JP4685145B2 - Method for manufacturing metal member assembly and metal member assembly - Google Patents

Method for manufacturing metal member assembly and metal member assembly Download PDF

Info

Publication number
JP4685145B2
JP4685145B2 JP2008232703A JP2008232703A JP4685145B2 JP 4685145 B2 JP4685145 B2 JP 4685145B2 JP 2008232703 A JP2008232703 A JP 2008232703A JP 2008232703 A JP2008232703 A JP 2008232703A JP 4685145 B2 JP4685145 B2 JP 4685145B2
Authority
JP
Japan
Prior art keywords
metal
silver
heat
metal member
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008232703A
Other languages
Japanese (ja)
Other versions
JP2010065277A (en
Inventor
靖啓 小林
涼子 増田
康全 工藤
実 一色
英知 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP2008232703A priority Critical patent/JP4685145B2/en
Publication of JP2010065277A publication Critical patent/JP2010065277A/en
Application granted granted Critical
Publication of JP4685145B2 publication Critical patent/JP4685145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

本発明は、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合された金属製部材接合体の製造方法、および、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合された金属製部材接合体に関する。 The present invention relates to a method for producing a metal member assembly in which a plurality of metal members are joined by a sintered product of heat-sinterable metal particles, and a plurality of metal members are sintered from heat-sinterable metal particles. The present invention relates to a metal member joined body joined by an object.

銀、銅、ニッケルなどの金属粉末を液状熱硬化性樹脂組成物中に分散させてなる導電性・熱伝導性ペーストは、加熱により硬化して導電性・熱伝導性被膜が形成される。したがって、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極の形成、特に、アモルファスシリコン半導体を用いているために、高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に使用されている。 A conductive / thermal conductive paste obtained by dispersing a metal powder such as silver, copper, or nickel in a liquid thermosetting resin composition is cured by heating to form a conductive / thermal conductive film. Therefore, formation of conductive circuits on printed circuit boards, formation of various electronic components such as resistors and capacitors, and electrodes of various display elements, formation of conductive films for electromagnetic wave shielding, capacitors, resistors, diodes, memories, arithmetic elements (CPU) and other chip components to substrates, formation of solar cell electrodes, especially formation of solar cell electrodes that cannot be processed at high temperatures due to the use of amorphous silicon semiconductors, multilayer ceramic capacitors, multilayer ceramic inductors It is used for forming external electrodes of chip-type ceramic electronic components such as multilayer ceramic actuators.

近年、チップ部品の高性能化により、チップ部品からの発熱量が増え、電気伝導性はもとより、熱伝導性の向上が要求される。したがって、金属粒子の含有率を可能な限り増加することにより電気伝導性、熱伝導性を向上しようとする。ところが、そうすると、ペーストの粘度が上昇し、作業性が著しく低下するという問題がある。 2. Description of the Related Art In recent years, chip components have increased in performance, and the amount of heat generated from the chip components has increased, and improvement in thermal conductivity as well as electrical conductivity is required. Therefore, it tries to improve electrical conductivity and thermal conductivity by increasing the content of metal particles as much as possible. However, when it does so, there exists a problem that the viscosity of a paste rises and workability | operativity falls remarkably.

このような問題を解決するため、本発明者らは、銀粉末と揮発性分散媒とからなるペースト状銀組成物は、加熱すると当該揮発性分散媒が揮発し銀粉末が焼結して、極めて高い導電性と熱伝導性を有する固形状銀となること、および、金属製部材の接合や、導電回路の形成に有用なことを見出して国際出願した(WO2006/126614、WO2007/034833)。 In order to solve such a problem, the present inventors, when heated, the paste-like silver composition composed of silver powder and a volatile dispersion medium volatilizes the volatile dispersion medium and sinters the silver powder, An international application was made to find out that it was solid silver having extremely high electrical conductivity and thermal conductivity, and useful for joining metal members and forming conductive circuits (WO2006 / 126614, WO2007 / 034833).

