力で被接合材を加圧することが必要であり、電子部品等の接合に用いることは困難である。 Also, in the joining method of Patent Document 2 mentioned above, it is necessary to press the material to be joined with such a large pressure that the plastic deformation of the spacer is required for densification of the fired film, and it is used for joining electronic parts and the like. It is difficult.
 以上のような状況に鑑み、本発明の目的は、緻密な接合層と高い接合強度を有する接合体を、比較的低い接合温度かつ無加圧で得ることができる接合用組成物及びそれを用いた接合方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a bonding composition capable of obtaining a bonded body having a dense bonding layer and high bonding strength at a relatively low bonding temperature and no pressure, and the use thereof. It is to provide a bonding method.
 本発明者は、上記目的を達成すべく接合用組成物の主成分である無機粒子の熱膨張特性等に着目して鋭意研究を重ねた結果、線膨張係数が大きな無機粒子を用いること等が、上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。 As a result of intensive studies focusing on the thermal expansion characteristics of the inorganic particles that are the main components of the bonding composition in order to achieve the above object, the present inventors have found that the use of inorganic particles having a large linear expansion coefficient, etc. The inventors have found that the present invention is extremely effective in achieving the above-described object, and have reached the present invention.
 即ち、本発明は、無機粒子及び有機成分を含む接合用組成物であって、前記無機粒子は、温度上昇に伴って前記無機粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、を特徴とする接合用組成物を提供する。
 なかでも、当該本発明の接合用組成物においては、前記無機粒子が無機微粒子(ミクロン粒子)と無機粗粒子(ナノ粒子)とを含み、前記無機粗粒子が、温度上昇に伴って前記無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、が好ましい。
That is, the present invention is a bonding composition comprising inorganic particles and an organic component, and the inorganic particles irreversibly exceed the linear expansion coefficient of the inorganic substance constituting the inorganic particles as the temperature rises. A bonding composition is provided that expands.
In particular, in the bonding composition of the present invention, the inorganic particles include inorganic fine particles (micron particles) and inorganic coarse particles (nanoparticles), and the inorganic coarse particles become more inorganic as the temperature rises. It is preferable to irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the particles.
 無機粒子、無機微粒子及び無機粗粒子の粒径や組み合わせは、本発明の効果を損なわない限りにおいて特に限定されず、低温焼結性を有する無機微粒子と大きな線膨張係数を有する無機粗粒子とを組み合わせればよい。また、2種類以上の無機微粒子と無機粗粒子とを組み合わせてもよい。 The particle size and combination of inorganic particles, inorganic fine particles and inorganic coarse particles are not particularly limited as long as the effects of the present invention are not impaired, and inorganic fine particles having low temperature sinterability and inorganic coarse particles having a large linear expansion coefficient are used. What is necessary is just to combine. Two or more kinds of inorganic fine particles and inorganic coarse particles may be combined.
 無機粒子乃至は無機粗粒子が、当該無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張することで、接合用組成物の主成分である無機粒子同士の距離が小さくなり、緻密化が極めて効率的に進行する。加えて、無機微粒子の低温焼結性によって焼結が進行することで、緻密な接合層を得ることができる。また、当該緻密な接合層に起因して、高い接合強度を有する接合体を得ることができる。なお、ここでいう「不可逆的な膨張」とは、完全に不可逆的な膨張だけではなく、温度の下降に伴って微かに収縮する膨張も含む概念である。 The inorganic particles or inorganic coarse particles irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles, thereby reducing the distance between the inorganic particles that are the main components of the bonding composition. Thus, densification proceeds very efficiently. In addition, a dense bonding layer can be obtained by the sintering progressing due to the low-temperature sinterability of the inorganic fine particles. In addition, a bonded body having high bonding strength can be obtained due to the dense bonding layer. Here, the term “irreversible expansion” is a concept that includes not only completely irreversible expansion but also expansion that slightly contracts as the temperature decreases.
 本発明の接合用組成物においては、前記無機微粒子の平均粒径が1nm~1μmであること、が好ましい。無機微粒子の平均粒径を1nm以上とすることで、有機物の体積割合が増加することによる接合層の密度低下を抑制することができ、無機微粒子の平均粒径を1μm以下とすることで、無機微粒子の融点が十分に低下して、低温での焼成を達成することができる。 In the bonding composition of the present invention, the inorganic fine particles preferably have an average particle diameter of 1 nm to 1 μm. By setting the average particle size of the inorganic fine particles to 1 nm or more, a decrease in the density of the bonding layer due to an increase in the volume ratio of the organic matter can be suppressed, and by setting the average particle size of the inorganic fine particles to 1 μm or less, The melting point of the fine particles is sufficiently lowered, and firing at a low temperature can be achieved.
 また、本発明の接合用組成物においては、前記無機粗粒子の内部発泡により、前記膨張が生じること、が好ましい。酸化や粒子内部の密度変化等に起因して不可逆的に膨張する無機粗粒子を用いることもできるが、内部発泡する無機粗粒子を用いることで、より確実に無機粗粒子に不可逆的な大きな熱膨張を発現させることができる。 Moreover, in the bonding composition of the present invention, it is preferable that the expansion occurs due to internal foaming of the inorganic coarse particles. Inorganic coarse particles that irreversibly expand due to oxidation or density change inside the particles can also be used, but by using the inorganic coarse particles that foam internally, irreversible large heat is more reliably applied to the inorganic coarse particles. Swelling can be developed.
 また、本発明の接合用組成物においては、前記無機粗粒子の平均粒径が1μm~50μmであること、が好ましい。無機粗粒子の平均粒径を1μm以上とすることで、無機粗粒子の良好な分散性を確保すると共に、無機微粒子との平均粒径の差を十分大きくすることができ、所謂微粒粗粒混合による緻密化を図ることができる。また、無機粗粒子の平均粒径を50μm以下とすることで、接合層が厚くなり過ぎることを防止することができる。 In the bonding composition of the present invention, it is preferable that the inorganic coarse particles have an average particle size of 1 μm to 50 μm. By setting the average particle size of the inorganic coarse particles to 1 μm or more, it is possible to ensure good dispersibility of the inorganic coarse particles and to sufficiently increase the average particle size difference from the inorganic fine particles. Can be densified. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic coarse particle shall be 50 micrometers or less.
 また、本発明の接合用組成物においては、前記無機粗粒子の内部に有機物が含まれていること、が好ましい。無機粗粒子の内部に有機物が含まれていることにより、接合プロセス中の温度上昇により当該無機物が分解して気体が発生し(内部発泡し)、無機粒子に不可逆的な大きな熱膨張を発現させることができる。 In the bonding composition of the present invention, it is preferable that the inorganic coarse particles contain an organic substance. Due to the organic matter contained inside the inorganic coarse particles, the inorganic matter decomposes due to the temperature rise during the joining process and gas is generated (internal foaming), causing the irreversible large thermal expansion of the inorganic particles. be able to.
 また、本発明の接合用組成物においては、前記無機粗粒子が還元粉であること、が好ましい。還元粉はその製造プロセス条件により、内部に有機物等を残存させることができる。特に、低温焼結性を付与するために結晶子径を数十nmとする場合は不安定なプロセス条件で合成する必要があり、有機物等の残存が顕著となる。つまり、内部に有機物が残存した還元粉を加熱することで、還元粉を構成する無機物質の線膨張係数を超えて、不可逆的に膨張させることができると推察されるからである。 In the bonding composition of the present invention, the inorganic coarse particles are preferably reduced powder. The reduced powder can leave organic substances or the like inside depending on the manufacturing process conditions. In particular, when the crystallite diameter is set to several tens of nanometers in order to impart low temperature sinterability, it is necessary to synthesize under unstable process conditions, and the remaining organic matter becomes remarkable. That is, it is assumed that by heating the reduced powder in which organic matter remains inside, it can be irreversibly expanded beyond the linear expansion coefficient of the inorganic substance constituting the reduced powder.
 無機粒子(無機微粒子及び無機粗粒子)の構成元素は、本発明の効果を損なわない限りにおいて特に限定されず、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)のうちの少なくとも1種が挙げられる。上記構成元素としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種であることが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、白金、銀及び銅のうちの少なくとも1種であるのが好ましく、銀とすることが最も好ましい。これらの元素は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。を用いることができるが、無機粒子が銀粒子であること、が好ましい。なお、無機粒子を銀粒子とすることで、低温かつ無加圧の接合条件において良好な接合体を得ることができる。 The constituent elements of the inorganic particles (inorganic fine particles and inorganic coarse particles) are not particularly limited as long as the effects of the present invention are not impaired. For example, gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, Rhodium, palladium, osmium, iridium and platinum). The constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used. However, it is preferable that the inorganic particles are silver particles. In addition, by using inorganic particles as silver particles, a good bonded body can be obtained under low-temperature and no-pressure bonding conditions.
 更に、本発明の接合用組成物においては、150℃から250℃までの温度範囲において、前記無機粗粒子が無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、が好ましい。本発明の接合用組成物を使用する接合温度は、比較的低温である150~250℃であり、当該温度範囲にて無機粗粒子が大きな膨張を示すことで、良好な接合体を得ることができる。もっとも、プロセス上接合温度に制約がないのであれば、250℃以上であってもよい。 Furthermore, in the bonding composition of the present invention, in the temperature range from 150 ° C. to 250 ° C., the inorganic coarse particles exceed the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles and irreversibly expand. Are preferred. The bonding temperature using the bonding composition of the present invention is a relatively low temperature of 150 to 250 ° C., and the inorganic coarse particles exhibit a large expansion within the temperature range, whereby a good bonded body can be obtained. it can. However, if there is no restriction on the bonding temperature in the process, it may be 250 ° C. or higher.
 また、本発明は、本発明の接合用組成物を用いた接合方法であって、
 接合温度を、前記内部発泡が生じる温度以上、前記内部発泡によって前記無機粗粒子に開口部が形成される温度未満、に設定すること、
 を特徴とする接合方法、も提供する。
Further, the present invention is a bonding method using the bonding composition of the present invention,
Setting the joining temperature to a temperature equal to or higher than the temperature at which the internal foaming occurs, and lower than the temperature at which openings are formed in the inorganic coarse particles by the internal foaming;
A bonding method characterized by the above is also provided.
 接合用組成物に含まれる無機粗粒子に内部発泡が生じる温度以上、当該内部発泡によって無機粗粒子に開口部が形成される温度未満に接合温度を設定することで、良好な接合体を効率的に得ることができる。
 より具体的には、接合温度を無機粗粒子に内部発泡が生じる温度以上とすることで、接合用組成物の主成分である無機粒子同士の距離が小さくなり、接合層の緻密化を極めて効率的に進行させることができる。また、接合温度を無機粗粒子に開口部が形成される温度未満とすることで、上述の内部発泡の効果を十分に活用することができると共に、無機粗粒子表面に欠陥(開口部)が形成されることによる接合層緻密化の阻害及び接合層の強度低下を抑制することができる。
By setting the bonding temperature to a temperature that is higher than the temperature at which internal foaming occurs in the inorganic coarse particles contained in the bonding composition and less than the temperature at which openings are formed in the inorganic coarse particles by the internal foaming, a good bonded body can be efficiently produced Can get to.
More specifically, by setting the bonding temperature to be equal to or higher than the temperature at which internal foaming occurs in the inorganic coarse particles, the distance between the inorganic particles that are the main components of the bonding composition is reduced, and the bonding layer is highly densified. Can be advanced. Moreover, by making the bonding temperature lower than the temperature at which the openings are formed in the inorganic coarse particles, the above-described internal foaming effect can be fully utilized, and defects (openings) are formed on the surface of the inorganic coarse particles. It is possible to suppress the densification of the bonding layer and the decrease in strength of the bonding layer.
 なお、実質的には、発泡により粒子内部において生成したガスが、貫通により接合層内に放出されない条件を設定すれよい。例えば、無機粗粒子のみでは220℃で貫通してしまうが、無機微粒子と混合して使用することにより、無機粗粒子の表面に無機微粒子が融着する影響で、貫通温度が高温側にシフトことになり、したがってその高温側の温度であってもよいことになる。さらに言えば、貫通しても接合層の剥離進展に影響が出ないところまでは、高温側の温度であってもよい。また、膨張挙動には時間依存性があるため、これも考慮にいれるべきである。後述する実施例においては、短時間及び長時間の接合で接合強度が低下したが、これは、前者は膨張が適正域まで進行しなかったため、後者は発泡が進み過ぎて、貫通による影響が出てしまったためと考えられる。 It should be noted that substantially the conditions may be set in which the gas generated inside the particles by foaming is not released into the bonding layer by penetration. For example, only inorganic coarse particles penetrate at 220 ° C, but when mixed with inorganic fine particles, the penetration temperature shifts to the high temperature side due to the effect of inorganic fine particles fused to the surface of the inorganic coarse particles. Therefore, the temperature on the high temperature side may be sufficient. Furthermore, the temperature on the high temperature side may be used as long as it does not affect the peeling progress of the bonding layer even if it penetrates. Also, the expansion behavior is time dependent and should be taken into account. In the examples described later, the bonding strength decreased after a short time and a long time. However, since the former did not progress to the proper range, the latter was excessively foamed and affected by penetration. This is thought to be due to the accident.
