JP2009289745A - Method of manufacturing heating sintered silver particle, paste-like silver particle composition, method of manufacturing solid silver, method of joining metal member, method of manufacturing printed wiring board, and method of manufacturing electrical circuit connection bump - Google Patents

Method of manufacturing heating sintered silver particle, paste-like silver particle composition, method of manufacturing solid silver, method of joining metal member, method of manufacturing printed wiring board, and method of manufacturing electrical circuit connection bump Download PDF

Info

Publication number
JP2009289745A
JP2009289745A JP2009109997A JP2009109997A JP2009289745A JP 2009289745 A JP2009289745 A JP 2009289745A JP 2009109997 A JP2009109997 A JP 2009109997A JP 2009109997 A JP2009109997 A JP 2009109997A JP 2009289745 A JP2009289745 A JP 2009289745A
Authority
JP
Japan
Prior art keywords
silver
fatty acid
paste
silver particles
particle composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009109997A
Other languages
Japanese (ja)
Other versions
JP4470193B2 (en
Inventor
Ryoko Masuda
涼子 増田
Yasumasa Kudo
康全 工藤
Minoru Isshiki
実 一色
Hidetomo Asami
英知 浅見
Kimio Yamakawa
君男 山川
Katsutoshi Mine
勝利 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP2009109997A priority Critical patent/JP4470193B2/en
Publication of JP2009289745A publication Critical patent/JP2009289745A/en
Application granted granted Critical
Publication of JP4470193B2 publication Critical patent/JP4470193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/8184Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz

Landscapes

  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paste-like silver particle composition to be a solid silver with excellent strength, electric conductivity and thermal conductivity by easily sintering silver particles if heated, and a method or the like of manufacturing a solid silver. <P>SOLUTION: The method of manufacturing silver particles in which higher fatty acid coating a surface or its derivative is substituted with a further inferior higher/middle fatty acid or its derivative, and the paste-like silver particle composition which is a paste matter made of the silver particles and volatile dispersion medium and is made to be a solid silver by volatilizing the volatile dispersion medium by heating and sintering the silver particles with each other, are provided. Moreover, the method of manufacturing the solid silver due to heating the paste-like silver particle composition, a method of joining a metal member using the paste-like silver particle composition, and a method of manufacturing a printed wiring board with silver wirings as well as a method of manufacturing an electric circuit connection bump, are provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高・中級脂肪酸または高・中級脂肪酸の誘導体により被覆された加熱焼結性銀粒子の製造方法;高・中級脂肪酸または高・中級脂肪酸の誘導体により被覆された加熱焼結性銀粒子と揮発性分散媒からなり、加熱により焼結して優れた強度と電気伝導性と熱伝導性を有する固形状銀となるペースト状銀粒子組成物;該ペースト状銀粒子組成物からの固形状銀の製造方法;該ペースト状銀粒子組成物を使用しての金属製部材の接合方法;該ペースト状銀粒子組成物を使用してのプリント配線板の製造方法;および該ペースト状銀粒子組成物を使用しての電気回路接続用バンプの製造方法に関する。 The present invention relates to a method for producing heat-sinterable silver particles coated with high / intermediate fatty acid or a derivative of high / intermediate fatty acid; heat-sinterable silver particles coated with a high / intermediate fatty acid or a derivative of high / intermediate fatty acid A paste-like silver particle composition comprising a volatile dispersion medium and sintered by heating to form solid silver having excellent strength, electrical conductivity and thermal conductivity; solid form from the paste-like silver particle composition A method for producing silver; a method for joining metal members using the paste-like silver particle composition; a method for producing a printed wiring board using the paste-like silver particle composition; and the paste-like silver particle composition The present invention relates to a method for manufacturing an electric circuit connecting bump using an object.

銀粉末を熱硬化性樹脂組成物中に分散させてなる導電性ペーストは、加熱により硬化して導電性被膜が形成されるので、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極、特にアモルファスシリコン半導体を用いた高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に使用されている。
近年チップ部品の高性能化によりチップ部品からの発熱量が増え、電気伝導性はもとより、熱伝導性の向上が要求されるので、銀粒子の含有率を可能な限り増加して電気伝導性、熱伝導性を向上しようとすると、ペーストの粘度が上昇し、作業性が著しく低下するという問題がある。
Conductive paste made by dispersing silver powder in thermosetting resin composition is cured by heating to form a conductive film, so that conductive circuit formation on printed circuit boards, resistors, capacitors, etc. Electrode formation of various electronic parts and display elements, formation of a conductive film for electromagnetic wave shielding, adhesion of chip parts such as capacitors, resistors, diodes, memories and arithmetic elements (CPUs) to substrates, solar cell electrodes, In particular, it is used for forming electrodes of solar cells that cannot be processed at high temperature using amorphous silicon semiconductors, forming external electrodes of chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, and the like.
In recent years, the amount of heat generated from chip parts has increased due to the high performance of chip parts, and it is required to improve the thermal conductivity as well as the electrical conductivity. When trying to improve the thermal conductivity, there is a problem that the viscosity of the paste increases and the workability is remarkably lowered.

このような問題を解決するため、本発明者らは、銀粉末と揮発性分散媒とからなるペースト状銀粒子組成物は加熱すると当該揮発性分散媒が揮発し銀粉末が焼結して、極めて高い導電性と熱伝導性を有する固形状銀となり、金属製部材の接合や、導電回路の形成に有用なことを見出して国際出願した(WO2006/126614、WO2007/034833)。
しかしながら、電子機器、電子部品、チップ部品等およびこれらを構成する材料の耐熱性の制約から、低温度、具体的には150℃以下の温度でペースト状組成物が焼結し、かつ、接着性を有することを求められる場合が増えてきている。
しかし、特に低温度での焼結における接着性の発現が十分ではなく、この原因として銀粒子の凝集防止の目的で用いられている銀粒子の被覆剤(例、高級脂肪酸塩、高級脂肪酸)に問題があることに気がついた。
In order to solve such a problem, the present inventors heated the paste-like silver particle composition composed of silver powder and a volatile dispersion medium, and the volatile dispersion medium volatilized and the silver powder was sintered. It became solid silver having extremely high electrical conductivity and thermal conductivity, and was found to be useful for joining metallic members and forming conductive circuits (WO2006 / 126614, WO2007 / 034833).
However, due to heat resistance limitations of electronic devices, electronic components, chip components, etc. and the materials constituting them, the paste-like composition is sintered at a low temperature, specifically at a temperature of 150 ° C. or less, and has adhesiveness. Increasingly, it is required to have
However, the development of adhesiveness is not sufficient especially in sintering at low temperatures, and this is caused by the coating agent of silver particles (for example, higher fatty acid salts, higher fatty acids) used for the purpose of preventing aggregation of silver particles. I realized there was a problem.

ペースト状銀粒子組成物に使用される銀は微細粒子であるため、銀粒子同士の凝集を防ぐためその表面は有機物で被覆されている。特開昭54−121270では、銀粉末の凝集を防止するために、銀粉末生成過程で高級脂肪酸を共存させることにより高級脂肪酸で被覆された銀粉末を製造している。具体的には硝酸銀水溶液にホルマリン、水酸化ナトリウム等の還元剤とステアリン酸、オレイン酸等の高級脂肪酸を添加して攪拌した後、これらの高級脂肪酸で被覆された銀粉末を分離している。 Since silver used in the paste-like silver particle composition is fine particles, the surface thereof is coated with an organic substance to prevent aggregation of the silver particles. In Japanese Patent Laid-Open No. 54-121270, silver powder coated with a higher fatty acid is produced by allowing a higher fatty acid to coexist in the silver powder production process in order to prevent aggregation of the silver powder. Specifically, a reducing agent such as formalin and sodium hydroxide and a higher fatty acid such as stearic acid and oleic acid are added to an aqueous silver nitrate solution and stirred, and then the silver powder coated with these higher fatty acids is separated.

特開2001-49309では、酸化銀を還元して銀粒子を製造する際に高級脂肪酸塩(例、オレイン酸ナトリウム、ステアリン酸ナトリウム)を共存させることにより高級脂肪酸塩で被覆された銀粒子を製造している。特開2001-49309では、銀粒子をボールミルによりフレーク化する際に高級脂肪酸塩を添加しており、特開2003−55701では、銀粒子をボールミルによりフレーク化する際に界面活性剤および/または高級脂肪酸(例、ジオレイン酸ポリエチレングリコール、オレイン酸)を添加している。 JP-A-2001-49309 produces silver particles coated with higher fatty acid salts by coexisting with higher fatty acid salts (eg, sodium oleate, sodium stearate) when producing silver particles by reducing silver oxide. is doing. In JP-A-2001-49309, a higher fatty acid salt is added when flaking silver particles by a ball mill, and in JP-A-2003-55701, a surfactant and / or a higher grade are added when flaking silver particles by a ball mill. Fatty acids (eg, polyethylene glycol dioleate, oleic acid) are added.

WO2006/126614WO2006 / 126614 WO2007/034833WO2007 / 034833 特開昭54−121270号公報JP 54-121270 A 特開2001-49309号公報JP 2001-49309 A 特開2003−55701号公報JP 2003-55701 A

本発明者らは、上記問題のない銀ペースト、すなわち、比較的低温度で焼結し、かつ、接着強さ、硬さ、電気伝導性および熱伝導性が優れた固形状銀となる、ペースト状銀粒子組成物を開発すべく鋭意研究した結果、高級脂肪酸若しくはその誘導体で被覆された銀粒子の該高級脂肪酸若しくはその誘導体を、より低級の高・中級脂肪酸または高・中級脂肪酸の誘導体に置換することが有効なことを見出し、本発明を完成するに至った。 The inventors of the present invention have a silver paste that does not have the above problem, that is, a paste that sinters at a relatively low temperature and becomes solid silver excellent in adhesive strength, hardness, electrical conductivity, and thermal conductivity. As a result of diligent research to develop a silver particle composition, the higher fatty acid or derivative thereof in silver particles coated with a higher fatty acid or derivative thereof is replaced with a lower high / intermediate fatty acid or a derivative of higher / intermediate fatty acid. It has been found that this is effective, and the present invention has been completed.

本発明の目的は、加熱すると銀粒子が比較的低温度で容易に焼結して接着強さ、硬さ、電気伝導性および熱伝導性が優れた固形状銀となる加熱焼結性銀粒子の製造方法;加熱すると銀粒子が比較的低温度で容易に焼結して接着強さ、硬さ、電気伝導性および熱伝導性が優れた固形状銀となるペースト状銀粒子組成物;ペースト状銀粒子組成物から強度と電気伝導性と熱伝導性が優れた固形状銀を製造する方法;該ペースト状銀粒子組成物を使用して金属製部材を電気伝導性と熱伝導性よく強固に接合する方法;耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を有するプリント配線板を製造する方法;および、電気伝導性と熱伝導性が優れた電気回路接続用バンプを製造する方法を提供することにある。 The object of the present invention is to heat-sinterable silver particles that, when heated, are easily sintered at a relatively low temperature and become solid silver having excellent adhesion strength, hardness, electrical conductivity and thermal conductivity. A paste-like silver particle composition, which, when heated, easily sinters silver particles at a relatively low temperature to form solid silver having excellent adhesion strength, hardness, electrical conductivity and thermal conductivity; paste Of producing solid silver excellent in strength, electrical conductivity and thermal conductivity from a silver particle composition; using the paste-like silver particle composition to strengthen a metal member with good electrical and thermal conductivity A method of manufacturing a printed wiring board having silver wiring excellent in wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity; and electricity excellent in electrical conductivity and thermal conductivity An object of the present invention is to provide a method for manufacturing a bump for circuit connection.

この目的は、
「[1] 表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子の該高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)により置換することを特徴とする、加熱焼結性銀粒子の製造方法。
[2] 高級脂肪酸(a1)の炭素原子数が17以上であり、高・中級脂肪酸(b1)の炭素原子数が16以下であることを特徴とする、[1]に記載の加熱焼結性銀粒子の製造方法。
[2-1] 高級脂肪酸(a1)の炭素原子数が17〜24であり、高・中級脂肪酸(b1)の炭素原子数8〜14であることを特徴とする、[2]に記載の加熱焼結性銀粒子の製造方法。」により達成され、さらには、
「[2-2] 銀粒子が還元法で製造されたものであることを特徴とする、[1]、[2]または[2-1]に記載の加熱焼結性銀粒子の製造方法。」により達成される。
This purpose is
"[1] The higher fatty acid (a1) or higher fatty acid (a1) derivative (a2) of silver particles whose surface is coated with a higher fatty acid (a1) or a higher fatty acid (a1) derivative (a2) A method for producing heat-sinterable silver particles, characterized by substituting with a high / intermediate fatty acid (b1) lower than fatty acid (a1) or a derivative (b2) of high / intermediate fatty acid (b1).
[2] The heat sinterability according to [1], wherein the higher fatty acid (a1) has 17 or more carbon atoms and the higher / intermediate fatty acid (b1) has 16 or less carbon atoms. A method for producing silver particles.
[2-1] The heating according to [2], wherein the higher fatty acid (a1) has 17 to 24 carbon atoms and the higher / intermediate fatty acid (b1) has 8 to 14 carbon atoms. A method for producing sinterable silver particles. In addition,
“[2-2] The method for producing heat-sinterable silver particles according to [1], [2] or [2-1], wherein the silver particles are produced by a reduction method. Is achieved.