しかしながら、加熱焼結性金属粒子の焼結物は、多数の金属粒子同士が複数の接点で焼結して連結した不規則な網目構造を有する多孔質体であり、多数の空孔や空隙、しかも、連続した空孔や空隙を有しているので、付着した液体(例えば、水)を毛細管現象により内部に吸入しやすく、焼結金属が腐食等されるという問題があることに、本発明者らは気付いた。 However, the sintered product of heat-sinterable metal particles is a porous body having an irregular network structure in which a large number of metal particles are sintered and connected at a plurality of contact points, and a large number of pores and voids, In addition, since it has continuous pores and voids, there is a problem that the adhering liquid (for example, water) is easily sucked into the inside due to capillary action, and the sintered metal is corroded. They noticed.

WO2006/126614WO2006 / 126614 WO2007/034833WO2007 / 034833

本発明者らは上記の問題点を解決するため鋭意研究した結果、ペースト状金属粒子組成物を金属製部材間の接合に用いた場合、金属粒子が十分に加熱焼結して金属製部材を強固に接合し、かつ、該焼結物が液体(例えば、水)を吸入することのない、金属製部材接合体の製造方法を見出して本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have found that when the paste-like metal particle composition is used for joining between metal members, the metal particles are sufficiently heated and sintered to form the metal member. The present invention has been achieved by finding a method for producing a metal member joined body that is firmly joined and in which the sintered product does not suck liquid (for example, water).

本発明の目的は、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合されてなる金属製部材接合体の製造方法において、金属製部材が強固に接合しており、しかも焼結物が液体(例えば、水)を吸入することのない金属製部材接合体の製造方法を提供することにあり、さらには、複数の金属製部材が加熱焼結性金属粒子の焼結物により接合されてなる金属製部材接合体において、金属製部材が強固に接合しており、しかも該焼結物が液体(例えば、水)を吸収することのない金属製部材接合体を提供することにある。 An object of the present invention is to provide a method for manufacturing a metal member assembly in which a plurality of metal members are bonded together by a sintered product of heat-sinterable metal particles. The object of the present invention is to provide a method for manufacturing a metal member assembly in which a liquid does not inhale a liquid (for example, water). Further, a plurality of metal members are made of a sintered product of heat-sinterable metal particles. To provide a metal member joined body in which metal members are firmly joined and the sintered product does not absorb liquid (for example, water) in the joined metal member joined body. is there.

この目的は、
「[1] (A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物(ただし、バインダーを含有しない)を、複数の金属製部材間に介在させ,70℃以上400℃以下での加熱により,該揮発性分散媒を揮散させ,該金属粒子同士を焼結せしめて生成した、連続した細孔を有する多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に硬化性液状樹脂組成物を該焼結物の連続した細孔中に含浸せしめ硬化させることを特徴とする、金属製部材接合体の製造方法。
[2] 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[3] 多孔質焼結物の空隙率が5〜50%であることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[3-1] 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であり、多孔質焼結物の空隙率が5〜50%であることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[4] 硬化性液状樹脂組成物が熱硬化性または室温硬化性であることを特徴とする、[1]に記載の金属製部材接合体の製造方法。
[4-1] 硬化性液状樹脂組成物が熱硬化性または室温硬化性であることを特徴とする、[2]、[3]または[3-1]に記載の金属製部材接合体の製造方法。」により達成される。
This purpose is
“[1] (A) Paste metal particle composition comprising (S) heat-sinterable metal particles having an average particle size of 0.1 μm or more and 50 μm or less and (B) a volatile dispersion medium (but does not contain a binder) and it is interposed between a plurality of metal members, by heating at 70 ° C. or higher 400 ° C. or less, to volatilize volatile dispersion medium, and the said metallic particles are generated allowed sintering, having a continuous pore Metal member joining, characterized in that a plurality of metal members are joined together by a porous sintered material, and thereafter a curable liquid resin composition is impregnated into the continuous pores of the sintered material and cured. Body manufacturing method.
[2] The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of these metals The method for producing a metal member bonded body according to [1], wherein the metal member bonded body is provided.
[3] The method for producing a metal member assembly according to [1], wherein the porosity of the porous sintered product is 5 to 50%.
[3-1] The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or each of these metals The method for producing a metal member assembly according to [1], which is an alloy, and the porosity of the porous sintered product is 5 to 50%.
[4] The method for producing a metal member assembly according to [1], wherein the curable liquid resin composition is thermosetting or room temperature curable.
[4-1] Manufacture of a metal member assembly according to [2], [3] or [3-1], wherein the curable liquid resin composition is thermosetting or room temperature curable Method. Is achieved.