 また、本発明の接合方法においては、無加圧条件で接合を行うこと、が好ましい。接合時に外部加圧を伴う場合、特に電子部品等を接合する場合は当該加圧によって被接合材が損傷する恐れがある。また、被接合材の剛性等によっては、十分に均一な加圧を印加することが困難な場合が存在する。ここで、本発明の接合用組成物は、無機粗粒子の大きな熱膨張により無加圧下においても十分な接合強度が得られるため、被接合材の損傷防止等の観点から、無加圧条件で接合を行うことが好ましい。 In the bonding method of the present invention, it is preferable to perform bonding under no pressure condition. When external pressure is applied at the time of bonding, particularly when an electronic component or the like is bonded, the material to be bonded may be damaged by the pressure. Further, depending on the rigidity of the material to be joined, there are cases where it is difficult to apply a sufficiently uniform pressure. Here, since the bonding composition of the present invention provides sufficient bonding strength even under no pressure due to the large thermal expansion of the inorganic coarse particles, from the viewpoint of preventing damage to the materials to be bonded, under no pressure conditions. It is preferable to perform bonding.
 また、本発明の接合方法においては、酸素を含む雰囲気で接合を行うこと、が好ましい。接合用組成物に含まれる無機粗粒子の内部に有機物が存在する場合、当該有機物と雰囲気中の酸素との酸化反応によって内部発泡が生じ、無機粗粒子を構成する無機物質の線膨張係数を超えて、無機粗粒子を不可逆的に膨張させることができる。 In the bonding method of the present invention, it is preferable to perform bonding in an atmosphere containing oxygen. When organic matter is present inside the inorganic coarse particles contained in the bonding composition, internal foaming occurs due to an oxidation reaction between the organic matter and oxygen in the atmosphere, exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. Thus, the inorganic coarse particles can be irreversibly expanded.
 本発明によれば、緻密な接合層と高い接合強度を有する接合体を、比較的低い接合温度かつ無加圧で得ることができる接合用組成物及びそれを用いた接合方法を提供することができる。 According to the present invention, it is possible to provide a bonding composition capable of obtaining a bonded body having a dense bonding layer and high bonding strength at a relatively low bonding temperature and no pressure, and a bonding method using the same. it can.
還元法及びアトマイズ法にて製造された銀粗粒子のTMA測定結果である。It is a TMA measurement result of the silver coarse particle manufactured by the reduction method and the atomization method. 未焼成及び大気中で焼成した銀粗粒子圧粉体の断面の走査電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of the unsintered and air-sintered silver coarse particle compact. 内部発泡に及ぼす焼成雰囲気の影響を示す走査電子顕微鏡写真である。It is a scanning electron micrograph which shows the influence of the baking atmosphere which acts on internal foaming.
 以下、本発明の接合用組成物及びそれを用いた接合方法の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。 Hereinafter, a preferred embodiment of the bonding composition of the present invention and a bonding method using the same will be described in detail. In addition, in the following description, only one embodiment of the present invention is shown, and the present invention is not limited by these, and redundant description may be omitted.
(1)接合用組成物
 本実施形態の接合用組成物は、無機粒子及び有機成分を含み、当該無機粒子は無機微粒子と無機粗粒子とを含んでいる。以下においてこれら各成分等について説明する。
(1) Bonding composition The bonding composition of the present embodiment includes inorganic particles and an organic component, and the inorganic particles include inorganic fine particles and inorganic coarse particles. These components will be described below.
(1-1)無機微粒子
 本実施形態の接合用組成物における無機微粒子の平均粒径は、本発明の効果を損なわない範囲であれば特に制限されるものではないが、融点降下が生じるような平均粒径を有するのが好ましく、例えば、1nm~1μmであればよい。更には、2nm~200nmであるのが好ましい。無機微粒子の平均粒径が1nm以上であれば、無機微粒子が良好な低温焼結性を具備すると共に無機微粒子製造がコスト高とならず実用的である。また、200nm以下であれば、無機微粒子の分散性が経時的に変化しにくく、好ましい。
(1-1) Inorganic fine particles The average particle size of the inorganic fine particles in the bonding composition of the present embodiment is not particularly limited as long as it does not impair the effects of the present invention. It preferably has an average particle diameter, and may be, for example, 1 nm to 1 μm. Further, it is preferably 2 nm to 200 nm. If the average particle size of the inorganic fine particles is 1 nm or more, the inorganic fine particles have good low-temperature sinterability, and the production of the inorganic fine particles is practical and not expensive. Moreover, if it is 200 nm or less, the dispersibility of an inorganic fine particle does not change easily over time, and it is preferable.
 なお、本実施形態の接合用組成物における無機微粒子の粒径は、一定でなくてもよい。また、接合用組成物が、任意成分として、後述する分散剤等を含む場合、平均粒径が200nm超の金属粒子成分を含む場合があるが、凝集を生じたりせず、本発明の効果を著しく損なわない成分であればかかる200nm超の平均粒径を有する金属粒子成分を含んでもよい。 In addition, the particle size of the inorganic fine particles in the bonding composition of the present embodiment may not be constant. In addition, when the bonding composition includes a dispersing agent, which will be described later, as an optional component, it may contain a metal particle component having an average particle size of more than 200 nm. A metal particle component having an average particle diameter of more than 200 nm may be included as long as the component is not significantly impaired.
 ここで、本実施形態の接合用組成物における無機微粒子の粒径は、動的光散乱法、小角X線散乱法、広角X線回折法で測定することができる。ナノサイズの無機微粒子の融点降下を示すためには、広角X線回折法で求めた結晶子径が適当である。例えば広角X線回折法では、より具体的には、理学電機(株)製のRINT-UltimaIIIを用いて、回折法で2θが30~80°の範囲で測定することができる。この場合、試料は、中央部に深さ0.1~1mm程度の窪みのあるガラス板に表面が平坦になるように薄くのばして測定すればよい。また、理学電機(株)製のJADEを用い、得られた回折スペクトルの半値幅を下記のシェラー式に代入することにより算出された結晶子径(D)を粒径とすればよい。
  D=Kλ/Bcosθ
 ここで、K:シェラー定数(0.9)、λ:X線の波長、B:回折線の半値幅、θ:ブラッグ角である。
Here, the particle size of the inorganic fine particles in the bonding composition of the present embodiment can be measured by a dynamic light scattering method, a small-angle X-ray scattering method, and a wide-angle X-ray diffraction method. In order to show the melting point drop of nano-sized inorganic fine particles, the crystallite diameter determined by the wide-angle X-ray diffraction method is appropriate. For example, in the wide-angle X-ray diffraction method, more specifically, RINT-UltimaIII manufactured by Rigaku Corporation can be used to measure 2θ in the range of 30 to 80 ° by the diffraction method. In this case, the sample may be measured by extending it thinly so that the surface becomes flat on a glass plate having a recess of about 0.1 to 1 mm in depth at the center. The crystallite diameter (D) calculated by substituting the half width of the obtained diffraction spectrum into the following Scherrer equation using JADE manufactured by Rigaku Corporation may be used as the particle diameter.
D = Kλ / Bcosθ
Here, K: Scherrer constant (0.9), λ: wavelength of X-ray, B: half width of diffraction line, θ: Bragg angle.
 本実施形態の接合用組成物における無機微粒子の構成元素としては、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)のうちの少なくとも1種が挙げられる。上記構成元素としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種であることが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、白金、銀及び銅のうちの少なくとも1種であるのが好ましく、銀とすることが最も好ましい。これらの元素は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。 Examples of constituent elements of the inorganic fine particles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron, and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium, and platinum). At least one of them. The constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
 例えば、無機微粒子として銀微粒子を用いる場合、本実施形態の接合用組成物を用いて形成した接着層の導電率は良好となるが、マイグレーションの問題を考慮して、銀及びその他の金属からなる接合用組成物を用いることによって、マイグレーションを起こりにくくすることができる。当該「その他の金属」としては、上述のイオン化列が水素より貴である金属、即ち金、銅、白金、パラジウムが好ましい。 For example, when silver fine particles are used as the inorganic fine particles, the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but it is made of silver and other metals in consideration of migration problems. By using the bonding composition, migration can be made difficult to occur. The “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
(1-2)有機成分
 本実施形態の接合用組成物の無機微粒子においては、無機微粒子の表面の少なくとも一部に有機物の保護層が形成されていることが好ましく、無機微粒子の表面の少なくとも一部に短鎖アミンが付着していることがより好ましく、無機微粒子の表面の少なくとも一部に炭素数が4~7のアミンが付着していることが更に好ましい。なお、無機微粒子の表面には、原料に最初から不純物として含まれる微量有機物、後述する製造過程で混入する微量有機物、洗浄過程で除去しきれなかった残留還元剤、残留分散剤等のように、微量の有機物が付着していてもよい。融点降下能を示すナノメートルサイズの無機粒子を安定的に保管するためには、無機粒子の表面の少なくとも一部に有機保護層が必要である。ここで、アミンは官能基が無機粒子の表面に適度の強さで吸着することから、有機保護層として好適に用いることができる。
(1-2) Organic Component In the inorganic fine particles of the bonding composition of the present embodiment, an organic protective layer is preferably formed on at least a part of the surface of the inorganic fine particles, and at least one of the surfaces of the inorganic fine particles. It is more preferable that a short chain amine is attached to the part, and it is more preferable that an amine having 4 to 7 carbon atoms is attached to at least a part of the surface of the inorganic fine particles. In addition, on the surface of the inorganic fine particles, a trace amount of organic matter contained as an impurity from the beginning, a trace amount of organic matter mixed in the manufacturing process described later, a residual reducing agent that could not be removed in the cleaning process, a residual dispersant, etc. A trace amount of organic matter may be attached. In order to stably store nanometer-sized inorganic particles exhibiting a melting point lowering ability, an organic protective layer is required on at least a part of the surface of the inorganic particles. Here, the amine can be suitably used as an organic protective layer because the functional group is adsorbed to the surface of the inorganic particles with an appropriate strength.
 炭素数が4~7のアミンとしては、炭素数が4~7であれば直鎖状であっても分岐鎖状であってもよく、また、側鎖を有していてもよい。例えば、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン等のアリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン等が挙げられる。
 上記短鎖アミンは、例えば、ヒドロキシル基、カルボキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、アミン以外の官能基を含む化合物であってもよい。また、上記アミンは、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常温常圧の沸点が300℃以下、更には250℃以下であることが好ましい。
The amine having 4 to 7 carbon atoms may be linear or branched as long as it has 4 to 7 carbon atoms, and may have a side chain. For example, alkylamines such as butylamine, pentylamine, hexylamine and hexylamine (which may have a linear alkylamine or a side chain), cycloalkylamines such as cyclopentylamine and cyclohexylamine, and allylamines such as aniline And the like, secondary amines such as primary amines such as dipropylamine, dibutylamine, piperidine and hexamethyleneimine, and tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline. It is done.
The short chain amine may be a compound containing a functional group other than an amine, such as a hydroxyl group, a carboxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. Moreover, the said amine may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal temperature and pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower.
 もっとも、アミンは本発明の効果を得られるのであれば特に制限されるものではなく、短鎖アミン以外のアミン、例えばアルコキシアミンやドデシルアミン等の長鎖アミンを、分散性向上のために使用してもよい。
 例えば、オレイルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘキシルアミン等のアルキルアミン(直鎖状アルキルアミン、側鎖を有していてもよい。)、N-(3-メトキシプロピル)プロパン-1,3-ジアミン、2-メトキシエチルアミン、3-メトキシプロピルアミン、3-エトキシプロピルアミン等のアルコキシアミン、シクロペンチルアミン、シクロヘキシルアミン等のシクロアルキルアミン、アニリン等のアリルアミン等の第1級アミン、ジプロピルアミン、ジブチルアミン、ピペリジン、ヘキサメチレンイミン等の第2級アミン、トリプロピルアミン、ジメチルプロパンジアミン、シクロヘキシルジメチルアミン、ピリジン、キノリン等の第3級アミン、オクチルアミン等のように炭素数が2~20程度のものを例示することができる
However, the amine is not particularly limited as long as the effects of the present invention can be obtained. An amine other than the short chain amine, for example, a long chain amine such as alkoxyamine or dodecylamine is used for improving the dispersibility. May be.
