JP6556302B1 - Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin - Google Patents

Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin Download PDF

Info

Publication number
JP6556302B1
JP6556302B1 JP2018145782A JP2018145782A JP6556302B1 JP 6556302 B1 JP6556302 B1 JP 6556302B1 JP 2018145782 A JP2018145782 A JP 2018145782A JP 2018145782 A JP2018145782 A JP 2018145782A JP 6556302 B1 JP6556302 B1 JP 6556302B1
Authority
JP
Japan
Prior art keywords
silver
epoxy resin
heat
silver particles
silver particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018145782A
Other languages
Japanese (ja)
Other versions
JP2020013768A (en
Inventor
涼子 増田
涼子 増田
靖啓 小林
靖啓 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Application granted granted Critical
Publication of JP6556302B1 publication Critical patent/JP6556302B1/en
Publication of JP2020013768A publication Critical patent/JP2020013768A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】保存安定性が良好であり、加熱により導電性の優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物となり、複数の金属製部材を強固に接合できるペースト状銀粒子組成物、金属製部材接合体の製造方法及び多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法の提供。【解決手段】(A)平均粒径が0.01μm以上10μm以下、球状、涙滴状または粒状、極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と(B)揮発性分散媒と(C)融点が40〜300℃である熱硬化性樹脂粉末とからなる、ペースト状銀粒子組成物。該ペースト状銀粒子組成物を、複数の金属製部材間に介在させ、加熱して該揮発性分散媒を揮散させ、多孔質の銀粒子焼結物と樹脂硬化物の複合物とする。該ペースト状銀粒子組成物を加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ、該熱硬化性樹脂粉末(C)を硬化させる。【選択図】図3Disclosed is a paste-like silver particle composition that has a good storage stability and is a composite of a porous sintered silver particle and a cured resin upon heating, and can firmly bond a plurality of metal members. , A method for producing a metal member assembly, and a method for producing a composite of a porous sintered silver particle and a cured resin. (A) Heat sinterability having an average particle diameter of 0.01 μm or more and 10 μm or less, spherical, teardrop-shaped or granular, and an organic substance having a polar group in an amount of 0.05 to 5.0% by mass. A paste-like silver particle composition comprising silver particles, (B) a volatile dispersion medium, and (C) a thermosetting resin powder having a melting point of 40 to 300 ° C. The paste-like silver particle composition is interposed between a plurality of metal members and heated to volatilize the volatile dispersion medium, thereby obtaining a composite of a porous silver particle sintered product and a cured resin product. The paste-like silver particle composition is heated to volatilize the volatile dispersion medium, the heat-sinterable silver particles (A) are sintered together, and the thermosetting resin powder (C) is cured. [Selection] Figure 3

Description

本発明は、ペースト状銀粒子組成物、金属製部材接合体の製造方法、および、多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法に関する。詳しくは、加熱焼結性銀粒子と揮発性分散媒と融点が40〜300℃である熱硬化性樹脂粉末からなるペースト状銀粒子組成物、複数の金属製部材間に該ペースト状銀粒子組成物を介在させ加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子同士を焼結させ、該熱硬化性樹脂粉末を硬化させる金属製部材接合体の製造方法、および、該ペースト状銀粒子組成物を加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子同士を焼結させ該熱硬化性樹脂粉末を硬化させる、多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法に関する。 The present invention relates to a paste-like silver particle composition, a method for producing a metal member assembly, and a method for producing a composite of a porous silver particle sintered product and a cured resin product. Specifically, a paste-like silver particle composition comprising a heat-sinterable silver particle, a volatile dispersion medium, and a thermosetting resin powder having a melting point of 40 to 300 ° C., and the paste-like silver particle composition between a plurality of metal members A method for producing a metal member assembly, in which the volatile dispersion medium is volatilized by interposing and heating the product, the heat-sinterable silver particles are sintered together, and the thermosetting resin powder is cured, and A porous silver particle sintered product that heats a paste-like silver particle composition to volatilize the volatile dispersion medium, sinters the heat-sinterable silver particles and cures the thermosetting resin powder; The present invention relates to a method for producing a composite of cured resin.

銀、銅、ニッケルなどの金属粉末を液状熱硬化性樹脂組成物中に分散させてなる導電性・熱伝導性ペーストは、加熱により硬化して導電性・熱伝導性被膜が形成される。したがって、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極の形成、特に、アモルファスシリコン半導体を用いているために、高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に使用されている。 A conductive / thermal conductive paste obtained by dispersing a metal powder such as silver, copper, or nickel in a liquid thermosetting resin composition is cured by heating to form a conductive / thermal conductive film. Therefore, formation of conductive circuits on printed circuit boards, formation of various electronic components such as resistors and capacitors, and electrodes of various display elements, formation of conductive films for electromagnetic wave shielding, capacitors, resistors, diodes, memories, arithmetic elements (CPU) and other chip components to substrates, formation of solar cell electrodes, especially formation of solar cell electrodes that cannot be processed at high temperatures due to the use of amorphous silicon semiconductors, multilayer ceramic capacitors, multilayer ceramic inductors It is used for forming external electrodes of chip-type ceramic electronic components such as multilayer ceramic actuators.

近年、チップ部品の高性能化により、チップ部品からの発熱量が増え、導電性(電気伝導性)はもとより、熱伝導性の向上が要求される。したがって、導電性・熱伝導性ペースト中の金属粒子の含有率を可能な限り増加することにより導電性、熱伝導性を向上しようとする。ところが、そうすると、該ペーストの粘度が上昇し、作業性が著しく低下するという問題がある。
例えば、特開2003−309352の従来技術の欄に、「この種の導電性接着剤としては、一般に、フレーク状銀粒子に、バインダとなる樹脂、溶剤、その他添加剤を混合してペースト状としたものが用いられている。そしてこの導電性接着剤を導体回路上に塗布し、その上に電子部品を搭載したのち、加熱などにより導電性接着剤を硬化させることによって実装が行われている。しかしながら、従来の導電性接着剤には、接続抵抗が比較的大きく、接続信頼性が低いという問題がある。これは、加熱硬化後の導電性接着剤中にバインダなどの添加剤が残留し、フレーク状銀粒子同士の接触が阻害されているためと考えられる。」と記載されている。
In recent years, with higher performance of chip components, the amount of heat generated from the chip components has increased, and improvement in thermal conductivity as well as conductivity (electrical conductivity) is required. Therefore, it tries to improve conductivity and thermal conductivity by increasing the content of the metal particles in the conductive / thermally conductive paste as much as possible. However, when it does so, there exists a problem that the viscosity of this paste rises and workability | operativity falls remarkably.
For example, in the column of the prior art of Japanese Patent Application Laid-Open No. 2003-309352, “As this type of conductive adhesive, generally, a flaky silver particle is mixed with a binder resin, a solvent, and other additives to form a paste. The conductive adhesive is applied on a conductor circuit, and an electronic component is mounted on the conductive circuit, and then the conductive adhesive is cured by heating or the like. However, the conventional conductive adhesives have a problem that the connection resistance is relatively large and the connection reliability is low, because additives such as a binder remain in the conductive adhesive after heat curing. It is thought that the contact between the flaky silver particles is hindered. "

このような問題を解決するため、特許文献1(特開2014−51590)では、「(A)球状の開放連通多孔体である銀粒子と、(B)樹脂及び/又は(C)分散剤とを含み、好ましくは(D)硬化剤、(E)フラックス剤及び(F)硬化促進剤から選ばれる少なくとも1種の物を含む、銀ペースト組成物及びその製造方法」が提案されている。
ところが、(A)球状の開放連通多孔体である銀粒子は無数の細孔が表面から内部まで連通しているので、(B)樹脂の配合量が微量ないし少量の場合は、細孔内に樹脂が浸透してしまい、銀粒子表面にとどまる量が少ないため、熱硬化性樹脂の配合により、接触している部材への接着性を飛躍的に向上する効果がないという問題がある。
In order to solve such a problem, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2014-51590), “(A) a silver particle that is a spherical open communicating porous body, (B) a resin and / or (C) a dispersant, A silver paste composition and a method for producing the same, which preferably includes at least one selected from (D) a curing agent, (E) a fluxing agent, and (F) a curing accelerator.
However, since (A) silver particles, which are spherical open communicating porous bodies, have innumerable pores communicating from the surface to the inside, (B) when the amount of the resin is a very small amount or a small amount, Since the resin penetrates and the amount remaining on the surface of the silver particles is small, there is a problem that there is no effect of dramatically improving the adhesion to the member in contact with the thermosetting resin.

特許文献2(特開2014−194013)では、「(A)プレート型銀微粒子、(B)銀粉、及び(C)熱硬化性樹脂を含み、(A)成分の銀微粒子と(B)成分の銀粉の合計量を100質量部としたとき、(C)成分が1〜20質量部配合される熱硬化性樹脂組成物、および該樹脂組成物をダイアタッチペースト又は放熱部材接着用材料として使用して作製した半導体装置及び電気・電子部品」が提案されている。
ところが、(A)プレート状銀微粒子を必須成分にしているので、収納容器から熱硬化性樹脂組成物を連続的に吐出すると、吐出口手前にプレート状銀微粒子が次第に堆積して詰まりが発生するという問題がある。
In Patent Document 2 (Japanese Patent Application Laid-Open No. 2014-194013), “(A) plate-type silver fine particles, (B) silver powder, and (C) thermosetting resin, (A) silver fine particles and (B) component When the total amount of silver powder is 100 parts by mass, the thermosetting resin composition containing 1 to 20 parts by mass of component (C), and the resin composition are used as a die attach paste or a material for adhering heat dissipation members. Semiconductor devices and electrical / electronic components manufactured in this manner have been proposed.
However, since (A) the plate-like silver fine particles are an essential component, when the thermosetting resin composition is continuously discharged from the storage container, the plate-like silver fine particles gradually accumulate in front of the discharge port and clogging occurs. There is a problem.

特許文献3(特開2010−65277)では、「(A)平均粒径が0.1μm〜50μmの加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ該金属粒子同士の焼結物により金属製部材同士を接合させ、次いで硬化性液状樹脂組成物を該多孔質焼結物中に含浸して硬化させるという金属製部材接合体の製造方法」が提案されている。
しかしながら、この方法は、加熱焼結性金属粒子を含むペースト状金属粒子組成物を加熱して該焼結性金属粒子同士を焼結した後、液状の硬化性樹脂組成物を毛細管現象により含浸させるので、作業効率が低いという問題がある。
In Patent Document 3 (Japanese Patent Laid-Open No. 2010-65277), “a paste-like metal particle composition comprising (A) a heat-sinterable metal particle having an average particle diameter of 0.1 μm to 50 μm and (B) a volatile dispersion medium is disclosed. , Interposing between a plurality of metal members, heating at 70 ° C. or more and 400 ° C. or less, volatilizing the volatile dispersion medium, joining the metal members with a sintered product of the metal particles, and then curable "A method for producing a metal member assembly" in which a porous resin is impregnated with a liquid resin composition and cured.
However, in this method, after the paste-like metal particle composition containing the heat-sinterable metal particles is heated to sinter the metal particles, the liquid curable resin composition is impregnated by capillary action. Therefore, there is a problem that work efficiency is low.

特許文献4(特開2013−214733)では、低温焼結性銀微粒子および及び熱硬化型バインダを含み、該銀微粒子100質量部に対して、該熱硬化型バインダが2〜7質量部である、熱伝導性ペーストが提案されている。
しかしながら、該熱硬化型バインダが導電性、熱伝導性の著しく低い有機樹脂であるため、該銀微粒子の粒径が大きく、かつ、該銀微粒子に対する該熱硬化型バインダの比率が高いと、該熱伝導性ペーストの銀粒子焼結物の導電性、熱伝導性が低いという問題がある。
In patent document 4 (Unexamined-Japanese-Patent No. 2013-214733), it contains low-temperature-sinterable silver fine particles and a thermosetting binder, and the thermosetting binder is 2 to 7 parts by mass with respect to 100 parts by mass of the silver fine particles. Thermally conductive pastes have been proposed.
However, since the thermosetting binder is an organic resin having extremely low conductivity and thermal conductivity, the particle size of the silver fine particles is large and the ratio of the thermosetting binder to the silver fine particles is high, There is a problem that the conductivity and heat conductivity of the silver particle sintered product of the heat conductive paste are low.

特許文献5(特開2016−148104)では、加熱焼結性金属粒子と揮発性分散媒と少量の熱硬化性樹脂組成物からなり、該加熱焼結性金属粒子と該熱硬化性樹脂組成物の質量比率が98.5:1.5〜99.9:0.1であるペースト状物であり、加熱により、該揮発性分散媒が揮散し、該加熱焼結性金属粒子同士が焼結し該熱硬化性樹脂組成物が硬化して、導電性と熱伝導性に優れた多孔質金属粒子焼結物となるペースト状金属粒子組成物が提案されている。
しかしながら、用いる該熱硬化性樹脂組成物が液状の場合(例えば、液状のエポキシ樹脂と液状の硬化剤からなる液状の場合)は、硬化反応性が高いため、常温(例えば25℃)で長時間保管すると、該ペースト状金属粒子組成物中で該エポキシ樹脂と該硬化剤が反応して、経時的に粘度が増大しゲル化するという問題、経時的に該ペースト状金属粒子組成物の接着力が低下するという問題がある。そのために、高価な包摂型硬化剤を用いざるを得ないという問題がある。用いる該熱硬化性樹脂組成物が固形状や半固形状の場合、分散性不良のため、ペースト状金属粒子組成物が不均一になるという問題がある。
In patent document 5 (Unexamined-Japanese-Patent No. 2016-148104), it consists of a heat-sinterable metal particle, a volatile dispersion medium, and a small amount of thermosetting resin compositions, and this heat-sinterable metal particle and this thermosetting resin composition Mass ratio of 98.5: 1.5 to 99.9: 0.1, the volatile dispersion medium is volatilized by heating, and the heat-sinterable metal particles are sintered together. A paste-like metal particle composition has been proposed in which the thermosetting resin composition is cured to form a porous metal particle sintered product excellent in conductivity and thermal conductivity.
However, when the thermosetting resin composition to be used is in a liquid state (for example, in the case of a liquid composed of a liquid epoxy resin and a liquid curing agent), since the curing reactivity is high, it is long time at room temperature (for example, 25 ° C.). When stored, the epoxy resin and the curing agent react in the paste-like metal particle composition, and the viscosity increases with time and gels. The adhesive strength of the paste-like metal particle composition over time There is a problem that decreases. Therefore, there is a problem that an expensive inclusion curing agent must be used. When the thermosetting resin composition used is solid or semi-solid, there is a problem that the paste-like metal particle composition becomes non-uniform due to poor dispersibility.

特開2014−51590号公報JP 2014-51590 A 特開2014−194013号公報JP 2014-194013 A 特開2010−65277号公報JP 2010-65277 A 特開2013−214733号公報JP 2013-214733 A 特開2016−148104号公報JP 2016-148104 A

本発明者らは上記の問題点を解決するため鋭意研究した結果、加熱焼結性銀粒子と揮発性分散媒からなるペースト状銀粒子組成物に、少量の、融点が40〜300℃である熱硬化性樹脂粉末を含有せしめたペースト状銀粒子組成物は、加熱前にあってはニードル吐出性と保存安定性が良好であり、しかも、加熱すると該加熱焼結性銀粒子同士が焼結し、該熱硬化性樹脂粉末が硬化して導電性と熱伝導性の優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物となること、複数の金属製部材間に該ペースト状銀粒子組成物を介在させて加熱すると、高い導電性、熱伝導性を保持しつつ複数の金属製部材を強固に接合し、しかも、かくして得られた接合体は熱衝撃に対する耐久性が優れていることを見出して、本発明に到達した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have a small amount of a melting point of 40 to 300 ° C. in a paste-like silver particle composition composed of heat-sinterable silver particles and a volatile dispersion medium. The paste-like silver particle composition containing the thermosetting resin powder has good needle dischargeability and storage stability before heating, and when heated, the heat-sinterable silver particles are sintered together. The thermosetting resin powder is cured to form a composite of porous silver particle sintered material and resin cured material having excellent conductivity and thermal conductivity, and the paste-like structure between a plurality of metal members. When heated by interposing a silver particle composition, a plurality of metal members are firmly bonded while maintaining high conductivity and thermal conductivity, and the bonded body thus obtained has excellent durability against thermal shock. As a result, the present invention has been reached.

本発明の目的は、加熱前においてはニードル吐出性と保存安定性が良好であり、加熱すると加熱焼結性銀粒子同士が焼結し、熱硬化性樹脂粉末が硬化して導電性と熱伝導性と熱衝撃に対する耐久性が優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物となるペースト状銀粒子組成物、複数の金属製部材が強固に接合し、熱衝撃に対する耐久性が優れている金属製部材接合体の製造方法、および、導電性と熱伝導性と熱衝撃に対する耐久性が優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法を提供することにある。 The object of the present invention is that the needle dischargeability and storage stability are good before heating, and when heated, the heat-sinterable silver particles sinter and the thermosetting resin powder hardens to become conductive and thermally conductive. Paste silver particle composition that is a composite of porous silver particle sintered product and cured resin, excellent in durability and durability against thermal shock, and multiple metal members are firmly bonded, and durability against thermal shock Provides a method for producing a metal member assembly having excellent resistance, and a method for producing a composite of a sintered porous silver particle and a cured resin having excellent conductivity, thermal conductivity and durability against thermal shock. There is to do.