この目的は、
「[3] (A)表面が高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で被覆された銀粒子と、(B)揮発性分散媒とからなり、加熱により該揮発性分散媒が揮散し該銀粒子同士が焼結するペースト状銀粒子組成物において、銀粒子表面を被覆している高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)は、銀粒子表面をあらかじめ被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)より低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で置換したものであることを特徴とする、ペースト状銀粒子組成物。
[4] 高級脂肪酸(a1)の炭素原子数が17以上であり、高・中級脂肪酸(b1)の炭素原子数が16以下であることを特徴とする、[3]に記載のペースト状銀粒子組成物。
[4-1] 高級脂肪酸(a1)の炭素原子数が17〜24であり、高・中級脂肪酸(b1)の炭素原子数が8〜14であることを特徴とする、[4]に記載のペースト状銀粒子組成物。
[4-2] 銀粒子(A)の平均粒径(メディアン径D50)が0.1μmより大きく20μm以下であり、その形状が球状、粒状またはフレーク状であることを特徴とする、[3]または[4]に記載のペースト状銀粒子組成物。
[4-3] 揮発性分散媒(B)の沸点が60℃以上300℃以下であることを特徴とする、[3]または[4]に記載のペースト状銀粒子組成物。
[5] 銀粒子(A)の平均粒径が0.1μmより大きく20μm以下であり、その形状が球状、粒状またはフレーク状であり、揮発性分散媒(B)の沸点が60℃以上300℃以下であることを特徴とする、[3]または[4]に記載のペースト状銀粒子組成物。」により達成され、さらには、[4-2-1] 銀粒子が還元法で製造されたものであることを特徴とする、[3]、[4]または[4-2]に記載のペースト状銀粒子組成物。
[5-1] 銀粒子が還元法で製造されたものであることを特徴とする、[5]に記載のペースト状銀粒子組成物により達成される。
This purpose is
“[3] (A) The surface is composed of silver particles coated with high / intermediate fatty acid (b1) or high / intermediate fatty acid (b1) derivative (b2) and (B) a volatile dispersion medium. In the paste-like silver particle composition in which the volatile dispersion medium is volatilized and the silver particles are sintered together, the high / intermediate fatty acid (b1) or the derivative of the high / intermediate fatty acid (b1) covering the surface of the silver particles ( b2) is a higher fatty acid (a1) or a higher fatty acid (a1) derivative (a2) previously coated on the surface of the silver particles, and a higher, intermediate fatty acid (b1) or higher A paste-like silver particle composition characterized by being substituted with a derivative (b2) of intermediate fatty acid (b1).
[4] The pasty silver particles according to [3], wherein the higher fatty acid (a1) has 17 or more carbon atoms and the higher / intermediate fatty acid (b1) has 16 or less carbon atoms. Composition.
[4-1] The higher fatty acid (a1) has 17 to 24 carbon atoms, and the higher / intermediate fatty acid (b1) has 8 to 14 carbon atoms, according to [4] Paste silver particle composition.
[4-2] The average particle diameter (median diameter D50) of the silver particles (A) is larger than 0.1 μm and not larger than 20 μm, and the shape is spherical, granular or flaky, [3] Or the paste-like silver particle composition according to [4].
[4-3] The pasty silver particle composition according to [3] or [4], wherein the volatile dispersion medium (B) has a boiling point of 60 ° C. or higher and 300 ° C. or lower.
[5] The average particle diameter of the silver particles (A) is larger than 0.1 μm and not larger than 20 μm, the shape is spherical, granular or flaky, and the boiling point of the volatile dispersion medium (B) is 60 ° C. or higher and 300 ° C. The pasty silver particle composition according to [3] or [4], characterized in that: [4-2-1] The paste according to [3], [4] or [4-2], wherein the silver particles are produced by a reduction method -Like silver particle composition.
[5-1] The paste-like silver particle composition according to [5], which is characterized in that the silver particles are produced by a reduction method.

この目的は、
「[6] [3]または[4]に記載のペースト状銀粒子組成物を70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結することを特徴とする、固形状銀の製造方法。
[6-1] [5]に記載のペースト状銀粒子組成物を70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結することを特徴とする、固形状銀の製造方法。
[7] 製造された固形状銀の体積抵抗率が1×10-4Ω・cm以下であり、かつ、熱伝導率が10W/m・K以上であることを特徴とする、[6]に記載の固形状銀の製造方法。
[7-1] 製造された固形状銀の体積抵抗率が1×10-4Ω・cm以下であり、かつ、熱伝導率が10W/m・K以上であることを特徴とする、[6-1]に記載の固形状銀の製造方法。」により達成される。
This purpose is
“By heating the paste-like silver particle composition according to [6] [3] or [4] at 70 ° C. or more and 400 ° C. or less, the volatile dispersion medium is volatilized to sinter the silver particles. A method for producing solid silver.
[6-1] The paste-like silver particle composition according to [5] is heated at 70 ° C. or more and 400 ° C. or less to volatilize the volatile dispersion medium and sinter the silver particles. A method for producing solid silver.
[7] The volume resistivity of the manufactured solid silver is 1 × 10 −4 Ω · cm or less and the thermal conductivity is 10 W / m · K or more, [6] The manufacturing method of solid silver of description.
[7-1] The manufactured solid silver has a volume resistivity of 1 × 10 −4 Ω · cm or less and a thermal conductivity of 10 W / m · K or more, [6 -1]. The method for producing solid silver according to [1]. Is achieved.

この目的は、
「[8] [3]または[4]に記載のペースト状銀粒子組成物を複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、複数の金属製部材同士を接合させることを特徴とする、金属製部材の接合方法。
[8-1] [5]に記載のペースト状銀粒子組成物を複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、複数の金属製部材同士を接合させることを特徴とする、金属製部材の接合方法。
[9] 金属製部材が金属製基板または電子部品の金属部分であることを特徴とする、[8]に記載の金属製部材の接合方法。
[9-1] 金属製部材が金属製系基板または電子部品の金属部分であることを特徴とする[8-1]に記載の金属製部材の接合方法。」により達成される。
This purpose is
“The paste-like silver particle composition according to [8] [3] or [4] is interposed between a plurality of metal members, and the volatile dispersion medium is volatilized by heating at 70 ° C. or more and 400 ° C. or less. A method for joining metal members, comprising sintering silver particles and joining a plurality of metal members.
[8-1] The paste-like silver particle composition according to [5] is interposed between a plurality of metal members, and the volatile dispersion medium is volatilized by heating at 70 ° C. to 400 ° C. A method of joining metal members, comprising sintering metal members and joining a plurality of metal members together.
[9] The method for joining metal members according to [8], wherein the metal member is a metal substrate or a metal part of an electronic component.
[9-1] The method for joining metal members according to [8-1], wherein the metal member is a metal substrate or a metal part of an electronic component. Is achieved.

この目的は、
「[10] [3]または[4]に記載のペースト状銀粒子組成物を、接着剤が塗布された基板上に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、接着剤上に銀配線を形成することを特徴とする、プリント配線板の製造方法。
[10-1] [5]に記載のペースト状銀粒子組成物を、接着剤が塗布された基板上に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、接着剤上に銀配線を形成することを特徴とする、プリント配線板の製造方法。」
This purpose is
“The paste-like silver particle composition according to [10] [3] or [4] is applied onto a substrate coated with an adhesive, and heated at 70 ° C. or more and 400 ° C. or less to thereby produce the volatile dispersion. A method for producing a printed wiring board, comprising evaporating a medium and sintering the silver particles to form silver wiring on an adhesive.
[10-1] The volatile dispersion medium is volatilized by applying the paste-like silver particle composition according to [5] onto a substrate coated with an adhesive and heating at 70 ° C to 400 ° C. A method for producing a printed wiring board, comprising: sintering silver particles to form silver wiring on an adhesive. "

この目的は、
「[11] [3]または[4]に記載のペースト状銀粒子組成物を、半導体素子上の電気回路接続用パッド部または基板上の電気回路接続用電極部にドット状に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、半導体素子上または基板上に銀製バンプを形成することを特徴とする、電気回路接続用バンプの製造方法。
[11-1] [5]に記載のペースト状銀粒子組成物を、半導体素子上の電気回路接続用パッド部または基板上の電気回路接続用電極部にドット状に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、半導体素子上または基板上に銀製バンプを形成することを特徴とする、電気回路接続用バンプの製造方法。」により達成される。
This purpose is
“The paste-like silver particle composition according to [11] [3] or [4] is applied in the form of dots to a pad portion for electric circuit connection on a semiconductor element or an electrode portion for electric circuit connection on a substrate, Electrical circuit connection, characterized by forming silver bumps on a semiconductor element or a substrate by volatilizing the volatile dispersion medium and sintering the silver particles by heating at a temperature of from ℃ to 400 ℃ Method of manufacturing bumps.
[11-1] The paste-like silver particle composition according to [5] is applied in the form of dots to an electric circuit connecting pad portion on a semiconductor element or an electric circuit connecting electrode portion on a substrate, and is applied at 70 ° C. or more and 400 A bump for electrical circuit connection, characterized in that by heating at ℃ or less, the volatile dispersion medium is volatilized to sinter the silver particles to form a silver bump on a semiconductor element or substrate. Production method. Is achieved.

本発明の加熱焼結性銀粒子の製造方法によると、加熱により、特には70℃以上400℃以下での加熱により、銀粒子(A)同士が焼結して接着強さと硬さと電気伝導性と熱伝導性が優れた固形状銀となる銀粒子を容易に製造することができる。
本発明のペースト状銀粒子組成物は、加熱により揮発性分散媒(B)が揮散し、特には70℃以上400℃以下での加熱により、銀粒子(A)同士が焼結して接着強さと硬さと電気伝導性と熱伝導性が優れた固形状銀となる。
According to the method for producing heat-sinterable silver particles of the present invention, the silver particles (A) are sintered together by heating, particularly by heating at 70 ° C. or more and 400 ° C. or less, and the adhesive strength, hardness, and electrical conductivity. Silver particles that become solid silver excellent in thermal conductivity can be easily produced.
In the paste-like silver particle composition of the present invention, the volatile dispersion medium (B) is volatilized by heating, and particularly when heated at 70 ° C. or more and 400 ° C. or less, the silver particles (A) sinter to bond strength. Solid silver with excellent hardness, electrical conductivity, and thermal conductivity.

本発明の固形状銀の製造方法によると、加熱により該揮発性分散媒(B)が揮散し、特には70℃以上400℃以下での加熱により、銀粒子(A)同士が焼結して接着強さと硬さと電気伝導性と熱伝導性が優れた固形状銀を製造することができる。
本発明の金属製部材の接合方法によると、加熱により該揮発性分散媒(B)が揮散し銀粒子(A)同士が焼結して複数の金属製部材同士を電気伝導性と熱伝導性よく強固に接合させることができる。
According to the method for producing solid silver of the present invention, the volatile dispersion medium (B) is volatilized by heating, and the silver particles (A) are sintered together by heating at 70 ° C. or more and 400 ° C. or less. Solid silver excellent in adhesive strength, hardness, electrical conductivity and thermal conductivity can be produced.
According to the method for joining metal members of the present invention, the volatile dispersion medium (B) is volatilized by heating, and the silver particles (A) are sintered together, whereby a plurality of metal members are electrically and thermally conductive. It can be bonded well and well.

本発明のプリント配線板の製造方法によると、該揮発性分散媒(B)が揮散し銀粒子(A)同士が焼結して耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を有するプリント配線板を製造することができる。また、前記接合方法によりチップ等を当該プリント配線板に搭載することにより、回路板を製造することができる。 According to the method for producing a printed wiring board of the present invention, the volatile dispersion medium (B) is volatilized and the silver particles (A) are sintered together, resulting in wear resistance, adhesion to a substrate, electrical conductivity, and heat conduction. A printed wiring board having silver wiring with excellent properties can be manufactured. Moreover, a circuit board can be manufactured by mounting a chip or the like on the printed wiring board by the bonding method.

本発明の電気回路接続用バンプの製造方法によると、半導体素子上または基板上に電気伝導性と熱伝導性が優れた銀製バンプを効率よく簡易に形成することができる。 According to the method for manufacturing a bump for connecting an electric circuit of the present invention, a silver bump having excellent electrical conductivity and thermal conductivity can be efficiently and easily formed on a semiconductor element or a substrate.

実施例1における、置換前と置換後の銀粒子についての大気中における示差熱分析(昇温速度5℃/分)チャートである。2 is a differential thermal analysis (temperature increase rate: 5 ° C./min) chart in air for silver particles before and after substitution in Example 1. FIG. 実施例3における、置換前と置換後の銀粒子についての大気中における示差熱分析(昇温速度5℃/分)チャートである。It is a differential thermal analysis (temperature rising rate 5 degree-C / min) chart in the atmosphere about the silver particle before substitution in Example 3 after substitution. 実施例における接着強さ測定用試験体Aの平面図である。銀基板1上にペースト状銀粒子組成物2をメタルマスクで印刷塗布し、銀チップ3を搭載後、加熱して銀基板1と銀チップ3を接合させて接着強さを測定するものである。It is a top view of the test body A for adhesive strength measurement in an Example. The paste-like silver particle composition 2 is printed and applied on a silver substrate 1 with a metal mask, and after mounting the silver chip 3, it is heated to bond the silver substrate 1 and the silver chip 3 and measure the adhesive strength. . 図3におけるX-X線方向の側面図である。It is a side view of the XX line direction in FIG.

本発明の加熱焼結性銀粒子の製造方法は、表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子の該高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)により置換することを特徴とする。置換の結果、表面が該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)により被覆された加熱焼結性銀粒子が製造される。 The method for producing the heat-sinterable silver particles of the present invention comprises the surface of the silver particles coated with the higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2). ) Derivative (a2) is substituted with higher fatty acid (b1) lower than higher fatty acid (a1) or derivative (b2) of higher fatty acid (b1). As a result of the replacement, heat-sinterable silver particles whose surface is coated with a higher / intermediate fatty acid (b1) lower than the higher fatty acid (a1) or a derivative (b2) of the higher / intermediate fatty acid (b1) are produced. .

本発明のペースト状銀粒子組成物は、(A)表面が高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で被覆された銀粒子と、(B)揮発性分散媒とからなり、加熱により該揮発性分散媒が揮散し該銀粒子同士が焼結するペースト状銀粒子組成物において、銀粒子表面を被覆している高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)は、銀粒子表面を予め被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)より低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で置換したものであることを特徴とする。 The paste-like silver particle composition of the present invention comprises (A) silver particles whose surface is coated with a high / intermediate fatty acid (b1) or a high / intermediate fatty acid (b1) derivative (b2), and (B) a volatile dispersion. In the paste-like silver particle composition in which the volatile dispersion medium is volatilized by heating and the silver particles are sintered together by heating, the high / intermediate fatty acid (b1) or the high / intermediate fatty acid coating the silver particle surface The fatty acid (b1) derivative (b2) is a higher fatty acid (a1) or a higher fatty acid (a1) derivative (a2) that has been previously coated on the surface of silver particles, and is a higher / intermediate grade lower than the higher fatty acid (a1). It is characterized by being substituted with a fatty acid (b1) or a derivative (b2) of a high / intermediate fatty acid (b1).