For example, alkylamines such as oleylamine, butylamine, pentylamine, hexylamine, hexylamine (linear alkylamine, which may have a side chain), N- (3-methoxypropyl) propane-1,3 -Primary amines such as diamines, 2-methoxyethylamines, 3-methoxypropylamines, 3-ethoxypropylamines and other alkoxyamines, cyclopentylamines, cyclohexylamines and other cycloalkylamines, anilines and other primary amines, dipropylamines, Secondary amines such as dibutylamine, piperidine and hexamethyleneimine, tertiary amines such as tripropylamine, dimethylpropanediamine, cyclohexyldimethylamine, pyridine and quinoline, octylamine, etc. No It can be exemplified
 本実施形態の接合用組成物における無機微粒子には、本発明の効果を損なわない範囲であれは、上記の短鎖アミンに加えて、カルボン酸を含んでいてもよい。カルボン酸の一分子内におけるカルボキシル基が、比較的高い極性を有し、水素結合による相互作用を生じ易いが、これら官能基以外の部分は比較的低い極性を有する。更に、カルボキシル基は、酸性的性質を示し易い。また、カルボン酸は、無機微粒子の表面の少なくとも一部に局在化(付着)すると(即ち、無機微粒子の表面の少なくとも一部を被覆すると)、溶媒と無機微粒子とを十分に親和させることができ、無機微粒子同士の凝集を防ぐことができる(分散性を向上させる。)。 The inorganic fine particles in the bonding composition of the present embodiment may contain a carboxylic acid in addition to the short chain amine as long as the effects of the present invention are not impaired. The carboxyl group in one molecule of the carboxylic acid has a relatively high polarity and tends to cause an interaction due to a hydrogen bond, but a portion other than these functional groups has a relatively low polarity. Furthermore, the carboxyl group tends to exhibit acidic properties. In addition, when the carboxylic acid is localized (attached) to at least a part of the surface of the inorganic fine particles (that is, when at least a part of the surface of the inorganic fine particles is coated), the solvent and the inorganic fine particles can sufficiently have an affinity. And aggregation of the inorganic fine particles can be prevented (dispersibility is improved).
 カルボン酸としては、少なくとも1つのカルボキシル基を有する化合物を広く用いることができ、例えば、ギ酸、シュウ酸、酢酸、ヘキサン酸、アクリル酸、オクチル酸、オレイン酸等が挙げられる。カルボン酸の一部のカルボキシル基が金属イオンと塩を形成していてもよい。なお、当該金属イオンについては、2種以上の金属イオンが含まれていてもよい。 As the carboxylic acid, compounds having at least one carboxyl group can be widely used, and examples thereof include formic acid, oxalic acid, acetic acid, hexanoic acid, acrylic acid, octylic acid, and oleic acid. A part of carboxyl groups of the carboxylic acid may form a salt with a metal ion. In addition, about the said metal ion, 2 or more types of metal ions may be contained.
 上記カルボン酸は、例えば、アミノ基、ヒドロキシル基、アルコキシ基、カルボニル基、エステル基、メルカプト基等の、カルボキシル基以外の官能基を含む化合物であってもよい。この場合、カルボキシル基の数が、カルボキシル基以外の官能基の数以上であることが好ましい。また、上記カルボン酸は、それぞれ単独で用いてもよく、2種以上を併用してもよい。加えて、常圧での沸点が300℃以下、更には250℃以下であることが好ましい。また、アミンとカルボン酸はアミドを形成する。当該アミド基も無機微粒子表面に適度に吸着するため、無機微粒子表面にはアミド基が付着していてもよい。 The carboxylic acid may be a compound containing a functional group other than a carboxyl group, such as an amino group, a hydroxyl group, an alkoxy group, a carbonyl group, an ester group, or a mercapto group. In this case, the number of carboxyl groups is preferably equal to or greater than the number of functional groups other than carboxyl groups. Moreover, the said carboxylic acid may be used independently, respectively and may use 2 or more types together. In addition, the boiling point at normal pressure is preferably 300 ° C. or lower, more preferably 250 ° C. or lower. Also, amines and carboxylic acids form amides. Since the amide group is also appropriately adsorbed on the surface of the inorganic fine particle, the amide group may be attached to the surface of the inorganic fine particle.
 無機微粒子と当該無機微粒子の表面に付着した有機物によってコロイドが構成される場合、当該コロイド中の有機成分の含有量は、0.5~50質量%であることが好ましい。有機成分含有量が0.5質量%以上であれば、得られる無機微粒子分散体の貯蔵安定性が良くなる傾向があり、50質量%以下であれば、無機微粒子を含む接合用組成物を加熱して得られる焼成体の導電性が良い傾向がある。有機成分のより好ましい含有量は1~30質量%であり、更に好ましい含有量は2~15質量%である。 When the colloid is composed of inorganic fine particles and organic substances adhering to the surface of the inorganic fine particles, the content of the organic component in the colloid is preferably 0.5 to 50% by mass. If the organic component content is 0.5% by mass or more, the storage stability of the resulting inorganic fine particle dispersion tends to be improved, and if it is 50% by mass or less, the bonding composition containing inorganic fine particles is heated. There exists a tendency for the electroconductivity of the sintered body obtained by this to be good. A more preferable content of the organic component is 1 to 30% by mass, and a more preferable content is 2 to 15% by mass.
(1-3)無機粗粒子
 本実施形態の接合用組成物における無機粗粒子は、温度上昇に伴って当該無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張するものである。上述のとおり、無機粗粒子が、当該無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張することで、接合用組成物の主成分である無機粒子同士の距離が小さくなり、緻密化が極めて効率的に進行する。
(1-3) Inorganic coarse particles The inorganic coarse particles in the bonding composition of the present embodiment expand irreversibly with the temperature rise exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. It is. As described above, the inorganic coarse particles irreversibly expand beyond the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles, thereby reducing the distance between the inorganic particles that are the main components of the bonding composition. Thus, densification proceeds very efficiently.
 無機粗粒子の大きな膨張は、無機粗粒子の内部発泡により生じることが好ましい。酸化や粒子内部の密度変化等に起因して不可逆的に膨張する無機粗粒子を用いることもできるが、内部発泡する無機粗粒子を用いることで、より確実に無機粗粒子に大きな不可逆的な熱膨張を発現させることができる。 The large expansion of the inorganic coarse particles is preferably caused by internal foaming of the inorganic coarse particles. Although it is possible to use inorganic coarse particles that irreversibly expand due to oxidation, density changes inside the particles, etc., the use of inorganic foam particles that expand internally ensures more reliable and irreversible heat to the inorganic coarse particles. Swelling can be developed.
 ここで、本実施形態の接合用組成物における無機粗粒子の線膨張係数は、例えば、TMA測定によって求めることができる。無機粗粒子が銀粗粒子の場合、大気中又は不活性ガス雰囲気において銀粗粒子を所定の温度まで昇温し、膨張収縮挙動を測定することで、線膨張係数を算出することができる。本実施形態の接合用組成物における無機粗粒子は、当該測定により得られた線膨張係数が、当該無機粗粒子を構成する無機物質の線膨張係数を超えるものである。また、当該無機粗粒子の熱膨張は、内部発泡による塑性変形や酸化等の影響を受けるものであり、不可逆的な熱膨張となる(降温に伴い、純粋な昇温の効果による所謂熱膨張は可逆的に変化する)。 Here, the linear expansion coefficient of the inorganic coarse particles in the bonding composition of the present embodiment can be determined by, for example, TMA measurement. When the inorganic coarse particles are silver coarse particles, the linear expansion coefficient can be calculated by raising the temperature of the silver coarse particles to a predetermined temperature in the air or in an inert gas atmosphere and measuring the expansion / contraction behavior. In the inorganic coarse particles in the bonding composition of the present embodiment, the linear expansion coefficient obtained by the measurement exceeds the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. Further, the thermal expansion of the inorganic coarse particles is affected by plastic deformation and oxidation due to internal foaming, and becomes irreversible thermal expansion (so-called thermal expansion due to the effect of pure temperature increase is accompanied by the temperature decrease). Reversibly change).
 無機粗粒子は、150℃から250℃までの温度範囲において、無機粗粒子が無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、が好ましい。本発明の接合用組成物を使用する接合温度は、比較的低温である150~250℃であり、当該温度範囲にて無機粗粒子が大きな膨張を示すことで、良好な接合体を得ることができる。 The inorganic coarse particles preferably expand irreversibly in the temperature range from 150 ° C. to 250 ° C., exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. The bonding temperature using the bonding composition of the present invention is a relatively low temperature of 150 to 250 ° C., and the inorganic coarse particles exhibit a large expansion within the temperature range, whereby a good bonded body can be obtained. it can.
 無機粗粒子(ミクロン粒子)の粒径の測定方法について述べる。ナノ粒子を含まないミクロン粒子のみの粒径を測定する場合は、レーザー回折散乱法による体積基準で測定したD50を平均粒径としてよい。また、走査型電子顕微鏡を用いて撮影した電子顕微鏡写真から50~100個程度の粒子の粒径の算術平均値を粒径としてもよい。 The method for measuring the particle size of inorganic coarse particles (micron particles) will be described. When measuring the particle size of only micron particles not containing nanoparticles, D50 measured on a volume basis by the laser diffraction scattering method may be used as the average particle size. Further, the arithmetic average value of the particle diameters of about 50 to 100 particles from an electron micrograph taken using a scanning electron microscope may be used as the particle diameter.
 また、無機粒子の平均粒径(PL)は、動的光散乱法又は小角X線散乱法等で測定することができる。なお、平均粒径(PL)を測定するその他の手法としては、走査型電子顕微鏡や透過型電子顕微鏡を用いて撮影した写真から測定することができる。 Moreover, the average particle diameter (P L ) of the inorganic particles can be measured by a dynamic light scattering method or a small angle X-ray scattering method. In addition, as another method for measuring the average particle diameter (P L ), it can be measured from a photograph taken using a scanning electron microscope or a transmission electron microscope.
 動的光散乱法を用いる場合、(株)堀場製作所製の動的光散乱式粒径分布測定装置LB-550で測定した体積基準のメディアン径(D50)で平均粒径を表すことができる。具体的には、分散媒10ml中に無機粒子分散液を数滴滴下し、手で振動させるか、もしくは超音波により分散させて測定用試料を調製する。次いで、測定用試料3mlをLB-550のセル内に投入し、下記条件にて測定する。
・測定条件
 データ読み込み回数:100回
 セルホルダー内温度:25℃
・表示条件
 分布形態:標準
 反復回数:50回
 粒子径基準:体積基準
 分散質の屈折率:0.200-3.900(銀の場合)
 分散媒の屈折率:1.36(例えばエタノールが主成分の場合)
・システム条件設定
 強度基準:Dynamic
     散乱強度レンジ上限:10000.00
     散乱強度レンジ下限:1.00
When the dynamic light scattering method is used, the average particle diameter can be expressed by a volume-based median diameter (D50) measured by a dynamic light scattering particle size distribution measuring device LB-550 manufactured by Horiba, Ltd. Specifically, a few samples of the inorganic particle dispersion are dropped into 10 ml of the dispersion medium, and the sample for measurement is prepared by vibrating by hand or by ultrasonic dispersion. Next, 3 ml of the measurement sample is put into the cell of LB-550 and measured under the following conditions.
・ Measurement conditions Data reading frequency: 100 times Cell holder temperature: 25 ℃
-Display conditions Distribution form: Standard Number of repetitions: 50 times Particle size standard: Volume standard Dispersoid refractive index: 0.200-3.900 (in the case of silver)
Refractive index of dispersion medium: 1.36 (for example, when ethanol is the main component)
・ System condition setting Strength standard: Dynamic
Scattering intensity range upper limit: 10000.00
Scattering intensity range lower limit: 1.00
 無機粗粒子の粒径は、無機微粒子の粒径よりも大きければ特に限定されないが、平均粒径が1~50μmであること、が好ましい。無機粗粒子の平均粒径を1μm以上とすることで、無機粗粒子の良好な分散性を確保すると共に、無機微粒子との平均粒径の差を十分大きくすることができ、所謂微粒粗粒混合による緻密化を図ることができる。また、無機粗粒子の平均粒径を50μm以下とすることで、接合層が厚くなり過ぎることを防止することができる。無機粗粒子のより好ましい粒径は1~5μmである。 The particle diameter of the inorganic coarse particles is not particularly limited as long as it is larger than the particle diameter of the inorganic fine particles, but the average particle diameter is preferably 1 to 50 μm. By setting the average particle size of the inorganic coarse particles to 1 μm or more, it is possible to ensure good dispersibility of the inorganic coarse particles and to sufficiently increase the average particle size difference from the inorganic fine particles. Can be densified. Moreover, it can prevent that a joining layer becomes too thick because the average particle diameter of an inorganic coarse particle shall be 50 micrometers or less. A more preferable particle size of the inorganic coarse particles is 1 to 5 μm.