また、この目的は、
「[5] 複数の金属製部材が、複数の金属製部材間に介在したペースト状金属粒子組成物(ただし、バインダーを含有しない)中の(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子が焼結して生成した,連続した細孔を有する多孔質焼結物により接合されており、多孔質焼結物の,連続した細孔に硬化樹脂が充填されていることを特徴とする、金属製部材接合体。
[6] 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、[5]に記載の金属製部材接合体。
[7] 多孔質焼結物の空隙率が5〜50%であることを特徴とする、[5]に記載の金属製部材接合体。
[7-1] 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であり、多孔質焼結物の空隙率が5〜50%であることを特徴とする、[5]に記載の金属製部材接合体
[8] 硬化樹脂が、熱硬化性液状樹脂組成物または室温硬化性液状樹脂組成物の硬化物であることを特徴とする、[5]に記載の金属製部材接合体。
[8-1] 硬化樹脂が、熱硬化性液状樹脂組成物または室温硬化性液状樹脂組成物の硬化物であることを特徴とする、[6]、[7]または[7-1]に記載の金属製部材接合体。
[9] 金属製部材が金属系基板または金属部分を有する電子部品であることを特徴とする、[5]に記載の金属製部材接合体。
[9-1] 金属製部材が金属系基板または金属部分を有する電子部品であることを特徴とする、[7-1]または[8-1]に記載の金属製部材接合体。」により達成される。
This purpose is also
“[5] (A) Average particle diameter in paste metal particle composition (but not containing binder) in which a plurality of metal members are interposed between a plurality of metal members is 0.1 μm or more and 50 μm or less there heat sintering metal particles are produced by sintering, are joined by the porous sinter having a continuous pore, porous sinter, continuous pores in the cured resin is filled A metal member assembly, characterized by comprising:
[6] The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of each of these metals The metal member joined body according to [5], wherein
[7] The metal member assembly according to [5], wherein the porosity of the porous sintered product is 5 to 50%.
[7-1] The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or each of these metals The metal member joined body according to [5], which is an alloy and has a porosity of 5 to 50% of the porous sintered product
[8] The metal member assembly according to [5], wherein the curable resin is a cured product of a thermosetting liquid resin composition or a room temperature curable liquid resin composition.
[8-1] The cured resin is a cured product of a thermosetting liquid resin composition or a room temperature curable liquid resin composition, described in [6], [7] or [7-1] Metal member assembly.
[9] The metal member assembly according to [5], wherein the metal member is a metal substrate or an electronic component having a metal part.
[9-1] The metal member assembly according to [7-1] or [8-1], wherein the metal member is a metal substrate or an electronic component having a metal portion. Is achieved.

本発明の金属製部材接合体の製造方法によると、金属製部材同士が加熱焼結性金属粒子の焼結物により強固に接合しており、かつ、該焼結物が液体を吸入することのない金属製部材接合体を製造することができる。 According to the method for manufacturing a metal member assembly of the present invention, the metal members are firmly bonded to each other by a sintered product of heat-sinterable metal particles, and the sintered product sucks liquid. No metal member assembly can be produced.