表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子における銀粒子の形状は、特に限定されず、球状,針状,角状,樹枝状,繊維状,フレーク状(片状),粒状,不規則形状,涙滴状が例示される(JIS Z2500:2000参照)。さらには楕円球状,海綿状,ぶどう状,紡錘状,略立方体状,六角板状,柱状,棒状,多孔状,塊状,けい角状,丸み状が例示される。製造容易性、調達容易性の点で、好ましくは球状、粒状およびフレーク状である。 The shape of the silver particles in the silver particles whose surface is coated with the higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2) is not particularly limited, and is spherical, acicular, angular, dendritic, fibrous, Examples include flakes (pieces), granules, irregular shapes, and teardrops (see JIS Z2500: 2000). Further examples include oval, spongy, grape, spindle, substantially cubic, hexagonal plate, columnar, rod, porous, lump, square, round. From the viewpoint of ease of production and ease of procurement, the shape is preferably spherical, granular and flaky.

ここで言う球状とは、ほぼ球に近い形状である(JIS Z2500:2000参照)。必ずしも真球状である必要はなく、粒子の長径(DL)と短径(DS)との比(DL)/(DS)(球状係数あるいは真球度と言うことがある)が1.0〜1.2の範囲にあるものが好ましい。
粒状とは、不規則形状のものではなくほぼ等しい寸法をもつ形状である(JIS Z2500:2000参照)。
フレーク状(片状)とは、板のような形状であり(JIS Z2500:2000参照)、鱗のように薄い板状であることから鱗片状とも言われるものである。
The spherical shape referred to here is a shape that is almost a sphere (see JIS Z2500: 2000). The spherical shape is not necessarily required, and the ratio of the major axis (DL) to the minor axis (DS) of the particle (DL) / (DS) (sometimes referred to as spherical coefficient or sphericity) is 1.0 to 1. Those in the range of .2 are preferred.
Granular is not an irregular shape but a shape with almost equal dimensions (see JIS Z2500: 2000).
The flake shape (strip shape) is a plate-like shape (see JIS Z2500: 2000) and is also called a scale shape because it is a thin plate shape like a scale.

ここで言うフレーク状の銀粒子のアスペクト比は、[粒子の平均長径(μm)]/[粒子の平均短径(μm)]の値が1.0〜8.0の範囲にあるものが好ましい。アスペクト比の算出において平均長径および平均短径の値は、走査型電子顕微鏡により倍率1000〜3000倍程度で観察し、その観察像の中にある20個以上の銀粒子の長径および短径を測定して、その平均値として得ることができる。なお、アスペクト比は、[粒子の平均長径(μm)]/[粒子の平均厚さ(μm)]の値であっても良く、この場合は2.0〜200.0の範囲にあるものが好ましい。ここで、平均長径は先に記載の方法により得ることができ、また、平均厚さの値は、フレーク状の銀粒子をエポキシ樹脂等の硬化性樹脂で固めた試料を製造し、その試料の断面を走査型電子顕微鏡により倍率5000〜20000倍程度で観察して、その観察像の中にある20個以上の銀粒子の厚さを測定して、その平均値として得ることができる。いずれの形状であっても粒度分布は限定されない。 The aspect ratio of the flaky silver particles mentioned here is preferably such that the value of [average major axis of particles (μm)] / [average minor axis of particles (μm)] is in the range of 1.0 to 8.0. . In calculating the aspect ratio, the average major axis and the average minor axis are observed with a scanning electron microscope at a magnification of about 1000 to 3000 times, and the major axis and minor axis of 20 or more silver particles in the observed image are measured. Then, it can be obtained as the average value. The aspect ratio may be a value of [average particle major axis (μm)] / [average particle thickness (μm)]. In this case, the aspect ratio is in the range of 2.0 to 20.0. preferable. Here, the average major axis can be obtained by the method described above, and the average thickness is obtained by preparing a sample in which flaky silver particles are solidified with a curable resin such as an epoxy resin. The cross section is observed with a scanning electron microscope at a magnification of about 5000 to 20000 times, and the thickness of 20 or more silver particles in the observed image is measured to obtain an average value thereof. No matter the shape, the particle size distribution is not limited.

フレーク状は、通常、球状または粒状の銀粒子をセラミック製のボールとともにボールミルのような回転式ドラム装置に投入して、ボールにより銀粒子を物理的に殴打することによりフレーク状に加工される。この際、原料となる球状または粒状の銀粒子の表面が高級脂肪酸または高級脂肪酸誘導体等により被覆されていない場合、銀粒子同士の凝集を低減、防止するため少量の高級脂肪酸若しくは高級脂肪酸誘導体が添加される。そのため、フレーク状銀粒子は、通常、高脂肪酸または高脂肪酸誘導体等により被覆されている。 The flake shape is usually processed into a flake shape by putting spherical or granular silver particles together with ceramic balls into a rotary drum device such as a ball mill and physically striking the silver particles with the balls. At this time, when the surface of the spherical or granular silver particles used as a raw material is not coated with higher fatty acids or higher fatty acid derivatives, etc., a small amount of higher fatty acids or higher fatty acid derivatives are added to reduce or prevent aggregation between silver particles. Is done. Therefore, the flaky silver particles are usually coated with a high fatty acid or a high fatty acid derivative.

本発明における銀粒子の平均粒径は、加熱焼結性の点で好ましくは0.1μmより大きく20μm以下である。この平均粒径はレーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径(メディアン径D50)である。平均粒径が20μmを越えると銀粒子同士の焼結性が低くなり、優れた強度と電気伝導性、熱伝導性、接着性を得にくい。そのため平均粒子径は20μm以下が好ましく、10μm以下であることがより好ましい。しかし、いわゆるナノサイズである0.1μm以下の場合、銀粒子の表面活性が強すぎてペースト状銀粒子組成物の保存安定性が低下する恐れがあるため、0.1μmより大である。このような観点から、銀粒子の平均粒径は、好ましくは0.2〜10μmである。なお、メディアン径D50は、レーザー回折法50%粒径と称されたり(特開2003−55701参照)、体積累積粒径D50と称されてもいる(特開2007−84860参照)。 The average particle diameter of the silver particles in the present invention is preferably larger than 0.1 μm and not larger than 20 μm from the viewpoint of heat sinterability. This average particle diameter is an average particle diameter (median diameter D50) of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method. When the average particle diameter exceeds 20 μm, the sinterability between silver particles becomes low, and it is difficult to obtain excellent strength, electrical conductivity, thermal conductivity, and adhesion. Therefore, the average particle diameter is preferably 20 μm or less, and more preferably 10 μm or less. However, when the so-called nano-size is 0.1 μm or less, the surface activity of the silver particles is too strong, and the storage stability of the pasty silver particle composition may be lowered, so that it is larger than 0.1 μm. From such a viewpoint, the average particle diameter of the silver particles is preferably 0.2 to 10 μm. The median diameter D50 is also referred to as a laser diffraction method 50% particle size (see Japanese Patent Application Laid-Open No. 2003-55701) or a volume cumulative particle size D50 (see Japanese Patent Application Laid-Open No. 2007-84860).

レーザー回折散乱式粒度分布測定法は、金属粒子にレーザービームを照射し、その金属粒子の大きさに応じて様々な方向へ発せられる回折光や散乱光のレーザー光の強度を測定することにより一次粒子の粒径を求めるという汎用の測定方法である。数多くの測定装置が市販されており(例えば、株式会社島津製作所製レーザー回折式粒度分布測定装置SALD、日機装株式会社製レーザー回折散乱式粒度分布測定装置マイクロトラック)、これらを用いて容易に平均粒径(メディアン径D50)を測定することができる。なお金属粒子の凝集が強い場合には、ホモジナイザーにより一次粒子の状態に分散してから測定することが好ましい。 The laser diffraction / scattering particle size distribution measurement method is a method of irradiating a metal beam with a laser beam and measuring the intensity of the diffracted light or scattered light emitted in various directions depending on the size of the metal particle. This is a general-purpose measurement method for determining the particle size of particles. Many measuring devices are commercially available (for example, a laser diffraction particle size distribution measuring device SALD manufactured by Shimadzu Corporation, a laser diffraction scattering particle size distribution measuring device Microtrac manufactured by Nikkiso Co., Ltd.), and using these, the average particle size can be easily obtained. The diameter (median diameter D50) can be measured. In the case where the aggregation of the metal particles is strong, it is preferably measured after being dispersed in a primary particle state by a homogenizer.

銀粒子の製法は、特に限定されず、還元法・粉砕法・電解法・アトマイズ法・熱処理法・それらの組合せによる製法が例示されるが、高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)による置換効果の点で、特に還元法であることが好ましい。 The production method of the silver particles is not particularly limited, and examples thereof include a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, and a combination method thereof, but high / intermediate fatty acid (b1) or high / intermediate fatty acid The reduction method is particularly preferable from the viewpoint of the substitution effect by the derivative (b2) of b1).

銀粒子の表面を予め被覆している高級脂肪酸(a1)は、炭素原子数15以上の脂肪酸であり、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、12−ヒドロキシオクタデカン酸(12−ヒドロキシステアリン酸)、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)等の直鎖飽和脂肪酸;2−ペンチルノナン酸、2−ヘキシルデカン酸、2−ヘプチルドデカン酸、イソステアリン酸等の分枝飽和脂肪酸;パルミトレイン酸、オレイン酸、イソオレイン酸、エライジン酸、リノール酸、リノレン酸、リシノール酸、ガドレン酸、エルカ酸、セラコレイン酸等の不飽和脂肪酸が例示される。 The higher fatty acid (a1) previously coated on the surface of the silver particles is a fatty acid having 15 or more carbon atoms, pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid). 12-hydroxyoctadecanoic acid (12-hydroxystearic acid), eicosanoic acid (arachinic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosanoic acid (serotic acid), octacosanoic acid (montanic acid), etc. Linear saturated fatty acids; branched saturated fatty acids such as 2-pentylnonanoic acid, 2-hexyldecanoic acid, 2-heptyldodecanoic acid and isostearic acid; palmitoleic acid, oleic acid, isooleic acid, elaidic acid, linoleic acid, linolenic acid, ricinoleic acid , Gadrenic acid, erucic acid, ceracoleic acid, etc. Japanese fatty acids are exemplified.

銀粒子の表面を予め被覆している高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)中の高級脂肪酸(a1)は、炭素原子数が17以上の高級脂肪酸が多く、炭素原子数が17〜24の高級脂肪酸がより多い。そのような高級脂肪酸としてマルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸が例示される。 The higher fatty acid (a1) in the higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2) previously coated on the surface of the silver particles has a higher number of higher fatty acids having 17 or more carbon atoms, and the number of carbon atoms Is higher in 17 to 24 higher fatty acids. Examples of such higher fatty acids include margaric acid, stearic acid, oleic acid, linoleic acid, and linolenic acid.

高級脂肪酸(a1)の誘導体(a2)として、高級脂肪酸金属塩、高級脂肪酸エステル、高級脂肪酸アミン塩、高級脂肪酸アミドが例示される。
高級脂肪酸金属塩の金属塩として、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩)、アルミニウム塩、遷移金属塩が例示される。高級脂肪酸エステルのエステルとして、アルキルエステル(例えば、メチルエステル、エチルエステル)、フェニルエステルが例示される。高級脂肪酸アミン塩のアミンとして、1級アルキルアミン(例えば、エチルアミン、プロピルアミン)、1級フェニルアミン、2級アルキルアミン(例えば、ジエチルアミン)、3級アルキルアミンが例示される。高級脂肪酸アミドのアミドとして、N-アルキルアミド(例えば、N-エチルアミド)、N,N’-ジアルキルアミド(例えば、N,N’-ジエチルアミド)、N-フェニルアミドが例示される。高級脂肪酸(a1)のアルカリ金属塩、高級脂肪酸(a1)のアミン塩は通常親水性である。
なお、銀表面が高級脂肪酸(a1)により被覆された銀粒子は通常撥水性を示す。
Examples of the higher fatty acid (a1) derivative (a2) include higher fatty acid metal salts, higher fatty acid esters, higher fatty acid amine salts, and higher fatty acid amides.
Examples of the metal salt of the higher fatty acid metal salt include alkali metal salts (for example, sodium salts and potassium salts), alkaline earth metal salts (for example, magnesium salts and calcium salts), aluminum salts, and transition metal salts. Examples of higher fatty acid esters include alkyl esters (for example, methyl esters and ethyl esters) and phenyl esters. Examples of amines of higher fatty acid amine salts include primary alkyl amines (eg, ethylamine, propylamine), primary phenylamines, secondary alkylamines (eg, diethylamine), and tertiary alkylamines. Examples of the amide of the higher fatty acid amide include N-alkylamide (for example, N-ethylamide), N, N′-dialkylamide (for example, N, N′-diethylamide), and N-phenylamide. The alkali metal salt of higher fatty acid (a1) and the amine salt of higher fatty acid (a1) are usually hydrophilic.
Silver particles whose silver surface is coated with higher fatty acid (a1) usually show water repellency.

銀粒子表面を予め被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を置換するために使用する、高級脂肪酸(a1)より低級の高・中級脂肪酸(b1)は、炭素原子数が16以下の高・中級脂肪酸が好ましく、炭素原子数が8〜14の中級脂肪酸がより好ましい。そのような高・中級脂肪酸として、オクタン酸、カプリン酸、ラウリン酸、ミリスチン酸が例示される。本発明では、「より低級の」は、脂肪酸の炭素原子数が一つでも小さいことを意味し、置換効果の点で炭素原子数が2以上小さいことが好ましく、3以上小さいことがさらに好ましい。
なお、銀表面が高・中級脂肪酸(b1)により被覆された銀粒子は通常撥水性を示す。
The higher fatty acid (b1), which is lower than the higher fatty acid (a1), used to replace the higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2) previously coated on the silver particle surface, High and intermediate fatty acids having 16 or less carbon atoms are preferable, and intermediate fatty acids having 8 to 14 carbon atoms are more preferable. Examples of such high and intermediate fatty acids include octanoic acid, capric acid, lauric acid, and myristic acid. In the present invention, “lower” means that the number of carbon atoms of the fatty acid is as small as one, and the number of carbon atoms is preferably 2 or more, more preferably 3 or less, in terms of the substitution effect.
Silver particles whose silver surface is coated with a high / intermediate fatty acid (b1) usually show water repellency.