 ここで、無機粗粒子は、粒径に対して結晶子径が小さく、例えば250~300℃といった低温で焼成しても結晶子径が大きくなる.そのため、無機粗粒子は、内部の有機成分が揮発するタイミングで、膨張すると考えられる。また、還元粉の無機粗粒子は、その表面が疎水性であるため(疎水性の有機成分で覆われているため)、アミンで被覆されたナノ粒子との親和性がよく、接合組成物において良好な分散性を発揮し、接合特性を向上させると考えられる。 Here, the inorganic coarse particles have a small crystallite size with respect to the particle size, and the crystallite size becomes large even when fired at a low temperature such as 250 to 300 ° C. Therefore, it is thought that inorganic coarse particles expand | swell at the timing when an internal organic component volatilizes. In addition, the inorganic coarse particles of reduced powder have a hydrophobic surface (because they are covered with a hydrophobic organic component), and thus have good affinity with amine-coated nanoparticles. It is considered that it exhibits good dispersibility and improves bonding characteristics.
 次に、無機粗粒子と無機微粒子の混合比率について述べる。無機粗粒子と無機微粒子との混合比率は、30/70~70/30(重量)であればよく、好ましくは50/50~70/30(重量)であればよい。無機粗粒子が多くなると、接合界面や粒子同士との接触面が少なくなり、無加圧で接合する場合は接合強度が低下するといった不具合が生じるおそれがある。他方、無機微粒子が多くなりすぎると、界面や粒子間の接触面は増えるが、粒子の比表面積が大きくなるため、揮発する有機成分が多くなりやすく、焼結による体積収縮も大きくなるため、接合層にボイドが多発してしまうおそれがある。 Next, the mixing ratio of inorganic coarse particles and inorganic fine particles will be described. The mixing ratio of the inorganic coarse particles and the inorganic fine particles may be 30/70 to 70/30 (weight), and preferably 50/50 to 70/30 (weight). If the inorganic coarse particles are increased, the bonding interface and the contact surface between the particles are decreased, and there is a possibility that the bonding strength is lowered when bonding is performed without applying pressure. On the other hand, if the amount of inorganic fine particles increases too much, the interface and the contact surface between the particles increase, but since the specific surface area of the particles increases, the volatilized organic component tends to increase, and the volume shrinkage due to sintering also increases. There is a risk that voids frequently occur in the layer.
 また、本実施形態の接合用組成物における無機粗粒子は、無機粗粒子の内部に有機物が含まれていること、が好ましい。無機粗粒子の内部に有機物が含まれていることにより、接合プロセス中の温度上昇により当該無機物が分解して気体が発生し(内部発泡し)、無機粒子に大きな不可逆的な熱膨張を発現させることができる。 Moreover, it is preferable that the inorganic coarse particles in the bonding composition of the present embodiment contain an organic substance inside the inorganic coarse particles. Due to the organic matter contained inside the inorganic coarse particles, the inorganic matter decomposes due to the temperature rise during the joining process and gas is generated (internal foaming), causing the inorganic particles to exhibit large irreversible thermal expansion. be able to.
 また、本実施形態の接合用組成物における無機粗粒子は、還元粉であること、が好ましい。還元粉はその製造プロセス条件により、内部に有機物等を残存させることができる。特に、低温焼結性を付与するために結晶子径を数十nmとする場合は不安定なプロセス条件で合成する必要があり、有機物等の残存が顕著となる。つまり、内部に有機物が残存した還元粉を加熱することで、還元粉を構成する無機物質の線膨張係数を超えて、不可逆的に膨張させることができると推察されるからである。ここで、当該還元粉としては、例えば三井金属鉱業株式会社製の銀粗粒子を用いることができる。 Moreover, it is preferable that the inorganic coarse particles in the bonding composition of the present embodiment are reduced powder. The reduced powder can leave organic substances or the like inside depending on the manufacturing process conditions. In particular, when the crystallite diameter is set to several tens of nanometers in order to impart low temperature sinterability, it is necessary to synthesize under unstable process conditions, and the remaining organic matter becomes remarkable. That is, it is assumed that by heating the reduced powder in which organic matter remains inside, it can be irreversibly expanded beyond the linear expansion coefficient of the inorganic substance constituting the reduced powder. Here, as the reduced powder, for example, silver coarse particles manufactured by Mitsui Metal Mining Co., Ltd. can be used.
 本実施形態の接合用組成物における無機粗粒子の構成元素としては、例えば金、銀、銅、ニッケル、ビスマス、スズ、鉄並びに白金族元素(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金)のうちの少なくとも1種が挙げられる。上記構成元素としては、金、銀、銅、ニッケル、ビスマス、スズ又は白金族元素よりなる群から選択される少なくとも1種であることが好ましく、更には、銅又は銅よりもイオン化傾向が小さい(貴な)金属、即ち、金、白金、銀及び銅のうちの少なくとも1種であるのが好ましく、銀とすることが最も好ましい。これらの元素は単独で用いても、2種以上を併用して用いてもよく、併用する方法としては、複数の金属を含む合金粒子を用いる場合や、コア-シェル構造や多層構造を有する金属粒子を用いる場合がある。 Examples of the constituent elements of the inorganic coarse particles in the bonding composition of the present embodiment include gold, silver, copper, nickel, bismuth, tin, iron and platinum group elements (ruthenium, rhodium, palladium, osmium, iridium and platinum). At least one of them can be mentioned. The constituent element is preferably at least one selected from the group consisting of gold, silver, copper, nickel, bismuth, tin, or a platinum group element, and further has a smaller ionization tendency than copper or copper ( It is preferably a noble metal, ie, at least one of gold, platinum, silver and copper, and most preferably silver. These elements may be used singly or in combination of two or more. The methods of using these elements in combination include the case of using alloy particles containing a plurality of metals, the metal having a core-shell structure or a multilayer structure. Particles may be used.
 例えば、無機粗粒子として銀粗粒子を用いる場合、本実施形態の接合用組成物を用いて形成した接着層の導電率は良好となるが、マイグレーションの問題を考慮して、銀及びその他の金属からなる接合用組成物を用いることによって、マイグレーションを起こりにくくすることができる。当該「その他の金属」としては、上述のイオン化列が水素より貴である金属、即ち金、銅、白金、パラジウムが好ましい。 For example, when silver coarse particles are used as the inorganic coarse particles, the conductivity of the adhesive layer formed using the bonding composition of the present embodiment is good, but silver and other metals are considered in consideration of migration problems. By using the bonding composition comprising: migration can be made difficult to occur. The “other metal” is preferably a metal in which the ionization column is more noble than hydrogen, that is, gold, copper, platinum, or palladium.
 なお、本実施形態の接合用組成物における無機粗粒子と無機微粒子との組み合わせは、本発明の効果を損なわない限りにおいて特に限定されず、低温焼結性を有する無機微粒子と大きな線膨張係数を有する無機粗粒子とを組み合わせればよい。また、2種類以上の無機微粒子と無機粗粒子とを組み合わせてもよい。 The combination of the inorganic coarse particles and the inorganic fine particles in the bonding composition of the present embodiment is not particularly limited as long as the effects of the present invention are not impaired, and the inorganic fine particles having low temperature sinterability and a large linear expansion coefficient are used. What is necessary is just to combine with the inorganic coarse particle which has. Two or more kinds of inorganic fine particles and inorganic coarse particles may be combined.
(1-4)その他の成分
 本実施形態の接合用組成物には、上記の成分に加えて、本発明の効果を損なわない範囲で、使用目的に応じた適度な粘性、密着性、乾燥性又は印刷性等の機能を付与するために、分散媒、高分子分散剤、例えばバインダーとしての役割を果たすオリゴマー成分、樹脂成分、有機溶剤(固形分の一部を溶解又は分散していてよい。)、界面活性剤、増粘剤又は表面張力調整剤等の任意成分を添加してもよい。かかる任意成分としては、特に限定されない。
(1-4) Other components In addition to the above components, the bonding composition of the present embodiment has an appropriate viscosity, adhesiveness, and drying property in accordance with the intended use within a range not impairing the effects of the present invention. Alternatively, in order to impart functions such as printability, a dispersion medium, a polymer dispersant, for example, an oligomer component that serves as a binder, a resin component, and an organic solvent (a part of the solid content may be dissolved or dispersed. ), Optional components such as surfactants, thickeners or surface tension modifiers may be added. Such optional components are not particularly limited.
 任意成分のうちの分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。 As the dispersion medium of the optional components, various types can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
 炭化水素としては、脂肪族炭化水素、環状炭化水素、脂環式炭化水素及び不飽和炭化水素等が挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the hydrocarbon include aliphatic hydrocarbons, cyclic hydrocarbons, alicyclic hydrocarbons, unsaturated hydrocarbons, and the like, and each may be used alone or in combination of two or more.
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。 Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
 環状炭化水素としては、例えば、トルエン、キシレン等が挙げられる。 Examples of cyclic hydrocarbons include toluene and xylene.
 脂環式炭化水素としては、例えば、リモネン、ジペンテン、テルピネン、ターピネン(テルピネンともいう。)、ネソール、シネン、オレンジフレーバー、テルピノレン、ターピノレン(テルピノレンともいう。)、フェランドレン、メンタジエン、テレベン、サイメン、ジヒドロサイメン、モスレン、カウツシン、カジェプテン、オイリメン、ピネン、テレビン、メンタン、ピナン、テルペン、シクロヘキサン等が挙げられる。 Examples of the alicyclic hydrocarbons include limonene, dipentene, terpinene, terpinene (also referred to as terpinene), nesol, sinene, orange flavor, terpinolene, terpinolene (also referred to as terpinolene), ferrandylene, mentadiene, teleben, cymene, Examples include dihydrocymene, mossene, kautssin, cajeptene, oilimene, pinene, turpentine, menthane, pinane, terpene, cyclohexane and the like.
 不飽和炭化水素としては、例えば、エチレン、アセチレン、ベンゼン、1-ヘキセン、1-オクテン、4-ビニルシクロヘキセン、テルペン系アルコール、アリルアルコール、オレイルアルコール、2-パルミトレイン酸、ペトロセリン酸、オレイン酸、エライジン酸、チアンシ酸、リシノール酸、リノール酸、リノエライジン酸、リノレン酸、アラキドン酸、アクリル酸、メタクリル酸、没食子酸及びサリチル酸等が挙げられる。 Examples of the unsaturated hydrocarbon include ethylene, acetylene, benzene, 1-hexene, 1-octene, 4-vinylcyclohexene, terpene alcohol, allyl alcohol, oleyl alcohol, 2-palmitoleic acid, petrothelic acid, oleic acid, and elaidin. Examples include acid, thianic acid, ricinoleic acid, linoleic acid, linoleic acid, linolenic acid, arachidonic acid, acrylic acid, methacrylic acid, gallic acid, and salicylic acid.
 これらのなかでも、水酸基を有する不飽和炭化水素が好ましい。水酸基は無機粒子の表面に配位しやすく、当該無機粒子の凝集を抑制することができる。水酸基を有する不飽和炭化水素としては、例えば、テルペン系アルコール、アリルアルコール、オレイルアルコール、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。好ましくは、水酸基を有する不飽和脂肪酸であり、例えば、チアンシ酸、リシノール酸、没食子酸及びサリチル酸等が挙げられる。 Of these, unsaturated hydrocarbons having a hydroxyl group are preferred. Hydroxyl groups are easily coordinated on the surface of the inorganic particles, and aggregation of the inorganic particles can be suppressed. Examples of the unsaturated hydrocarbon having a hydroxyl group include terpene alcohol, allyl alcohol, oleyl alcohol, thianic acid, ricinoleic acid, gallic acid, and salicylic acid. Preferably, it is an unsaturated fatty acid having a hydroxyl group, and examples thereof include thianic acid, ricinoleic acid, gallic acid and salicylic acid.