[1] (A)平均粒径が0.01μm以上10μm以下である球状、涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなるペースト状物であり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であって、100℃以上300℃以下での加熱により、該揮発性分散媒が揮散し、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性エポキシ樹脂粉末(C)が硬化して、多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物となることを特徴とする、ペースト状銀粒子組成物。
[2] 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、[1]に記載のペースト状銀粒子組成物。
[1] (A) Spherical, teardrop-shaped, or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, the polar group covering the surface of the heat-sinterable silver particles Heat-sinterable silver particles having an organic coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy having a melting point of 40 to 300 ° C. The thermosetting epoxy resin powder (C) has an average particle size of 0.1 to 100 μm and is 100 parts by mass of the sinterable silver particles (A). , 0.01 parts by mass or more and less than 5.0 parts by mass, and by heating at 100 ° C. or more and 300 ° C. or less, the volatile dispersion medium is volatilized, and the heat-sinterable silver particles (A) are sintered together. As a result, the thermosetting epoxy resin powder (C) is cured, and a composite of a porous sintered silver particle and a cured epoxy resin is obtained. A paste-like silver particle composition, which is a compound.
[2] The volume resistivity of the composite of the sintered porous silver particles and the cured epoxy resin is 1 × 10 −5 Ω · cm or less and the thermal conductivity is 100 W / m · K or more. The paste-like silver particle composition according to [1], wherein

[3] (A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、複数の金属製部材間に介在させ、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることにより、複数の金属製部材同士を接合させることを特徴とする、金属製部材接合体の製造方法。
[4] 金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、[3]に記載の金属製部材接合体の製造方法。
[5] 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、 [3]または[4]に記載の金属製部材接合体の製造方法。
[6] 金属製部材が金属製個所を有する、リードフレーム、回路基板または電子部品であることを特徴とする、[3]〜[5]のいずれかに記載の金属製部材接合体の製造方法。
[3] (A) Spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, the polar group covering the surface of the heat-sinterable silver particles Heat-sinterable silver particles having an organic coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy having a melting point of 40 to 300 ° C. Resin powder, the thermosetting epoxy resin powder (C) has an average particle size of 0.1 to 100 μm, and 0.01 mass with respect to 100 parts by mass of the sinterable silver particles (A). The paste-like silver particle composition that is at least part and less than 5.0 parts by weight is interposed between a plurality of metal members and heated at 100 ° C. or higher and 300 ° C. or lower to volatilize the volatile dispersion medium, silver particles sintered silver particles (a) with each other by sintering to cure the thermosetting epoxy resin powder (C) and porous With composite sintered material and the epoxy resin cured product, characterized by bonding the plurality of metal members to each other, the manufacturing method of the metal member assembly.
[4] The method for producing a metal member assembly according to [3] , wherein the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of these metals.
[5] The volume resistivity of the composite of the sintered porous silver particles and the cured epoxy resin is 1 × 10 −5 Ω · cm or less and the thermal conductivity is 100 W / m · K or more. The method for producing a metal member assembly according to [3] or [4] , wherein:
[6] The method for producing a metal member assembly according to any one of [3] to [5] , wherein the metal member is a lead frame, a circuit board, or an electronic component having a metal part .

[7] (A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ、該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることを特徴とする、多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の製造方法。
[8] 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、[7]に記載の多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の製造方法。
[7] (A) Spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, the polar group covering the surface of the heat-sinterable silver particles Heat-sinterable silver particles having an organic coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy having a melting point of 40 to 300 ° C. Resin powder, the thermosetting epoxy resin powder (C) has an average particle size of 0.1 to 100 μm, and 0.01 mass with respect to 100 parts by mass of the sinterable silver particles (A). The paste-like silver particle composition that is at least part and less than 5.0 parts by mass is heated at 100 ° C. or more and 300 ° C. or less to volatilize the volatile dispersion medium, and the heat-sinterable silver particles (A) are sintered together. is sintered, the thermosetting epoxy resin powder (C) a cured silver particles sinter porous and the cured epoxy resin Characterized by a compound, method for producing a composite of porous silver particles sinter and epoxy resin cured product.
[8] The volume resistivity of the composite of the sintered porous silver particles and the cured epoxy resin is 1 × 10 −5 Ω · cm or less and the thermal conductivity is 100 W / m · K or more. [7] The method for producing a composite of a sintered porous silver particle and a cured epoxy resin according to [7] .

本発明のペースト状銀粒子組成物は、保存安定性とニードル吐出性が良好であり、加熱焼結性が優れており、加熱により加熱焼結性銀粒子(A)同士が焼結し、融点が40〜300℃である熱硬化性樹脂粉末(C)が硬化して、導電性と熱伝導性の優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物となり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物による金属製部材接合体は、熱衝撃に対する耐久性が優れている。 The paste-like silver particle composition of the present invention has good storage stability and needle dischargeability, is excellent in heat-sinterability, and heat-sinterable silver particles (A) are sintered together by heating to have a melting point. The thermosetting resin powder (C) having a temperature of 40 to 300 ° C. is cured to form a composite of a porous silver particle sintered product and a cured resin product having excellent conductivity and thermal conductivity. A metal member joined body made of a composite of a silver particle sintered product and a cured resin product has excellent durability against thermal shock.

本発明の金属製部材接合体の製造方法によると、金属製部材同士が極めて強固に接合しており、しかも熱衝撃に対する耐久性の優れた金属製部材接合体を確実に製造することができる。この金属製部材接合体は、金属系基板や金属製個所を有する電子部品、電子装置、電気部品、電気装置等における金属製部材として有用である。 According to the method for producing a metal member assembly of the present invention, metal members are extremely firmly joined to each other, and a metal member assembly having excellent durability against thermal shock can be reliably produced. This metal member joined body is useful as a metal member in an electronic component, electronic device, electric component, electric device or the like having a metal substrate or a metal part.

本発明の多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法によると、導電性と熱伝導性と熱衝撃に対する耐久性が優れた、多孔質の銀粒子焼結物と樹脂硬化物の複合物を確実に製造することができる。 According to the method for producing a composite of porous silver particle sintered product and resin cured product of the present invention, porous silver particle sintered product and resin having excellent conductivity, thermal conductivity and durability against thermal shock A composite of cured product can be reliably produced.

実施例におけるせん断接着強さ測定用試験体Aの平面図である。銀基板1と銀チップ3とが、多孔質の銀粒子焼結物と樹脂硬化物の複合物により接合されている。It is a top view of the test body A for shear bond strength measurement in an Example. The silver substrate 1 and the silver chip 3 are joined by a composite of a porous silver particle sintered product and a cured resin product. 図1におけるX−X線断面図である。It is the XX sectional view taken on the line in FIG. 実施例4における、ペースト状銀粒子組成物を200℃で1時間加熱して生成した、多孔質の銀粒子焼結物と樹脂硬化物の複合物の断面写真である。周辺部が黒く中心部が白く大きいめの3個所は、エポキシ樹脂硬化物粒子であり、黒く中くらい大きさの約10箇所および多数の黒く小さい箇所は空隙またはエポキシ樹脂硬化物粒子である。It is a cross-sectional photograph of the composite of a porous silver particle sintered product and a cured resin product produced by heating the pasty silver particle composition at 200 ° C. for 1 hour in Example 4. The three peripheral portions that are black in the peripheral portion and white and large in the central portion are cured epoxy resin particles, and about 10 portions that are black and medium in size and many small black portions are voids or cured epoxy resin particles. 実施例5における、ペースト状銀粒子組成物を200℃で1時間加熱して生成した、多孔質の銀粒子焼結物と樹脂硬化物の複合物の断面写真である。中くらいから大きめの黒色部分がエポキシ樹脂硬化物粒子であり、多数の微小な黒色部分は空隙またはエポキシ樹脂硬化物粒子である。6 is a cross-sectional photograph of a composite of a porous sintered silver particle product and a cured resin product produced by heating the pasty silver particle composition at 200 ° C. for 1 hour in Example 5. FIG. Medium to large black portions are cured epoxy resin particles, and many minute black portions are voids or cured epoxy resin particles. 実施例6における、ペースト状銀粒子組成物を200℃で1時間加熱して生成した、多孔質の銀粒子焼結物と樹脂硬化物の複合物の断面写真である。中くらいから大きめの黒色部分がエポキシ樹脂硬化物粒子であり、多数の微小な黒色部分は空隙またはエポキシ樹脂硬化物粒子である。It is a cross-sectional photograph of the composite of the porous silver particle sintered product and the cured resin product produced by heating the pasty silver particle composition at 200 ° C. for 1 hour in Example 6. Medium to large black portions are cured epoxy resin particles, and many minute black portions are voids or cured epoxy resin particles.

本発明のペースト状銀粒子組成物は、(A)平均粒径が0.01μm以上10μm以下である球状、涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなるペースト状物であり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であって、100℃以上300℃以下での加熱により、該揮発性分散媒が揮散し、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性エポキシ樹脂粉末(C)が硬化して、多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物となることを特徴とする。 The paste-like silver particle composition of the present invention is (A) spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, the heat-sinterable silver Heat-sinterable silver particles in which the coating amount of the organic substance having a polar group covering the surface of the particles is 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a melting point of 40 to 40%. It is a paste-like product comprising a thermosetting epoxy resin powder at 300 ° C., and the thermosetting epoxy resin powder (C) has an average particle size of 0.1 to 100 μm, and the sinterable silver particles (A) It is 0.01 mass part or more and less than 5.0 mass part with respect to 100 mass parts, Comprising: The heating at 100 degreeC or more and 300 degrees C or less volatilizes this volatile dispersion medium, and this heat-sinterability silver particles (a) with each other and sintering, thermosetting epoxy resin powder (C) is cured, the porous silver grains Characterized by comprising a composite of sinter and cured epoxy resin.

該加熱焼結性銀粒子(A)は、銀塩の湿式還元法により製造されたもの、すなわち、湿式還元法による加熱焼結性銀粒子であることが好ましい。
湿式還元法では、通常、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンの水溶液を接触反応させて銀粉を還元析出させ、濾過し、残渣を水で洗浄し、加熱下乾燥させて調製する方法が例示される。あるいは、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これと有機還元剤(ヒドロキノン、アスコルビン酸、グルコース等)、特にはヒドロキノンの水溶液を接触反応させて銀粉を還元析出させ、濾過し、洗浄し、乾燥させて調製している。
濾過残渣はアンモニアとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンを含有しており、銀粒子表面にアンモニアとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンが付着しているため、通常、清浄な水で繰り返し洗浄している。あるいは、濾過残渣はアンモニアと有機還元剤、特にはヒドロキノンを含有しており、銀粒子表面にアンモニアと有機還元剤、特にはヒドロキノンが付着しているため、通常、清浄な水とメタノールで繰り返し洗浄して得ることができる。
The heat-sinterable silver particles (A) are preferably those produced by a silver salt wet reduction method, that is, heat-sinterable silver particles by a wet reduction method.
In the wet reduction method, an aqueous silver ammine complex solution is usually obtained by mixing and reacting an aqueous silver nitrate solution and aqueous ammonia, and this is contacted with an aqueous solution of hydroquinone, anhydrous potassium sulfite or ammonium and gelatin to reduce and precipitate silver powder. A method of preparing by filtering, washing the residue with water and drying under heating is exemplified. Alternatively, silver nitrate aqueous solution and aqueous ammonia are mixed and reacted to obtain a silver ammine complex aqueous solution, which is contacted with an organic reducing agent (hydroquinone, ascorbic acid, glucose, etc.), particularly hydroquinone aqueous solution, to reduce silver powder. Prepared by precipitation, filtration, washing and drying.
The filtration residue contains ammonia, hydroquinone, anhydrous potassium sulfite or ammonium, and gelatin. Since ammonia, hydroquinone, anhydrous potassium sulfite, ammonium, and gelatin adhere to the silver particle surface, it is usually washed repeatedly with clean water. doing. Alternatively, the filtration residue contains ammonia and an organic reducing agent, particularly hydroquinone, and ammonia and an organic reducing agent, particularly hydroquinone, are attached to the surface of the silver particles, so it is usually repeatedly washed with clean water and methanol. Can be obtained.

このようにして製造された該加熱焼結性銀粒子(A)は通常、球状、粒状または涙滴状であるが、ナノメートルサイズやそれ以下の微細な銀粒子の集合体である粒状の場合が多い。通常、この還元工程において、生成した銀粒子同士の凝集を防止するため、極性基を有する有機物を添加して、生成した銀粒子表面を被覆する。その場合、銀粒子表面を被覆した該有機物は、銀粒子表面に会合、吸着、イオン結合等により強く接合し、その後の洗浄によっても容易に除去されない。
なお、還元法で銀粒子を製造する工程において使用する還元剤等の有機物が、加熱焼結性銀粒子(A)中に微量残存する場合があるが、それらは極性基を有するので本発明における極性基を有する有機物に含まれる。
The heat-sinterable silver particles (A) thus produced are usually spherical, granular or teardrop-like, but in the case of a granular form which is an aggregate of fine silver particles of nanometer size or smaller There are many. Usually, in this reduction step, in order to prevent aggregation of the generated silver particles, an organic substance having a polar group is added to cover the generated silver particle surface. In that case, the organic substance covering the surface of the silver particles is strongly bonded to the surface of the silver particles by association, adsorption, ionic bonding, or the like, and is not easily removed by subsequent washing.
In addition, although organic substances, such as a reducing agent used in the process of producing silver particles by the reduction method, may remain in the heat-sinterable silver particles (A) in a small amount, they have polar groups, so in the present invention. Included in organic substances having polar groups.

該加熱焼結性銀粒子(A)の平均粒径は0.01μm以上10μm以下である。この平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準の粒度分布における累積50%粒径、すなわち、メジアン径である。なお、該測定法が使用できない場合は、電子顕微鏡写真による粒子径から計算されるメジアン径または単純平均値であってもよい。平均粒径が10μmを越えると、該銀粒子の焼結性が低下するため小さい方が好ましく、特には5μm以下であることが好ましい。しかし、平均粒径が0.01μm未満であると表面活性が強いため、該銀粒子同士の凝集を防止するための被覆剤の量が多く必要となり、該銀粒子を加熱して焼結した場合、焼結物中の空孔率が必然的に大きくなり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の熱衝撃に対する耐久性が低下するという問題がある。また、ペースト状銀粒子組成物の保存安定性が低下し、加熱焼結時の接合強度が不均一になりやすいため、0.1μm以上であることが好ましく、0.7μm以上であることがより好ましい。なお、本発明の目的・効果に反しない範囲において、平均粒径が0.01μm未満および10μmを超える加熱焼結性銀粒子を少量ないし微量併用してもよい。 The average particle diameter of the heat-sinterable silver particles (A) is 0.01 μm or more and 10 μm or less. The average particle size is a cumulative 50% particle size in a volume-based particle size distribution obtained by a laser diffraction / scattering particle size distribution measurement method, that is, a median diameter. In addition, when this measuring method cannot be used, the median diameter calculated from the particle diameter by an electron micrograph or a simple average value may be sufficient. When the average particle diameter exceeds 10 μm, the sinterability of the silver particles is lowered, so that the smaller one is preferable, and in particular, 5 μm or less is preferable. However, if the average particle size is less than 0.01 μm, the surface activity is strong, so a large amount of coating agent is required to prevent aggregation between the silver particles, and when the silver particles are heated and sintered There is a problem that the porosity in the sintered product is inevitably increased, and the durability against thermal shock of the composite of the porous silver particle sintered product and the cured resin product is lowered. Moreover, since the storage stability of the paste-like silver particle composition is lowered and the bonding strength during heat sintering tends to be non-uniform, it is preferably 0.1 μm or more, more preferably 0.7 μm or more. preferable. In addition, within a range that does not contradict the purpose and effect of the present invention, a small amount or a small amount of heat-sinterable silver particles having an average particle size of less than 0.01 μm and more than 10 μm may be used.

該加熱焼結性銀粒子(A)は、大気中、空気中での加熱により焼結すれば良く、銀により表面がメッキされた金属(例えば、ニッケル、鉄、アルミニウム、スズ)粒子もしくは樹脂(例えば、エポキシ樹脂)粒子であってもよい。また、表面または内部の一部が酸化銀または過酸化銀であってもよい。該加熱焼結性銀粒子(A)中の銀は、純粋な銀が好ましいが、銀の合金(ただし、好ましくは銀含有量が90質量%以上)であってもよい。 The heat-sinterable silver particles (A) may be sintered by heating in the air or in the air. Metal (for example, nickel, iron, aluminum, tin) particles or resin (for example, surfaces plated with silver) For example, epoxy resin particles may be used. Further, a part of the surface or inside may be silver oxide or silver peroxide. The silver in the heat-sinterable silver particles (A) is preferably pure silver, but may be a silver alloy (however, the silver content is preferably 90% by mass or more).

該加熱焼結性銀粒子(A)の形状は、本発明のペースト状銀粒子組成物中において、均一に分散しやすく微小吐出性、焼結性に優れる、球状、粒状または涙滴状であることが好ましい。これらの形状は、JIS Z 2500、ISO/DIS 3252等の公的文書に記載された客観的な分類により確認できる。なお、涙滴状銀粒子は、その形状の状況によっては、粒状または球状に分類される場合がある。
なお、本発明の目的・効果に反しない範囲において、フレーク(薄片)状・針状・角状・樹枝状・不規則形状・板状・極薄板状・六角板状・柱状・棒状・多孔状・繊維状・塊状・海綿状・けい角状・丸み状等の銀粒子を併用しても良く、また、銅、金、白金およびパラジウムからなる群から選択される金属粒子を併用してもよい。
The shape of the heat-sinterable silver particles (A) is spherical, granular, or teardrop-shaped, easily dispersed uniformly in the paste-like silver particle composition of the present invention, and excellent in fine dischargeability and sinterability. It is preferable. These shapes can be confirmed by objective classification described in official documents such as JIS Z 2500 and ISO / DIS 3252. The teardrop-like silver particles may be classified as granular or spherical depending on the shape.
As long as the object and effect of the present invention are not adversely affected, flakes (flakes), needles, squares, dendrites, irregular shapes, plates, ultrathin plates, hexagons, columns, rods, and porous shapes -Silver particles such as fibrous, lump-like, sponge-like, square-like, round-like shapes may be used in combination, and metal particles selected from the group consisting of copper, gold, platinum and palladium may be used in combination. .

なお、該加熱焼結性銀粒子(A)は、表面から内部まで貫通または連通した微細な細孔(ただし、平均粒径の1%以下)を有していてもよい。このような微細な細孔があっても、それらの細孔の径に対し、本願のペースト状銀粒子組成物において少量または微量配合される、融点が40〜300℃である熱硬化性樹脂粉末(C)の平均粒径は、後記されるように0.1〜100μmと大きいため、該加熱焼結性銀粒子(A)の表面から内部まで貫通または連通した微細な細孔内部へ侵入することはほとんどなく、また該内部へ侵入したとしても、その量はごく微量にすぎないためである。 The heat-sinterable silver particles (A) may have fine pores (however, 1% or less of the average particle diameter) penetrating or communicating from the surface to the inside. Even if there are such fine pores, the thermosetting resin powder having a melting point of 40 to 300 ° C. is blended in a small amount or in a trace amount in the paste-like silver particle composition of the present application with respect to the diameter of the pores. Since the average particle diameter of (C) is as large as 0.1 to 100 μm as described later, it penetrates into the fine pores penetrating or communicating from the surface to the inside of the heat-sinterable silver particles (A). This is because there is almost nothing, and even if it enters the interior, the amount is very small.