より低級の高・中級脂肪酸(b1)の誘導体(b2)として、高・中級脂肪酸金属塩、高・中級脂肪酸エステル、高・中級脂肪酸アミド、高・中級脂肪酸アミン塩が例示される。
高・中級脂肪酸金属塩の金属塩として、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩)、アルカリ土類金属塩(例えば、マグネシウム塩、カルシウム塩)、アルミニウム塩、遷移金属塩が例示される。高・中級脂肪酸エステルのエステルとして、アルキルエステル(例えば、メチルエステル、エチルエステル)、フェニルエステルが例示される。高・中級脂肪酸アミドのアミドとして、N-アルキルアミド(例えば、N-エチルアミド)、N,N’-ジアルキルアミド(例えば、N,N’-ジエチルアミド)、N-フェニルアミドが例示される。なお、高・中級脂肪酸のアルカリ金属塩、高・中級脂肪酸のアミン塩は親水性である。
Examples of the derivatives (b2) of lower and higher intermediate fatty acids (b1) include high / intermediate fatty acid metal salts, high / intermediate fatty acid esters, high / intermediate fatty acid amides, and high / intermediate fatty acid amine salts.
Examples of the metal salt of the high / intermediate fatty acid metal salt include alkali metal salts (for example, sodium salts and potassium salts), alkaline earth metal salts (for example, magnesium salts and calcium salts), aluminum salts, and transition metal salts. Examples of the esters of high / intermediate fatty acid esters include alkyl esters (for example, methyl esters and ethyl esters) and phenyl esters. Examples of the amides of high and intermediate fatty acid amides include N-alkylamides (for example, N-ethylamide), N, N′-dialkylamides (for example, N, N′-diethylamide), and N-phenylamide. The alkali metal salt of high / intermediate fatty acid and the amine salt of high / intermediate fatty acid are hydrophilic.

本発明の加熱焼結性銀粒子は、表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子の該高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)により置換することにより製造される。置換能力の点で、より低級の高・中級脂肪酸(b1)が好ましく、ついで、より低級の高・中級脂肪酸(b1)の撥水性誘導体が好ましい。 The heat-sinterable silver particles of the present invention have a higher fatty acid (a1) or higher fatty acid (a1) derivative of silver particles whose surface is coated with a higher fatty acid (a1) or a higher fatty acid (a1) derivative (a2). It is produced by replacing (a2) with a higher / intermediate fatty acid (b1) lower than the higher fatty acid (a1) or a derivative (b2) of the higher / intermediate fatty acid (b1). From the viewpoint of substitution ability, lower high / intermediate fatty acids (b1) are preferable, and then water-repellent derivatives of lower high / intermediate fatty acids (b1) are preferable.

置換方法は、特に限定されず、例えば、表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子を、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)の液中に浸漬するという方法がある。この際、液を攪拌機、振とう機、超音波振動機等により攪拌あるいは振とうしてもよい。 The substitution method is not particularly limited, and for example, silver particles whose surface is coated with a higher fatty acid (a1) or a derivative (a2) of a higher fatty acid (a1) may be lower or higher than the higher fatty acid (a1). There is a method of immersing in a solution of the fatty acid (b1) or the derivative (b2) of the high / intermediate fatty acid (b1). At this time, the liquid may be stirred or shaken by a stirrer, a shaker, an ultrasonic vibrator, or the like.

より低級の高・中脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)が常温で固体の場合は、アセトン、トルエン等の有機溶剤に溶解して溶液としてから、表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子と混合することが好ましい。より低級の高・中脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)と有機溶剤の混合比率は、前者を溶解できるような比率であればよく、特に限定されない。 If the lower high / medium fatty acid (b1) or the high / medium fatty acid (b1) derivative (b2) is solid at room temperature, the surface is dissolved in an organic solvent such as acetone or toluene, and then the surface is higher fatty acid. It is preferable to mix with silver particles coated with (a1) or a derivative (a2) of higher fatty acid (a1). The mixing ratio of the lower high / medium fatty acid (b1) or the derivative (b2) of the high / medium fatty acid (b1) and the organic solvent is not particularly limited as long as it can dissolve the former.

上記浸漬時の温度は、特に限定されないが、銀粒子同士の凝集を抑制するため、常温以下であることが好ましい。浸漬時間は、銀粒子表面を被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を除去するのに十分な時間であればよく、特に限定されない。
ついで、上記浸漬液または混合物を濾過するなどにより、銀粒子を分離する。
Although the temperature at the time of the said immersion is not specifically limited, In order to suppress aggregation of silver particles, it is preferable that it is below normal temperature. The dipping time is not particularly limited as long as it is sufficient to remove the higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2) that has coated the surface of the silver particles.
Next, the silver particles are separated by filtering the immersion liquid or the mixture.

このようにして分離した銀粒子は、その表面が該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)により被覆されているが、過剰の、より低級の高・中級脂肪酸(b1) または高・中脂肪酸(b1)の誘導体(b2)が付着しているので、こうした過剰物を除去することが好ましい。また、予め銀粒子表面を被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)も付着していることがあるので、これらも除去することが好ましい。 The silver particles thus separated are coated on the surface with a higher fatty acid (b1) lower than the higher fatty acid (a1) or a derivative of the higher fatty acid (b1) (b2). Since an excess of lower high / intermediate fatty acid (b1) or a derivative of high / medium fatty acid (b1) (b2) is attached, it is preferable to remove such excess. Further, since higher fatty acid (a1) or higher fatty acid (a1) derivative (a2) previously coated on the surface of silver particles may be adhered, it is preferable to remove these.

そのためには、分離した銀粒子を揮発性有機溶剤により洗浄することが好ましく、そのための有機溶剤として、アセトン、メタノール、エタノール、イソプロピルアルコール、メチルエチルケトン、ジメチルスルフォキシド、テトラヒドロフランが例示される。これらの有機溶剤は沸点が低く、揮発性が高いため、常温における風乾や減圧乾燥により、容易に除去できるからである。また、銀粒子が還元法で製造されたものである場合は、銀粒子に付着していた有機系還元剤もあわせて除去されるという利点がある。 For that purpose, it is preferable to wash the separated silver particles with a volatile organic solvent, and examples of the organic solvent for this purpose include acetone, methanol, ethanol, isopropyl alcohol, methyl ethyl ketone, dimethyl sulfoxide, and tetrahydrofuran. This is because these organic solvents have a low boiling point and high volatility, and therefore can be easily removed by air drying or drying under reduced pressure at room temperature. Further, when the silver particles are produced by a reduction method, there is an advantage that the organic reducing agent adhering to the silver particles is also removed.

かくして得られた銀粒子表面を被覆している、より低級の高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)の量は、銀粒子の焼結性と、焼結してできた固形状銀の強度と電気伝導性と熱伝導性の点で、0.01%以上であり、2.0重量%以下であることが好ましく、特には0.05%以上であり、1.0重量%以下であることが好ましい。 The amount of lower high / intermediate fatty acid (b1) or high / medium fatty acid (b1) derivative (b2) covering the surface of the silver particles thus obtained is determined by the sinterability of the silver particles and the sintering. From the viewpoint of the strength, electrical conductivity and thermal conductivity of the solid silver thus produced, it is preferably 0.01% or more, preferably 2.0% by weight or less, particularly 0.05% or more. It is preferably 1.0% by weight or less.

銀粒子を被覆している高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)の量は通常の方法で測定できる。銀粒子を空気気流中で500℃に加熱して、銀粒子に付着している高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)を酸化分解、揮発、あるいは燃焼により除去して重量減少を測定するという熱重量分析が例示される。別の方法として、銀粒子を酸素気流中で加熱して銀粒子に付着している高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)中の炭素を炭酸ガスに変えて赤外線吸収スペクトル法により定量分析する方法が例示される。これらの場合、銀粒子表面や銀粒子中の有機系還元剤との合計量が定量されるが、有機還元剤の残留量はごく微量なので、無視することができる。 The amount of the high / intermediate fatty acid (b1) or the high / medium fatty acid (b1) derivative (b2) covering the silver particles can be measured by a usual method. The silver particles are heated to 500 ° C in an air stream and the high / intermediate fatty acid (b1) or high / medium fatty acid (b1) derivative (b2) adhering to the silver particles is oxidized, decomposed or volatilized or burned. A thermogravimetric analysis of removing and measuring weight loss is illustrated. Another method is to heat the silver particles in an oxygen stream and change the carbon in the high / intermediate fatty acid (b1) or high / medium fatty acid (b1) derivative (b2) attached to the silver particles to carbon dioxide. And a method of quantitative analysis by infrared absorption spectroscopy. In these cases, the total amount of the surface of the silver particles and the organic reducing agent in the silver particles is quantified, but the residual amount of the organic reducing agent is negligible and can be ignored.

表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で被覆された銀粒子は、銀粒子表面が酸化されていてもよい。しかし、酸化銀の割合が高いと加熱時に多量の酸素が発生し、焼結してできた固形状銀中にボイドが発生する原因となる恐れがあるため、表面が酸化銀である割合は銀粒子の全表面の50%以下が好ましく、20%以下がより好ましく、更には2%以下が好ましい。特にメモリやCPUのような大型チップ接続のため比較的大きな接合面積で半密閉系となるダイボンド剤のような使用例では、酸化銀の存在はボイド発生により接着強さの低下の原因となるので、10%以下が好ましい。 Silver particles whose surface is coated with a higher fatty acid (a1) or a derivative of higher fatty acid (a1) (a2), higher / intermediate fatty acid (b1) or higher / intermediate fatty acid (b1) lower than the higher fatty acid (a1) In the silver particles coated with the derivative (b2), the surface of the silver particles may be oxidized. However, if the ratio of silver oxide is high, a large amount of oxygen is generated during heating, which may cause voids in the solid silver produced by sintering. 50% or less of the entire surface of the particles is preferable, 20% or less is more preferable, and 2% or less is more preferable. Especially in use cases such as die-bonding agents that become semi-sealed with a relatively large bonding area due to large chip connection such as memory and CPU, the presence of silver oxide causes a decrease in adhesive strength due to void generation. 10% or less is preferable.

なお、より低級の高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)で被覆された銀粒子は、加熱焼結性が高いため、ペースト状銀組成物とするまでは、できるだけ熱を加えないほうが良い。 The silver particles coated with lower high / intermediate fatty acid (b1) or high / medium fatty acid (b1) derivative (b2) have high heat sinterability, so until a paste-like silver composition is obtained. It is better not to heat as much as possible.

本発明のペースト状銀粒子組成物は、高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)で被覆された銀粒子(A)と揮発性分散媒(B)との混合物であり、粉末状の銀粒子が揮発性分散媒(B)の作用によりペースト化している。ペースト化することによりシリンダーやノズルから細い線状に吐出でき、またメタルマスクによる塗布が容易であり、電極の形状に適用しやすくなる。なお、ペースト状は、クリーム状やスラリー状を含むものである。 The paste-like silver particle composition of the present invention comprises a silver particle (A) coated with a high / intermediate fatty acid (b1) or a high / medium fatty acid (b1) derivative (b2) and a volatile dispersion medium (B). It is a mixture, and powdery silver particles are made into a paste by the action of the volatile dispersion medium (B). By making a paste, it can be discharged in a thin line form from a cylinder or nozzle, and it can be easily applied with a metal mask, and can be easily applied to the shape of an electrode. The paste form includes a cream form and a slurry form.

非揮発性分散媒ではなく、揮発性分散媒を使用するのは、加熱により銀粒子が焼結する際に分散媒が前もって揮散すると銀粒子が焼結しやすく、その結果固形状銀の強度と電気伝導性や熱伝導性が大きくなりやすいからである。揮発性分散媒は、銀粒子表面を変質させず、その沸点は60℃以上であり、300℃以下であることが好ましい。沸点が60℃未満であるとペースト状銀粒子組成物を調製する作業中に溶媒が揮散しやすく、沸点が300℃より大であると、銀粒子が焼結後も揮発性分散媒が残留しかねないからである。 The volatile dispersion medium is used instead of the non-volatile dispersion medium because the silver particles easily sinter when the dispersion medium volatilizes in advance when the silver particles are sintered by heating. This is because electrical conductivity and thermal conductivity are likely to increase. The volatile dispersion medium does not alter the surface of the silver particles and has a boiling point of 60 ° C. or higher and preferably 300 ° C. or lower. When the boiling point is less than 60 ° C., the solvent easily evaporates during the operation of preparing the paste-like silver particle composition, and when the boiling point is greater than 300 ° C., the volatile dispersion medium remains after the silver particles are sintered. Because it might be.

そのような揮発性分散媒(B)として、水;エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール等の揮発性一価アルコール;エチレングリコール、プロピレングリコール等の揮発性多価アルコール;低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素;アセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3,5,5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2,6−ジメチル−4−ヘプタノン)等の揮発性ケトン;酢酸エチル(エチルアセテート)、酢酸ブチルのような揮発性酢酸エステル;酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチルのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、メチルセロソルブ、プロピレンブリコールモノメチルエーテル、メチルメトキシブタノール、ブチルカルビトール等の揮発性エーテル;低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイルが例示される。 As such a volatile dispersion medium (B), water; volatile monohydric alcohols such as ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, and benzyl alcohol Volatile polyhydric alcohols such as ethylene glycol and propylene glycol; volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins; volatile aromatic hydrocarbons such as toluene and xylene; acetone, methyl ethyl ketone, methyl isobutyl ketone , Cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexen-1-one), dibutylketone Volatile ketones such as ethyl (2,6-dimethyl-4-heptanone); volatile acetates such as ethyl acetate (ethyl acetate) and butyl acetate; methyl butyrate, methyl hexanoate, methyl octanoate, methyl decanoate Volatile aliphatic carboxylic acid esters such as: volatile ethers such as tetrahydrofuran, methyl cellosolve, propylene bricol monomethyl ether, methylmethoxybutanol, butyl carbitol; low molecular weight volatile silicone oils and volatile organic modified silicone oils Is done.