 前記不飽和炭化水素はリシノール酸であることが好ましい。リシノール酸はカルボキシル基とヒドロキシル基とを有し、無機粒子の表面に吸着して当該無機粒子を均一に分散させると共に、無機粒子の融着を促進する。 The unsaturated hydrocarbon is preferably ricinoleic acid. Ricinoleic acid has a carboxyl group and a hydroxyl group and is adsorbed on the surface of the inorganic particles to uniformly disperse the inorganic particles and promote fusion of the inorganic particles.
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、ノナノール、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、イソトリデカノール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), nonanol, decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, isotridecanol. And saturated or unsaturated C 6-30 aliphatic alcohols such as 2-ethyl-1-hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
 環状アルコールとしては、例えば、クレゾール、オイゲノール等が挙げられる。 Examples of cyclic alcohols include cresol and eugenol.
 更に、脂環式アルコールとしては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、又はこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ベルベノール等が挙げられる。 Further, as the alicyclic alcohol, for example, cycloalkanol such as cyclohexanol, terpineol (including α, β, γ isomers, or any mixture thereof), terpene alcohol such as dihydroterpineol (monoterpene alcohol etc. ), Dihydroterpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, berbenol and the like.
 本実施形態の接合用組成物中に分散媒を含有させる場合の含有量は、粘度などの所望の特性によって調整すれば良く、接合用組成物中の分散媒の含有量は、1~30質量%であるのが好ましい。分散媒の含有量が1~30質量%であれば、接合性組成物として使いやすい範囲で粘度を調整する効果を得ることができる。分散媒のより好ましい含有量は1~20質量%であり、更に好ましい含有量は1~15質量%である。 The content when the dispersion medium is contained in the bonding composition of the present embodiment may be adjusted according to desired properties such as viscosity, and the content of the dispersion medium in the bonding composition is 1 to 30 masses. % Is preferred. When the content of the dispersion medium is 1 to 30% by mass, the effect of adjusting the viscosity can be obtained within a range that is easy to use as a bonding composition. A more preferable content of the dispersion medium is 1 to 20% by mass, and a more preferable content is 1 to 15% by mass.
 上記高分子分散剤としては、市販されている高分子分散剤を使用することができる。市販の高分子分散剤としては、例えば、上記市販品としては、例えば、ソルスパース(SOLSPERSE)11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(日本ルーブリゾール(株)製);ディスパービック(DISPERBYK)142;ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190、ディスパービック2155(ビックケミー・ジャパン(株)製);EFKA-46、EFKA-47、EFKA-48、EFKA-49(EFKAケミカル社製);ポリマー100、ポリマー120、ポリマー150、ポリマー400、ポリマー401、ポリマー402、ポリマー403、ポリマー450、ポリマー451、ポリマー452、ポリマー453(EFKAケミカル社製);アジスパーPB711、アジスパーPA111、アジスパーPB811、アジスパーPW911(味の素社製);フローレンDOPA-15B、フローレンDOPA-22、フローレンDOPA-17、フローレンTG-730W、フローレンG-700、フローレンTG-720W(共栄社化学工業(株)製)等を挙げることができる。低温焼結性及び分散安定性の観点からは、ソルスパース11200、ソルスパース13940、ソルスパース16000、ソルスパース17000、ソルスパース18000、ソルスパース28000、ディスパービック142又はディスパービック2155を用いることが好ましい。 As the polymer dispersant, a commercially available polymer dispersant can be used. Examples of the commercially available polymer dispersant include, for example, Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 20000, Solsperse 24000, Solsperse 26000, Solsperse 27000, Solsperse. 28000 (manufactured by Nihon Lubrizol Co., Ltd.); Dispersic (DISPERBYK) 142; Dispersic 184, Dispersic 190, Dispersic 2155 EFKA-46, EFKA-47, EFKA-48, EFKA-49 (manufactured by EFKA Chemical); polymer 100, polymer 120, polymer 150, polymer 400, polymer 401, polymer 402, polymer 403, polymer 450, polymer 451, polymer 452, polymer 453 (manufactured by EFKA Chemical); Ajisper PB711, Ajisper PA111, Ajisper PB811, Ajisper PW911 (manufactured by Ajinomoto Co.); Florene DOPA-15B, Florene DOPA-22, Florene DOPA- 17, Floren TG-730W, Floren G-700, Floren TG-720W (manufactured by Kyoeisha Chemical Industry Co., Ltd.), and the like. From the viewpoints of low-temperature sinterability and dispersion stability, it is preferable to use Solsperse 11200, Solsperse 13940, Solsperse 16000, Solsperse 17000, Solsperse 18000, Solsperse 28000, Dispersic 142 or Dispersic 2155.
 高分子分散剤の含有量は0.1~15質量%であることが好ましい。高分子分散剤の含有量が0.1%以上であれば得られる接合用組成物の分散安定性が良くなるが、含有量が多過ぎる場合は接合性が低下することとなる。このような観点から、高分子分散剤のより好ましい含有量は0.03~3質量%であり、更に好ましい含有量は0.05~2質量%である。 The content of the polymer dispersant is preferably 0.1 to 15% by mass. If the content of the polymer dispersant is 0.1% or more, the dispersion stability of the resulting bonding composition is improved. However, if the content is too large, the bonding property is lowered. From such a viewpoint, the more preferable content of the polymer dispersant is 0.03 to 3% by mass, and still more preferable content is 0.05 to 2% by mass.
 樹脂成分としては、例えば、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、ポリアクリレート系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂又はテルペン系樹脂等を挙げることができ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the resin component include polyester resins, polyurethane resins such as blocked isocyanate, polyacrylate resins, polyacrylamide resins, polyether resins, melamine resins, and terpene resins. May be used alone or in combination of two or more.
 有機溶剤としては、上記の分散媒として挙げられたものを除き、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、2-プロピルアルコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2,6-ヘキサントリオール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、重量平均分子量が200以上1,000以下の範囲内であるポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、重量平均分子量が300以上1,000以下の範囲内であるポリプロピレングリコール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、グリセリン又はアセトン等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the organic solvent other than those mentioned as the above dispersion medium include, for example, methyl alcohol, ethyl alcohol, n-propyl alcohol, 2-propyl alcohol, 1,3-propanediol, 1,2-propanediol, , 4-butanediol, 1,2,6-hexanetriol, 1-ethoxy-2-propanol, 2-butoxyethanol, ethylene glycol, diethylene glycol, triethylene glycol, weight average molecular weight in the range of 200 to 1,000 Polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol having a weight average molecular weight in the range of 300 to 1,000, N, N-dimethylformamide, dimethyl sulfoxide, N Methyl-2-pyrrolidone, N, N- dimethylacetamide, glycerin, or acetone and the like may be used each of which alone or in combination of two or more.
 増粘剤としては、例えば、クレイ、ベントナイト又はヘクトライト等の粘土鉱物、例えば、ポリエステル系エマルジョン樹脂、アクリル系エマルジョン樹脂、ポリウレタン系エマルジョン樹脂又はブロックドイソシアネート等のエマルジョン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース誘導体、キサンタンガム又はグアーガム等の多糖類等が挙げられ、これらはそれぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the thickener include clay minerals such as clay, bentonite or hectorite, for example, emulsions such as polyester emulsion resins, acrylic emulsion resins, polyurethane emulsion resins or blocked isocyanates, methyl cellulose, carboxymethyl cellulose, and hydroxyethyl cellulose. , Cellulose derivatives such as hydroxypropylcellulose and hydroxypropylmethylcellulose, polysaccharides such as xanthan gum and guar gum, and the like. These may be used alone or in combination of two or more.
 上記有機成分とは異なる界面活性剤を添加してもよい。多成分溶媒系の無機コロイド分散液においては、乾燥時の揮発速度の違いによる被膜表面の荒れ及び固形分の偏りが生じ易い。本実施形態の接合用組成物に界面活性剤を添加することによってこれらの不利益を抑制し、均一な導電性被膜を形成することができる接合用組成物が得られる。 A surfactant different from the above organic components may be added. In a multi-component solvent-based inorganic colloidal dispersion, the coating surface becomes rough and the solid content tends to be uneven due to the difference in volatilization rate during drying. By adding a surfactant to the bonding composition of the present embodiment, these disadvantages can be suppressed, and a bonding composition that can form a uniform conductive film is obtained.
 本実施形態において用いることのできる界面活性剤としては、特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤の何れを用いることができ、例えば、アルキルベンゼンスルホン酸塩、4級アンモニウム塩等が挙げられる。少量の添加量で効果が得られるので、フッ素系界面活性剤が好ましい。 The surfactant that can be used in the present embodiment is not particularly limited, and any of an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be used, for example, an alkylbenzene sulfonate. A quaternary ammonium salt etc. are mentioned. Since the effect can be obtained with a small addition amount, a fluorosurfactant is preferable.
 なお、有機成分量を所定の範囲に調整する方法は、加熱を行って調整するのが簡便である。また、無機粒子を作製する際に添加する有機成分の量を調整することで行ってもよく、無機粒子調整後の洗浄条件や回数を変えてもよい。加熱はオーブンやエバポレーターなどで行うことができ、減圧下で行ってもよい。常圧下で行う場合は、大気中でも不活性雰囲気中でも行うことができる。更に、有機成分量の微調整のために、上記アミン(及びカルボン酸)を後で加えることもできる。 In addition, it is easy to adjust the method of adjusting the amount of organic components within a predetermined range by heating. Moreover, you may carry out by adjusting the quantity of the organic component added when producing an inorganic particle, and you may change the washing conditions and frequency | counts after inorganic particle adjustment. Heating can be performed with an oven or an evaporator, and may be performed under reduced pressure. When performed under normal pressure, it can be performed in air or in an inert atmosphere. Further, the amine (and carboxylic acid) can be added later for fine adjustment of the amount of organic components.
 本実施形態の接合用組成物には、主成分として、無機微粒子がコロイド化した無機コロイド粒子が含まれるが、かかる無機コロイド粒子の形態に関しては、例えば、無機粒子の表面の一部に有機成分が付着して構成されている無機コロイド粒子、上記無機粒子をコアとして、その表面が有機成分で被覆されて構成されている無機コロイド粒子、それらが混在して構成されている無機コロイド粒子等が挙げられるが、特に限定されない。なかでも、無機粒子をコアとして、その表面が有機成分で被覆されて構成されている無機コロイド粒子が好ましい。当業者は、上述した形態を有する無機コロイド粒子を、当該分野における周知技術を用いて適宜調製することができる。 The bonding composition of the present embodiment includes inorganic colloid particles in which inorganic fine particles are colloidal as a main component. Regarding the form of the inorganic colloid particles, for example, an organic component is formed on a part of the surface of the inorganic particles. Inorganic colloidal particles composed of adhering, inorganic colloidal particles composed of the above inorganic particles as a core and coated with organic components on the surface, inorganic colloidal particles composed of a mixture of these, etc. Although it is mentioned, it is not specifically limited. Among these, inorganic colloidal particles having inorganic particles as a core and the surface thereof being coated with an organic component are preferable. A person skilled in the art can appropriately prepare the inorganic colloidal particles having the above-described form using a well-known technique in this field.
 本実施形態の接合用組成物は、無機微粒子と有機成分とで構成されるコロイド粒子に無機粗粒子を添加したものを主成分とする流動体であり、無機微粒子、無機コロイド粒子を構成する有機成分、無機粗粒子のほかに、無機コロイド粒子を構成しない有機成分、分散媒または残留還元剤等を含んでいてもよい。 The bonding composition of the present embodiment is a fluid mainly composed of colloidal particles composed of inorganic fine particles and organic components, and inorganic coarse particles added thereto, and the organic particles constituting the inorganic fine particles and inorganic colloidal particles. In addition to the components and the inorganic coarse particles, an organic component that does not constitute the inorganic colloidal particles, a dispersion medium, a residual reducing agent, or the like may be included.
(2)接合方法
 本実施形態の接合用組成物を用いれば、加熱を伴う部材同士の接合において高い接合強度を得ることができる。即ち、上記接合用組成物を第1の被接合部材と第2の被接合部材との間に塗布する接合用組成物塗布工程と、第1の被接合部材と第2の被接合部材との間に塗布した接合用組成物を、所望の温度(例えば300℃以下、好ましくは150~250℃)で焼成して接合する接合工程と、により、第1の被接合部材と第2の被接合部材とを接合することができる。
(2) Joining method If the composition for joining of this embodiment is used, high joining strength can be obtained in joining of members accompanied by heating. That is, a bonding composition application step of applying the bonding composition between the first bonded member and the second bonded member, and the first bonded member and the second bonded member A first bonding member and a second bonded member by a bonding step of baking and bonding the bonding composition applied between them at a desired temperature (for example, 300 ° C. or less, preferably 150 to 250 ° C.). The member can be joined.