該加熱焼結性銀粒子(A)は、該加熱焼結性銀粒子(A)同士の凝集を防ぎ、揮発性分散媒(B)への分散性を向上し、優れた加熱焼結性を得るために、表面が極性基を有する有機物、好ましくは、(a)脂肪酸またはそのアルカリ金属塩若しくはエステル、(b)酸性官能基および/または塩基性官能基を有する高分子分散剤、または、(c)含窒素有機化合物で被覆されている。なお、還元法で銀粒子を製造する工程において使用する還元剤等の極性基を有する有機物が、銀粒子(A)中に微量残存する場合があるが、本発明においては該有機物に含まれる。また、本発明における極性基を有する有機物は、銀粒子に会合、結合または吸着していることがあり得る。極性基を有する有機物は加熱焼結性銀粒子(A)を被覆できれば、常温で固体、半固体、液体のいずれでもよい。 The heat-sinterable silver particles (A) prevent aggregation of the heat-sinterable silver particles (A), improve dispersibility in the volatile dispersion medium (B), and have excellent heat-sinterability. In order to obtain an organic substance having a polar group on the surface, preferably (a) a fatty acid or an alkali metal salt or ester thereof, (b) a polymer dispersant having an acidic functional group and / or a basic functional group, or ( c) It is coated with a nitrogen-containing organic compound. Note that a small amount of an organic substance having a polar group such as a reducing agent used in the step of producing silver particles by the reduction method may remain in the silver particles (A), but is included in the organic substance in the present invention. In addition, the organic substance having a polar group in the present invention may be associated with, bonded to, or adsorbed to the silver particles. The organic substance having a polar group may be solid, semi-solid, or liquid at room temperature as long as the heat-sinterable silver particles (A) can be coated.

上記極性基として、カルボキシル基、カルボン酸無水物基、カルボン酸塩基、カルボン酸エステル基、水酸基、アルコキシ基、アルキルエーテル基、リン酸基、酸性リン酸エステル基、ホスホン酸基が例示されるが、カルボキシル基、カルボン酸塩基、カルボン酸エステル基、水酸基であることが好ましい。
また、アミノ基、イミノ基(=NH)、アンモニウム塩基、塩基性窒素原子を有する複素環基が例示されるが、アミノ基であることが好ましい。
炭素原子含有極性基の炭素原子数は好ましくは1〜54であり、より好ましくは1〜18である。
Examples of the polar group include a carboxyl group, a carboxylic acid anhydride group, a carboxylic acid group, a carboxylic acid ester group, a hydroxyl group, an alkoxy group, an alkyl ether group, a phosphoric acid group, an acidic phosphoric acid ester group, and a phosphonic acid group. A carboxyl group, a carboxylate group, a carboxylate group, and a hydroxyl group.
Further, examples include an amino group, an imino group (= NH), an ammonium base, and a heterocyclic group having a basic nitrogen atom, and an amino group is preferable.
The number of carbon atoms of the carbon atom-containing polar group is preferably 1 to 54, more preferably 1 to 18.

(a)脂肪酸またはそのアルカリ金属塩もしくはエステルにおける脂肪酸として、炭素原子数が3以上であるプロパン酸(プロピオン酸)、ブタン酸(酪酸)、ペンタン酸(吉草酸)、ヘキサン酸(カプロン酸)、ヘプタン酸(エナント酸)、オクタン酸(カプリル酸)、ノナン酸(ペラルゴン酸)、デカン酸(カプリン酸)、ドデカン酸(ラウリン酸)、テトラデカン酸(ミリスチン酸)、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、12−ヒドロキシオクタデカン酸(12−ヒドロキシオレイン酸)、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)等の1価の直鎖飽和脂肪酸;炭素原子数が14以上である2−ペンチルノナン酸、2−ヘキシルデカン酸、2−ヘプチルドデカン酸、イソオレイン酸等の1価の分枝飽和脂肪酸;ソルビン酸、マレイン酸、パルミトレイン酸、オレイン酸、イソオレイン酸、エライジン酸、リノール酸、リノレン酸、リシノール酸、ガドレン酸、エルカ酸、セラコレイン酸等の1価の不飽和脂肪酸が例示される。これら例示した脂肪酸の炭素原子数は最大24であるが、これに限定されるものではなく、例えば54であってもよい。 (A) As fatty acids in fatty acids or alkali metal salts or esters thereof, propanoic acid (propionic acid) having 3 or more carbon atoms, butanoic acid (butyric acid), pentanoic acid (valeric acid), hexanoic acid (caproic acid), Heptanoic acid (enanthic acid), octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), pentadecanoic acid, hexadecanoic acid (palmitic acid) ), Heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid), 12-hydroxyoctadecanoic acid (12-hydroxyoleic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), Hexacosanoic acid (serotinic acid), octacosanoic acid (montan) Monovalent linear saturated fatty acids such as 2-pentylnonanoic acid, 2-hexyldecanoic acid, 2-heptyldodecanoic acid and isooleic acid having 14 or more carbon atoms; sorbic acid, Examples thereof include monovalent unsaturated fatty acids such as maleic acid, palmitoleic acid, oleic acid, isooleic acid, elaidic acid, linoleic acid, linolenic acid, ricinoleic acid, gadrenic acid, erucic acid, and ceracoleic acid. The number of carbon atoms of these exemplified fatty acids is 24 at the maximum, but is not limited thereto, and may be 54, for example.

また、このような脂肪酸として、狭義の脂肪酸に限らず、広義の脂肪酸である、炭素原子数が2以上であるシュウ酸、マロン酸、コハク酸、マレイン酸、フマール酸、オキシジ酢酸(ジグリコール酸)、グルタル酸、アジピン酸、ピメリン酸、スペリン酸、アゼライン酸、セバシン酸、ジグリコール酸等の多価の脂肪族カルボン酸、フタル酸、イソフタル酸、テレフタル酸等の多価の芳香族カルボン酸が例示される。これら脂肪酸の炭素原子数の最大値は特に限定されるものではなく、例えば54であってもよい。 Such fatty acids are not limited to fatty acids in a narrow sense, but are fatty acids in a broad sense, such as oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, oxydiacetic acid (diglycolic acid) having 2 or more carbon atoms. ), Polyvalent aliphatic carboxylic acids such as glutaric acid, adipic acid, pimelic acid, speric acid, azelaic acid, sebacic acid and diglycolic acid, and polyvalent aromatic carboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid Is exemplified. The maximum value of the number of carbon atoms of these fatty acids is not particularly limited, and may be 54, for example.

脂肪酸のアルカリ金属塩として、ナトリウム塩とカリウム塩とリチウム塩が例示されるが、好ましくはナトリウム塩とカリウム塩である。
脂肪酸のエステルとして、アルキルエステル(例えば、メチルエステル、エチルエステル)、フェニルエステルが例示される。これらアルキルエステルのアルキル基は炭素原子数1〜6が好ましい。
Examples of the alkali metal salt of the fatty acid include sodium salt, potassium salt, and lithium salt, and sodium salt and potassium salt are preferable.
Examples of fatty acid esters include alkyl esters (for example, methyl esters and ethyl esters) and phenyl esters. The alkyl group of these alkyl esters preferably has 1 to 6 carbon atoms.

(b)酸性官能基および/または塩基性官能基を有する高分子分散剤は、高分子からなる分散剤であり、重量平均分子量は通常1,000以上である。重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(キャリア:テトラヒドロフラン)によって測定されるポリスチレン換算重量平均分子量である。 (B) The polymer dispersant having an acidic functional group and / or a basic functional group is a dispersant composed of a polymer, and the weight average molecular weight is usually 1,000 or more. The weight average molecular weight (Mw) is a polystyrene equivalent weight average molecular weight measured by gel permeation chromatography (carrier: tetrahydrofuran).

酸性官能基として、カルボキシル基、酸無水物基、リン酸基、酸性リン酸エステル基、ホスホン酸基が例示されるが、カルボキシル基、リン酸基または酸性リン酸エステル基であることが好ましい。酸性リン酸エステル基は、一部のリン結合水酸基がアルコキシ化されたものである。アルコキシ基としてメトキシ基、エトキシ基、プロポキシ基などの低級アルコキシ基が例示される。低級アルコキシ基の炭素原子数は好ましくは1〜8である。
また、塩基性官能基として、アミノ基、イミノ基(=NH)、アンモニウム塩基、塩基性窒素原子を有する複素環基が例示されるが、アミノ基、アンモニウム塩基(例えば、第3級アンモニウム塩基、第4級アンモニウム塩基)であることが好ましい。アミノ基は、第1級アミノ基(-NH2)、第2級アミノ基(-NHR)、第3級アミノ基(-NRR')のいずれでもよい。前記RとR'はアルキル基、フェニル基、アラルキル基などであり、炭素原子数は好ましくは1〜8である。
Examples of the acidic functional group include a carboxyl group, an acid anhydride group, a phosphoric acid group, an acidic phosphate group, and a phosphonic acid group, and a carboxyl group, a phosphate group, or an acidic phosphate group is preferable. The acidic phosphate group is one in which a part of the phosphorus-bonded hydroxyl group is alkoxylated. Examples of the alkoxy group include lower alkoxy groups such as a methoxy group, an ethoxy group, and a propoxy group. The number of carbon atoms of the lower alkoxy group is preferably 1-8.
Examples of the basic functional group include an amino group, an imino group (= NH), an ammonium base, and a heterocyclic group having a basic nitrogen atom, but an amino group, an ammonium base (for example, a tertiary ammonium base, A quaternary ammonium base). The amino group may be any of a primary amino group (—NH 2 ), a secondary amino group (—NHR), and a tertiary amino group (—NRR ′). R and R ′ are an alkyl group, a phenyl group, an aralkyl group and the like, and preferably have 1 to 8 carbon atoms.

前記酸性官能基と塩基性官能基を有する高分子分散剤は、分子中の酸性官能基の一部を塩基性化合物により中和ないし塩化していてもよい。中和ないし塩化に用いる塩基性化合物として、たとえば、アルカリ金属やアルカリ土類金属の水酸化物、アンモニア、アルキルアミン類、アマイドアミン類、アルカノールアミン類、モルホリン等の含窒素有機化合物が挙げられる。上記アルカリ金属やアルカリ土類金属の水酸化物として、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等が挙げられ、アルキルアミン類の具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、エチレンジアミンが挙げられる。アルキル基とアルキレン基の炭素原子数は1〜8が好ましい。 In the polymer dispersant having an acidic functional group and a basic functional group, a part of the acidic functional group in the molecule may be neutralized or chlorinated with a basic compound. Examples of basic compounds used for neutralization or chlorination include nitrogen-containing organic compounds such as hydroxides of alkali metals and alkaline earth metals, ammonia, alkylamines, amide amines, alkanolamines, and morpholine. Examples of the alkali metal or alkaline earth metal hydroxide include sodium hydroxide, potassium hydroxide, magnesium hydroxide and the like. Specific examples of alkylamines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine. And ethylenediamine. The alkyl group and alkylene group preferably have 1 to 8 carbon atoms.

また、分子中の塩基性官能基の一部を酸性化合物により中和ないし塩化していてもよい。中和ないし塩化に用いる酸性化合物として、たとえば、リン酸,部分アルキルエステル化リン酸(酸性リン酸エステル),カルボン酸(例えば、低級脂肪族モノカルボン酸,低級脂肪族ジカルボン酸)が挙げられる。これらカルボン酸の炭素原子数は1〜8が好ましい。酸性官能基の一部は、塩基性官能基との塩を形成していてもよい。 Further, a part of the basic functional group in the molecule may be neutralized or salified with an acidic compound. Examples of the acidic compound used for neutralization or chlorination include phosphoric acid, partially alkyl esterified phosphoric acid (acidic phosphoric acid ester), and carboxylic acid (for example, lower aliphatic monocarboxylic acid and lower aliphatic dicarboxylic acid). These carboxylic acids preferably have 1 to 8 carbon atoms. A part of the acidic functional group may form a salt with the basic functional group.

酸性官能基および/または塩基性官能基を有する高分子分散剤の酸価は、5〜300mgKOH/gであることが好ましく、10〜200mgKOH/gであることがより好ましい。また、高分子分散剤のアミン価は、5〜300mgKOH/gであることが好ましく、10〜200mgKOH/gであることがより好ましい。
酸価とは、高分子分散剤固形分1gあたりの酸価を表し、JIS K 0070に準じ、電位差滴定法によって求めることができる。アミン価とは、高分子分散剤固形分1gあたりのアミン価を表し、0.1Nの塩酸水溶液を用い、電位差滴定法によって求めたのち、水酸化カリウムの当量に換算した値をいう。
The acid value of the polymer dispersant having an acidic functional group and / or a basic functional group is preferably 5 to 300 mgKOH / g, and more preferably 10 to 200 mgKOH / g. Further, the amine value of the polymer dispersant is preferably 5 to 300 mgKOH / g, more preferably 10 to 200 mgKOH / g.
The acid value represents the acid value per 1 g of the solid content of the polymer dispersant, and can be determined by potentiometric titration according to JIS K 0070. The amine value represents the amine value per gram of the polymer dispersant solid content, and is a value converted to an equivalent of potassium hydroxide after being obtained by potentiometric titration using a 0.1N hydrochloric acid aqueous solution.

高分子分散剤において酸性官能基と塩基性官能基の高分子本体への結合位置は、特に限定されず、主鎖であってもよく、側鎖であってもよく、主鎖および側鎖に位置していてもよい。酸性官能基と塩基性官能基は、高分子本体へ直接結合しても良く、連結基を介して結合してもよい。連結基として、エチレン基〜オクチレン基などの低級アルキレン基、フェニレン基、鎖中にエーテル結合を有する低中級アルキレン基、鎖中にカルボン酸エステル結合を有する低中級アルキレン基、鎖中にカルボン酸アミド結合を有する低中級アルキレン基が例示される。低級アルキレン基の炭素原子数は1〜8が好ましく、鎖中にエーテル結合などを有する低中級アルキレン基の合計炭素原子数は2〜12が好ましい。 In the polymer dispersant, the bonding position of the acidic functional group and the basic functional group to the polymer main body is not particularly limited, and may be a main chain, a side chain, a main chain and a side chain. May be located. The acidic functional group and the basic functional group may be directly bonded to the polymer main body or may be bonded via a linking group. As a linking group, a lower alkylene group such as an ethylene group to an octylene group, a phenylene group, a low intermediate alkylene group having an ether bond in the chain, a low intermediate alkylene group having a carboxylic acid ester bond in the chain, a carboxylic acid amide in the chain Examples are low and intermediate alkylene groups having a bond. The lower alkylene group preferably has 1 to 8 carbon atoms, and the lower intermediate alkylene group having an ether bond in the chain preferably has 2 to 12 carbon atoms in total.

市販の酸性官能基および/または塩基性官能基を有する高分子分散剤として、SOLSPERSE24000(酸価:24mgKOH/g、アミン価:47mgKOH/g),SOLSPERSE32000(酸価:15mgKOH/g、アミン価:180mgKOH/g)(Lubrizol,Ltd.製)(SOLSPERSEは、リューブリゾル リミテッドの登録商標である)等が例示される。 As a polymer dispersant having a commercially available acidic functional group and / or basic functional group, SOLSPERSE24000 (acid value: 24 mgKOH / g, amine value: 47 mgKOH / g), SOLSPERSE32000 (acid value: 15 mgKOH / g, amine value: 180 mgKOH) / G) (manufactured by Lubrizol, Ltd.) (SOLSPERSE is a registered trademark of Lyubrizol Limited).

また、DISPERBYK-106(酸価:132mgKOH/g、アミン価:74mgKOH/g)、DISPERBYK-130(酸価:2mgKOH/g、アミン価:190mgKOH/g)、DISPERBYK-140(酸価:73mgKOH/g、アミン価:76mgKOH/g)、DISPERBYK-142(酸価:46mgKOH/g、アミン価:43mgKOH/g)、DISPERBYK-145(酸価:76mgKOH/g、アミン価:71mgKOH/g)、DISPERBYK-180(酸価:94mgKOH/g、アミン価:94mgKOH/g)、DISPERBYK-187(酸価:35mgKOH/g、アミン価:35mgKOH/g)、DISPERBYK-191(酸価:30mgKOH/g、アミン価:20mgKOH/g)、DISPERBYK-2001(酸価:19mgKOH/g、アミン価:29mgKOH/g)、DISPERBYK-2010(酸価:20mgKOH/g、アミン価:20mgKOH/g)、DISPERBYK-2020(酸価:37mgKOH/g、アミン価:36mgKOH/g)、DISPERBYK-2020N(酸価:36mgKOH/g、アミン価:36mgKOH/g)、DISPERBYK-2025(酸価:38mgKOH/g、アミン価:37mgKOH/g)、DISPERBYK-102(酸価:101mgKOH/g)、DISPERBYK-174(酸価:22mgKOH/g)、DISPERBYK-2096(酸価:40mgKOH/g)、DISPERBYK-2150(アミン価:57mgKOH/g)、などのディスパービックシリーズ品[ビックケミー・ジャパン株式会社販売品](DISPERBYKは、ビイク―ヘミー ゲゼルシヤフト ミツト ベシュレンクテル ハフツングの登録商標である)等が例示される。 DISPERBYK-106 (acid value: 132 mgKOH / g, amine value: 74 mgKOH / g), DISPERBYK-130 (acid value: 2 mgKOH / g, amine value: 190 mgKOH / g), DISPERBYK-140 (acid value: 73 mgKOH / g) , Amine value: 76 mgKOH / g), DISPERBYK-142 (acid value: 46 mgKOH / g, amine value: 43 mgKOH / g), DISPERBYK-145 (acid value: 76 mgKOH / g, amine value: 71 mgKOH / g), DISPERBYK-180 (Acid value: 94 mgKOH / g, amine value: 94 mgKOH / g), DISPERBYK-187 (acid value: 35 mgKOH / g, amine value: 35 mgKOH / g), DISPERBYK-191 (acid value: 30 mgKOH / g, amine value: 20 mgKOH) / G), DISPERBYK-2001 (acid value: 19 mgKOH / g, amine value: 29 mgKOH / g), DISPERBYK-2010 (acid value: 20 mgKOH / g, a DISPERBYK-2020 (acid value: 37 mgKOH / g, amine value: 36 mgKOH / g), DISPERBYK-2020N (acid value: 36 mgKOH / g, amine value: 36 mgKOH / g), DISPERBYK-2025 ( Acid value: 38 mgKOH / g, amine value: 37 mgKOH / g), DISPERBYK-102 (acid value: 101 mgKOH / g), DISPERBYK-174 (acid value: 22 mgKOH / g), DISPERBYK-2096 (acid value: 40 mgKOH / g) , DISPERBYK-2150 (amine value: 57 mgKOH / g), etc. Disperbic series products [BIC Chemie Japan Co., Ltd. sales] (DISPERBYK is a registered trademark of Bik-Hemi Geselsyaft Mitto Beschlenktel Huffung) .