なお、揮発性分散媒(B)は2種類以上を併用しても良い。揮発性分散媒(B)として水を用いる場合に、高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体で被覆された銀粒子(A)が撥水性を示す場合は、他の水溶性の揮発性分散媒(B)と併用することが好ましい。 Two or more volatile dispersion media (B) may be used in combination. When water is used as the volatile dispersion medium (B), the silver particles (A) coated with the high / intermediate fatty acid (b1) or the high / medium fatty acid (b1) derivative exhibit water repellency. It is preferable to use together with a water-soluble volatile dispersion medium (B).

揮発性分散媒(B)の配合量は、高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)で被覆された銀粒子(A)をペースト状にするのに十分な量でよく、目安として加熱焼結性銀粒子(A)100重量部あたり、5〜20重量部であり、好ましくは6〜14重量部である。本発明のペースト状銀粒子組成物は、本発明の目的に反しない限り加熱焼結性銀粒子(A)以外の還元銀、アトマイズ銀、銀コロイド、銀合金、表面銀コート粉、その他の金属系や非金属系の粉体、金属化合物や金属錯体、チクソ剤、安定剤、着色剤等の添加物を含有しても良い。 The amount of the volatile dispersion medium (B) is sufficient to make the silver particles (A) coated with the high / intermediate fatty acid (b1) or the high / medium fatty acid (b1) derivative (b2) into a paste. The amount may be 5 to 20 parts by weight, preferably 6 to 14 parts by weight per 100 parts by weight of the heat-sinterable silver particles (A). The paste-like silver particle composition of the present invention includes reduced silver, atomized silver, silver colloid, silver alloy, surface silver-coated powder, and other metals other than the heat-sinterable silver particles (A) unless they are contrary to the object of the present invention. You may contain additives, such as a system and a nonmetallic powder, a metal compound, a metal complex, a thixotropic agent, a stabilizer, and a coloring agent.

本発明のペースト状銀粒子組成物は、加熱することにより揮発性分散媒(B)が揮散し、加熱焼結性銀粒子(A)同士が焼結することにより強度と電気伝導性と熱伝導性が優れた固形状の銀となり、かつ、接着性を発現する。この際、揮発性分散媒(B)が揮散し、ついで加熱焼結性銀粒子(A)同士が焼結してもよく、揮発性分散媒の揮散と共に銀粒子が焼結してもよい。銀は本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、本発明の該銀粒子同士の焼結物も大きな強度ときわめて高い電気伝導性と熱伝導性を有する。この際の加熱温度は、揮発性分散媒が揮散し、銀粒子が焼結できる温度であればよく、通常70℃以上である。しかし、400℃を越えると揮発性分散媒(B)が突沸的に蒸発して固形状銀の形状に悪影響が出る恐れがあるため、400℃以下であることが必要であり、好ましくは220℃以下であり、より好ましく180℃以下であり、さらに好ましくは150℃以下である。 In the paste-like silver particle composition of the present invention, the volatile dispersion medium (B) is volatilized by heating, and the heat-sinterable silver particles (A) are sintered to each other so that strength, electrical conductivity, and heat conduction are obtained. It becomes solid silver having excellent properties and exhibits adhesiveness. At this time, the volatile dispersion medium (B) may be volatilized, and then the heat-sinterable silver particles (A) may be sintered together, or the silver particles may be sintered together with the volatilization of the volatile dispersion medium. Since silver inherently has high strength and extremely high electrical and thermal conductivity, the sintered product of the silver particles of the present invention also has high strength and extremely high electrical and thermal conductivity. The heating temperature at this time should just be the temperature which a volatile dispersion medium volatilizes and silver particle can sinter, and is 70 degreeC or more normally. However, if the temperature exceeds 400 ° C., the volatile dispersion medium (B) may suddenly evaporate and adversely affect the shape of the solid silver. Therefore, the temperature must be 400 ° C. or less, preferably 220 ° C. It is below, More preferably, it is 180 degrees C or less, More preferably, it is 150 degrees C or less.

高・中級脂肪酸(b1)または高・中脂肪酸(b1)の誘導体(b2)で被覆された銀粒子(A)が焼結してできた固形状銀の電気伝導性は、体積抵抗率で1×10-4Ω・cm以下であることが好ましく、1×10-5Ω・cm以下であることがより好ましい。その熱伝導性は、10W/m・K以上であることが好ましく、30W/m・K以上であることがより好ましい。加熱焼結性銀粒子(A)が焼結してできた固形状銀の形状は特に限定されず、シート状、フィルム状、テープ状、線状、円盤状、ブロック状、スポット状、不定形状が例示される。 The electrical conductivity of solid silver formed by sintering silver particles (A) coated with high / intermediate fatty acid (b1) or high / medium fatty acid (b1) derivative (b2) is 1 in volume resistivity. It is preferably × 10 −4 Ω · cm or less, and more preferably 1 × 10 −5 Ω · cm or less. The thermal conductivity is preferably 10 W / m · K or more, and more preferably 30 W / m · K or more. The shape of the solid silver formed by sintering the heat-sinterable silver particles (A) is not particularly limited, and is a sheet shape, a film shape, a tape shape, a linear shape, a disk shape, a block shape, a spot shape, an indefinite shape. Is exemplified.

本発明のペースト状銀粒子組成物は、加熱すると揮発性分散媒(B)が揮散し加熱焼結性銀粒子(A)が焼結することにより、強度と電気伝導性、熱伝導性が優れ、接触していた金属製部材、例えば金基板、金メッキ基板、銀基板、銀メッキ金属基板、銅基板、パラジウム基板、パラジウムメッキ金属基板、プラチナ基板、プラチナメッキ金属基板、アルミニウム基板、ニッケルメッキ基板、スズメッキ金属基板等の金属系基板ないし金属製基板、電気絶縁性基板上の電極等金属部分への接着性を有する固形状銀となるので、金属系基板や金属部分を有する電子部品、電子装置、電気部品、電気装置等の接合に有用である。そのような接合として、コンデンサ、抵抗等のチップ部品と回路基板との接合;ダイオード、トランジスタ、メモリ、IC、CPU等の半導体チップとリードフレームもしくは回路基板との接合;高発熱の半導体チップと冷却板との接合が例示される。 When the paste-like silver particle composition of the present invention is heated, the volatile dispersion medium (B) is volatilized and the heat-sinterable silver particles (A) are sintered, so that the strength, electrical conductivity, and thermal conductivity are excellent. , Metal parts that were in contact, such as gold substrate, gold-plated substrate, silver substrate, silver-plated metal substrate, copper substrate, palladium substrate, palladium-plated metal substrate, platinum substrate, platinum-plated metal substrate, aluminum substrate, nickel-plated substrate, Since it becomes solid silver having adhesiveness to metal parts such as metal substrates such as tin-plated metal substrates or metal substrates, electrodes on electrically insulating substrates, electronic components, electronic devices having metal substrates and metal parts, Useful for joining electrical components, electrical devices, etc. Such bonding includes bonding of chip components such as capacitors and resistors and circuit boards; bonding of semiconductor chips such as diodes, transistors, memories, ICs, and CPUs to lead frames or circuit boards; cooling semiconductor chips having high heat generation and cooling. The joining with a board is illustrated.

本発明のペースト状銀粒子組成物を加熱して生成した銀粒子(A)焼結物の洗浄は不要であるが、水や有機溶媒で洗浄してもよい。特に揮発性分散媒(B)が親水性溶剤である場合は水で洗浄することができ、アルコール等の有機溶媒による洗浄の場合のようなVOC発生の問題がない。本発明のペースト状銀粒子組成物の各成分は不純物が少ないため洗浄が容易である。 Although washing of the silver particle (A) sintered product produced by heating the paste-like silver particle composition of the present invention is unnecessary, it may be washed with water or an organic solvent. In particular, when the volatile dispersion medium (B) is a hydrophilic solvent, it can be washed with water, and there is no problem of VOC generation as in the case of washing with an organic solvent such as alcohol. Since each component of the paste-like silver particle composition of the present invention has few impurities, it can be easily washed.

本発明のペースト状銀粒子組成物は、加熱すると揮発性分散媒(B)が揮散し、加熱焼結性銀粒子(A)同士が焼結することにより大きな強度と極めて高い電気伝導性と熱伝導性を有する固形状の銀となる。したがって、硬化性接着剤、例えば、エポキシ樹脂系接着剤、シリコーン樹脂系接着剤、ポリイミド樹脂系接着剤を塗布したプリント配線用基板、あるいはプライマー組成物を塗布し、ついで硬化性接着剤を塗布したプリント配線用基板に、該接着剤が硬化する前に、該ペースト状銀粒子組成物を塗布して加熱することにより、耐摩耗性と基板への接着性に優れた銀配線を形成することができる。本発明のペースト状銀粒子組成物を適用する方法は特に制限されず、ディスペンシング、印刷(例えばスクリーン印刷)、メタルマスク塗布、噴霧、はけ塗り等がある。また、チップ等を該プリント配線板に搭載することにより、回路板を製造することができる。 When the paste-like silver particle composition of the present invention is heated, the volatile dispersion medium (B) is volatilized, and the heat-sinterable silver particles (A) are sintered together, resulting in high strength, extremely high electrical conductivity and heat. It becomes solid silver having conductivity. Therefore, a curable adhesive such as an epoxy resin adhesive, a silicone resin adhesive, a printed wiring board coated with a polyimide resin adhesive, or a primer composition was applied, and then a curable adhesive was applied. Before the adhesive is cured on the printed wiring board, the paste-like silver particle composition is applied and heated to form a silver wiring having excellent wear resistance and adhesion to the board. it can. The method for applying the paste-like silver particle composition of the present invention is not particularly limited, and includes dispensing, printing (for example, screen printing), metal mask coating, spraying, brushing, and the like. Moreover, a circuit board can be manufactured by mounting a chip or the like on the printed wiring board.

加熱温度は、揮発性分散媒(B)が揮散し、銀粒子が焼結できる温度であればよく、通常70℃以上である。しかし、400℃を越えると揮発性分散媒(B)が突沸的に蒸発して固形状銀の形状に悪影響が出る恐れがあるため、400℃以下であることが必要であり、好ましくは220℃以下であり、より好ましく180℃以下であり、さらに好ましくは150℃以下である。 The heating temperature may be a temperature at which the volatile dispersion medium (B) can be volatilized and the silver particles can be sintered, and is usually 70 ° C. or higher. However, if the temperature exceeds 400 ° C., the volatile dispersion medium (B) may suddenly evaporate and adversely affect the shape of the solid silver. Therefore, the temperature must be 400 ° C. or less, preferably 220 ° C. It is below, More preferably, it is 180 degrees C or less, More preferably, it is 150 degrees C or less.

本発明のペースト状銀粒子組成物は、加熱すると揮発性分散媒(B)が揮散し、銀粒子(A)同士が焼結することにより大きな強度と極めて高い電気伝導性と熱伝導性を有する固形状の銀となる。したがって、該ペースト状銀粒子組成物を、半導体素子上の電気回路接続用パッド部または基板上の電気回路接続用端部にドット状に塗布して加熱することにより、該揮発性分散媒を揮散させ当該銀粒子同士を焼結して、半導体素子上または基板上に銀製バンプを製造することができる。 When the paste-like silver particle composition of the present invention is heated, the volatile dispersion medium (B) is volatilized, and the silver particles (A) are sintered together, thereby having high strength, extremely high electrical conductivity, and thermal conductivity. It becomes solid silver. Accordingly, the volatile dispersion medium is volatilized by applying the paste-like silver particle composition in a dot shape to the electric circuit connecting pad part on the semiconductor element or the electric circuit connecting end part on the substrate and heating. Then, the silver particles can be sintered to produce a silver bump on the semiconductor element or the substrate.

ここで、半導体素子として、ダイオード、トランジスタ、メモリ、CPUが例示される。
該ペースト状銀粒子組成物をドット状に塗布する方法として、滴下、ディスペンシング、印刷(例えばスクリーン印刷)、メタルマスク塗布が例示される。
加熱温度は、揮発性分散媒(B)が揮散し、銀粒子が焼結できる温度であればよく、通常70℃以上である。しかし、400℃を越えると揮発性分散媒(B)が突沸的に蒸発して固形状銀の形状に悪影響が出る恐れがあるため、400℃以下であることが必要であり、好ましくは220℃以下であり、より好ましく180℃以下であり、さらに好ましくは150℃以下である。
Here, examples of the semiconductor element include a diode, a transistor, a memory, and a CPU.
Examples of the method for applying the paste-like silver particle composition in the form of dots include dripping, dispensing, printing (for example, screen printing), and metal mask application.
The heating temperature may be a temperature at which the volatile dispersion medium (B) can be volatilized and the silver particles can be sintered, and is usually 70 ° C. or higher. However, if the temperature exceeds 400 ° C., the volatile dispersion medium (B) may suddenly evaporate and adversely affect the shape of the solid silver. Therefore, the temperature must be 400 ° C. or less, preferably 220 ° C. It is below, More preferably, it is 180 degrees C or less, More preferably, it is 150 degrees C or less.

本発明のペースト状銀粒子組成物は、揮発性分散媒(B)を含有するので、密閉容器に保存することが好ましい。長期間保存後に使用するときは、容器を振とうしてから、あるいは容器内を攪拌してから使用することが好ましい。保存安定性を向上する目的で冷蔵保管をしても良く、保管温度として10℃以下が例示されるが、特に密閉容器内では揮発性分散媒(B)が凝固しない温度であることが好ましい。密閉容器にシリンジを使用した場合は、ディスペンサーを用いて微少量の吐出ができる。 Since the pasty silver particle composition of the present invention contains a volatile dispersion medium (B), it is preferably stored in a sealed container. When used after long-term storage, it is preferable to use the container after shaking or stirring the container. Refrigerated storage may be performed for the purpose of improving storage stability, and the storage temperature is 10 ° C. or lower, but it is preferably a temperature at which the volatile dispersion medium (B) does not solidify particularly in a sealed container. When a syringe is used for the sealed container, a small amount can be discharged using a dispenser.