本発明の金属製部材接合体は、金属製部材同士が加熱焼結性金属粒子(A)の加熱焼結物により強固に接合しており、かつ、該焼結物が接触した液体を吸入することがない。 In the metal member joined body of the present invention, the metal members are firmly joined to each other by the heat-sintered product of the heat-sinterable metal particles (A), and the liquid in contact with the sintered product is sucked. There is nothing.

本発明の金属製部材接合体の製造方法は、(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に硬化性液状樹脂組成物を該焼結物中に含浸して硬化させることを特徴とする。 The method for producing a metal member assembly according to the present invention comprises a paste-like metal particle composition comprising (A) heat-sinterable metal particles having an average particle diameter of 0.1 μm or more and 50 μm or less and (B) a volatile dispersion medium. The porous sinter produced by interposing the product between a plurality of metal members, volatilizing the volatile dispersion medium by heating at 70 ° C. or more and 400 ° C. or less, and sintering the metal particles together A plurality of metal members are joined together, and then the curable liquid resin composition is impregnated into the sintered product and cured.

加熱焼結性金属粒子(A)の平均粒径は0.1μm以上50μm以下である。この平均粒径は、レーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径である。平均粒径が50μmを越えると、加熱焼結性金属粒子の焼結性が低下するため平均粒子径は小さい方が好ましい。このため20μm以下であることが好ましく、特には10μm以下であることが好ましい。しかし、平均粒径が0.1μm未満であるいわゆるナノ粒子は表面活性が強すぎて、ペースト状金属粒子組成物の保存安定性が低下し、加熱焼結時の接合強度が不均一になるため、平均粒径は0.1μm以上である。すなわち、加熱焼結性金属粒子(A)の平均粒径範囲は0.1〜10μmが好ましい。 The average particle diameter of the heat-sinterable metal particles (A) is 0.1 μm or more and 50 μm or less. This average particle diameter is an average particle diameter of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method. When the average particle diameter exceeds 50 μm, the sinterability of the heat-sinterable metal particles is lowered, so that the average particle diameter is preferably small. For this reason, it is preferable that it is 20 micrometers or less, and it is especially preferable that it is 10 micrometers or less. However, the so-called nanoparticles having an average particle size of less than 0.1 μm have too high surface activity, so that the storage stability of the paste-like metal particle composition is lowered and the bonding strength at the time of heat sintering becomes non-uniform. The average particle size is 0.1 μm or more. That is, the average particle size range of the heat-sinterable metal particles (A) is preferably 0.1 to 10 μm.

加熱焼結性金属粒子の材質は、常温で固体であり、加熱により焼結しやすければよく、金、銀、銅、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示され、さらには金属化合物が例示される。
これらの材質のうちでは、加熱焼結性、焼結物の熱伝導性および導電性の点で、銀、銅、ニッケルが好ましく、銀、銀合金、銅、銅合金がより好ましく、銀または銅が特に好ましい。銀粒子は、表面または内部の一部が酸化銀または過酸化銀であってもよく、表面の全部が酸化銀または過酸化銀であってもよい。銅粒子は、表面または内部の一部が酸化銅であってもよく、表面の全部が酸化銅であってもよい。
The material of the heat-sinterable metal particles is solid at room temperature, and only needs to be easily sintered by heating. Gold, silver, copper, palladium, nickel, tin, aluminum, and alloys of these metals are exemplified. Furthermore, a metal compound is illustrated.
Among these materials, silver, copper, and nickel are preferable, silver, silver alloy, copper, and copper alloy are more preferable, and silver or copper is preferable in terms of heat-sinterability, thermal conductivity of the sintered product, and conductivity. Is particularly preferred. The silver particles may have a part of the surface or inside thereof that may be silver oxide or silver peroxide, and the entire surface may be silver oxide or silver peroxide. The copper particles may have copper oxide on the surface or part of the inside, or the entire surface may be copper oxide.