また、BYK-9076(酸価:38mgKOH/g、アミン価:44mgKOH/g)、BYK-9077(アミン価:48mgKOH/g)、ANTI-TERRA-U(酸価:24mgKOH/g、アミン価:19mgKOH/g)、ANTI-TERRA-U100(酸価:50mgKOH/g、アミン価:35mgKOH/g)、ANTI-TERRA-204(酸価:41mgKOH/g、アミン価:37mgKOH/g)、ANTI-TERRA-205(酸価:40mgKOH/g、アミン価:37mgKOH/g)、ANTI-TERRA-250(酸価:46mgKOH/g、アミン価:41mgKOH/g)などのビックシリーズ品、アンチテラシリーズ品[ビックケミー・ジャパン株式会社販売品](BYKおよびANTI-TERRAは、ビイク―ヘミー ゲゼルシヤフト ミツト ベシュレンクテル ハフツングの登録商標である)が例示される。 Further, BYK-9076 (acid value: 38 mgKOH / g, amine value: 44 mgKOH / g), BYK-9077 (amine value: 48 mgKOH / g), ANTI-TERRA-U (acid value: 24 mgKOH / g, amine value: 19 mgKOH) / G), ANTI-TERRA-U100 (acid value: 50 mgKOH / g, amine value: 35 mgKOH / g), ANTI-TERRA-204 (acid value: 41 mgKOH / g, amine value: 37 mgKOH / g), ANTI-TERRA- Bic series products such as 205 (acid value: 40 mg KOH / g, amine value: 37 mg KOH / g), ANTI-TERRA-250 (acid value: 46 mg KOH / g, amine value: 41 mg KOH / g), anti-terra series products [Bic Chemie ・Japan Co., Ltd. Sales] (BYK and ANTI-TERRA are registered trademarks of Beik-Hemi Geselsyaft Mits Beschlenktel Huffung).

また、ディスパロンDA−234(酸価:16mgKOH/g、アミン価:20mgKOH/g)、ディスパロンDA−325(酸価:14mgKOH/g、アミン価:20mgKOH/g)などのディスパロンシリーズ品[楠本化成株式会社製]ディスパロンは、楠本化成株式会社の登録商標である);アジスパーPB−821(酸価:17mgKOH/g、アミン価:10mgKOH/g)、アジスパーPB−822(酸価:14mgKOH/g、アミン価:17mgKOH/g)、アジスパーPB−881(酸価:17mgKOH/g、アミン価:17mgKOH/g)、アジスパーPN−411(酸価:6mgKOH/g、アジスパーPA−111(酸価:35mgKOH/g)、などのアジスパーシリーズ品[味の素ファインテクノ株式会社製]が例示される(アジスパーは、味の素株式会社の登録商標である)。 Disparon series products such as Dispalon DA-234 (acid value: 16 mg KOH / g, amine value: 20 mg KOH / g), Disparon DA-325 (acid value: 14 mg KOH / g, amine value: 20 mg KOH / g) [Enomoto Kasei Disparon is a registered trademark of Enomoto Kasei Co., Ltd.); Azisper PB-821 (acid value: 17 mg KOH / g, amine value: 10 mg KOH / g), Azisper PB-822 (acid value: 14 mg KOH / g, Amine value: 17 mg KOH / g), Azisper PB-881 (acid value: 17 mg KOH / g, amine value: 17 mg KOH / g), Azisper PN-411 (acid value: 6 mg KOH / g, Azisper PA-111 (acid value: 35 mg KOH / g) g) Ajisper series products such as [Ajinomoto Fine Techno [Ajispur is a registered trademark of Ajinomoto Co., Inc.].

(c)含窒素有機化合物は、1級、2級もしくは3級のアルキルアミン類、ジアミン類、トリアミン類、アルキルアミドアミン類、N-アルキルエタノールアミン類、N-アルキルモルホリン、その他の有機アミン化合物が例示される。含窒素有機化合物の炭素原子数は1〜54が好ましい。 (C) Nitrogen-containing organic compounds include primary, secondary or tertiary alkylamines, diamines, triamines, alkylamidoamines, N-alkylethanolamines, N-alkylmorpholines, and other organic amine compounds. Illustrated. The number of carbon atoms in the nitrogen-containing organic compound is preferably 1 to 54.

アルキルアミン類、ジアミン類、トリアミン類として、ジプロピルアミン、ジブチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、トリプロピルアミン、トリブチルアミン等のアルキルアミン類;エチレンジアミン、N,N−ジメチルエチレンジアミン、N,N´−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N´−ジエチルエチレンジアミン、1,2−プロパンジアミン、1,3−プロパンジアミン、2,2−ジメチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−ジアミノプロパン、N,N−ジエチル−1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノ−2−メチルペンタン、1,6−ジアミノヘキサン、N,N´−ジメチル−1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン等のジアミン類;ジエチレントリアミン、ジプロピレントリアミン、ジブチレントリアミン、N−アミノエチルピペラジン等のトリアミン類が例示される。 Alkylamines, diamines, triamines such as dipropylamine, dibutylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, alkylamines such as decylamine, dodecylamine, tripropylamine, tributylamine; ethylenediamine N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 2,2-dimethyl -1,3-propanediamine, N, N-dimethyl-1,3-diaminopropane, N, N-diethyl-1,3-diaminopropane, 1,4-diaminobutane, 1,5-diamino-2-methyl Pentane, 1,6- Diamines such as diaminohexane, N, N′-dimethyl-1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane; diethylenetriamine, dipropylenetriamine, dibutylenetriamine, N-aminoethylpiperazine And the like.

該加熱焼結性銀粒子(A)を被覆する極性基を有する有機物の被覆量は、これら加熱焼結性銀粒子の0.05〜5.0質量%であり、より好ましくは0.1〜2質量%である。少なすぎると該銀粒子(A)が凝集しやすくなって保存安定性が低下し、ひいては加熱焼結時の接合強度が不均一になり、多すぎると該加熱焼結性銀粒子(A)の加熱焼結性が低下し、更には該焼結物における空隙が大きくなって該焼結物の熱衝撃に対する耐久性が低下する。 The coating amount of the organic substance having a polar group for coating the heat-sinterable silver particles (A) is 0.05 to 5.0% by mass of these heat-sinterable silver particles, and more preferably 0.1 to 0.1%. 2% by mass. If the amount is too small, the silver particles (A) tend to aggregate and storage stability is lowered. As a result, the bonding strength at the time of heat sintering becomes non-uniform, and if too large, the heat sinterable silver particles (A) The heat sinterability is lowered, and further, the voids in the sintered product are increased, and the durability of the sintered product against thermal shock is reduced.

極性基を有する有機物の被覆量は通常の方法で測定できる。例えば、該銀粒子(A)を該有機物の沸点、揮発温度または熱分解温度以上に加熱して重量減少を測定する熱重量分析、該銀粒子(A)を酸素気流中で加熱して該銀粒子(A)に付着していた有機物中の炭素を炭酸ガスに変え、赤外線吸収スペクトル法により定量分析する方法が例示される。後者の場合、該有機物中の炭素含有量が測定されるが、該有機物の構造、構成成分は、赤外線分析、質量分析等により確認できるので、該炭素量から容易に該有機物の量を算出できる。 The coating amount of the organic substance having a polar group can be measured by a usual method. For example, thermogravimetric analysis in which the silver particles (A) are heated above the boiling point, volatilization temperature or thermal decomposition temperature of the organic substance to measure weight loss, and the silver particles (A) are heated in an oxygen stream to An example is a method in which carbon in the organic matter adhering to the particles (A) is changed to carbon dioxide and quantitative analysis is performed by infrared absorption spectroscopy. In the latter case, the carbon content in the organic substance is measured. However, since the structure and components of the organic substance can be confirmed by infrared analysis, mass spectrometry, etc., the amount of the organic substance can be easily calculated from the carbon amount. .

本発明のペースト状銀粒子組成物は、加熱焼結性銀粒子(A)と揮発性分散媒(B)と熱硬化性樹脂粉末(C)からなり、粉末状の該加熱焼結性銀粒子(A)と該熱硬化性樹脂粉末(C)が、該揮発性分散媒(B)の作用によりペースト化している。このようにペースト化することによりシリンダーやノズルから微小量の吐出や細い線状に吐出でき、またメタルマスクによる印刷塗布が容易であり、微小な面積でも作業性良く塗布が可能になる。
また、該揮発性分散媒(B)が非揮発性分散媒ではなく、揮発性分散媒を使用するのは、加熱により該加熱焼結性銀粒子(A)が焼結する際に分散媒が前もって揮散すると該加熱焼結性銀粒子(A)が焼結しやすく、その結果、導電性、熱伝導性、金属製部材への接着性が向上するからである。該揮発性分散媒(B)は、銀粒子表面を変質させず、その沸点は60℃以上であり、300℃以下であることが好ましい。沸点が60℃未満であるとペースト状銀粒子組成物を調製する作業中に該揮発性分散媒(B)が揮散しやすく、沸点が300℃より大であると、該加熱焼結性銀粒子(A)が焼結後も該揮発性分散媒(B)が残留しかねないからである。
The paste-like silver particle composition of the present invention comprises a heat-sinterable silver particle (A), a volatile dispersion medium (B), and a thermosetting resin powder (C). (A) and the thermosetting resin powder (C) are pasted by the action of the volatile dispersion medium (B). By making a paste in this way, a small amount can be discharged from a cylinder or a nozzle or a thin line can be discharged, and printing can be easily applied with a metal mask, and even a small area can be applied with good workability.
In addition, the volatile dispersion medium (B) is not a non-volatile dispersion medium, and the volatile dispersion medium is used because the dispersion medium is not heated when the heat-sinterable silver particles (A) are sintered by heating. This is because, when volatilized in advance, the heat-sinterable silver particles (A) are easily sintered, and as a result, conductivity, thermal conductivity, and adhesion to a metal member are improved. The volatile dispersion medium (B) does not alter the surface of the silver particles and has a boiling point of 60 ° C. or higher and preferably 300 ° C. or lower. When the boiling point is less than 60 ° C., the volatile dispersion medium (B) is easily volatilized during the operation of preparing the paste-like silver particle composition, and when the boiling point is higher than 300 ° C., the heat-sinterable silver particles This is because the volatile dispersion medium (B) may remain even after (A) is sintered.

そのような揮発性分散媒(B)として、水;エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール、シクロヘキサノール、ターピネオール等の揮発性一価アルコール;エチレングリコール、プロピレングリコール、ヘキサンジオール、オクタンジオール等の揮発性多価アルコール;低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素;アセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3,5,5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2,6−ジメチル−4−ヘプタノン)等の揮発性ケトン;酢酸エチル(エチルアセテート)、酢酸ブチルのような揮発性酢酸エステル;酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチルのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、メチルセロソルブ、プロピレンブリコールモノメチルエーテル、メチルメトキシブタノール、ブチルカルビトール等の揮発性エーテル;低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイルが例示される。 As such a volatile dispersion medium (B), water; ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, benzyl alcohol, cyclohexanol, terpineol, etc. Volatile monohydric alcohols; volatile polyhydric alcohols such as ethylene glycol, propylene glycol, hexanediol and octanediol; volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins; volatile aromatics such as toluene and xylene Hydrocarbon: acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophoro Volatile ketones such as (3,5,5-trimethyl-2-cyclohexen-1-one) and dibutyl ketone (2,6-dimethyl-4-heptanone); such as ethyl acetate (ethyl acetate) and butyl acetate Volatile acetic acid ester; Volatile aliphatic carboxylic acid ester such as methyl butyrate, methyl hexanoate, methyl octoate, methyl decanoate; tetrahydrofuran, methyl cellosolve, propylene bricol monomethyl ether, methyl methoxybutanol, butyl carbitol, etc. Examples include volatile ethers; low molecular weight volatile silicone oils and volatile organic modified silicone oils.

揮発性分散媒(B)は2種類以上を併用しても良く、揮発性分散媒同士の相溶性は問わない。また、本発明のペースト状銀粒子組成物は使用する際にペースト状であればよいので、該揮発性分散媒(B)は常温で固体状、例えば、ピロガロール、p−メチルベンジルアルコール、o−メチルベンジルアルコール、シル−3,3,5−トリメチルシクロヘキサノール、1,4−シクロヘキサンジメタノール、1,4−シクロヘキサンジオール、ピナコールなどのアルコール類;ビフェニル、ナフタレン、デュレンなどの炭化水素類;ジベンゾイルメタン、カルコン、アセチルシクロヘキサンなどのケトン類;ラウリン酸、カプリン酸などの脂肪酸類を含有していてもよい。この際、融点、沸点、蒸気圧、粘度、誘電率、屈折率等が異なる、複数の揮発性分散媒を併用してもよい。なお、水は、本発明の加熱焼結性銀粒子(A)の表面を被覆する極性基を有する被覆剤が撥水性の場合は、好ましくない。 Two or more kinds of volatile dispersion media (B) may be used in combination, and the compatibility of the volatile dispersion media is not limited. In addition, since the pasty silver particle composition of the present invention may be pasty when used, the volatile dispersion medium (B) is solid at room temperature, for example, pyrogallol, p-methylbenzyl alcohol, o- Alcohols such as methylbenzyl alcohol, sil-3,3,5-trimethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, pinacol; hydrocarbons such as biphenyl, naphthalene, durene; dibenzoyl It may contain ketones such as methane, chalcone and acetylcyclohexane; fatty acids such as lauric acid and capric acid. At this time, a plurality of volatile dispersion media having different melting points, boiling points, vapor pressures, viscosities, dielectric constants, refractive indexes, and the like may be used in combination. In addition, water is not preferable when the coating agent having a polar group that covers the surface of the heat-sinterable silver particles (A) of the present invention is water-repellent.

該揮発性分散媒(B)の配合量は、該加熱焼結性銀粒子(A)と該熱硬化性樹脂粉末(C)をペースト状にするのに十分な量であり、該加熱焼結性銀粒子(A)と該熱硬化性樹脂粉末(C)の合計100質量部あたり、通常5〜25質量部であり、好ましくは8〜15質量部である。 The blending amount of the volatile dispersion medium (B) is sufficient to paste the heat-sinterable silver particles (A) and the thermosetting resin powder (C), and the heat-sintering The amount is usually 5 to 25 parts by mass, preferably 8 to 15 parts by mass, per 100 parts by mass in total of the conductive silver particles (A) and the thermosetting resin powder (C).

本発明のペースト状銀粒子組成物には、本発明の目的・効果に反しない限り、該加熱焼結性銀粒子(A)以外の卑金属系の金属粒子、非金属系粒子、金属酸化物、金属化合物、金属錯体、チクソ剤、安定剤、焼結促進剤等の添加物を少量ないし微量(例えば、10質量%以下)添加してもよい。 In the paste-like silver particle composition of the present invention, base metal metal particles other than the heat-sinterable silver particles (A), non-metal particles, metal oxide, Additives such as metal compounds, metal complexes, thixotropic agents, stabilizers, and sintering accelerators may be added in a small amount to a trace amount (for example, 10% by mass or less).

本発明における、融点が40〜300℃である熱硬化性樹脂粉末(C)は、本発明のペースト状銀粒子組成物が加熱された際に溶融して硬化し、該加熱焼結性銀粒子(A)同士が加熱されて生成した脆い多孔質の銀粒子焼結物を補強して機械的強度を改善する効果がある。また、該熱硬化性樹脂粉末(C)は、本発明のペースト状銀粒子組成物を複数の金属製部材間に介在させ、加熱して生成した該多孔質の銀粒子焼結物により該金属製部材を接合する際に、接着剤として機能して、該多孔質の銀粒子焼結物と該金属製部材の接合を補強し、接合強度を大きくする作用効果があり、更には、該多孔質の銀粒子焼結物の熱衝撃に対する耐久性を向上する効果がある。
また、該熱硬化性樹脂粉末(C)が、該多孔質の銀粒子焼結物の高温エージング試験において、銀の結晶成長を抑制して多孔質体中の空隙の増大を抑制する場合には、高温エージング試験後の該接合強度の低下を抑制する効果がある。
In the present invention, the thermosetting resin powder (C) having a melting point of 40 to 300 ° C. is melted and cured when the paste-like silver particle composition of the present invention is heated, and the heat-sinterable silver particles (A) There is an effect of improving mechanical strength by reinforcing brittle porous silver particle sintered products produced by heating each other. In addition, the thermosetting resin powder (C) is produced by interposing the paste-like silver particle composition of the present invention between a plurality of metal members and heating the porous silver particle sintered product. It functions as an adhesive when joining the manufactured members, reinforces the connection between the porous silver particle sintered product and the metal member, and increases the bonding strength. There is an effect of improving the durability against thermal shock of a sintered silver particle.
In the case where the thermosetting resin powder (C) suppresses the growth of voids in the porous body by suppressing silver crystal growth in the high-temperature aging test of the porous silver particle sintered product. There is an effect of suppressing a decrease in the bonding strength after the high temperature aging test.

該熱硬化性樹脂粉末(C)は、融点が40〜300℃であるので、融点より低い温度では粉末状である。しかし、融点より少々低い温度に保持すると軟化することがあるので、好ましくは、各融点よりも少なくとも15℃低い温度では粉末状である。例えば、融点が40℃の場合は、少なくとも25℃では粉末状である。なお、調達容易性、製造容易性の点で、融点は40〜200℃であることが好ましく、40〜100℃であることがより好ましく、特には40〜80℃であることが好ましい。
また、本発明のペースト状銀粒子組成物の加熱温度は100℃以上300℃以下であるから、その時の加熱温度において該熱硬化性樹脂粉末(C)は溶融することが好ましい。該熱硬化性樹脂粉末(C)が溶融してから硬化するまでの時間は限定されないが、本発明のペースト状銀粒子組成物の加熱が終了するまでに硬化することが好ましい。
Since the thermosetting resin powder (C) has a melting point of 40 to 300 ° C., it is powdery at a temperature lower than the melting point. However, since it may soften if kept at a temperature slightly lower than the melting point, it is preferably powdery at a temperature at least 15 ° C. lower than each melting point. For example, when the melting point is 40 ° C., it is powdery at least at 25 ° C. The melting point is preferably 40 to 200 ° C., more preferably 40 to 100 ° C., and particularly preferably 40 to 80 ° C. in terms of ease of procurement and ease of manufacture.
Moreover, since the heating temperature of the paste-form silver particle composition of this invention is 100 degreeC or more and 300 degrees C or less, it is preferable that this thermosetting resin powder (C) fuse | melts at the heating temperature at that time. The time from the melting of the thermosetting resin powder (C) to the curing is not limited, but it is preferable to cure by the time the heating of the pasty silver particle composition of the present invention is completed.