本発明の実施例と比較例を掲げる。実施例と比較例中、部とあるのは重量部を意味し、%とあるのは重量%を意味する。フレーク状の銀粒子のアスペクト比、ペースト状銀粒子組成物を加熱して焼結することにより生成した固形状銀の硬さ、接着強さ、体積抵抗率および熱伝導率は、下記の方法により25℃で測定した。 Examples and comparative examples of the present invention will be given. In Examples and Comparative Examples, “part” means “part by weight” and “%” means “% by weight”. The aspect ratio of flaky silver particles, the hardness, adhesive strength, volume resistivity and thermal conductivity of solid silver produced by heating and sintering a paste-like silver particle composition are as follows. Measured at 25 ° C.

[フレーク状の銀粒子のアスペクト比]
フレーク状の銀粒子を走査型電子顕微鏡により倍率2000倍で観察し、その観察像の中にある20個の銀粒子の長径および短径を測定して、各々の平均値を平均長径、平均短径とし、[粒子の平均長径(μm)]/[粒子の平均短径(μm)]によりアスペクト比Aを算出した。
フレーク状の銀粒子を走査型電子顕微鏡により倍率10000倍で観察し、その観察像の中にある20個の銀粒子の長径および厚さを測定して、各々の平均値を平均長径、平均厚さとし、[粒子の平均長径(μm)]/[粒子の平均厚さ(μm)]によりアスペクト比Bを算出した。
[Aspect ratio of flaky silver particles]
The flaky silver particles are observed with a scanning electron microscope at a magnification of 2000 times, the major axis and minor axis of the 20 silver particles in the observed image are measured, and the average value of each is determined as the average major axis and the average minor axis. The aspect ratio A was calculated from [average particle major axis (μm)] / [average particle minor axis (μm)].
The flaky silver particles are observed with a scanning electron microscope at a magnification of 10,000 times, and the major axis and thickness of 20 silver particles in the observed image are measured. Then, the aspect ratio B was calculated by [average major particle diameter (μm)] / [average particle thickness (μm)].

[置換前と置換後の銀粒子についての大気中における示差熱分析]
示差熱熱重量同時測定装置(島津製作所株式会社製DTG−60AH型)を用い、大気中で置換前と置換後の銀粒子を昇温速度5℃/分にて23℃から400℃まで昇温してDTA曲線をとった。
[Differential thermal analysis in air for silver particles before and after substitution]
Using a differential thermothermal gravimetric simultaneous measurement device (DTG-60AH type manufactured by Shimadzu Corporation), the temperature of the silver particles before and after substitution is increased from 23 ° C. to 400 ° C. at a rate of temperature increase of 5 ° C./min. A DTA curve was taken.

幅50mm×長さ50mm×厚さ1.0mmのポリテトラフルオロエチレン樹脂板上に、幅10mm×長さ10mmの開口部を有する500μm厚のメタルマスクを用いて、ペースト状銀粒子組成物を塗布し、150℃の強制循環式オーブン内で2時間加熱してフィルム状の銀とした。フィルム状の銀についてJIS Z 2244に準じた方法により硬さを測定した。 A paste-like silver particle composition was applied on a polytetrafluoroethylene resin plate having a width of 50 mm, a length of 50 mm, and a thickness of 1.0 mm, using a 500 μm-thick metal mask having an opening of a width of 10 mm and a length of 10 mm. Then, it was heated in a forced circulation oven at 150 ° C. for 2 hours to form film-like silver. The hardness of the film-like silver was measured by a method according to JIS Z 2244.

[接着強さ]
幅25mm×長さ70mm×厚さ1.0mmの銀基板(銀純度99.99%)1上に、10mmの間隔をおいて4つの幅2.5mm×長さ2.5mmの開口部を有する100μm厚のメタルマスクを用いてペースト状銀粒子組成物2を塗布し、その上に幅2.5mm×長さ2.5mm×厚さ0.5mmの銀チップ(銀純度99.99%)3を搭載後、150℃の強制循環式オーブン内で2時間加熱して接合した。かくして得られた接着強さ測定用試験体の幅2.5mm×長さ2.5mm×厚さ0.5mmの銀チップ3の側面を接着強さ試験機により押厚速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ{単位;N(kgf)}とした。なお、接着強さ測定の個数は4個であり、4回の平均値を接着強さとした。
[Adhesive strength]
On a silver substrate (silver purity 99.99%) 1 having a width of 25 mm, a length of 70 mm, and a thickness of 1.0 mm, four openings having a width of 2.5 mm and a length of 2.5 mm are provided at an interval of 10 mm. The paste-like silver particle composition 2 is applied using a metal mask having a thickness of 100 μm, and a silver chip (silver purity 99.99%) having a width of 2.5 mm × a length of 2.5 mm × a thickness of 0.5 mm is formed thereon 3 After mounting, the film was joined by heating in a forced circulation oven at 150 ° C. for 2 hours. The side surface of the silver chip 3 having a width of 2.5 mm, a length of 2.5 mm, and a thickness of 0.5 mm of the test specimen for measuring the adhesive strength thus obtained was pressed at a pressing speed of 23 mm / min by an adhesive strength tester. The bond strength {unit; N (kgf)} was defined as the load when the joint was sheared and broken. The number of adhesion strength measurements was four, and the average value of four times was defined as the adhesion strength.

[体積抵抗率]
幅50mm×長さ50mm×厚さ1.0mmのポリテトラフルオロエチレン樹脂板上に、幅10mm×長さ10mmの開口部を有する500μm厚のメタルマスクを用いて、ペースト状銀粒子組成物を塗布し、150℃の強制循環式オーブン内で2時間加熱してフィルム状の銀とした。フィルム状の銀についてJIS K 7194に準じた方法により体積抵抗率(単位;Ω・cm)を測定した。
[Volume resistivity]
A paste-like silver particle composition was applied on a polytetrafluoroethylene resin plate having a width of 50 mm, a length of 50 mm, and a thickness of 1.0 mm, using a 500 μm-thick metal mask having an opening of a width of 10 mm and a length of 10 mm. Then, it was heated in a forced circulation oven at 150 ° C. for 2 hours to form film-like silver. The volume resistivity (unit: Ω · cm) of the film-like silver was measured by a method according to JIS K 7194.

[熱伝導率]
幅50mm×長さ50mm×厚さ1.0mmのポリテトラフルオロエチレン樹脂板上に、幅10mm×長さ10mmの開口部を有する2mm厚のメタルマスクを用いて、ペースト状銀粒子組成物を塗布し、150℃の強制循環式オーブン内で2時間加熱して板状の銀とした。板状の銀について熱定数測定装置を用いたレーザーフラッシュ法により熱伝導率(単位;W/mK)を測定した。
[Thermal conductivity]
A paste-like silver particle composition is applied onto a polytetrafluoroethylene resin plate having a width of 50 mm, a length of 50 mm, and a thickness of 1.0 mm using a 2 mm thick metal mask having an opening of a width of 10 mm and a length of 10 mm. Then, it was heated in a forced circulation oven at 150 ° C. for 2 hours to obtain plate-like silver. The plate-shaped silver was measured for thermal conductivity (unit: W / mK) by a laser flash method using a thermal constant measuring device.

[参考例]
表面を被覆している高級脂肪酸(a1)を、より低級の高・中級脂肪酸(b1)で置換した銀粒子(A)を製造する方法は、次のとおりである。
ビーカに、高級脂肪酸(a1)で被覆された銀粒子100部と、より低級の高・中級脂肪酸(b1){25℃で液体の場合はそのまま用いた。25℃で固体の場合はアセトン(和光純薬工業株式会社製、試薬1級)により30%の溶液にして用いた}100部を投入し、マグネチックスターラーを用いて25℃で5時間攪拌した。10分間静置して上澄み液(高級脂肪酸(a1)より低級の高・中級脂肪酸(b1)、またはそれらのアセトン溶液)をできるだけ取り除いてから、アセトン(和光純薬工業株式会社製、試薬1級)100部を添加して、マグネチックスターラーを用いて同様に25℃で10分間攪拌した。同様に静置して上澄み液をできるだけ取り除いてから、再度アセトンを添加して同様に銀粒子を洗浄した。これを5回繰返してから銀粒子を取り出し、25℃で16時間風乾した。
[Reference example]
The method for producing silver particles (A) in which the higher fatty acid (a1) covering the surface is replaced with lower higher / intermediate fatty acid (b1) is as follows.
In a beaker, 100 parts of silver particles coated with a higher fatty acid (a1) and lower higher / intermediate fatty acid (b1) {if liquid at 25 ° C. were used as they were. In the case of a solid at 25 ° C., 100 parts of acetone (used as a 30% solution with Wako Pure Chemical Industries, Ltd., reagent grade 1) were added, and stirred at 25 ° C. for 5 hours using a magnetic stirrer. . Let stand for 10 minutes to remove as much of the supernatant liquid as possible (higher and intermediate fatty acids (b1) lower than higher fatty acid (a1) or their acetone solution), then acetone (Wako Pure Chemical Industries, Ltd., reagent grade 1) ) 100 parts were added and similarly stirred at 25 ° C. for 10 minutes using a magnetic stirrer. In the same manner, the supernatant was removed as much as possible, then acetone was added again to wash the silver particles in the same manner. After repeating this five times, the silver particles were taken out and air-dried at 25 ° C. for 16 hours.

[実施例1]
参考例の製造方法において、市販の還元法で製造され表面がステアリン酸で被覆されたフレーク状の銀粒子(レーザー回折法により得られる1次粒子の平均粒径(メディアン径D50)が1.2μmであり、アスペクト比Aが1.6であり、アスペクト比Bが2.4であり、有機物量(注:ステアリン酸と微量の有機系還元剤の合計量である)が0.3重量%である)と、より低級の高・中級脂肪酸(b1)としてのオクタン酸(和光純薬工業株式会社製、試薬特級)を用いて、銀粒子の表面を被覆しているステアリン酸(炭素原子数18、分子量284)をオクタン酸(炭素原子数8、分子量144)に置換した銀粒子(A)を得た。
[Example 1]
In the production method of the reference example, flaky silver particles produced by a commercially available reduction method and coated with stearic acid on the surface (average particle size (median diameter D50) of primary particles obtained by laser diffraction method is 1.2 μm). The aspect ratio A is 1.6, the aspect ratio B is 2.4, and the amount of organic substances (note: the total amount of stearic acid and a small amount of organic reducing agent) is 0.3% by weight. And stearic acid (18 carbon atoms) covering the surface of the silver particles using octanoic acid (made by Wako Pure Chemical Industries, Ltd., special grade reagent) as a lower and higher intermediate fatty acid (b1). , Molecular weight 284) was substituted with octanoic acid (8 carbon atoms, molecular weight 144) to obtain silver particles (A).

ステアリン酸がオクタン酸に置換されたことを確認するため、置換前と置換後の銀粒子について大気中における示差熱分析(昇温速度5℃/分)を行ない図1に示した。図1によると、置換前のステアリン酸の酸化分解ピーク温度は210℃である。置換後の酸化分解ピーク温度は199℃であり、かつ、ステアリン酸の酸化分解ピーク温度の210℃には発熱ピークがまったく検出されていない。したがって、ステアリン酸はオクタン酸に置換されたことがわかった。 In order to confirm that the stearic acid was replaced with octanoic acid, differential thermal analysis (at a heating rate of 5 ° C./min) in the atmosphere was performed on the silver particles before and after the substitution, and the results are shown in FIG. According to FIG. 1, the oxidative decomposition peak temperature of stearic acid before substitution is 210 ° C. The oxidative decomposition peak temperature after substitution is 199 ° C., and no exothermic peak is detected at 210 ° C. of the oxidative decomposition peak temperature of stearic acid. Therefore, it was found that stearic acid was replaced with octanoic acid.

この銀粒子(A)50部に1−ヘキサノール(和光純薬工業株式会社、試薬特級)3.5部を添加し、へらを用いて均一になるまで混合することによりペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。硬さ測定に使用したフィルム状銀は、固体状であるに十分な硬さを有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なこと、および半導体素子上または基板上に銀バンプを形成するのに有用なことがわかった。 A paste-like silver particle composition is prepared by adding 3.5 parts of 1-hexanol (Wako Pure Chemical Industries, Ltd., reagent grade) to 50 parts of the silver particles (A) and mixing with a spatula until uniform. Prepared. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. The film-like silver used for the hardness measurement had sufficient hardness to be solid. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, Useful for forming silver wiring with excellent wear resistance, adhesion to substrates, electrical and thermal conductivity, and useful for forming silver bumps on semiconductor devices or substrates all right.

[実施例2]
実施例1において、1−ヘキサノールの代わりに蒸留範囲が106℃から202℃である低級イソパラフィン(新日本石油化学株式会社製、商品名アイソゾール300)を用いた以外は実施例1と同様にしてペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。硬さ測定に使用したフィルム状銀は、固体状であるに十分な硬さを有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なこと、および半導体素子上または基板上に銀バンプを形成するのに有用なことがわかった。
[Example 2]
In Example 1, paste was used in the same manner as in Example 1 except that lower isoparaffin (manufactured by Nippon Petrochemical Co., Ltd., trade name Isosol 300) having a distillation range of 106 ° C. to 202 ° C. was used instead of 1-hexanol. A silver particle composition was prepared. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. The film-like silver used for the hardness measurement had sufficient hardness to be solid. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, Useful for forming silver wiring with excellent wear resistance, adhesion to substrates, electrical and thermal conductivity, and useful for forming silver bumps on semiconductor devices or substrates all right.