 この接合工程の際には、第1の被接合部材と第2の被接合部材とが対向する方向に加圧することもできるが、本実施形態の接合方法においては、外部加圧を印加しないことが好ましい。接合時に外部加圧を伴う場合、特に電子部品等を接合する場合は当該加圧によって被接合材が損傷する恐れがある。また、被接合材の剛性等によっては、十分に均一な加圧を印加することが困難な場合が存在する。ここで、本実施形態の接合用組成物は、無機粗粒子の大きな熱膨張により無加圧下においても十分な接合強度が得られるため、被接合材の損傷防止等の観点から、無加圧条件で接合を行うことが好ましい。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。また、予め被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。 In this joining step, it is possible to apply pressure in the direction in which the first member to be joined and the second member to be joined are opposed to each other, but in the joining method of this embodiment, no external pressure is applied. Is preferred. When external pressure is applied at the time of bonding, particularly when an electronic component or the like is bonded, the material to be bonded may be damaged by the pressure. Further, depending on the rigidity of the material to be joined, there are cases where it is difficult to apply a sufficiently uniform pressure. Here, since the bonding composition of the present embodiment provides sufficient bonding strength even under no pressure due to the large thermal expansion of the inorganic coarse particles, from the viewpoint of preventing damage to the materials to be bonded, no pressure condition It is preferable to perform the joining. In addition, when firing, the temperature can be raised or lowered stepwise. It is also possible to apply a surfactant or a surface activator to the surface of the member to be joined in advance.
 また、本実施形態の接合方法においては、酸素を含む雰囲気で接合を行うこと、が好ましい。接合用組成物に含まれる無機粗粒子の内部に有機物が存在する場合、当該有機物と雰囲気中の酸素との酸化反応によって内部発泡が生じ、無機粗粒子を構成する無機物質の線膨張係数を超えて、無機粗粒子を不可逆的に膨張させることができる。 Further, in the bonding method of this embodiment, it is preferable to perform bonding in an atmosphere containing oxygen. When organic matter is present inside the inorganic coarse particles contained in the bonding composition, internal foaming occurs due to an oxidation reaction between the organic matter and oxygen in the atmosphere, exceeding the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles. Thus, the inorganic coarse particles can be irreversibly expanded.
 本発明者は、鋭意検討を重ねた結果、前記接合用組成物塗布工程での接合用組成物として、上述した本実施形態の接合用組成物を用いれば、第1の被接合部材と第2の被接合部材とを、比較的低い接合温度で外部加圧を印加することなく、高い接合強度をもってより確実に接合できる(接合体が得られる)ことを見出した。 As a result of intensive studies, the inventor uses the above-described bonding composition of the present embodiment as the bonding composition in the bonding composition application step. It was found that the member to be joined can be more reliably joined with a high joining strength without applying external pressure at a relatively low joining temperature (a joined body can be obtained).
 本発明の接合用組成物の分散媒としては、本発明の効果を損なわない範囲で種々のものを使用可能であり、例えば炭化水素及びアルコール等が挙げられる。 As the dispersion medium of the bonding composition of the present invention, various media can be used as long as the effects of the present invention are not impaired, and examples thereof include hydrocarbons and alcohols.
 脂肪族炭化水素としては、例えば、テトラデカン、オクタデカン、ヘプタメチルノナン、テトラメチルペンタデカン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、トリデカン、メチルペンタン、ノルマルパラフィン、イソパラフィン等の飽和又は不飽和脂肪族炭化水素が挙げられる。 Examples of the aliphatic hydrocarbon include saturated or unsaturated aliphatic hydrocarbons such as tetradecane, octadecane, heptamethylnonane, tetramethylpentadecane, hexane, heptane, octane, nonane, decane, tridecane, methylpentane, normal paraffin, and isoparaffin. Is mentioned.
 また、アルコールは、OH基を分子構造中に1つ以上含む化合物であり、脂肪族アルコール、環状アルコール及び脂環式アルコールが挙げられ、それぞれ単独で用いてもよく、2種以上を併用してもよい。また、OH基の一部は、本発明の効果を損なわない範囲でアセトキシ基等に誘導されていてもよい。 Alcohol is a compound containing one or more OH groups in the molecular structure, and examples thereof include aliphatic alcohols, cyclic alcohols and alicyclic alcohols, and each may be used alone or in combination of two or more. Also good. Moreover, a part of OH group may be induced | guided | derived to the acetoxy group etc. in the range which does not impair the effect of this invention.
 脂肪族アルコールとしては、例えば、ヘプタノール、オクタノール(1-オクタノール、2-オクタノール、3-オクタノール等)、デカノール(1-デカノール等)、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、2-エチル-1-ヘキサノール、オクタデシルアルコール、ヘキサデセノール、オレイルアルコール等の飽和又は不飽和C6-30脂肪族アルコール等が挙げられる。 Examples of the aliphatic alcohol include heptanol, octanol (1-octanol, 2-octanol, 3-octanol, etc.), decanol (1-decanol, etc.), lauryl alcohol, tetradecyl alcohol, cetyl alcohol, 2-ethyl-1- Examples thereof include saturated or unsaturated C6-30 aliphatic alcohols such as hexanol, octadecyl alcohol, hexadecenol and oleyl alcohol.
 ここで、本実施形態の接合用組成物の「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の本実施形態の接合体では、接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。 Here, “application” of the bonding composition of the present embodiment is a concept including both the case where the bonding composition is applied in a planar shape and the case where the bonding composition is applied (drawn) in a linear shape. The shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the joined body of this embodiment after firing by heating, the joining composition is a concept that includes both a planar joining layer and a linear joining layer. The bonding layer may be continuous or discontinuous, and may include a continuous portion and a discontinuous portion.
 本実施形態において用いることのできる第1の被接合部材及び第2の被接合部材としては、接合用組成物を塗布して加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した部材であるのが好ましい。 The first member to be bonded and the second member to be bonded that can be used in the present embodiment are not particularly limited as long as they can be bonded by applying a bonding composition and baking by heating. However, it is preferable that the member has a heat resistance that is not damaged by the temperature at the time of joining.
 このような被接合部材を構成する材料としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は金属等を挙げることができるが、なかでも、金属製の被接合部材が好ましい。金属製の被接合部材が好ましいのは、耐熱性に優れているとともに、無機粒子が金属である本発明の接合用組成物との親和性に優れているからである。 Examples of the material constituting such a member to be joined include polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN). Examples thereof include polyester, polycarbonate (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, metal and the like, and among them, a metal joined member is preferable. The metal member to be joined is preferable because it is excellent in heat resistance and in affinity with the bonding composition of the present invention in which the inorganic particles are metal.
 また、被接合部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、表面層が形成された部材や親水化処理等の表面処理を施した部材を用いてもよい。 The member to be joined may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. In order to improve adhesion or adhesion, or for other purposes, a member on which a surface layer is formed or a member subjected to a surface treatment such as a hydrophilic treatment may be used.
 接合用組成物を被接合部材に塗布する工程では、種々の方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、スタンピング法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、オフセット法、転写法、親疎水パターン法、又はシリンジ式等のなかから適宜選択して用いることができる。 In the step of applying the bonding composition to the members to be bonded, various methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, spin coating, and inkjet , Dispenser method, pin transfer method, stamping method, brush application method, casting method, flexo method, gravure method, offset method, transfer method, hydrophilic / hydrophobic pattern method, syringe method, etc. be able to.
 上記のように塗布した後の塗膜を、被接合部材を損傷させない範囲で、例えば300℃以下の温度に加熱することにより焼成し、接合体を得ることができる。本実施形態においては、先に述べたように、本実施形態の接合用組成物を用いるため、被接合部材に対して優れた密着性を有する接合層が得られ、強い接合強度がより確実に得られる。 The coated film after coating as described above can be baked by heating to a temperature of 300 ° C. or less, for example, within a range that does not damage the member to be bonded, and a bonded body can be obtained. In the present embodiment, as described above, since the bonding composition of the present embodiment is used, a bonding layer having excellent adhesion to a member to be bonded is obtained, and a strong bonding strength is more reliably ensured. can get.
 本実施形態においては、接合用組成物がバインダー成分を含む場合は、接合層の強度向上及び被接合部材間の接合強度向上等の観点から、バインダー成分も焼結することになるが、場合によっては、各種印刷法へ適用するために接合用組成物の粘度を調整することをバインダー成分の主目的として、焼成条件を制御してバインダー成分を全て除去してもよい。 In the present embodiment, when the bonding composition includes a binder component, the binder component is also sintered from the viewpoint of improving the strength of the bonding layer and the bonding strength between the bonded members. The main purpose of the binder component is to adjust the viscosity of the bonding composition for application to various printing methods, and the binder condition may be controlled to remove all the binder component.
 上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合部材上に塗布または描画した上記接合用組成物の温度が、例えば150~250℃となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。ここで、上記焼成後の接合用組成物においては、なるべく高い接合強度を得るという点で、有機物の残存量は少ないほうがよいが、本発明の効果を損なわない範囲で有機物の一部が残存していても構わない。 The method for performing the baking is not particularly limited. For example, the temperature of the bonding composition applied or drawn on a member to be bonded using a conventionally known oven or the like is, for example, 150 to 250 ° C. Can be joined by firing. The lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the members to be joined can be joined and does not impair the effects of the present invention. Here, in the bonding composition after firing, in order to obtain as high a bonding strength as possible, the remaining amount of the organic matter is preferably small, but a part of the organic matter remains within the range not impairing the effect of the present invention. It does not matter.
 なお、本発明の接合用組成物には、有機物が含まれているが、従来の例えばエポキシ樹脂等の熱硬化を利用したものと異なり、有機物の作用によって焼成後の接合強度を得るものではなく、前述したように融着した金属粒子の融着によって十分な接合強度が得られるものである。このため、接合後において、接合温度よりも高温の使用環境に置かれて残存した有機物が劣化ないし分解・消失した場合であっても、接合強度の低下するおそれはなく、したがって耐熱性に優れている。 In addition, although the organic substance is contained in the bonding composition of the present invention, it does not obtain the bonding strength after firing by the action of the organic substance, unlike the conventional one using thermosetting such as epoxy resin. As described above, sufficient bonding strength can be obtained by fusing the fused metal particles. For this reason, even after bonding, even if the remaining organic matter is deteriorated or decomposed / dissipated in a use environment higher than the bonding temperature, there is no risk of the bonding strength being lowered, and therefore the heat resistance is excellent. Yes.
 本実施形態の接合用組成物によれば、例えば150~250℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士を接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。 According to the bonding composition of the present embodiment, it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of about 150 to 250 ° C., for example. Members can be joined together. Further, the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature.
 本実施形態においては、上記被接合部材と接合層との密着性を更に高めるため、上記被接合部材の表面処理を行ってもよい。上記表面処理方法としては、例えば、コロナ処理、プラズマ処理、UV処理、電子線処理等のドライ処理を行う方法、基材上にあらかじめプライマー層や導電性ペースト受容層を設ける方法等が挙げられる。 In this embodiment, in order to further improve the adhesion between the member to be bonded and the bonding layer, the surface of the member to be bonded may be subjected to a surface treatment. Examples of the surface treatment method include a method of performing dry treatment such as corona treatment, plasma treatment, UV treatment, and electron beam treatment, and a method of previously providing a primer layer and a conductive paste receiving layer on a substrate.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。 As mentioned above, although typical embodiment of this invention was described, this invention is not limited only to these.
 以下、実施例において本発明の接合用組成物及び当該接合用組成物を用いた接合方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the bonding composition of the present invention and the bonding method using the bonding composition will be further described in Examples, but the present invention is not limited to these Examples.