該熱硬化性樹脂粉末(C)は、平均粒径が0.1〜100μmであり、本発明のペースト状銀粒子組成物のニードルやノズル等の微細な吐出口からの吐出性の点で、50μm以下であることが好ましく、20μm以下であることがより好ましい。この平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準の粒度分布における累積50%粒径、すなわち、メジアン径である。なお、該測定法が使用できない場合は、電子顕微鏡写真による粒子径から計算されるメジアン径または単純平均値であってもよい。
平均粒径の調整は、所定の開口径を有する金網、あるいは、機械的な分級器等により容易におこなうことができる。金網の場合、例えば、300メッシュの金網を通過させることで略50μm以上の粗大粒子を除外でき、1000メッシュの金網を通過させることで略15μm以上の粗大粒子を除外できる。分級器は、ジェット式を含め多くの種類が市販されている。なお、該熱硬化性樹脂粉末(C)の形状は限定されない。破砕状、粒状、球状、不定形状が例示される。
The thermosetting resin powder (C) has an average particle diameter of 0.1 to 100 μm, and in terms of dischargeability from a fine discharge port such as a needle or nozzle of the paste-like silver particle composition of the present invention, It is preferably 50 μm or less, and more preferably 20 μm or less. This average particle diameter is a cumulative 50% particle diameter in a volume-based particle size distribution obtained by a laser diffraction / scattering particle size distribution measuring method, that is, a median diameter. In addition, when this measuring method cannot be used, the median diameter calculated from the particle diameter by an electron micrograph or a simple average value may be sufficient.
The adjustment of the average particle diameter can be easily performed with a wire mesh having a predetermined opening diameter, a mechanical classifier or the like. In the case of a wire mesh, for example, coarse particles of about 50 μm or more can be excluded by passing through a 300 mesh wire mesh, and coarse particles of about 15 μm or more can be excluded by passing through a 1000 mesh wire mesh. Many types of classifiers are commercially available, including the jet type. The shape of the thermosetting resin powder (C) is not limited. Examples include crushed, granular, spherical, and irregular shapes.

このような融点が40〜300℃である熱硬化性樹脂粉末(C)として、熱硬化性エポキシ樹脂粉末、熱硬化性フェノール樹脂粉末、熱硬化性ノボラック樹脂粉末、熱硬化性ポリウレタン樹脂粉末、熱硬化性アルキド樹脂粉末、熱硬化性アクリル樹脂粉末、熱硬化性ポリエステル樹脂粉末、熱硬化性シリコン樹脂粉末、熱硬化性ポリアミック酸型ポリイミド樹脂粉末、熱硬化性ビスマレイミド樹脂粉末、および、それら樹脂の変性樹脂粉末が例示される。これら熱硬化性樹脂粉末は、耐熱性の点で、熱硬化性芳香族系樹脂粉末が好ましい。
これら熱硬化性樹脂粉末(C)は、通常、硬化剤を含むが、それ自体が熱硬化性である場合は、硬化剤を含まなくてもよい。
該熱硬化性樹脂粉末(C)は、該揮発性分散媒(B)への溶解性が低く、しかもそれ自身が加熱により溶融し、かつ、良好な接着性を有する点で、熱硬化性エポキシ樹脂粉末であることが好ましい。
このような融点を有する熱硬化性エポキシ樹脂粉末として、熱硬化性エポキシ樹脂粉体塗料が例示される。熱硬化性エポキシ樹脂粉体塗料は多数市販されており、液状の硬化性エポキシ樹脂組成物では困難な、常温(例えば25℃)における保存安定性が優れるという特徴がある。
As such thermosetting resin powder (C) having a melting point of 40 to 300 ° C., thermosetting epoxy resin powder, thermosetting phenol resin powder, thermosetting novolac resin powder, thermosetting polyurethane resin powder, heat Curable alkyd resin powder, thermosetting acrylic resin powder, thermosetting polyester resin powder, thermosetting silicone resin powder, thermosetting polyamic acid type polyimide resin powder, thermosetting bismaleimide resin powder, and those resins A modified resin powder is exemplified. These thermosetting resin powders are preferably thermosetting aromatic resin powders in terms of heat resistance.
These thermosetting resin powders (C) usually contain a curing agent, but when the thermosetting resin powder (C) itself is thermosetting, it does not need to contain a curing agent.
The thermosetting resin powder (C) has a low solubility in the volatile dispersion medium (B), is melted by heating, and has a good adhesive property. A resin powder is preferred.
Examples of the thermosetting epoxy resin powder having such a melting point include a thermosetting epoxy resin powder coating. Many thermosetting epoxy resin powder coatings are commercially available, and are characterized by excellent storage stability at room temperature (for example, 25 ° C.), which is difficult with a liquid curable epoxy resin composition.

該熱硬化性エポキシ樹脂粉体塗料は、エポキシ樹脂、硬化剤、安定剤、シリカ等の無機フィラー、顔料等を含むが、エポキシ樹脂と硬化剤は必須成分であり、他は任意成分である。
該エポキシ樹脂は、通常、1分子中に少なくともエポキシ基を2個以上有する、多官能性エポキシ樹脂であり、エポキシ基はグリシジル基や2-(3,4-エポキシシクロヘキシル)エチル基の一部として含まれる。
該硬化剤は、アミン、イミダゾール、酸無水物等であり、該安定剤は、反応抑制剤、耐熱安定剤、酸化防止剤等であり、該無機フィラーは、シリカ、アルミナ、水酸化アルミニウム等の微粉末であり、該顔料は、ベンガラ、酸化チタン等の着色剤である。なお、1官能性あるいは多官能性の反応性稀釈剤を含有してもよい。
The thermosetting epoxy resin powder coating contains an epoxy resin, a curing agent, a stabilizer, an inorganic filler such as silica, a pigment, and the like, but the epoxy resin and the curing agent are essential components, and the others are optional components.
The epoxy resin is usually a polyfunctional epoxy resin having at least two epoxy groups in one molecule, and the epoxy group is a part of glycidyl group or 2- (3,4-epoxycyclohexyl) ethyl group. included.
The curing agent is an amine, imidazole, acid anhydride or the like, the stabilizer is a reaction inhibitor, a heat resistance stabilizer, an antioxidant, or the like, and the inorganic filler is silica, alumina, aluminum hydroxide, or the like. The pigment is a fine powder, and the pigment is a colorant such as bengara or titanium oxide. In addition, you may contain a monofunctional or polyfunctional reactive diluent.

このような多官能性エポキシ樹脂は多数市販されており、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂などの芳香族系エポキシ樹脂、脂環式エポキシ樹脂、N,N,N',N'−テトラグリシジルジアミノジフェニルメタン等が例示される。耐熱性の点で、芳香族系エポキシ樹脂が好ましい。 Many such polyfunctional epoxy resins are commercially available, such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, naphthalene type epoxy resin, etc. Examples include aromatic epoxy resins, alicyclic epoxy resins, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, and the like. An aromatic epoxy resin is preferable in terms of heat resistance.

また、このような硬化剤は、脂肪族ポリアミン、ポリアミノアミド(ポリアミド樹脂)、脂環族ジアミン、芳香族ジアミン、イミダゾール、3級アミン)、酸無水物化合物、フェノール樹脂、アミノ樹脂、ジシアンジアミド、ルイス酸錯化合物等が例示される。なお、これらの硬化剤はエポキシ樹脂の硬化を促進する効果を併せ持っていてもよい。硬化剤量は該熱硬化性エポキシ樹脂粉末を加熱硬化させるのに十分な量である。硬化剤の種類によって該熱硬化性エポキシ樹脂粉末を加熱硬化させるのに十分な量は異なるので、一律に規定しにくいが、該熱硬化性エポキシ樹脂粉末の2〜15質量%である。 Such curing agents include aliphatic polyamines, polyaminoamides (polyamide resins), alicyclic diamines, aromatic diamines, imidazoles, tertiary amines), acid anhydride compounds, phenol resins, amino resins, dicyandiamide, Lewis Examples include acid complex compounds. In addition, these hardening | curing agents may have the effect which accelerates | stimulates hardening of an epoxy resin. The amount of the curing agent is an amount sufficient to heat cure the thermosetting epoxy resin powder. The amount sufficient to heat and cure the thermosetting epoxy resin powder varies depending on the kind of the curing agent, so it is difficult to uniformly define, but it is 2 to 15% by mass of the thermosetting epoxy resin powder.

本発明のペースト状銀粒子組成物の保管中に該熱硬化性エポキシ樹脂粉末の硬化反応を抑制するため、該硬化剤は潜在型硬化剤を用いることが好ましい。潜在型硬化剤として、該揮発性分散媒(B)に溶解しにくい、常温で粉末状の硬化剤、熱により溶融する樹脂等のカプセルに硬化剤を含侵もしくは閉じ込めたカプセル型硬化剤、硬化剤を主剤の一部もしくはエポキシ基を有する化合物と予め付加反応させたアダクト型硬化剤、硬化剤を分子内部や分子集合体の内部に有する空洞内に取り込んだ包接型硬化剤等が例示される。 In order to suppress the curing reaction of the thermosetting epoxy resin powder during storage of the pasty silver particle composition of the present invention, it is preferable to use a latent curing agent as the curing agent. As a latent curing agent, a capsule-type curing agent that is hard to dissolve in the volatile dispersion medium (B), is a powdery curing agent at room temperature, a capsule that is impregnated or confined in a capsule such as a resin that melts by heat, and curing Examples include adduct type hardeners that have been pre-addition-reacted with a part of the main agent or a compound having an epoxy group, and inclusion type hardeners that contain a hardener inside the molecule or inside the molecular assembly. The

包接型硬化剤は、例えば、2−メチルイミダゾール、1,2−ジメチルイミダゾール、2− エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル4,5−ジヒドロキシメチルイミダゾール等のイミダゾールを、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、5−ニトロイソフタル酸、5−ヒドロキシイソフタル酸等により包接した硬化剤が例示される。 Examples of the inclusion type curing agent include 2-methylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4- Imidazoles such as methyl-5-hydroxymethylimidazole, 2-phenyl4,5-dihydroxymethylimidazole, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, 5-nitroisophthalic acid, 5-hydroxyisophthalate Examples of the curing agent are clathrated with an acid or the like.

本発明における熱硬化性樹脂粉末(C)は、加熱して硬化した硬化物のガラス転移温度(Tg)が80℃以上であることが好ましい。 As for the thermosetting resin powder (C) in this invention, it is preferable that the glass transition temperature (Tg) of the hardened | cured material hardened | cured by heating is 80 degreeC or more.

本発明のペースト状銀粒子組成物において、該熱硬化性樹脂粉末(C)の比率は、該加熱焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であり、0.1質量部以上3質量部以下であることがより好ましく、0.1質量部以上1.5質量部以下であることが特に好ましい。この該熱硬化性樹脂粉末(C)の比率が、0.01質量部未満であると、該熱硬化性樹脂粉末(C)を添加する効果が乏しく、5.0質量部以上であると、該ペースト状銀粒子組成物の加熱生成物である多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が低下する。 In the paste-like silver particle composition of the present invention, the ratio of the thermosetting resin powder (C) is 0.01 parts by mass or more and 5.0 parts by mass with respect to 100 parts by mass of the heat-sinterable silver particles (A). Less than 0.1 parts by weight, more preferably 0.1 parts by weight or more and 3 parts by weight or less, and particularly preferably 0.1 parts by weight or more and 1.5 parts by weight or less. When the ratio of the thermosetting resin powder (C) is less than 0.01 parts by mass, the effect of adding the thermosetting resin powder (C) is poor, and when it is 5.0 parts by mass or more, The conductivity and thermal conductivity of a composite of a porous silver particle sintered product and a cured resin product, which are heating products of the pasty silver particle composition, are lowered.

本発明のペースト状銀粒子組成物は、該加熱焼結性銀粒子(A)と該揮発性分散媒(B)と該熱硬化性樹脂粉末(C)を、例えば遊星式ミキサーにて均一なペースト状になるまで撹拌混合することにより、容易に製造することができる。この際、該加熱焼結性銀粒子(A)と該揮発性分散媒(B)と該硬化性樹脂粉末(C)を同時に遊星式ミキサーに投入して混合してもよく、まず、該揮発性分散媒(B)と該熱硬化性樹脂粉末(C)を遊星式ミキサーに投入して混合し、次いで該加熱焼結性銀粒子(A)を遊星式ミキサーに投入して混合してもよい。なお、該ペースト状銀粒子組成物は、混入した粗大異物を除去するため、100〜1000メッシュのフィルターでろ過することが好ましい。 The paste-like silver particle composition of the present invention is obtained by mixing the heat-sinterable silver particles (A), the volatile dispersion medium (B), and the thermosetting resin powder (C) with, for example, a planetary mixer. It can be easily produced by stirring and mixing until a paste is obtained. At this time, the heat-sinterable silver particles (A), the volatile dispersion medium (B), and the curable resin powder (C) may be simultaneously put into a planetary mixer and mixed. The dispersible dispersion medium (B) and the thermosetting resin powder (C) may be put into a planetary mixer and mixed, and then the heat-sinterable silver particles (A) may be put into a planetary mixer and mixed. Good. The pasty silver particle composition is preferably filtered through a 100 to 1000 mesh filter in order to remove the mixed coarse foreign matter.

本発明の金属製部材接合体の製造方法は、(A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからな、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、複数の金属製部材間に介在させ、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることにより、複数の金属製部材同士を接合させることを特徴とする。 The method for producing a metal member assembly according to the present invention comprises (A) spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, the heat-sintering silver particles Heat-sinterable silver particles having a coating amount of an organic substance having a polar group covering the surface of the diffusible silver particles of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a melting point Ri Do and a thermosetting epoxy resin powder is 40 to 300 ° C., thermosetting epoxy resin powder (C) is a mean particle diameter of 0.1 to 100 [mu] m, and the sintered silver particles (a ) The paste-like silver particle composition that is 0.01 parts by mass or more and less than 5.0 parts by mass with respect to 100 parts by mass is interposed between a plurality of metal members, and heated at 100 ° C. or more and 300 ° C. or less. Volatile dispersion medium is volatilized, the heat-sinterable silver particles (A) are sintered together, and the thermosetting epoxy resin powder A plurality of metal members are bonded to each other by curing the powder (C) to form a composite of a porous sintered silver particle and a cured epoxy resin.

本発明の多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の製造方法は、(A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ、該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることを特徴とする。
The method for producing a composite of a sintered porous silver particle and an epoxy resin cured product according to the present invention is as follows: (A) Spherical, teardrop-shaped, or granular heat-sintered having an average particle size of 0.01 μm to 10 μm Heat-sinterable silver particles having a polar group covering the surface of the heat-sinterable silver particles and having a coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, the (C) melting point Ri Do and a thermosetting epoxy resin powder is 40 to 300 ° C., thermosetting epoxy resin powder (C), is the mean particle diameter 0.1~100μm And the paste-like silver particle composition which is 0.01 mass part or more and less than 5.0 mass parts is heated at 100 degreeC or more and 300 degrees C or less with respect to 100 mass parts of this sinterable silver particle (A). The volatile dispersion medium is volatilized, the heat-sinterable silver particles (A) are sintered together, and the thermosetting epoxy resin The fat powder (C) is cured to form a composite of a porous sintered silver particle and a cured epoxy resin.

金属製部材接合体の製造方法で使用する金属製部材は、本発明のペースト状銀粒子組成物を加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物により接合される被接合体である。金属製部材の材質は、金、銀、銅、白金、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示されるが、導電性、接合性の点で、金、銀、銅、白金、パラジウムまたはこれら各金属の合金が好ましく、これらの金属でメッキされたものであってもよい。金属製部材として具体的には、全体または一部が金属で形成された、リードフレーム、プリント基板、放熱板等の金属系基板、および、半導体素子、チップ部品等の電子部品が例示される。 The metal member used in the method for producing a metal member joined body is joined by a composite of a sintered porous silver particle and a cured resin product produced by heating the paste-like silver particle composition of the present invention. It is an object to be joined. Examples of the material of the metal member include gold, silver, copper, platinum, palladium, nickel, tin, aluminum, and alloys of these metals. However, in terms of conductivity and bondability, gold, silver, copper Platinum, palladium or an alloy of each of these metals is preferable, and may be plated with these metals. Specific examples of the metal member include metal substrates such as lead frames, printed boards, and heat sinks, and electronic parts such as semiconductor elements and chip parts, all or part of which are made of metal.

該金属製部材接合体の製造方法では、ペースト状銀粒子組成物を加熱する際の雰囲気は、該加熱焼結性銀粒子の焼結性の点で、充分量の酸素ガスを含む大気、空気等の酸化性ガスが好ましい。該金属製部材が銅または銅合金のように酸化されやすい材質の場合には、水素ガスを含む還元性ガスが好ましく、水素ガス5〜25体積%と窒素ガス95〜75体積%からなるフォーミングガスと称される還元性ガスが特に好ましい。また、充分量の酸素を含む大気、空気等の酸化性ガス中で加熱して後、水素を含むガス中で加熱して還元してもよい。 In the method for producing a metal member assembly, the atmosphere when heating the paste-like silver particle composition is air or air containing a sufficient amount of oxygen gas in terms of the sinterability of the heat-sinterable silver particles. An oxidizing gas such as is preferable. When the metal member is made of a material that is easily oxidized, such as copper or a copper alloy, a reducing gas containing hydrogen gas is preferable, and a forming gas composed of 5 to 25% by volume of hydrogen gas and 95 to 75% by volume of nitrogen gas. A reducing gas referred to as is particularly preferred. Alternatively, the reduction may be performed by heating in an oxidizing gas such as air or air containing a sufficient amount of oxygen and then heating in a gas containing hydrogen.

複数の金属製部材間に介在するペースト状銀粒子組成物は、加熱焼結性銀粒子(A)の焼結温度以上の温度に加熱されることにより、揮発性分散媒(B)が揮散して、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性樹脂粉末(C)が硬化して、導電性と熱伝導性が優れた多孔質の銀粒子焼結物と樹脂硬化物の複合物となり金属製部材同士を強固に接合する。この際、該熱硬化性樹脂粉末(C)は、該加熱焼結性銀粒子(A)に比べて配合量が少ないので、該銀粒子焼結物と樹脂硬化物の複合物の導電性と熱伝導性を損なうことがなく、金属製部材同士の接合強度を著しく向上させる。 The paste-like silver particle composition interposed between the plurality of metal members is heated to a temperature equal to or higher than the sintering temperature of the heat-sinterable silver particles (A), whereby the volatile dispersion medium (B) is volatilized. The heat-sinterable silver particles (A) are sintered with each other, the thermosetting resin powder (C) is cured, and a porous silver particle sintered product having excellent conductivity and thermal conductivity is obtained. It becomes a composite of cured resin and firmly joins metal members. At this time, since the thermosetting resin powder (C) has a smaller blending amount than the heat-sinterable silver particles (A), the conductivity of the composite of the silver particle sintered product and the resin cured product can be reduced. Without impairing the thermal conductivity, the bonding strength between the metallic members is remarkably improved.