[実施例3]
参考例の製造方法において、市販の還元法で製造された粒状の銀粒子(被覆剤なし)をボールミルに投入し、オレイン酸を添加してフレーク化することにより製造された、表面がオレイン酸で被覆されたフレーク状銀粒子{レーザー回折法により得られる1次粒子の平均粒径(メディアン径D50)が3.0μmであり、アスペクト比Aが3.3であり、アスペクト比Bが15.3であり、有機物量(注:オレイン酸と微量の有機系還元剤の合計量である)が0.3重量%である}と、ラウリン酸(和光純薬工業株式会社製、試薬特級)の30%アセトン溶液を用いて、銀粒子の表面を被覆しているオレイン酸(炭素原子数18、分子量282)をラウリン酸(炭素原子数12、分子量200)に置換したフレーク状銀粒子(A)を得た。
[Example 3]
In the production method of the reference example, granular silver particles (without a coating agent) produced by a commercially available reduction method were put into a ball mill, and oleic acid was added to flake and the surface was made of oleic acid. Coated flaky silver particles {average particle diameter (median diameter D50) of primary particles obtained by laser diffraction method is 3.0 µm, aspect ratio A is 3.3, aspect ratio B is 15.3 30% of lauric acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade of reagent) and the amount of organic substances (note: the total amount of oleic acid and a small amount of organic reducing agent is 0.3% by weight). A flaky silver particle (A) in which oleic acid (18 carbon atoms, molecular weight 282) covering the surface of silver particles was replaced with lauric acid (12 carbon atoms, 200 molecular weight) using a% acetone solution. Obtained.

オレイン酸がラウリン酸に置換されたことを確認するため、置換前と置換後の銀粒子について大気中における示差熱分析(昇温速度5℃/分)を行ない図2に示した。図2によると、置換前のオレイン酸の酸化分解ピーク温度は227℃である。置換後の酸化分解ピーク温度は212℃であり、かつ、オレイン酸の酸化分解ピーク温度の227℃付近には発熱ピークがまったく検出されていない。したがって、オレイン酸はラウリン酸に置換されたことがわかった。 In order to confirm that oleic acid was replaced with lauric acid, differential thermal analysis (at a temperature rising rate of 5 ° C./min) in air was performed on the silver particles before and after the substitution, and the results are shown in FIG. According to FIG. 2, the oxidative decomposition peak temperature of oleic acid before substitution is 227 ° C. The oxidative decomposition peak temperature after substitution is 212 ° C., and no exothermic peak is detected in the vicinity of 227 ° C. of the oleic acid oxidative decomposition peak temperature. Therefore, it was found that oleic acid was replaced with lauric acid.

この銀粒子(A)50部に、蒸留範囲が106℃から202℃である低級イソパラフィン(新日本石油化学株式会社製、商品名アイソゾール300)4部を添加し、へらを用いて均一に混合なるまで混合することによりペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物はメタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。硬さ測定に使用したフィルム状銀は、固体状であるに十分な硬さを有していた。以上の結果より、このペースト状銀粒子組成物が、強固な固形状銀を製造するのに有用なこと、金属製部材を電気伝導性と熱伝導性よく強固に接合するのに有用なこと、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀配線を形成するのに有用なこと、および半導体素子上または基板上に銀バンプを形成するのに有用なことがわかった。 To 50 parts of the silver particles (A), 4 parts of lower isoparaffin having a distillation range of 106 ° C. to 202 ° C. (trade name Isosol 300, manufactured by Nippon Petrochemical Co., Ltd.) is added and mixed uniformly using a spatula. A pasty silver particle composition was prepared by mixing up to. This paste-like silver particle composition could be applied in a good shape without sagging or flowing when applied with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. The film-like silver used for the hardness measurement had sufficient hardness to be solid. From the above results, this paste-like silver particle composition is useful for producing solid solid silver, useful for joining metal members firmly with good electrical conductivity and thermal conductivity, Useful for forming silver wiring with excellent wear resistance, adhesion to substrates, electrical and thermal conductivity, and useful for forming silver bumps on semiconductor devices or substrates all right.

[比較例1]
実施例2において、銀粒子の表面を被覆しているステアリン酸(炭素原子数18、分子量284)をオクタン酸(炭素原子数8、分子量144)に置換した銀粒子(A)の代わりに、市販の還元法で製造され表面がステアリン酸で被覆されたフレーク状銀粒子(レーザー回折法により得られる1次粒子の平均粒径(メディアン径D50)が1.2μmであり、アスペクト比Aが1.6であり、アスペクト比Bが2.4であり有機物量{注:ステアリン酸と微量の有機系還元剤の合計量である)が0.3重量%である}で被覆された銀粒子をそのまま用いた以外は、実施例2と同様にしてペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。特に接着強さが不十分であった。
[Comparative Example 1]
Instead of silver particles (A) in which stearic acid (18 carbon atoms, molecular weight 284) covering the surface of silver particles was replaced with octanoic acid (8 carbon atoms, molecular weight 144) in Example 2, commercially available The flaky silver particles produced by the above reduction method and coated on the surface with stearic acid (the average particle diameter (median diameter D50) of primary particles obtained by the laser diffraction method is 1.2 μm, and the aspect ratio A is 1. 6, silver particles coated with an aspect ratio B of 2.4 and an organic substance amount (note: the total amount of stearic acid and a small amount of organic reducing agent) is 0.3% by weight. A pasty silver particle composition was prepared in the same manner as in Example 2 except that it was used. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. In particular, the adhesive strength was insufficient.

[比較例2]
実施例3において、銀粒子の表面を被覆しているオレイン酸(炭素原子数18、分子量282)をラウリン酸(炭素原子数12、分子量200)に置換したフレーク状銀粒子(A)の代わりに、市販の還元法で製造された粒状の銀粒子をボールミルに投入し、オレイン酸を添加してフレーク化することにより製造された、表面がオレイン酸で被覆されたフレーク状銀粒子{レーザー回折法により得られる1次粒子の平均粒径(メディアン径D50)が3.0μmであり、アスペクト比Aが3.3であり、アスペクト比Bが15.3であり、有機物量(注:オレイン酸と微量の有機系還元剤の合計量)が0.3重量%である}をそのまま用いた以外は、実施例3と同様にしてペースト状銀粒子組成物を調製した。
このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。特に接着強さが不十分であった。
[Comparative Example 2]
In Example 3, instead of the flaky silver particles (A) in which the oleic acid (18 carbon atoms, molecular weight 282) covering the surface of the silver particles was replaced with lauric acid (12 carbon atoms, 200 molecular weight). A granular silver particle produced by a commercially available reduction method is put into a ball mill, and oleic acid is added to make a flake. The flaky silver particle whose surface is coated with oleic acid {laser diffraction method The average particle diameter (median diameter D50) of the primary particles obtained by the above is 3.0 μm, the aspect ratio A is 3.3, the aspect ratio B is 15.3, the amount of organic matter (note: oleic acid and A paste-like silver particle composition was prepared in the same manner as in Example 3 except that the total amount of the trace amount of the organic reducing agent was 0.3% by weight.
This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. In particular, the adhesive strength was insufficient.

[比較例3]
実施例3において、銀粒子の表面を被覆しているオレイン酸(炭素原子数18、分子量282)をラウリン酸(炭素原子数12、分子量200)に置換したフレーク状銀粒子(A)の代わりに、市販の還元法で製造された被覆剤なしの粒状の銀粒子をボールミルに投入し、ラウリン酸を添加してフレーク化することにより製造された、表面がラウリン酸で被覆されたフレーク状銀粒子{レーザー回折法により得られる1次粒子の平均粒径が3.0μmであり、アスペクト比Aが2.9であり、アスペクト比Bが9.0であり、有機物量(注:ラウリン酸と微量の有機系還元剤の合計量)が0.3重量%である}をそのまま用いた以外は、実施例3と同様にしてペースト状銀粒子組成物を調製した。このペースト状銀粒子組成物は、メタルマスクでの塗布においてダレ、流れ等はなく良好な形状に塗布できた。このペースト状銀粒子組成物について加熱焼結物である固形状銀の硬さ、接着強さ、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。特に接着強さが不十分であった。
[Comparative Example 3]
In Example 3, instead of the flaky silver particles (A) in which the oleic acid (18 carbon atoms, molecular weight 282) covering the surface of the silver particles was replaced with lauric acid (12 carbon atoms, 200 molecular weight). A flaky silver particle having a surface coated with lauric acid, which is produced by putting granular silver particles without a coating agent produced by a commercially available reduction method into a ball mill and adding lauric acid to form flakes. {The average particle diameter of the primary particles obtained by the laser diffraction method is 3.0 μm, the aspect ratio A is 2.9, the aspect ratio B is 9.0, and the amount of organic substances (note: lauric acid and trace amount The total amount of the organic reducing agent was 0.3 wt%} was used in the same manner as in Example 3 except that the pasty silver particle composition was prepared. This paste-like silver particle composition could be applied in a good shape without sagging or flowing during application with a metal mask. With respect to this paste-like silver particle composition, the hardness, adhesion strength, volume resistivity, and thermal conductivity of solid silver as a heat-sintered product were measured, and the results are summarized in Table 1. In particular, the adhesive strength was insufficient.

[実施例4]
厚さが1.2mmのFRP板上に、エポキシ樹脂接着剤(住友スリーエム株式会社製、商品名SW2214)を、幅1mm×長さ50mmの開口部を有する50μm厚のメタルマスクを用いて塗布し、塗布したエポキシ樹脂接着剤に重ねて実施例2のペースト状銀粒子組成物を同様に印刷塗布した。このERP板を150℃の強制循環式オーブン内で2時間加熱してエポキシ樹脂接着剤を硬化させ、銀粒子を焼結した。
このプリント配線板上の幅1mm、長さ50mm、厚さ50μmの銀製配線回路について長さ方向の体積抵抗率を測定したところ、9×10-6Ω・cmであり、実用上十分な導電性を有していた。
[Example 4]
An epoxy resin adhesive (trade name SW2214, manufactured by Sumitomo 3M Limited) is applied onto a 1.2 mm thick FRP plate using a 50 μm thick metal mask having an opening of 1 mm width × 50 mm length. The pasty silver particle composition of Example 2 was printed and applied in the same manner, over the applied epoxy resin adhesive. This ERP plate was heated in a forced circulation oven at 150 ° C. for 2 hours to cure the epoxy resin adhesive and sinter silver particles.
When the volume resistivity in the length direction of a silver wiring circuit having a width of 1 mm, a length of 50 mm and a thickness of 50 μm on this printed wiring board was measured, it was 9 × 10 −6 Ω · cm, which was practically sufficient conductivity. Had.

[比較例4]
実施例4において、実施例2のペースト状銀粒子組成物を用いない他は同様にして、幅1mm、長さ50mm、厚さ50μmのエポキシ樹脂製配線回路を作製した。実施例4と同様に、幅1mm、長さ50mm、厚さ50μmのエポキシ樹脂製配線回路について長さ方向の体積抵抗率を測定したところ1×10+1Ω・cm以上であり、導電性は著しく低かった。
[Comparative Example 4]
An epoxy resin wiring circuit having a width of 1 mm, a length of 50 mm, and a thickness of 50 μm was produced in the same manner as in Example 4 except that the paste-like silver particle composition of Example 2 was not used. As in Example 4, when the volume resistivity in the length direction was measured for an epoxy resin wiring circuit having a width of 1 mm, a length of 50 mm, and a thickness of 50 μm, it was 1 × 10 +1 Ω · cm or more, and the conductivity was It was very low.

[実施例5]
厚さが1.2mmのFRP板上に形成された銅製配線回路(幅1mm、長さ50mm、厚さ30μm)の表面を金メッキした電気回路の両端部に、縦1mm、横1mm、厚さ100μmの開口部を有するメタルマスクを用いて実施例2のペースト状銀粒子組成物をドット状に印刷塗布した。このFRP板を150℃の強制循環式オーブン内で2時間加熱して銀粒子を焼結することにより、電気回路接続用バンプを製造した。
この電気回路の両端部に形成した電気回路接続用バンプ間の電気抵抗を測定したところ、0.05Ω未満であり、実用上十分な導電性を有していた。
[Example 5]
A copper wiring circuit (width 1 mm, length 50 mm, thickness 30 μm) formed on a 1.2 mm thick FRP plate is gold-plated on both ends of the electric circuit, 1 mm long, 1 mm wide, 100 μm thick The paste-like silver particle composition of Example 2 was printed and applied in the form of dots using a metal mask having the following openings. The FRP plate was heated in a forced circulation oven at 150 ° C. for 2 hours to sinter the silver particles, thereby producing electric circuit connecting bumps.
When the electric resistance between the electric circuit connecting bumps formed at both ends of the electric circuit was measured, it was less than 0.05Ω, and the electric conductivity was sufficiently practical.

Figure 2009289745
Figure 2009289745

本発明の製造方法で製造される加熱焼結性銀粒子は、ペースト状銀粒子組成物の主原料として有用である。
本発明のペースト状銀粒子組成物、固形状銀の製造方法および金属製部材の接合方法は、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接合、太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成、プリント回路基板上の導電性回路の形成等に有用である。
本発明の配線板の製造方法は、銀配線を有するプリント配線板を効率よく製造するのに有用である。
本発明の電気回路接続用バンプの製造方法は、半導体素子または基板上に銀製バンプを効率よく製造するのに有用である。
The heat-sinterable silver particles produced by the production method of the present invention are useful as a main raw material for a paste-like silver particle composition.
The paste-like silver particle composition, solid silver production method and metal member joining method of the present invention include the formation of electrodes for various electronic components such as resistors and capacitors, and electrodes for various display elements, and conductive film for electromagnetic wave shielding. Chip-type ceramic electronic components such as formation, bonding of chip components such as capacitors, resistors, diodes, memories, arithmetic elements (CPUs) to substrates, formation of solar cell electrodes, multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, etc. It is useful for forming external electrodes, and forming conductive circuits on a printed circuit board.
The method for producing a wiring board of the present invention is useful for efficiently producing a printed wiring board having silver wiring.
The method for producing a bump for connecting an electric circuit of the present invention is useful for efficiently producing a silver bump on a semiconductor element or a substrate.