≪実施例1≫
 3-エトキシプロピルアミン(和光純薬工業(株)製の試薬特級)8.0gとドデシルアミン
(和光純薬工業(株)製の試薬一級)0.40gを混合し、マグネティックススターラーで十分に撹拌した。ここに、撹拌を行いながらシュウ酸銀6.0gを添加し、増粘させた。得られた粘性物質を120℃の恒温槽に入れ、約15分間反応させた。メタノール10mlを加えて撹拌後、遠心分離により銀ナノ粒子を沈殿させて分離し、上澄みを捨てた。この操作をもう一度繰り返し、銀ナノ粒子(無機微粒子)を得た。分散媒としてトリデカノール1gを用い、得られた銀ナノ粒子5gと、還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J,D50:2.5μm)10gと、を混合して実施接合用組成物1を得た。
 銀微粒子の粒径の測定は50nmであった。少量の接合用組成物を10mlのトルエンで希釈し、株式会社堀場製作所製のLB-550を用いて動的光散乱法(DLS)にて銀粗粒子を添加せずに合成し、測定した。
Example 1
8.0 g of 3-ethoxypropylamine (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 0.40 g of dodecylamine (first grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and fully mixed with a magnetic stirrer. Stir. Here, 6.0 g of silver oxalate was added with stirring to increase the viscosity. The resulting viscous material was placed in a constant temperature bath at 120 ° C. and allowed to react for about 15 minutes. After stirring by adding 10 ml of methanol, silver nanoparticles were precipitated and separated by centrifugation, and the supernatant was discarded. This operation was repeated once more to obtain silver nanoparticles (inorganic fine particles). Using 1 g of tridecanol as a dispersion medium, 5 g of the obtained silver nanoparticles were mixed with 10 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., SPN20J, D50: 2.5 μm) produced by a reduction method. A practical bonding composition 1 was obtained.
The particle size of the silver fine particles was measured to be 50 nm. A small amount of the bonding composition was diluted with 10 ml of toluene, synthesized using a LB-550 manufactured by Horiba, Ltd., without adding silver coarse particles, and measured.
[評価試験]
(1)銀粗粒子(無機粗粒子)の線膨張係数測定
 銀粗粒子1gを5×20mmダイス(DT60N-052030)に入れ、20kNで1分間のプレスを施し(NPaシステム製, 100kNマイティプレス, MT-100H)、試験片を作成した。TMA(リガク社製, TMA8310)を用い、作成した試験片を大気中、昇温速度5℃/分で400℃まで昇温し、膨張収縮挙動の測定及び線膨張係数の算出を行った。得られた結果を基に、物質固有の線膨張係数を超えた不可逆的膨張の有無を判断した。各温度における線膨張係数を表1に示し、物質固有の線膨張係数を超えた不可逆的膨張の有無を表2に示した。
[Evaluation test]
(1) Measurement of linear expansion coefficient of silver coarse particles (inorganic coarse particles) 1 g of silver coarse particles was placed in a 5 × 20 mm die (DT60N-052030) and pressed at 20 kN for 1 minute (manufactured by NPa System, 100 kN mighty press, MT-100H), a test piece was prepared. Using TMA (manufactured by Rigaku Corporation, TMA8310), the prepared test piece was heated to 400 ° C. in the atmosphere at a heating rate of 5 ° C./min, and the expansion / contraction behavior was measured and the linear expansion coefficient was calculated. Based on the obtained results, the presence or absence of irreversible expansion exceeding the material specific linear expansion coefficient was determined. Table 1 shows the linear expansion coefficient at each temperature, and Table 2 shows the presence or absence of irreversible expansion exceeding the linear expansion coefficient specific to the substance.
(2)銀粗粒子(無機粗粒子)の内部発泡状況の確認
 上記(1)で作成した試験片をフロー炉(シンアペックス製)に入れ、大気又は窒素雰囲気において各温度で焼成を行い、イオンミリング (日立ハイテクノロジーズ製,E-3500)にて断面出しを行った。その後、走査電子顕微鏡 (日立ハイテクノロジーズ製,S-4800)にて断面観察を行い、銀粗粒子内部における気泡の有無を確認した。
(2) Confirmation of internal foaming status of silver coarse particles (inorganic coarse particles) The test piece prepared in (1) above is placed in a flow furnace (manufactured by Thin Apex) and baked at various temperatures in the atmosphere or in a nitrogen atmosphere. The cross section was taken out by milling (E-3500, manufactured by Hitachi High-Technologies Corporation). Thereafter, a cross-section was observed with a scanning electron microscope (manufactured by Hitachi High-Technologies, S-4800) to confirm the presence or absence of bubbles inside the coarse silver particles.
(3)接合強度測定
 接合用組成物を銀メッキした銅板(20mm角)にメタルマスクを用いて5mm角に塗布し、その上に、金メッキを施したSiチップ(底面積5mm×5mm)を積層した。次に、得られた積層体を、リフロー炉(シンアペックス製)に入れ、大気中で焼成処理を行った。焼成処理の際、加圧は行わず無加圧で行った。積層体を取り出した後、常温にてボンドテスター(レスカ社製)を用いて接合強度試験を行った。接合温度、接合時間及び得られた接合強度を表2に示した。
(3) Measurement of bonding strength The bonding composition was applied to a silver-plated copper plate (20 mm square) in a 5 mm square using a metal mask, and a gold-plated Si chip (bottom area 5 mm × 5 mm) was laminated thereon. did. Next, the obtained laminate was placed in a reflow furnace (manufactured by Thin Apex) and subjected to a firing treatment in the atmosphere. During the firing treatment, no pressure was applied and no pressure was applied. After taking out the laminate, a bonding strength test was performed at room temperature using a bond tester (manufactured by Reska). Table 2 shows the bonding temperature, the bonding time, and the obtained bonding strength.
(5)ボイド率測定
 (3)で得られた積層体について、日本クラウトクレーマー製の超音波探傷装置(探触子80MHz・φ3mm・PF=10mm)を用いてボイドを評価した。接合界面での反射ピークが最も高くなるところに微調整し、材質音速=Si:9600mm/sとして測定した。ボイド率は反射強度の閾値を55%とし、それ以上をボイドとみなした。得られた値を表2に示した。
(5) Void ratio measurement About the laminated body obtained by (3), the void was evaluated using the ultrasonic flaw detector (probe 80MHz * phi3mm * PF = 10mm) made from Nippon Kraut Kramer. Fine adjustment was made so that the reflection peak at the joint interface was the highest, and the measurement was made with the material sound velocity = Si: 9600 mm / s. As for the void ratio, the threshold value of the reflection intensity was 55%, and the void ratio was regarded as a void. The obtained values are shown in Table 2.
≪実施例2≫
 銀粗粒子として、還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J,D50:2.5μm)6gと、還元法にて製造された銀粗粒子(三井金属鉱業(株),MD30A,D50:3.8μm)2gと、還元法にて製造された銀粗粒子(三井金属鉱業(株),MD40A,D50:8.1μm)2gと、を用いたこと以外は実施例1と同様にして実施接合用組成物2を得た。また、実施例1と同様にして銀粗粒子及び実施接合用組成物2の評価を行い、得られた結果を表1及び表2に示した。
<< Example 2 >>
As silver coarse particles, 6 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., SPN20J, D50: 2.5 μm) produced by the reduction method and coarse silver particles (Mitsui Metal Mining Co., Ltd.) produced by the reduction method ), MD30A, D50: 3.8 μm) 2 g, and 2 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., MD40A, D50: 8.1 μm) produced by the reduction method. 1 was obtained in the same manner as in Example 1. Further, the silver coarse particles and the practical bonding composition 2 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
≪実施例3≫
 銀粗粒子として、還元法にて製造された銀粗粒子(三井金属鉱業(株),MD30A,D50:3.8μm)10gを用いたこと以外は実施例1と同様にして実施接合用組成物3を得た。また、実施例1と同様にして銀粗粒子及び実施接合用組成物3の評価を行い、得られた結果を表1及び表2に示した。
Example 3
The joining composition was carried out in the same manner as in Example 1 except that 10 g of coarse silver particles (Mitsui Metal Mining Co., Ltd., MD30A, D50: 3.8 μm) produced by the reduction method was used as the coarse silver particles. 3 was obtained. Further, the silver coarse particles and the practical bonding composition 3 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
≪実施例4≫
 銀粗粒子として、還元法にて製造された銀粗粒子(三井金属鉱業(株),SL03,D50:4.2μm)10gを用いたこと以外は実施例1と同様にして実施接合用組成物4を得た。また、実施例1と同様にして銀粗粒子及び実施接合用組成物4の評価を行い、得られた結果を表1及び表2に示した。
Example 4
The bonding composition was carried out in the same manner as in Example 1 except that 10 g of silver coarse particles (Mitsui Metal Mining Co., Ltd., SL03, D50: 4.2 μm) produced by the reduction method was used as the silver coarse particles. 4 was obtained. Further, the silver coarse particles and the practical bonding composition 4 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
≪比較例1≫
 銀粗粒子として、アトマイズ法にて製造された銀粗粒子(福田金属箔粉工業(株),Ag-HWQ2.5,D50:2.5μm)10gを用いたこと以外は実施例1と同様にして比較接合用組成物1を得た。また、実施例1と同様にして銀粗粒子及び比較接合用組成物1の評価を行い、得られた結果を表1及び表2に示した。
≪Comparative example 1≫
Except that 10 g of silver coarse particles (Fukuda Metal Foil Powder Co., Ltd., Ag-HWQ2.5, D50: 2.5 μm) produced by the atomization method was used as the coarse silver particles, the same as Example 1 was used. Thus, composition 1 for comparative bonding was obtained. Further, the silver coarse particles and the comparative bonding composition 1 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
≪比較例2≫
 銀粗粒子として、アトマイズ法にて製造された銀粗粒子(福田金属箔粉工業(株),Ag-HWQ5,D50:5.0μm)6gと、アトマイズ法にて製造された銀粗粒子(福田金属箔粉工業(株),Ag-HWQ10,D50:10.0μm)4gと、を用いたこと以外は実施例1と同様にして比較接合用組成物2を得た。また、実施例1と同様にして銀粗粒子及び比較接合用組成物2の評価を行い、得られた結果を表1及び表2に示した。
≪Comparative example 2≫
As the silver coarse particles, 6 g of silver coarse particles (Fukuda Metal Foil Powder Co., Ltd., Ag-HWQ5, D50: 5.0 μm) manufactured by the atomizing method and silver coarse particles (Fukuda manufactured by the atomizing method). Comparative bonding composition 2 was obtained in the same manner as in Example 1 except that 4 g of Metal Foil Powder Industry Co., Ltd., Ag-HWQ10, D50: 10.0 μm) was used. Further, the silver coarse particles and the comparative bonding composition 2 were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の実施例である実施接合用組成物1~4で用いた、還元法にて製造された銀粗粒子は、銀の線膨張係数よりも大きな線膨張係数を有していることが分かる。具体的には、三井金属鉱業(株),SPN20Jは230℃で2096、三井金属鉱業(株),MD30Aは220℃で300、三井金属鉱業(株),MD40Aは200℃で1600と、極めて高い値を示している。これに対し、アトマイズ法にて製造された銀粗粒子の線膨張係数は約20であり、銀の線膨張係数と同等の値となっている。 It can be seen that the coarse silver particles produced by the reduction method used in the practical bonding compositions 1 to 4 as examples of the present invention have a linear expansion coefficient larger than that of silver. . Specifically, Mitsui Mining & Mining Co., Ltd., SPN20J is 2096 at 230 ° C, Mitsui Mining & Mining Co., Ltd., MD30A is 300 at 220 ° C, Mitsui Mining & Mining Co., Ltd., MD40A is 1600 at 200 ° C, which is extremely high. The value is shown. On the other hand, the linear expansion coefficient of the coarse silver particles produced by the atomization method is about 20, which is a value equivalent to the linear expansion coefficient of silver.
 なお、銀の線膨張係数は、20℃で19.7×10-6/Kである (機械設計便覧より)。銀の各温度における線膨張係数は不明だが、金属データブック(日本金属学会編)には、に図1のようなTMAプロットが掲載されており、それによると温度に対してほぼ直線的に変化しているためほとんど変化はないと考えられる。 Note that the linear expansion coefficient of silver is 19.7 × 10 −6 / K at 20 ° C. (from the mechanical design manual). The linear expansion coefficient at each temperature of silver is unknown, but the TMA plot shown in Fig. 1 is published in the Metal Data Book (edited by the Japan Institute of Metals), which changes almost linearly with temperature. Therefore, it seems that there is almost no change.