これらの際の加熱温度は、該揮発性分散媒(B)が揮散し、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性樹脂粉末(C)が硬化する温度であればよく、通常100℃以上であり、150℃以上がより好ましい。しかし、400℃を越えると該揮発性分散媒(B)が突沸的に蒸発して、該加熱焼結性銀粒子(A)同士が焼結して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物の形状に悪影響を与える可能性があるため、300℃以下であり、好ましくは250℃以下である。 The heating temperature in these cases is a temperature at which the volatile dispersion medium (B) is volatilized, the heat-sinterable silver particles (A) are sintered, and the thermosetting resin powder (C) is cured. What is necessary is just 100 degreeC or more normally, and 150 degreeC or more is more preferable. However, when the temperature exceeds 400 ° C., the volatile dispersion medium (B) evaporates suddenly, and the sintered sintered silver particles (A) are produced by sintering the heat-sinterable silver particles (A). Since it may adversely affect the shape of the composite resin cured product, it is 300 ° C. or lower, preferably 250 ° C. or lower.

このようにして製造された、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性樹脂粉末(C)が硬化して生成した銀粒子焼結物と樹脂硬化物の複合物、および、複数の金属製部材間で該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性樹脂粉末(C)が硬化して生成した銀粒子焼結物と樹脂硬化物の複合物は、数多くの微細な空孔や空隙、連続した空隙、すなわち、細孔を有しており、多孔質である。
なお、熱硬化性樹脂粉末(C)の硬化物が透明の場合や、薄くまたは微細に分散している場合は、多孔質の銀粒子焼結物の細孔内に存在しても電子顕微鏡写真に写らないため空隙率の測定・算出が不可能である。
The composite of the silver particle sintered product and the resin cured product produced by sintering the heat-sinterable silver particles (A) thus produced and curing the thermosetting resin powder (C). And sintered silver particles produced by sintering the heat-sinterable silver particles (A) between a plurality of metal members and the thermosetting resin powder (C). The composite of the object has a large number of fine pores and voids, continuous voids, that is, pores, and is porous.
In addition, when the cured product of the thermosetting resin powder (C) is transparent or thinly or finely dispersed, an electron micrograph is present even if it exists in the pores of the porous silver particle sintered product. Therefore, it is impossible to measure and calculate the porosity.

該多孔質の銀粒子焼結物と樹脂硬化物の複合物中の細孔の断面形状や大きさは、種々様々で、その断面形状は、略円形、略楕円形、略長方形、略三角形、不規則形状などである。
また、焼結前の加熱焼結性銀粒子(A)間の隙間が主に細孔になるので、各細孔の最長径は、通常、0.1〜5μm程度である。
The cross-sectional shape and size of the pores in the composite of the porous silver particle sintered product and the cured resin product are various, and the cross-sectional shape is approximately circular, approximately elliptical, approximately rectangular, approximately triangular, Such as irregular shapes.
In addition, since the gaps between the heat-sinterable silver particles (A) before sintering are mainly pores, the longest diameter of each pore is usually about 0.1 to 5 μm.

該熱硬化性樹脂粉末(C)は、該加熱焼結性銀粒子(A)に比べて配合量が少ないにもかかわらず、接合体の接着強さが大きいことからすると、該熱硬化性樹脂粉末(C)の多くは多孔質の銀粒子焼結物と樹脂硬化物の複合物の細孔中で、あるいは、金属製部材との界面で、薄く硬化していると推測される。また、該加熱焼結性銀粒子(A)の比重(密度)は10.53であり、該熱硬化性樹脂粉末(C)の比重(密度)の約6倍〜10倍であるので、質量単位で該熱硬化性樹脂粉末(C)の配合量が少なくても、実質的に該複合物の特性を決める体積比でみると、該熱硬化性樹脂粉末(C)の配合量が少ないとは言えない。そのため、本発明のペースト状銀粒子組成物を加熱して生成するのは、単なる多孔質銀粒子焼結物ではなく、多孔質の銀粒子焼結物と樹脂硬化物の複合物となるのである。 The thermosetting resin powder (C) has a high bonding strength in spite of a small amount compared to the heat-sinterable silver particles (A). It is assumed that most of the powder (C) is thinly cured in the pores of the composite of the porous silver particle sintered product and the resin cured product or at the interface with the metal member. The specific gravity (density) of the heat-sinterable silver particles (A) is 10.53, which is about 6 to 10 times the specific gravity (density) of the thermosetting resin powder (C). Even if the blending amount of the thermosetting resin powder (C) is small in units, the blending amount of the thermosetting resin powder (C) is small in terms of the volume ratio that substantially determines the characteristics of the composite. I can't say that. For this reason, the paste-like silver particle composition of the present invention is heated to produce a composite of a porous silver particle sintered product and a cured resin product, not just a porous silver particle sintered product. .

また、本発明のペースト状銀粒子組成物中の該加熱焼結性銀粒子(A)は、高い導電性と熱伝導性を有するため、該加熱焼結性銀粒子(A)の多孔質焼結物も導電性と熱伝導性に優れる。具体的には、導電性の程度を示す体積抵抗率は、1×10−5Ω・cm以下であることが好ましく、熱伝導性の程度を示す熱伝導率は、100W/m・K以上であることが好ましい。 Further, since the heat-sinterable silver particles (A) in the paste-like silver particle composition of the present invention have high conductivity and thermal conductivity, the heat-sinterable silver particles (A) are porously sintered. The product is also excellent in electrical conductivity and thermal conductivity. Specifically, the volume resistivity indicating the degree of electrical conductivity is preferably 1 × 10 −5 Ω · cm or less, and the thermal conductivity indicating the degree of thermal conductivity is 100 W / m · K or more. Preferably there is.

本発明のペースト状銀粒子組成物を複数の金属製部材間の接合に用いた場合、該加熱焼結性銀粒子(A)同士の焼結物と樹脂硬化物の複合物は、焼結時に接触していた金属製部材、例えば金メッキ基板、金合金メッキ基板、銀基板、銀メッキ金属基板、銀合金基板、銀合金メッキ基板、銅基板、銅メッキ基板、銅合金基板、銅合金メッキ基板、白金メッキ基板、白金合金基板、白金合金メッキ基板、パラジウムメッキ基板、パラジウム合金基板、パラジウム合金メッキ基板等の金属系基板や電気絶縁性基板上の前記した電極等金属部分へ強固に接着する。更に、該熱硬化性樹脂粉末(C)は接合強度を向上する効果があるので接着強さは著しく大きくなり、更に、該金属製部材間における該焼結物は熱衝撃に対する耐久性が優れる。このため、本発明の製造方法による金属製部材接合体は、金属系基板や金属個所を有する電子部品、電子装置、電気部品、電気装置等における金属製部材接合体として有用である。 When the paste-like silver particle composition of the present invention is used for bonding between a plurality of metal members, the composite of the sintered product of the heat-sinterable silver particles (A) and the cured resin product is obtained during sintering. Metal parts that were in contact, such as gold plated substrate, gold alloy plated substrate, silver substrate, silver plated metal substrate, silver alloy substrate, silver alloy plated substrate, copper substrate, copper plated substrate, copper alloy substrate, copper alloy plated substrate, It adheres firmly to a metal part such as a platinum-plated substrate, a platinum alloy substrate, a platinum alloy-plated substrate, a palladium-plated substrate, a palladium alloy substrate, a palladium alloy-plated substrate, or the like on an electrically insulating substrate. Furthermore, since the thermosetting resin powder (C) has an effect of improving the bonding strength, the adhesive strength is remarkably increased, and the sintered product between the metal members is excellent in durability against thermal shock. For this reason, the metal member assembly by the manufacturing method of the present invention is useful as a metal member assembly in an electronic component, an electronic device, an electric component, an electric device or the like having a metal substrate or a metal part.

そのような接合として、金属製個所を有する、コンデンサ、抵抗等のチップ部品、発光ダイオード、レーザーダイオード、メモリ、IC、IGBT、CPU等とリードフレームもしくは回路基板との接合、金属製個所を有する、高発熱の半導体素子と冷却板との接合が例示される。 As such a junction, it has a metal part, a chip part such as a capacitor, a resistor, a light emitting diode, a laser diode, a memory, an IC, an IGBT, a CPU etc. and a lead frame or a circuit board, a metal part, The joining of a highly heat-generating semiconductor element and a cooling plate is exemplified.

本発明の実施例と比較例を掲げる。実施例と比較例中、部とあるのは質量部を意味し、平均粒径は前記の通りメジアン径を意味する。実施例と比較例中での加熱は、実験室に設置された強制循環式オーブン内での加熱であり、強制循環式オーブン内の雰囲気は、断りがない限りは大気である。熱硬化性樹脂粉末(C)の比重および融点、粉末であることの確認および硬化物のガラス転移温度の測定、加熱焼結性銀粒子の被覆剤量、ペースト状銀粒子組成物のニードル吐出性兼保存安定性、多孔質の銀粒子焼結物の空隙率、加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率、熱伝導率、加熱して接合した接合体の接着強さの測定および冷熱サイクル試験は、以下の方法により行った。測定は、断りがない限りは大気中で室温(約25℃)での測定である。
実施例と比較例中の加熱焼結性銀粒子および熱硬化性樹脂粉末は、銀粒子メーカー品、樹脂粉末メーカー品である。なお、該熱硬化性樹脂粉末は、適宜メッシュ状の金網により分級して平均粒径を調整した。また、実施例2の、平均粒径が0.7μmである球状の銀粒子は、特願昭53−29716(特開昭54−121270)の実施例に準じて自ら作成したものであり、実施例3および実施例4中の、平均粒径が1.2μmである粒状の銀粒子は、自社出願である特願2012−201391(特開2014−55332)の実施例に準じて自ら作製したものである。
Examples and comparative examples of the present invention will be given. In Examples and Comparative Examples, “parts” means “parts by mass”, and the average particle diameter means the median diameter as described above. The heating in the examples and comparative examples is heating in a forced circulation oven installed in a laboratory, and the atmosphere in the forced circulation oven is air unless otherwise noted. Specific gravity and melting point of thermosetting resin powder (C), confirmation of powder and measurement of glass transition temperature of cured product, coating amount of heat-sinterable silver particles, needle dischargeability of paste-like silver particle composition Storage stability, porosity of sintered porous silver particles, volume resistivity, thermal conductivity, composite of sintered porous silver particles and cured resin produced by heating, heating and bonding The adhesion strength measurement and the cooling / heating cycle test of the joined body were performed by the following methods. The measurement is a measurement at room temperature (about 25 ° C.) in the atmosphere unless otherwise specified.
The heat-sinterable silver particles and the thermosetting resin powder in Examples and Comparative Examples are silver particle manufacturer products and resin powder manufacturer products. The thermosetting resin powder was appropriately classified with a mesh-like wire netting to adjust the average particle size. The spherical silver particles having an average particle diameter of 0.7 μm in Example 2 were prepared by themselves according to the example of Japanese Patent Application No. 53-29716 (Japanese Patent Application Laid-Open No. 54-121270). The granular silver particles having an average particle diameter of 1.2 μm in Example 3 and Example 4 were produced by themselves according to the example of Japanese Patent Application No. 2012-201391 (Japanese Patent Application Laid-Open No. 2014-55332), which is an in-house application. It is.

[熱硬化性樹脂粉末(C)の比重および融点]
熱硬化性樹脂粉末(C)の比重および融点は、該樹脂粉末メーカーの測定値ないし製品資料記載の特性値である。参考例の熱硬化性液状エポキシ樹脂組成物の硬化物の比重は、電子比重計(日本計器株式会社製EW−300SG)により測定した。
[熱硬化性樹脂粉末(C)が、粉末であることの確認]
目視で粉末状であることを観察して行った。
[熱硬化性樹脂粉末(C)の硬化物のガラス転移温度(Tg)]
熱硬化性樹脂粉末(C)のガラス転移温度は、該樹脂粉末メーカーの測定値ないし製品資料記載の特性値である。参考例の熱硬化性液状エポキシ樹脂組成物の硬化物のガラス転移温度は、以下の方法で測定した。熱機械分析装置(株式会社島津製作所製TMA−60)を用い、大気雰囲気で該硬化物を昇温速度10℃/分にて室温(約25℃)から400℃まで昇温して得た膨張曲線において、変曲点を示す温度をガラス転移温度とした。
[Specific gravity and melting point of thermosetting resin powder (C)]
The specific gravity and melting point of the thermosetting resin powder (C) are measured values of the resin powder manufacturer or characteristic values described in the product data. The specific gravity of the cured product of the thermosetting liquid epoxy resin composition of the reference example was measured with an electronic hydrometer (EW-300SG manufactured by Nippon Keiki Co., Ltd.).
[Confirmation that thermosetting resin powder (C) is powder]
It was performed by visually observing the powder form.
[Glass transition temperature (Tg) of cured product of thermosetting resin powder (C)]
The glass transition temperature of the thermosetting resin powder (C) is a measured value of the resin powder manufacturer or a characteristic value described in a product document. The glass transition temperature of the cured product of the thermosetting liquid epoxy resin composition of the reference example was measured by the following method. Expansion obtained by heating the cured product from room temperature (about 25 ° C.) to 400 ° C. at a heating rate of 10 ° C./min in an air atmosphere using a thermomechanical analyzer (TMA-60 manufactured by Shimadzu Corporation) In the curve, the temperature showing the inflection point was defined as the glass transition temperature.

[加熱焼結性銀粒子の被覆剤量]
示差熱熱重量同時測定装置(島津製作所株式会社製DTG−60AH型)を用い、大気雰囲気で加熱焼結性銀粒子を昇温速度10℃/分にて室温(約25℃)から500℃まで昇温して、加熱焼結性銀粒子の減量率を被覆剤量として算出した。
[Coating amount of heat-sinterable silver particles]
Using a differential thermothermal gravimetric simultaneous measurement apparatus (DTG-60AH type, manufactured by Shimadzu Corporation), heat-sinterable silver particles are heated from room temperature (about 25 ° C.) to 500 ° C. at a heating rate of 10 ° C./min in the air atmosphere. The temperature was raised, and the weight loss rate of the heat-sinterable silver particles was calculated as the coating amount.

[ペースト状銀粒子組成物のニードル吐出性兼保存安定性]
3mlシリンジ(EFD,Inc.社製)にペースト状銀粒子組成物を1ml充填し、25℃で3日間静置した。次いで、該シリンジの先端に、内径0.14mmであり長さが13mmの金属ニードル(武蔵エンジニアリング株式会社製)を取り付け、1秒間隔で圧力200kPaの加圧有りと加圧なしを繰り返して吐出し、全量吐出するまでに、該金属ニードル内で詰まりが発生するか否かを調べた。全量吐出しても詰まりが発生しなかった場合は、詰まりなし(ニードル吐出性良好)、保存安定性良好と判断した。全量吐出する前に詰まりが発生した場合は、詰まりあり(ニードル吐出性不良)、保存安定性不良と判断した。
[Needle ejection and storage stability of paste-like silver particle composition]
A 3 ml syringe (manufactured by EFD, Inc.) was filled with 1 ml of the pasty silver particle composition and allowed to stand at 25 ° C. for 3 days. Next, a metal needle (made by Musashi Engineering Co., Ltd.) with an inner diameter of 0.14 mm and a length of 13 mm is attached to the tip of the syringe, and discharge is performed with and without pressurization at a pressure of 200 kPa at 1 second intervals. Then, it was examined whether or not clogging occurred in the metal needle before the entire amount was discharged. When clogging did not occur even when the entire amount was discharged, it was judged that there was no clogging (needle dischargeability was good) and storage stability was good. When clogging occurred before the entire amount was discharged, it was determined that clogging occurred (needle dischargeability was poor) and storage stability was poor.

[多孔質の銀粒子焼結物の空隙率]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、ペースト状銀粒子組成物を印刷塗布した。
[Porosity of porous sintered silver particles]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and the paste-like silver particle composition was applied by printing.

これを、実験室内の熱風循環式オーブン内で、所定の温度で1時間加熱して取り出し、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)を焼結した。 This was heated and taken out at a predetermined temperature for 1 hour in a hot air circulation oven in the laboratory, and the heat-sinterable silver particles (A) in the paste-like silver particle composition were sintered.

得られた多孔質の銀粒子焼結物をポリテトラフルオロエチレン樹脂板からはずして空隙率測定用試験体とした。
得られた板状の試験体を自動精密切断装置(日本電子株式会社製、商品名アイソメット)により削り出し、得られた断面を走査型電子顕微鏡で撮影し、その画像を均質な印刷用紙に印刷して多孔質の銀粒子焼結物の固体部分と空間部分を切り分け、各々の質量を測定して空間部分の占める割合を空隙率として%で示した。
The obtained porous silver particle sintered product was removed from the polytetrafluoroethylene resin plate to obtain a test piece for measuring porosity.
The obtained plate-shaped specimen is cut out with an automatic precision cutting device (trade name isomet, manufactured by JEOL Ltd.), and the resulting cross section is photographed with a scanning electron microscope, and the image is printed on a homogeneous printing paper. Then, the solid part and the space part of the porous silver particle sintered product were separated, the respective masses were measured, and the proportion of the space part was shown as% as the porosity.

[多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率]
幅50mm×長さ50mm×厚さ2.0mmのガラス板上に、幅10mm×長さ10mmの開口部を有する2mm厚のメタルマスクを用いて、ペースト状銀粒子組成物を塗布し、実験室内の所定の温度の強制循環式オーブン内で所定の1時間加熱して板状の多孔質の銀粒子焼結物と樹脂硬化物の複合物とした。
ガラス板からはがした該銀粒子焼結物と樹脂硬化物の複合物について、JIS K 7194に準じた方法により体積抵抗率(単位;Ω・cm)を測定した。
[Volume resistivity of composite of porous silver particle sintered product and cured resin]
A paste-like silver particle composition was applied onto a glass plate having a width of 50 mm, a length of 50 mm, and a thickness of 2.0 mm using a 2 mm thick metal mask having an opening having a width of 10 mm and a length of 10 mm. Was heated in a forced circulation oven at a predetermined temperature for a predetermined hour to obtain a composite of a plate-like porous silver particle sintered product and a cured resin product.
The volume resistivity (unit: Ω · cm) of the composite of the silver particle sintered product and the cured resin product peeled from the glass plate was measured by a method according to JIS K 7194.