A 接着強さ測定用試験体
1 銀基板
2 ペースト状銀粒子組成物(加熱して焼結後は固体状銀)
3 銀チップ
A Test specimen for measuring adhesive strength 1 Silver substrate 2 Pasty silver particle composition (solid silver after heating and sintering)
3 Silver chip

Claims (11)

表面が高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)で被覆された銀粒子の該高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)よりは低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)により置換することを特徴とする、加熱焼結性銀粒子の製造方法。 Higher fatty acid (a1) or higher fatty acid (a1) or higher fatty acid (a1) derivative (a2) of silver particle coated with higher fatty acid (a1) or higher fatty acid (a1) derivative (a2) A method for producing heat-sinterable silver particles, characterized by substituting with a lower high / intermediate fatty acid (b1) or a derivative (b2) of a high / intermediate fatty acid (b1). 高級脂肪酸(a1)の炭素原子数が17以上であり、高・中級脂肪酸(b1)の炭素原子数が16以下であることを特徴とする、請求項1記載の加熱焼結性銀粒子の製造方法。 2. The heat-sinterable silver particles according to claim 1, wherein the higher fatty acid (a1) has 17 or more carbon atoms and the higher / intermediate fatty acid (b1) has 16 or less carbon atoms. Method. (A)表面が高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で被覆された銀粒子と、(B)揮発性分散媒とからなり、加熱により該揮発性分散媒が揮散し該銀粒子同士が焼結するペースト状銀粒子組成物において、銀粒子表面を被覆している高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)は、銀粒子表面をあらかじめ被覆していた高級脂肪酸(a1)または高級脂肪酸(a1)の誘導体(a2)を、該高級脂肪酸(a1)より低級の高・中級脂肪酸(b1)または高・中級脂肪酸(b1)の誘導体(b2)で置換したものであることを特徴とする、ペースト状銀粒子組成物。 (A) The surface is composed of silver particles coated with high / intermediate fatty acid (b1) or a derivative (b2) of high / intermediate fatty acid (b1), and (B) a volatile dispersion medium. In the paste-like silver particle composition in which the medium is volatilized and the silver particles are sintered, the high / intermediate fatty acid (b1) or the high / intermediate fatty acid (b1) derivative (b2) covering the surface of the silver particles, The higher fatty acid (a1) or the higher fatty acid (a1) derivative (a2) previously coated on the surface of the silver particles is converted to a higher / intermediate fatty acid (b1) or higher / intermediate fatty acid (b1) lower than the higher fatty acid (a1). A paste-like silver particle composition, which is substituted with a derivative (b2) of 高級脂肪酸(a1)の炭素原子数が17以上であり、高・中級脂肪酸(b1)の炭素原子数が16以下であることを特徴とする、請求項3記載のペースト状銀粒子組成物。 4. The paste-like silver particle composition according to claim 3, wherein the higher fatty acid (a1) has 17 or more carbon atoms and the higher / intermediate fatty acid (b1) has 16 or less carbon atoms. 銀粒子(A)の平均粒径(メディアン径D50)が0.1μmより大きく20μm以下であり、その形状が球状、粒状またはフレーク状であり、揮発性分散媒(B)の沸点が60℃以上300℃以下であることを特徴とする、請求項3または請求項4記載のペースト状銀粒子組成物。 The average particle diameter (median diameter D50) of the silver particles (A) is larger than 0.1 μm and not larger than 20 μm, the shape is spherical, granular or flaky, and the boiling point of the volatile dispersion medium (B) is 60 ° C. or higher. The paste-like silver particle composition according to claim 3 or 4, wherein the composition is 300 ° C or lower. 請求項3、請求項4または請求項5記載のペースト状銀粒子組成物を70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結することを特徴とする、固形状銀の製造方法。 The paste-like silver particle composition according to claim 3, claim 4 or claim 5 is heated at 70 ° C or higher and 400 ° C or lower to volatilize the volatile dispersion medium and sinter the silver particles. A method for producing solid silver. 製造された固形状銀の体積抵抗率が1×10-4Ω・cm以下であり、かつ、熱伝導率が10W/m・K以上であることを特徴とする、請求項6記載の固形状銀の製造方法。 7. The solid state according to claim 6, wherein the produced solid silver has a volume resistivity of 1 × 10 −4 Ω · cm or less and a thermal conductivity of 10 W / m · K or more. Silver production method. 請求項3、請求項4または請求項5記載のペースト状銀粒子組成物を複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、複数の金属製部材同士を接合させることを特徴とする、金属製部材の接合方法。 The paste-like silver particle composition according to claim 3, 4 or 5 is interposed between a plurality of metal members, and the volatile dispersion medium is volatilized by heating at 70 ° C to 400 ° C. A method for joining metal members, comprising sintering silver particles and joining a plurality of metal members. 金属製部材が金属製基板または電子部品の金属部分であることを特徴とする、請求項8記載の金属製部材の接合方法。 The metal member joining method according to claim 8, wherein the metal member is a metal substrate or a metal portion of an electronic component. 請求項3、請求項4または請求項5記載のペースト状銀粒子組成物を、接着剤が塗布された基板上に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、接着剤上に銀配線を形成することを特徴とする、プリント配線板の製造方法。 The volatile dispersion medium is obtained by applying the paste-like silver particle composition according to claim 3, 4 or 5 on a substrate coated with an adhesive and heating at 70 ° C to 400 ° C. The method for producing a printed wiring board is characterized in that the silver particles are sintered to form silver wiring on the adhesive. 請求項3、請求項4または請求項5記載のペースト状銀粒子組成物を、半導体素子上の電気回路接続用パッド部または基板上の電気回路接続用電極部にドット状に塗布し、70℃以上400℃以下で加熱することにより、該揮発性分散媒を揮散させ該銀粒子同士を焼結して、半導体素子上または基板上に銀製バンプを形成することを特徴とする、電気回路接続用バンプの製造方法。 The paste-like silver particle composition according to claim 3, 4 or 5 is applied in a dot shape to an electric circuit connecting pad portion on a semiconductor element or an electric circuit connecting electrode portion on a substrate. By heating at 400 ° C. or lower, the volatile dispersion medium is volatilized to sinter the silver particles to form silver bumps on a semiconductor element or on a substrate. Bump manufacturing method.
JP2009109997A 2008-05-01 2009-04-28 Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection Active JP4470193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009109997A JP4470193B2 (en) 2008-05-01 2009-04-28 Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008119964 2008-05-01
JP2009109997A JP4470193B2 (en) 2008-05-01 2009-04-28 Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection

Publications (2)

Publication Number Publication Date
JP2009289745A true JP2009289745A (en) 2009-12-10
JP4470193B2 JP4470193B2 (en) 2010-06-02

Family

ID=41458734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009109997A Active JP4470193B2 (en) 2008-05-01 2009-04-28 Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection

Country Status (1)

Country Link
JP (1) JP4470193B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
WO2012053034A1 (en) * 2010-10-20 2012-04-26 ニホンハンダ株式会社 Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
WO2012063659A1 (en) 2010-11-10 2012-05-18 Dowaエレクトロニクス株式会社 Silver particle-containing composition, dispersion liquid, paste, and production method for each
JP2013001954A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Method for producing metal fine particle
JP2013091726A (en) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition
WO2013115339A1 (en) * 2012-02-02 2013-08-08 戸田工業株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
JP2013159805A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Method for producing silver microparticle, silver microparticle produced by the method for producing silver microparticle, and conductive paste containing the silver microparticle
JP2013159804A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Silver microparticle, method for producing same, and conductive paste, conductive film and electronic device containing silver microparticle
WO2014069074A1 (en) 2012-10-30 2014-05-08 化研テック株式会社 Conductive paste and die bonding method
WO2014141741A1 (en) * 2013-03-11 2014-09-18 Dic株式会社 Method for producing conductive metal particles and conductive paste
WO2016017128A1 (en) * 2014-07-30 2016-02-04 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
WO2016028221A1 (en) * 2014-10-16 2016-02-25 Heraeus Deutschland Gmbh &Co. Kg Metal sintering preparation and the use thereof of the connecting of components
JP2016183374A (en) * 2015-03-26 2016-10-20 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
WO2017006531A1 (en) * 2015-07-08 2017-01-12 バンドー化学株式会社 Joining composition and joining method
US10141283B2 (en) 2014-12-26 2018-11-27 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same
US10332853B2 (en) 2014-02-03 2019-06-25 Osaka University Bonding structure and method for producing bonding structure
US10446518B2 (en) 2014-12-26 2019-10-15 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
JP2021063251A (en) * 2019-10-11 2021-04-22 国立大学法人横浜国立大学 Silver nanowire with dye-containing protective layer, dispersion liquid of the same, method for manufacturing silver nanowire, and light-transmitting conductive film
WO2022030089A1 (en) 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same
JP2012052198A (en) * 2010-09-02 2012-03-15 Nippon Handa Kk Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
WO2012053034A1 (en) * 2010-10-20 2012-04-26 ニホンハンダ株式会社 Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
KR20150113992A (en) 2010-11-10 2015-10-08 도와 일렉트로닉스 가부시키가이샤 Silver particle-containing composition, dispersion liquid, paste, and production method for each
WO2012063659A1 (en) 2010-11-10 2012-05-18 Dowaエレクトロニクス株式会社 Silver particle-containing composition, dispersion liquid, paste, and production method for each
KR101643516B1 (en) * 2010-11-10 2016-07-27 도와 일렉트로닉스 가부시키가이샤 Silver particle-containing composition, dispersion liquid, paste, and production method for each
US9255205B2 (en) 2010-11-10 2016-02-09 Dowa Electronics Materials Co., Ltd. Silver particle-containing composition, dispersion solution, and paste and method for manufacturing the same
JP2013001954A (en) * 2011-06-16 2013-01-07 Ulvac Japan Ltd Method for producing metal fine particle
JP2013091726A (en) * 2011-10-26 2013-05-16 Shin-Etsu Chemical Co Ltd Heat-conductive silicone composition
KR101847221B1 (en) * 2011-10-26 2018-04-09 신에쓰 가가꾸 고교 가부시끼가이샤 Thermal conductive silicone composition
CN104080561A (en) * 2012-02-02 2014-10-01 户田工业株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
JP2013159804A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Silver microparticle, method for producing same, and conductive paste, conductive film and electronic device containing silver microparticle
JP2013159805A (en) * 2012-02-02 2013-08-19 Toda Kogyo Corp Method for producing silver microparticle, silver microparticle produced by the method for producing silver microparticle, and conductive paste containing the silver microparticle
WO2013115339A1 (en) * 2012-02-02 2013-08-08 戸田工業株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
US9818718B2 (en) 2012-10-30 2017-11-14 Kaken Tech Co., Ltd. Conductive paste and die bonding method
KR101558462B1 (en) 2012-10-30 2015-10-13 가켄 테크 가부시키가이샤 Conductive paste and die bonding method
US10615144B2 (en) 2012-10-30 2020-04-07 Kaken Tech Co., Ltd. Conductive paste and die bonding method
WO2014069074A1 (en) 2012-10-30 2014-05-08 化研テック株式会社 Conductive paste and die bonding method
EP2827341A4 (en) * 2012-10-30 2016-03-30 Kaken Tech Co Ltd Conductive paste and die bonding method
WO2014141741A1 (en) * 2013-03-11 2014-09-18 Dic株式会社 Method for producing conductive metal particles and conductive paste
US10332853B2 (en) 2014-02-03 2019-06-25 Osaka University Bonding structure and method for producing bonding structure
JP2016033259A (en) * 2014-07-30 2016-03-10 Dowaエレクトロニクス株式会社 Silver powder and production method thereof
US9984788B2 (en) 2014-07-30 2018-05-29 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same
US10170213B2 (en) 2014-07-30 2019-01-01 Dowa Electronics Materials Co., Ltd. Silver powder and method for producing same
WO2016017128A1 (en) * 2014-07-30 2016-02-04 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
WO2016028221A1 (en) * 2014-10-16 2016-02-25 Heraeus Deutschland Gmbh &Co. Kg Metal sintering preparation and the use thereof of the connecting of components
US10141283B2 (en) 2014-12-26 2018-11-27 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
US10446518B2 (en) 2014-12-26 2019-10-15 Henkel Ag & Co. Kgaa Sinterable bonding material and semiconductor device using the same
JP2016183374A (en) * 2015-03-26 2016-10-20 Dowaエレクトロニクス株式会社 Silver powder and method for producing the same
JPWO2017006531A1 (en) * 2015-07-08 2017-07-20 バンドー化学株式会社 Bonding composition and bonding method
WO2017006531A1 (en) * 2015-07-08 2017-01-12 バンドー化学株式会社 Joining composition and joining method
JP2021063251A (en) * 2019-10-11 2021-04-22 国立大学法人横浜国立大学 Silver nanowire with dye-containing protective layer, dispersion liquid of the same, method for manufacturing silver nanowire, and light-transmitting conductive film
WO2022030089A1 (en) 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component

Also Published As

Publication number Publication date
JP4470193B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
JP5425962B2 (en) Heat-sinterable silver particle production method, paste-like silver particle composition, solid silver production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production method
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP4870223B1 (en) Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP5558547B2 (en) Paste metal fine particle composition, solid metal or solid metal alloy production method, metal member joining method, printed wiring board production method, and electric circuit connection bump production method
JP4347381B2 (en) Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
JP5301385B2 (en) Metal member bonding agent, metal member assembly manufacturing method, metal member assembly, and electric circuit connecting bump manufacturing method
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
JP4362742B2 (en) Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
JP4685145B2 (en) Method for manufacturing metal member assembly and metal member assembly
JP5509283B2 (en) Heat-sinterable metal fine particle production method, paste-like metal fine particle composition, solid metal or solid metal alloy production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production Method
JP4633857B1 (en) Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly
WO2009122467A1 (en) Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
JP6118489B2 (en) Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product
JP2010053377A (en) Method for joining metallic member and method for producing metallic member-joined body
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
JP2012218020A (en) Bonding method
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
JP6210562B2 (en) Method for manufacturing light emitting diode device
WO2012053034A1 (en) Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
JP6669420B2 (en) Bonding composition
JP6624620B1 (en) Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4470193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250