 還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J)及びアトマイズ法にて製造された銀粗粒子(福田金属箔粉工業(株),Ag-HWQ5)のTMA測定結果を図1に示す。Ag-HWQ5の熱膨張は温度の上昇に伴って略線形に増加しているのに対し、SPN20Jの熱膨張は略210℃から急激に増加し、銀の線膨張係数を大幅に超える値を示していることが分かる。 TMA measurement results of coarse silver particles produced by the reduction method (Mitsui Mining & Smelting Co., Ltd., SPN20J) and coarse silver particles produced by the atomization method (Fukuda Metal Foil Industry Co., Ltd., Ag-HWQ5) As shown in FIG. While the thermal expansion of Ag-HWQ5 increases almost linearly with increasing temperature, the thermal expansion of SPN20J increases rapidly from about 210 ° C, showing a value that greatly exceeds the linear expansion coefficient of silver. I understand that
 未焼成及び大気中で焼成した銀粗粒子圧粉体の断面の走査電子顕微鏡写真を図2に示す。還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J)は未焼成の状態では内部に気泡は存在しないが、220℃以上での焼成によって内部気泡が生成している。これに対し、アトマイズ法にて製造された銀粗粒子(福田金属箔粉工業(株),Ag-HWQ5)については、250℃での焼成によっても内部気泡が生成していない。 FIG. 2 shows a scanning electron micrograph of a cross-section of a green coarse particle compact that has not been fired and is fired in the air. The coarse silver particles produced by the reduction method (Mitsui Mining & Smelting Co., Ltd., SPN20J) have no bubbles inside when unfired, but internal bubbles are generated by firing at 220 ° C. or higher. On the other hand, in the silver coarse particles (Fukuda Metal Foil Powder Co., Ltd., Ag-HWQ5) produced by the atomizing method, no internal bubbles are generated even when firing at 250 ° C.
 内部発泡に及ぼす焼成雰囲気の影響を示す銀粗粒子圧粉体の断面の走査電子顕微鏡写真を図3に示す。上述のとおり、還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J)は大気中、220℃以上での焼成によって内部気泡が生成しているが、焼成雰囲気を窒素とした場合、250℃に昇温しても内部気泡が生成していない。当該結果は、還元法にて製造された銀粗粒子(三井金属鉱業(株),SPN20J)では、粒子内部に存在する有機物の酸化分解によって内部発泡が生じることを示している。 FIG. 3 shows a scanning electron micrograph of the cross section of the coarse silver particle compact showing the influence of the firing atmosphere on the internal foaming. As described above, the coarse silver particles produced by the reduction method (Mitsui Mining & Smelting Co., Ltd., SPN20J) generate internal bubbles by firing at 220 ° C. or higher in the atmosphere, but the firing atmosphere is nitrogen. In this case, no internal bubbles are generated even when the temperature is raised to 250 ° C. The results show that in the coarse silver particles (Mitsui Metal Mining Co., Ltd., SPN20J) produced by the reduction method, internal foaming occurs due to oxidative decomposition of organic substances present inside the particles.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施接合用組成物1~4を用いて得られた積層体は、無加圧かつ低温の接合条件を用いても24~43MPaの高い接合強度を有している。また、接合層のボイド率は、比較接合用組成物5及び6を用いて得られた接合層と比較して、明瞭に低下している。 The laminate obtained by using the practical bonding compositions 1 to 4 has a high bonding strength of 24 to 43 MPa even under non-pressurized and low-temperature bonding conditions. Moreover, the void ratio of the bonding layer is clearly reduced as compared with the bonding layers obtained using the comparative bonding compositions 5 and 6.
 実施接合用組成物1を用いて接合温度を270℃とした場合は、接合層のボイド率が20%となり、接合強度が25MPaと比較的低くなっているが、銀粗粒子の内部発泡によって銀粗粒子に開口部が形成されたことが原因であると思われる。 When the bonding temperature was set to 270 ° C. using the bonding composition 1, the void ratio of the bonding layer was 20% and the bonding strength was relatively low at 25 MPa. This is probably because the opening was formed in the coarse particles.
 また、接合温度が230℃の場合で比較すると、三井金属鉱業(株),SPN20Jを多く含む実施接合用組成物1を用いて得られた積層体の強度が高くなっている(43MPa)。SPN20Jは230℃の線膨張係数が2096と極めて高いため、本発明の効果が明瞭に発現したものと考えられる。 Further, when compared with the case where the bonding temperature is 230 ° C., the strength of the laminate obtained by using the bonding composition 1 containing a large amount of Mitsui Metal Mining Co., Ltd. and SPN20J is high (43 MPa). SPN20J has an extremely high coefficient of linear expansion at 230 ° C. of 2096, so it is considered that the effects of the present invention were clearly expressed.

Claims (12)

  1.  無機粒子及び有機成分を含む接合用組成物であって、
     前記無機粒子は、温度上昇に伴って前記無機粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、
     を特徴とする接合用組成物。
    A bonding composition comprising inorganic particles and an organic component,
    The inorganic particles exceed the linear expansion coefficient of the inorganic substance constituting the inorganic particles as the temperature rises, and irreversibly expand.
    A bonding composition characterized by the above.
  2.  前記無機粒子は無機微粒子と無機粗粒子とを含み、
     前記無機粗粒子は、温度上昇に伴って前記無機粗粒子を構成する無機物質の線膨張係数を超えて、不可逆的に膨張すること、
     を特徴とする請求項1に記載の接合用組成物。
    The inorganic particles include inorganic fine particles and inorganic coarse particles,
    The inorganic coarse particles expand irreversibly beyond the linear expansion coefficient of the inorganic substance constituting the inorganic coarse particles as the temperature rises.
    The bonding composition according to claim 1, wherein:
  3.  前記無機微粒子の平均粒径が1~1μmであること、
     を特徴とする請求項2に記載の接合用組成物。
    The average particle size of the inorganic fine particles is 1-1 μm;
    The bonding composition according to claim 2, wherein:
  4.  前記無機粗粒子の内部発泡により、前記膨張が生じること、
     を特徴とする請求項2又は3に記載の接合用組成物。
    The expansion occurs due to internal foaming of the inorganic coarse particles;
    The composition for bonding according to claim 2 or 3, wherein:
  5.  前記無機粗粒子の平均粒径が1~50μmであること、
     を特徴とする請求項2~4のうちのいずれかに記載の接合用組成物。
    The inorganic coarse particles have an average particle size of 1 to 50 μm;
    The bonding composition according to any one of claims 2 to 4, wherein:
  6.  前記無機粗粒子の内部に有機物が含まれていること、
     を特徴とする請求項2~5のうちのいずれかに記載の接合用組成物。
    Organic matter is contained inside the inorganic coarse particles,
    The bonding composition according to any one of claims 2 to 5, wherein:
  7.  前記無機粗粒子が還元粉であること、
     を特徴とする請求項2~6のうちのいずれかに記載の接合用組成物。
    The inorganic coarse particles are reduced powder,
    The bonding composition according to any one of claims 2 to 6, wherein:
  8.  前記無機粒子が銀粒子であること、
     を特徴とする請求項2~7のうちのいずれかに記載の接合用組成物。
    The inorganic particles are silver particles;
    The bonding composition according to any one of claims 2 to 7, wherein:
  9.  前記温度上昇が150℃から250℃までの温度範囲であること、
     を特徴とする請求項2~8のうちのいずれかに記載の接合用組成物。
    The temperature rise is in the temperature range from 150 ° C. to 250 ° C .;
    The bonding composition according to any one of claims 2 to 8, wherein:
  10.  請求項1~9に記載の接合用組成物を用いた接合方法であって、
     接合温度を、前記内部発泡が生じる温度以上、前記内部発泡によって前記無機粗粒子に開口部が形成される温度未満、に設定すること、
     を特徴とする接合方法。
    A bonding method using the bonding composition according to any one of claims 1 to 9,
    Setting the joining temperature to a temperature equal to or higher than the temperature at which the internal foaming occurs, and lower than the temperature at which openings are formed in the inorganic coarse particles by the internal foaming;
    The joining method characterized by this.
  11.  無加圧条件で接合を行うこと、
     を特徴とする請求項10に記載の接合方法。
    Joining under no pressure condition,
    The bonding method according to claim 10.
  12.  酸素を含む雰囲気で接合を行うこと、
     を特徴とする請求項10又は11に記載の接合方法。
    Bonding in an atmosphere containing oxygen,
    The joining method according to claim 10 or 11, wherein:
PCT/JP2016/003031 2015-07-08 2016-06-23 Joining composition and joining method WO2017006531A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016542778A JPWO2017006531A1 (en) 2015-07-08 2016-06-23 Bonding composition and bonding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-136673 2015-07-08
JP2015136673 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017006531A1 true WO2017006531A1 (en) 2017-01-12

Family

ID=57686174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003031 WO2017006531A1 (en) 2015-07-08 2016-06-23 Joining composition and joining method

Country Status (2)

Country Link
JP (1) JPWO2017006531A1 (en)
WO (1) WO2017006531A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170226A (en) * 2017-03-30 2018-11-01 日立化成株式会社 Conductive laminate and method for producing the same
WO2019142633A1 (en) * 2018-01-22 2019-07-25 バンドー化学株式会社 Composition for bonding
WO2020040184A1 (en) * 2018-08-23 2020-02-27 バンドー化学株式会社 Joining composition
JP2021038427A (en) * 2019-09-02 2021-03-11 株式会社大阪ソーダ Sintered compact of silver particle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board
JP2009289745A (en) * 2008-05-01 2009-12-10 Nippon Handa Kk Method of manufacturing heating sintered silver particle, paste-like silver particle composition, method of manufacturing solid silver, method of joining metal member, method of manufacturing printed wiring board, and method of manufacturing electrical circuit connection bump
JP2010153118A (en) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd Metallic particle paste and method for manufacturing conductive substrate
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2013216919A (en) * 2012-04-04 2013-10-24 Nippon Handa Kk Method for manufacturing heat-sinterable silver particle, paste-like silver particle composition, method for manufacturing solid silver, method for joining metal members, method for manufacturing printed wiring board, and method for manufacturing electrical circuit connection bump
WO2014185073A1 (en) * 2013-05-16 2014-11-20 バンドー化学株式会社 Composition for metal bonding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126614A1 (en) * 2005-05-25 2006-11-30 Nihon Handa Co., Ltd. Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board
JP2009289745A (en) * 2008-05-01 2009-12-10 Nippon Handa Kk Method of manufacturing heating sintered silver particle, paste-like silver particle composition, method of manufacturing solid silver, method of joining metal member, method of manufacturing printed wiring board, and method of manufacturing electrical circuit connection bump
JP2011094223A (en) * 2008-11-26 2011-05-12 Mitsuboshi Belting Ltd Joining agent for inorganic stock, and joined body of inorganic stock
JP2010153118A (en) * 2008-12-24 2010-07-08 Mitsuboshi Belting Ltd Metallic particle paste and method for manufacturing conductive substrate
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2013216919A (en) * 2012-04-04 2013-10-24 Nippon Handa Kk Method for manufacturing heat-sinterable silver particle, paste-like silver particle composition, method for manufacturing solid silver, method for joining metal members, method for manufacturing printed wiring board, and method for manufacturing electrical circuit connection bump
WO2014185073A1 (en) * 2013-05-16 2014-11-20 バンドー化学株式会社 Composition for metal bonding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170226A (en) * 2017-03-30 2018-11-01 日立化成株式会社 Conductive laminate and method for producing the same
JP6996101B2 (en) 2017-03-30 2022-01-17 昭和電工マテリアルズ株式会社 Conductive laminate and its manufacturing method
WO2019142633A1 (en) * 2018-01-22 2019-07-25 バンドー化学株式会社 Composition for bonding
JPWO2019142633A1 (en) * 2018-01-22 2020-01-23 バンドー化学株式会社 Bonding composition
WO2020040184A1 (en) * 2018-08-23 2020-02-27 バンドー化学株式会社 Joining composition
JPWO2020040184A1 (en) * 2018-08-23 2020-09-10 バンドー化学株式会社 Composition for bonding
JP2021038427A (en) * 2019-09-02 2021-03-11 株式会社大阪ソーダ Sintered compact of silver particle

Also Published As

Publication number Publication date
JPWO2017006531A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
JP6349310B2 (en) Metal bonding composition
JP6262139B2 (en) Bonding composition
JP6766160B2 (en) Composition for metal bonding
JP6021816B2 (en) Bonding composition
JP6736782B2 (en) Composition for bonding
WO2017006531A1 (en) Joining composition and joining method
JP6659026B2 (en) Low temperature joining method using copper particles
WO2015162881A1 (en) Composition for bonding and metal bonded body using same
JP2017155166A (en) Joining composition
TWI744372B (en) Bonding composition and production method thereof, bonding laminate, and cladded silver nanoparticle
JP6163616B1 (en) Bonding composition
JP6467114B1 (en) Method for producing metal bonded laminate
WO2016067599A1 (en) Bonding composition
JP6267835B1 (en) Bonding composition and method for producing the same
JP6669420B2 (en) Bonding composition
WO2015159480A1 (en) Bonding composition and metal bonded body using same
JP6085724B2 (en) Bonding composition

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016542778

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821010

Country of ref document: EP

Kind code of ref document: A1