[多孔質の銀粒子焼結物と樹脂硬化物の複合物の熱伝導率]
幅50mm×長さ50mm×厚さ2.0mmのガラス板上に、幅10mm×長さ10mmの開口部を有する2mm厚のメタルマスクを用いて、ペースト状銀粒子組成物を塗布し、実験室内の所定の温度の強制循環式オーブン内で所定の1時間加熱して板状の多孔質の銀粒子焼結物と樹脂硬化物の複合物とした。
ガラス板からはがした該多孔質の銀粒子焼結物と樹脂硬化物の複合物について、レーザーフラッシュ法により熱伝導率(単位;W/m・K)を測定した。
[Thermal conductivity of a composite of sintered porous silver particles and cured resin]
A paste-like silver particle composition was applied onto a glass plate having a width of 50 mm, a length of 50 mm, and a thickness of 2.0 mm using a 2 mm thick metal mask having an opening having a width of 10 mm and a length of 10 mm. Was heated in a forced circulation oven at a predetermined temperature for a predetermined hour to obtain a composite of a plate-like porous silver particle sintered product and a cured resin product.
Thermal conductivity (unit: W / m · K) was measured by a laser flash method for the composite of the sintered porous silver particles and the cured resin, peeled from the glass plate.

[接合体の接着強さ]
幅25mm×長さ70mm×厚さ1.0mmの銀基板(銀純度99.99%)上に、10mmの間隔をおいて4つの幅2.5mm×長さ2.5mmの開口部を有する100μm厚のメタルマスクを用いてペースト状銀粒子組成物を塗布し、その上に幅2.5mm×長さ2.5mm×厚さ0.5mmの銀チップ(銀純度99.99%)を搭載後、実験室内の所定の温度の強制循環式オーブン内で1時間加熱して接合した。
[Adhesive strength of joined body]
On a silver substrate (silver purity 99.99%) 25 mm wide × 70 mm long × 1.0 mm thick, 100 μm having four 2.5 mm wide × 2.5 mm long openings at 10 mm intervals. After applying a paste-like silver particle composition using a thick metal mask, and mounting a silver chip (silver purity 99.99%) having a width of 2.5 mm, a length of 2.5 mm, and a thickness of 0.5 mm. The samples were joined by heating for 1 hour in a forced circulation oven at a predetermined temperature in the laboratory.

かくして得られた接着強さ測定用試験体の幅2.5mm×長さ2.5mm×厚さ0.5mmの銀チップの側面を接着強さ試験機により速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ(単位;MPa)とした。
なお、接合体の接着強さは、ペースト状銀粒子組成物の調製直後のものと、調製後25℃で3日間静置した後のものについて測定した。
The side surface of the silver chip having a width of 2.5 mm, a length of 2.5 mm, and a thickness of 0.5 mm of the test specimen for measuring the adhesive strength thus obtained was pressed at a speed of 23 mm / min with an adhesive strength tester, The adhesive strength (unit: MPa) was defined as the load at the time of shear fracture.
In addition, the adhesive strength of the joined body was measured for a paste-like silver particle composition immediately after preparation and for a paste after standing at 25 ° C. for 3 days.

[接合体の冷熱サイクル試験]
25mm×25mm×厚さ1.0mmの銀メッキ銅基板(銀純度99.9%)上に、幅2.5mm×長さ2.5mmの開口部を有する100μm厚のメタルマスクを用いてペースト状銀粒子組成物を塗布し、その上に幅2.5mm×長さ2.5mm×厚さ0.5mmの銀チップ(銀純度99.99%)を搭載後、実験室内の所定の温度の強制循環式オーブン内で1時間加熱して接合した。
[Cold thermal cycle test]
Using a 100 μm-thick metal mask having an opening of 2.5 mm in width and 2.5 mm in length on a silver-plated copper substrate (silver purity 99.9%) of 25 mm × 25 mm × thickness 1.0 mm After applying a silver particle composition, and mounting a silver chip (silver purity 99.99%) of 2.5 mm width × 2.5 mm length × thickness 0.5 mm on it, forced to a predetermined temperature in the laboratory It joined by heating for 1 hour in a circulation type oven.

かくして得られた冷熱サイクル試験用試験体を、大気雰囲気で、−55℃で30分間放置と+125℃で30分間放置を1サイクルとする冷熱サイクル試験を500サイクル行った後、同様にして接合体の接着強さを測定した。
なお、接合体の接着強さは、ペースト状銀粒子組成物の調製直後のものと、調製後25℃で3日間静置した後のものについて測定した。
The thus obtained specimen for a cold cycle test was subjected to 500 cycles of a cold cycle test in which an air atmosphere was left at -55 ° C for 30 minutes and left at + 125 ° C for 30 minutes, and then joined in the same manner. The adhesive strength of was measured.
In addition, the adhesive strength of the joined body was measured for a paste-like silver particle composition immediately after preparation and for a paste after standing at 25 ° C. for 3 days.

[参考例]
[熱硬化性液状エポキシ樹脂組成物の調製]
遊星式ミキサー中で、三菱化学株式会社製多官能タイプエポキシ樹脂(商品名:jER152、粘度1.5Pa・s(52℃)、エポキシ当量177g)97部、硬化剤として三菱化学株式会社製の2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール3部を均一に混合することにより、25℃で液状の熱硬化性エポキシ樹脂組成物を調製した。このエポキシ樹脂組成物を200℃で1時間加熱して生成した硬化物の比重は1.12、ガラス転移温度は178℃である。
[Reference example]
[Preparation of thermosetting liquid epoxy resin composition]
In a planetary mixer, 97 parts of a polyfunctional epoxy resin (trade name: jER152, viscosity 1.5 Pa · s (52 ° C.), epoxy equivalent 177 g) manufactured by Mitsubishi Chemical Corporation, 2 manufactured by Mitsubishi Chemical Corporation as a curing agent -A thermosetting epoxy resin composition which was liquid at 25 ° C was prepared by uniformly mixing 3 parts of phenyl-4-methyl-5-hydroxymethylimidazole. The specific gravity of the cured product produced by heating this epoxy resin composition at 200 ° C. for 1 hour is 1.12 and the glass transition temperature is 178 ° C.

[実施例1]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面がオレイン酸で被覆された(オレイン酸量は0.5質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてオクタンジオール(協和発酵ケミカル株式会社製)12.0部、および、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後の比重1.62、Tg90℃)1.0部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 1]
In a planetary mixer, manufactured by the wet reduction method of silver nitrate, the average particle diameter is 1.2 μm, and the surface is coated with oleic acid (the amount of oleic acid is 0.5% by mass). 100.0 parts of binding silver particles, 12.0 parts of octanediol (manufactured by Kyowa Hakko Chemical Co., Ltd.) as a volatile dispersion medium, and thermosetting epoxy resin powder having a melting point of 45 ° C. (PCE- manufactured by Pernox Corporation) 300, average particle size 18 μm, specific gravity 1.62 after curing, Tg 90 ° C.) 1.0 part was uniformly mixed to prepare a pasty silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物1.0部(比重1.62)からなり、その体積比が、93.9%:6.1%の複合物である。
以上の結果を表1にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. The composite of the porous silver particle sintered product and the resin cured product is composed of 99.5 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 1.0 part of a cured product (specific gravity 1.62), and the volume ratio is a composite of 93.9%: 6.1%.
The above results are summarized in Table 1. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined extremely firmly and yet have high durability against thermal shock.

[実施例2]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が0.7μmであり,表面がステアリン酸で被覆された(ステアリン酸量は1.0質量%である)球状の加熱焼結性銀粒子100.0部、揮発性分散媒としてオクタンジオール(協和発酵ケミカル株式会社製)16.0部、および、融点が50℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−60、平均粒径18μm、硬化後の比重1.65、Tgは100℃)1.5部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 2]
In a planetary mixer, manufactured by the wet reduction method of silver nitrate, the average particle diameter is 0.7 μm, and the surface is coated with stearic acid (the amount of stearic acid is 1.0 mass%). 100.0 parts of binding silver particles, 16.0 parts of octanediol (manufactured by Kyowa Hakko Chemical Co., Ltd.) as a volatile dispersion medium, and thermosetting epoxy resin powder having a melting point of 50 ° C. (PCE- manufactured by Pernox Corporation) 60, average particle size 18 μm, specific gravity after curing 1.65, Tg is 100 ° C.) 1.5 parts) was uniformly mixed to prepare a paste-like silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.0部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物1.5部(比重1.65)からなり、その体積比が、91.2%:8.8%の複合物である。
以上の結果を表1にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. In addition, the composite of the porous silver particle sintered product and the resin cured product is composed of 99.0 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 1.5 parts of cured product (specific gravity 1.65), and its volume ratio is 91.2%: 8.8%.
The above results are summarized in Table 1. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined extremely firmly and yet have high durability against thermal shock.

[実施例3]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面がDISPERBYK−2020で被覆された(DISPERBYK−2020量は0.3質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてα−ターピネオール(関東化学株式会社製)12.0部、および、融点が42℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−330、平均粒径18μm、硬化後の比重1.68、Tg94℃)0.8部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 3]
In a planetary mixer, produced by a wet reduction method of silver nitrate, the average particle size is 1.2 μm, the surface is coated with DISPERBYK-2020 (the amount of DISPERBYK-2020 is 0.3% by mass) Heat-sinterable silver particles 100.0 parts, α-terpineol (manufactured by Kanto Chemical Co., Inc.) 12.0 parts as a volatile dispersion medium, and thermosetting epoxy resin powder (manufactured by Pernox Co., Ltd.) having a melting point of 42 ° C. PCE-330, average particle diameter 18 μm, specific gravity after curing 1.68, Tg 94 ° C.) 0.8 parts was uniformly mixed to prepare a paste-like silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.7部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物0.8部(比重1.68)からなり、その体積比が、95.2%:4.8%の複合物である。
以上の結果を表1にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. In addition, the composite of the porous silver particle sintered product and the resin cured product is composed of 99.7 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 0.8 parts of cured product (specific gravity 1.68), and its volume ratio is a composite of 95.2%: 4.8%.
The above results are summarized in Table 1. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined extremely firmly and yet have high durability against thermal shock.

[実施例4]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面が1,2−プロパンジアミンで被覆された(1,2−プロパンジアミン量は0.2質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてα−ターピネオール(関東化学株式会社製)12.0部、および、融点が42℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−330、平均粒径9μm、硬化後の比重1.68、Tg94℃)0.8部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 4]
In a planetary mixer, produced by a wet reduction method of silver nitrate, the average particle size is 1.2 μm, and the surface is coated with 1,2-propanediamine (the amount of 1,2-propanediamine is 0.2 mass) 100.0 parts of granular heat-sinterable silver particles, 12.0 parts of α-terpineol (manufactured by Kanto Chemical Co., Inc.) as a volatile dispersion medium, and a thermosetting epoxy resin having a melting point of 42 ° C. A paste-like silver particle composition was prepared by uniformly mixing 0.8 parts of powder (PCE-330, manufactured by Pernox Co., Ltd., average particle diameter 9 μm, specific gravity 1.68 after curing, Tg 94 ° C.).

このペースト状銀粒子組成物のニードル吐出性を試験し、および、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.8部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物0.8部(比重1.68)からなり、その体積比が、95.2%:4.8%の複合物である。
以上の結果を表2にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる。
The paste-like silver particle composition was tested for needle dischargeability, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the volume resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. The composite of the porous silver particle sintered product and the cured resin product is composed of 99.8 parts (specific gravity 10.53) of the sintered product of heat-sinterable silver particles and the thermosetting epoxy resin powder. It consists of 0.8 parts of cured product (specific gravity 1.68), and its volume ratio is a composite of 95.2%: 4.8%.
The above results are summarized in Table 2. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined extremely firmly and yet have high durability against thermal shock.

[実施例5]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面がオレイン酸で被覆された(オレイン酸量は0.5質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてオクタンジオール(協和発酵ケミカル株式会社製)12.0部、および、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後の比重1.62、Tg90℃)0.2部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 5]
In a planetary mixer, manufactured by the wet reduction method of silver nitrate, the average particle diameter is 1.2 μm, and the surface is coated with oleic acid (the amount of oleic acid is 0.5% by mass). 100.0 parts of binding silver particles, 12.0 parts of octanediol (manufactured by Kyowa Hakko Chemical Co., Ltd.) as a volatile dispersion medium, and thermosetting epoxy resin powder having a melting point of 45 ° C. (PCE- manufactured by Pernox Corporation) 300, average particle diameter 18 μm, specific gravity 1.62 after curing, Tg 90 ° C.) 0.2 part was uniformly mixed to prepare a paste-like silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物0.2部(比重1.62)からなり、その体積比が、98.7%:1.3%の複合物である。
以上の結果を表2にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. The composite of the porous silver particle sintered product and the resin cured product is composed of 99.5 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 0.2 part of a cured product (specific gravity 1.62), and its volume ratio is 98.7%: 1.3% composite.
The above results are summarized in Table 2. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined extremely firmly and yet have high durability against thermal shock.

[実施例6]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面がオレイン酸で被覆された(オレイン酸量は0.5質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてオクタンジオール(協和発酵ケミカル株式会社製)12.0部、および、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後の比重1.62、Tg90℃)2.5部を均一に混合してペースト状銀粒子組成物を調製した。
[Example 6]
In a planetary mixer, manufactured by the wet reduction method of silver nitrate, the average particle diameter is 1.2 μm, and the surface is coated with oleic acid (the amount of oleic acid is 0.5% by mass). 100.0 parts of binding silver particles, 12.0 parts of octanediol (manufactured by Kyowa Hakko Chemical Co., Ltd.) as a volatile dispersion medium, and thermosetting epoxy resin powder having a melting point of 45 ° C. (PCE- manufactured by Pernox Corporation) 300, average particle size 18 μm, specific gravity 1.62 after curing, Tg 90 ° C.) 2.5 parts was uniformly mixed to prepare a pasty silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高かった。また、ペースト状銀粒子組成物の調製直後と調製後25℃で3日間静置した後に作成した接合体の接着強さは大きく、冷熱サイクル試験後の該接合体の接着強さも大きかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物2.5部(比重1.62)からなり、その体積比が、86.0%:14.0%の複合物である。
以上の結果を表2にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性が高く、複数の銀製部材を極めて強固に接合して、しかも熱衝撃に対する耐久性が高いことがわかる
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. When the cold cycle test of the joined body created immediately after preparation of the resistivity, thermal conductivity and pasty silver particle composition and the joined body prepared after standing at 25 ° C. for 3 days after preparation,
Needle ejection properties and storage stability were good, and the volume resistivity and the thermal conductivity of the composite of the sintered porous silver particles and the cured resin were low. Moreover, the adhesive strength of the joined body immediately after the preparation of the pasty silver particle composition and after standing for 3 days at 25 ° C. was large, and the adhesive strength of the joined body after the thermal cycle test was also large. The composite of the porous silver particle sintered product and the resin cured product is composed of 99.5 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 2.5 parts of cured product (specific gravity 1.62), and its volume ratio is a composite of 86.0%: 14.0%.
The above results are summarized in Table 2. This pasty silver particle composition has good storage stability, good needle ejection properties, and high conductivity and thermal conductivity of a composite of porous silver particle sintered product and resin cured product, It can be seen that a plurality of silver members are joined very firmly and yet highly resistant to thermal shock.

[比較例1]
実施例1において、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後の比重1.62、Tg90℃)を配合しない以外は同様にしてペースト状銀粒子組成物を調製した。
[Comparative Example 1]
In Example 1, a thermosetting epoxy resin powder having a melting point of 45 ° C. (Pernox Co., Ltd., PCE-300, average particle size 18 μm, specific gravity 1.62 after curing, Tg 90 ° C.) was not mixed. A pasty silver particle composition was prepared.

このペースト状銀粒子組成物のニードル吐出を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した該加熱焼結性銀粒子の多孔質焼結物について、空隙率、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体について接着強さを測定し、接合体の冷熱サイクル試験をしたところ、
ニードル吐出性と保存安定性は良好であり、多孔質銀粒子焼結物の体積抵抗率は低く、熱伝導率は高かったが、接合体の接着強さは小さく、冷熱サイクル試験後の該接合体の接着強さも小さかった。
以上の結果を表3にまとめて示した。このペースト状銀粒子組成物は、保存安定性が良好であり、ニードル吐出性が良好であり、多孔質銀粒子焼結物の導電性、熱伝導性は高いものの、複数の銀製部材を極めて強固に接合できず、しかも熱衝撃に対する耐久性が乏しいことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a porous sintered product of the heat-sinterable silver particles. The adhesive strength was measured for the bonded body prepared immediately after the preparation of the resistivity, thermal conductivity, and paste-like silver particle composition, and the bonded body prepared after standing at 25 ° C. for 3 days after the preparation. After testing,
Needle ejection properties and storage stability are good, and the volume resistivity of the sintered porous silver particles is low and the thermal conductivity is high, but the bonding strength of the bonded body is small, and the bonding after the thermal cycle test The bond strength of the body was also small.
The above results are summarized in Table 3. This paste-like silver particle composition has good storage stability, good needle ejection properties, and the porous silver particle sintered product has high conductivity and thermal conductivity, but a plurality of silver members are extremely strong. It can be seen that the material cannot be bonded to the film, and the durability against thermal shock is poor.

[比較例2]
実施例1において、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後の比重1.62、Tg90℃)1.0部の代わりに、参考例で調製した25℃で液状の熱硬化性液状エポキシ樹脂組成物(硬化後の比重1.12)1.0部を用いた以外は同様にしてペースト状銀粒子組成物を調製した。
[Comparative Example 2]
In Example 1, instead of 1.0 part of thermosetting epoxy resin powder having a melting point of 45 ° C. (PCE-300 manufactured by Pernox Corporation, average particle size 18 μm, specific gravity 1.62 after curing, Tg 90 ° C.), A pasty silver particle composition was prepared in the same manner except that 1.0 part of a liquid thermosetting liquid epoxy resin composition (specific gravity after curing 1.12) prepared at 25 ° C. prepared in Reference Example was used.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体について接着強さを測定し、接合体の冷熱サイクル試験をしたところ、ニードル吐出では詰まりが発生し、保存安定性が不良であった。該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は低く、熱伝導率は高く、ペースト状銀粒子組成物の調製直後の接合体の接着強さは大きいが、調製後25℃で3日間静置した後に作成した接合体の接着強さは小さかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂組成物の硬化物1.0部(比重1.12)からなり、その体積比が、91.4%:8.6%の複合物である。
以上の結果を表3にまとめて示した。このペースト状銀粒子組成物は、ニードル吐出が不可能であり、保存安定性が不良であった。多孔質の銀粒子焼結物と樹脂硬化物の複合物の導電性、熱伝導性は高いものの、ペースト状銀粒子組成物の調製後、経時的に接着強さが低下して複数の銀製部材を極めて強固に接合できず、しかも熱衝撃に対する耐久性が乏しいことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. The adhesive strength was measured for the bonded body prepared immediately after the preparation of the resistivity, thermal conductivity, and paste-like silver particle composition, and the bonded body prepared after standing at 25 ° C. for 3 days after the preparation. When tested, clogging occurred in the needle discharge, and the storage stability was poor. The composite of the porous silver particle sintered product and the cured resin product has low volume resistivity, high thermal conductivity, and high bond strength immediately after preparation of the paste-like silver particle composition. Thereafter, the bonding strength of the joined body prepared after standing at 25 ° C. for 3 days was small. The composite of sintered porous silver particles and cured resin is composed of 99.5 parts (specific gravity 10.53) of the sintered material of heat-sinterable silver particles and the thermosetting epoxy resin composition. This is a composite having a volume ratio of 91.4%: 8.6%.
The above results are summarized in Table 3. This pasty silver particle composition was incapable of needle ejection and had poor storage stability. The composite of porous silver particle sintered product and resin cured product has high conductivity and thermal conductivity, but after preparing the paste-like silver particle composition, the adhesive strength decreases over time, and a plurality of silver members It can be seen that the material cannot be bonded extremely firmly and has poor durability against thermal shock.

[比較例3]
実施例1において、融点が45℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−300、平均粒径18μm、硬化後のTgは90℃)1.0部の代わりに、参考例で調製した25℃で液状の熱硬化性液状エポキシ樹脂組成物(硬化後の比重1.12)5.5部を用いた以外は同様にしてペースト状銀粒子組成物を調製した。
[Comparative Example 3]
In Example 1, instead of 1.0 part of thermosetting epoxy resin powder having a melting point of 45 ° C. (PCE-300 manufactured by Pernox Corporation, average particle size of 18 μm, Tg after curing is 90 ° C.) A pasty silver particle composition was prepared in the same manner except that 5.5 parts of the liquid thermosetting liquid epoxy resin composition (specific gravity after curing 1.12) prepared at 25 ° C. was used.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体について接着強さを測定し、接合体の冷熱サイクル試験をしたところ、
ニードル吐出では詰まりが発生し、保存安定性が不良であった、ペースト状銀粒子組成物の調製直後の接合体の接着強さは大きく、調製後25℃で3日間静置した後に作成した接合体の接着強さも大きかったが、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率は高く、熱伝導率は低くかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂組成物の硬化物5.5部(比重1.12)からなり、その体積比が、65.8%:34.2%の複合物である。
以上の結果を表3にまとめて示した。このペースト状銀粒子組成物は、ニードル吐出が不可能であり、保存安定性が不良であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の接着強さは大きいものの、導電性、熱伝導性は低いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. The adhesive strength was measured for the bonded body prepared immediately after the preparation of the resistivity, thermal conductivity, and paste-like silver particle composition, and the bonded body prepared after standing at 25 ° C. for 3 days after the preparation. After testing,
Clogging occurred in needle ejection and storage stability was poor. Bond strength immediately after preparation of the paste-like silver particle composition was high, and the joint was prepared after standing at 25 ° C. for 3 days. The bond strength of the body was also high, but the volume resistivity of the composite of the sintered porous silver particles and the cured resin was high and the thermal conductivity was low. The composite of sintered porous silver particles and cured resin is composed of 99.5 parts (specific gravity 10.53) of the sintered material of heat-sinterable silver particles and the thermosetting epoxy resin composition. This is a composite having a volume ratio of 65.8%: 34.2%.
The above results are summarized in Table 3. This paste-like silver particle composition cannot be ejected by needles, has poor storage stability, and has a high adhesive strength between a composite of a sintered silver particle and a cured resin, but is conductive. It can be seen that the thermal conductivity is low.

[比較例4]
遊星式ミキサー内で、硝酸銀の湿式還元法で製造され,平均粒径が1.2μmであり,表面がオレイン酸で被覆された(オレイン酸量は0.5質量%である)粒状の加熱焼結性銀粒子100.0部、揮発性分散媒としてオクタンジオール(協和発酵ケミカル株式会社製)20.0部、および、融点が42℃である熱硬化性エポキシ樹脂粉末(ペルノックス株式会社製PCE−330、平均粒径110μm、硬化後の比重1.68、Tg94℃)5.5部を均一に混合してペースト状銀粒子組成物を調製した。
[Comparative Example 4]
In a planetary mixer, manufactured by the wet reduction method of silver nitrate, the average particle diameter is 1.2 μm, and the surface is coated with oleic acid (the amount of oleic acid is 0.5% by mass). 100.0 parts of binding silver particles, 20.0 parts of octanediol (manufactured by Kyowa Hakko Chemical Co., Ltd.) as a volatile dispersion medium, and thermosetting epoxy resin powder having a melting point of 42 ° C. (PCE- manufactured by Pernox Corporation) 330, average particle size 110 μm, specific gravity after curing 1.68, Tg 94 ° C.) 5.5 parts were uniformly mixed to prepare a paste-like silver particle composition.

このペースト状銀粒子組成物のニードル吐出性を試験し、ペースト状銀粒子組成物を200℃で1時間加熱して生成した多孔質の銀粒子焼結物と樹脂硬化物の複合物について、体積抵抗率、熱伝導率およびペースト状銀粒子組成物の調製直後に作成した接合体と調製後25℃で3日間静置した後に作成した接合体について接着強さを測定し、接合体の冷熱サイクル試験をしたところ、
ニードル吐出では詰まりが発生し、保存安定性が不良であった。また、ペースト状銀粒子組成物の調製直後の接合体の接着強さは大きく、調製後25℃で3日間静置した後に作成した接合体の接着強さも大きかったが、該多孔質の銀粒子焼結物と樹脂硬化物の複合物の体積抵抗率が高く、熱伝導率は低くかった。なお、該多孔質の銀粒子焼結物と樹脂硬化物の複合物は、該加熱焼結性銀粒子の焼結物99.5部(比重10.53)と該熱硬化性エポキシ樹脂粉末の硬化物5.5部(比重1.68)からなり、その体積比が、74.3%:25.7%の複合物である。
以上の結果を表4にまとめて示した。このペースト状銀粒子組成物は、ニードル吐出が不可能であり、保存安定性が不良であり、多孔質の銀粒子焼結物と樹脂硬化物の複合物の接着強さは大きいものの、導電性、熱伝導性は低いことがわかる。
The paste-like silver particle composition was tested for needle ejection, and the paste-like silver particle composition was heated at 200 ° C. for 1 hour to produce a composite of a sintered porous silver particle and a cured resin. The adhesive strength was measured for the bonded body prepared immediately after the preparation of the resistivity, thermal conductivity, and paste-like silver particle composition, and the bonded body prepared after standing at 25 ° C. for 3 days after the preparation. After testing,
Needle discharge caused clogging and storage stability was poor. Further, the bonding strength of the bonded body immediately after preparation of the paste-like silver particle composition was large, and the bonded body prepared after standing at 25 ° C. for 3 days was also large, but the porous silver particles The composite of the sintered product and the cured resin product had a high volume resistivity and a low thermal conductivity. The composite of the porous silver particle sintered product and the resin cured product is composed of 99.5 parts (specific gravity 10.53) of the heat-sinterable silver particle sintered product and the thermosetting epoxy resin powder. It consists of 5.5 parts of cured product (specific gravity 1.68), and its volume ratio is a composite of 74.3%: 25.7%.
The above results are summarized in Table 4. This paste-like silver particle composition cannot be ejected by needles, has poor storage stability, and has a high adhesive strength between a composite of a sintered silver particle and a cured resin, but is conductive. It can be seen that the thermal conductivity is low.

注:比較例1の空隙率は該焼結物の空隙率である。 Note: The porosity of Comparative Example 1 is the porosity of the sintered product.

本発明のペースト状銀粒子組成物は、保存安定性とニードル吐出性が良好であり、加熱により加熱焼結性銀粒子が焼結し、かつ、融点が40〜300℃である熱硬化性樹脂組粉末が溶融して硬化し、高い導電性、熱伝導性を有する多孔質の銀粒子焼結物と樹脂硬化物の複合物となり、金属製部材同士を極めて強固に接合することができるので、複数の金属製部材同士の接合材として有用であり、特には、コンデンサ、抵抗等のチップ部品と回路基板との接合、発光ダイオード、レーザーダイオード、メモリ、IC、IGBT、CPU等の半導体素子とリードフレームもしくは回路基板との接合、高発熱のCPUチップと冷却板との接合などに有用である。
本発明の金属製部材接合体の製造方法による金属製部材接合体は、金属系基板や金属製個所を有する電子部品、電子装置、電気部品、電気装置などにおける金属製部材として有用である。
本発明の多孔質の銀粒子焼結物と樹脂硬化物の複合物の製造方法による該複合物は、複数の金属製部材同士間の接合層として有用であり、回路基板上に形成される導電性の配線回路の形成に有用である。
The paste-like silver particle composition of the present invention has good storage stability and needle dischargeability, heat-sinterable silver particles are sintered by heating, and has a melting point of 40 to 300 ° C. Since the assembled powder melts and cures, it becomes a composite of porous silver particle sintered product and resin cured product having high conductivity and thermal conductivity, and metal members can be joined extremely firmly, It is useful as a bonding material between a plurality of metal members, and in particular, bonding between chip components such as capacitors and resistors and circuit boards, light emitting diodes, laser diodes, memories, ICs, IGBTs, CPUs and other semiconductor elements and leads It is useful for joining a frame or a circuit board, joining a high heat generating CPU chip and a cooling plate, and the like.
The metal member assembly by the method for producing a metal member assembly of the present invention is useful as a metal member in an electronic component, an electronic device, an electrical component, an electrical device or the like having a metal substrate or a metal part.
The composite produced by the method for producing a composite of a sintered porous silver particle and a cured resin according to the present invention is useful as a bonding layer between a plurality of metal members, and is formed on a circuit board. This is useful for forming a wiring circuit of the same nature.

A せん断接着強さ測定用試験体
1 銀基板
2 ペースト状銀粒子組成物(加熱焼結後は、多孔質の銀粒子焼結物と樹脂硬化物の複合物)
3 銀チップ
A Specimen 1 for measuring shear bond strength 1 Silver substrate 2 Pasty silver particle composition (composite of sintered silver particle and cured resin after heat sintering)
3 Silver chip

Claims (8)

(A)平均粒径が0.01μm以上10μm以下である球状、涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなるペースト状物であり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であって、100℃以上300℃以下での加熱により、該揮発性分散媒が揮散し、該加熱焼結性銀粒子(A)同士が焼結し、該熱硬化性エポキシ樹脂粉末(C)が硬化して、多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物となることを特徴とする、ペースト状銀粒子組成物。 (A) Spherical, teardrop-shaped, or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, and an organic substance having a polar group that covers the surface of the heat-sinterable silver particles Heat-sinterable silver particles having a coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy resin powder having a melting point of 40 to 300 ° C. The thermosetting epoxy resin powder (C) has an average particle size of 0.1 to 100 μm, and is 0.1% with respect to 100 parts by mass of the sinterable silver particles (A). 01 parts by mass or more and less than 5.0 parts by mass, by heating at 100 ° C. or more and 300 ° C. or less, the volatile dispersion medium is volatilized, and the heat-sinterable silver particles (A) are sintered together, and curing the thermosetting epoxy resin powder (C) is a composite of the porous silver particles sinter and epoxy resin cured product of Characterized in that the paste Jogin particle composition. 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、請求項1に記載のペースト状銀粒子組成物。 The volume resistivity of the composite of the porous silver particle sintered product and the cured epoxy resin is 1 × 10 −5 Ω · cm or less, and the thermal conductivity is 100 W / m · K or more. The paste-like silver particle composition according to claim 1. (A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、複数の金属製部材間に介在させ、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることにより、複数の金属製部材同士を接合させることを特徴とする、金属製部材接合体の製造方法。 (A) Spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, and an organic substance having a polar group covering the surface of the heat-sinterable silver particles Heat-sinterable silver particles having a coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy resin powder having a melting point of 40 to 300 ° C. The thermosetting epoxy resin powder (C) has an average particle diameter of 0.1 to 100 μm, and 0.01 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the sinterable silver particles (A). The paste-like silver particle composition that is less than 0.0 part by mass is interposed between a plurality of metal members and heated at 100 ° C. or more and 300 ° C. or less to volatilize the volatile dispersion medium, and the heat-sinterable silver Sintering particles (A) and curing the thermosetting epoxy resin powder (C) to sinter porous silver particles A method for producing a metal member joined body, wherein a plurality of metal members are joined to each other by using a composite of a cured product and an epoxy resin cured product. 金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、請求項3に記載の金属製部材接合体の製造方法。 The method for producing a metal member assembly according to claim 3 , wherein the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of these metals. 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、請求項3または請求項4に記載の金属製部材接合体の製造方法。 The volume resistivity of the composite of the porous silver particle sintered product and the cured epoxy resin is 1 × 10 −5 Ω · cm or less, and the thermal conductivity is 100 W / m · K or more. The manufacturing method of the metal member assembly according to claim 3 or 4 . 金属製部材が金属製個所を有する、リードフレーム、回路基板または電子部品であることを特徴とする、請求項3〜請求項5のいずれか1項に記載の金属製部材接合体の製造方法。 The method for manufacturing a metal member assembly according to any one of claims 3 to 5 , wherein the metal member is a lead frame, a circuit board, or an electronic component having a metal part. (A)平均粒径が0.01μm以上10μm以下である球状,涙滴状または粒状の加熱焼結性銀粒子であって,該加熱焼結性銀粒子の表面を被覆する極性基を有する有機物の被覆量が0.05〜5.0質量%である加熱焼結性銀粒子と、(B)揮発性分散媒と、(C)融点が40〜300℃である熱硬化性エポキシ樹脂粉末とからなり、該熱硬化性エポキシ樹脂粉末(C)が、平均粒径0.1〜100μmであり、かつ、該焼結性銀粒子(A)100質量部に対し、0.01質量部以上5.0質量部未満であるペースト状銀粒子組成物を、100℃以上300℃以下で加熱して該揮発性分散媒を揮散させ、該加熱焼結性銀粒子(A)同士を焼結させ、該熱硬化性エポキシ樹脂粉末(C)を硬化させて多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物とすることを特徴とする、多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の製造方法。 (A) Spherical, teardrop-shaped or granular heat-sinterable silver particles having an average particle diameter of 0.01 μm or more and 10 μm or less, and an organic substance having a polar group covering the surface of the heat-sinterable silver particles Heat-sinterable silver particles having a coating amount of 0.05 to 5.0% by mass, (B) a volatile dispersion medium, and (C) a thermosetting epoxy resin powder having a melting point of 40 to 300 ° C. The thermosetting epoxy resin powder (C) has an average particle diameter of 0.1 to 100 μm, and 0.01 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the sinterable silver particles (A). The paste-like silver particle composition that is less than 0.0 parts by mass is heated at 100 ° C. or more and 300 ° C. or less to volatilize the volatile dispersion medium, and the heat-sinterable silver particles (A) are sintered together. composite of thermosetting epoxy resin powder (C) a cured porous silver particles sinter and epoxy resin cured product of A method for producing a composite of a porous sintered silver particle and a cured epoxy resin, wherein the composite is a product. 多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の体積抵抗率が1×10−5Ω・cm以下であり、かつ、熱伝導率が100W/m・K以上であることを特徴とする、請求項7に記載の多孔質の銀粒子焼結物とエポキシ樹脂硬化物の複合物の製造方法。 The volume resistivity of the composite of the porous silver particle sintered product and the cured epoxy resin is 1 × 10 −5 Ω · cm or less, and the thermal conductivity is 100 W / m · K or more. A method for producing a composite of a sintered porous silver particle and a cured epoxy resin according to claim 7 .
JP2018145782A 2018-07-10 2018-08-02 Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin Active JP6556302B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018130612 2018-07-10
JP2018130612 2018-07-10

Publications (2)

Publication Number Publication Date
JP6556302B1 true JP6556302B1 (en) 2019-08-07
JP2020013768A JP2020013768A (en) 2020-01-23

Family

ID=67539872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018145782A Active JP6556302B1 (en) 2018-07-10 2018-08-02 Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin

Country Status (1)

Country Link
JP (1) JP6556302B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120154A1 (en) * 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Silver sintering composition containing copper alloy for metal bonding
CN114559033A (en) * 2022-03-04 2022-05-31 厦门大学 Carbon-coated copper nanoparticles and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384038A (en) * 1989-08-28 1991-04-09 Mita Ind Co Ltd Production of electrically conductive resin material
JP2004241132A (en) * 2003-02-03 2004-08-26 Aica Kogyo Co Ltd Conductive particulate, conductive resin emulsion and its manufacturing method as well as conductive paint composition and conductive sheet member
JP6231977B2 (en) * 2014-12-22 2017-11-15 株式会社ノリタケカンパニーリミテド Heat-curing conductive paste
JP6118489B2 (en) * 2015-02-10 2017-04-19 ニホンハンダ株式会社 Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021120154A1 (en) * 2019-12-20 2021-06-24 Henkel Ag & Co. Kgaa Silver sintering composition containing copper alloy for metal bonding
CN114559033A (en) * 2022-03-04 2022-05-31 厦门大学 Carbon-coated copper nanoparticles and preparation method thereof
CN114559033B (en) * 2022-03-04 2023-03-10 厦门大学 Carbon-coated copper nanoparticles and preparation method thereof

Also Published As

Publication number Publication date
JP2020013768A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP6118489B2 (en) Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product
JP4870223B1 (en) Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP4633857B1 (en) Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP4685145B2 (en) Method for manufacturing metal member assembly and metal member assembly
KR102345811B1 (en) Conductive composition and electronic component using same
JP6380792B2 (en) Silver paste, semiconductor device using the same, and method for producing silver paste
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
JP6381738B1 (en) Paste-like metal particle composition, bonding method, and electronic device manufacturing method
WO2009122467A1 (en) Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
JP2010053377A (en) Method for joining metallic member and method for producing metallic member-joined body
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
TWI818074B (en) Electronic components and manufacturing methods of electronic components
JP5908571B1 (en) Paste-like metal particle composition, bonding method and electronic device
JP2006032165A (en) Conductive metal particles and conductive resin composition using them, and conductive adhesive
JP2012218020A (en) Bonding method
JP6502606B1 (en) Paste-like silver particle composition, bonding method and method of manufacturing electronic device
WO2012053034A1 (en) Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
CN110352477B (en) Method for manufacturing semiconductor device
JP6624620B1 (en) Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body
JP6669420B2 (en) Bonding composition
JP6944734B2 (en) Joins and electronics

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190204

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190709

R150 Certificate of patent or registration of utility model

Ref document number: 6556302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250