また加熱焼結性金属粒子は、通常、単独の材質からなるが、複数の材質の粒子の混合物であってもよい。加熱焼結性金属粒子は、それら加熱焼結性金属(例えば銀)により表面がメッキされた金属(例えば、銅、ニッケルまたはアルミニウム)粒子、それら加熱焼結性金属(例えば、銀)により表面がメッキされた樹脂(例えば、エポキシ樹脂、ポリエーテルサルフォン樹脂)粒子であってもよい。 The heat-sinterable metal particles are usually made of a single material, but may be a mixture of particles made of a plurality of materials. Heat-sinterable metal particles are made of metal (for example, copper, nickel, or aluminum) particles whose surfaces are plated with the heat-sinterable metal (for example, silver), and the surface is made of the heat-sinterable metal (for example, silver). Plated resin (for example, epoxy resin, polyethersulfone resin) particles may be used.

加熱焼結性金属粒子の形状は、特に限定されず、球状、楕円球状、紡錘状、粒状、略立方体状、フレーク状、不定形状が例示される。その形状は、保存安定性の点で球状、粒状またはフレーク状が好ましい。好ましい加熱焼結性金属粒子は、還元法で作られた銀粒子、ならびに、還元法で作られた銅粒子である。
なお、還元法による銀粒子の製造方法は多く提案されており、通常、硝酸銀水溶液に水酸化ナトリウム水溶液を加えて酸化銀を調製し、これにホルマリンのような還元剤の水溶液を加えることにより酸化銀を還元して銀粒子分散液とし、分散液をろ過し、ろ過残渣を水洗し、乾燥をおこなうことにより製造される。また、還元法による銅粒子の製造方法は、通常、硫酸銅水溶液とヒドラジン水溶液を接触反応させて銅粉を還元析出させ、純水で洗浄した後、乾燥して調製される(例えば、特開昭59−11630)。
The shape of the heat-sinterable metal particles is not particularly limited, and examples thereof include a spherical shape, an elliptical spherical shape, a spindle shape, a granular shape, a substantially cubic shape, a flake shape, and an indefinite shape. The shape is preferably spherical, granular or flaky from the viewpoint of storage stability. Preferred heat-sinterable metal particles are silver particles made by the reduction method and copper particles made by the reduction method.
Many methods for producing silver particles by the reduction method have been proposed. Usually, an aqueous solution of a reducing agent such as formalin is added to an aqueous solution of silver nitrate by adding an aqueous solution of sodium hydroxide to an aqueous solution of silver nitrate. It is produced by reducing silver to form a silver particle dispersion, filtering the dispersion, washing the filtration residue with water, and drying. In addition, a method for producing copper particles by a reduction method is usually prepared by bringing a copper sulfate aqueous solution and a hydrazine aqueous solution into contact reaction to reduce and precipitate copper powder, washing with pure water, and then drying (for example, JP Sho 59-11630).

加熱焼結性金属粒子(A)は、加熱焼結性金属粒子の凝集防止のため表面が有機物で被覆ないし処理されていることが好ましく、特に撥水性有機物で被覆ないし処理されていることが好ましい。そのような撥水性有機物としては、高・中級脂肪酸、高・中級脂肪酸金属塩、高・中級脂肪酸アミド、高・中級脂肪酸エステルおよび高・中級アルキルアミンが例示される。被覆効果、処理効果の点で特には高・中級脂肪酸が好ましい。 The surface of the heat-sinterable metal particles (A) is preferably coated or treated with an organic substance to prevent aggregation of the heat-sinterable metal particles, and particularly preferably coated or treated with a water-repellent organic substance. . Examples of such water-repellent organic substances include high / intermediate fatty acids, high / intermediate fatty acid metal salts, high / intermediate fatty acid amides, high / intermediate fatty acid esters, and high / intermediate alkylamines. High and intermediate fatty acids are particularly preferred in terms of coating effect and treatment effect.

高級脂肪酸は、炭素原子数15以上の脂肪酸であり、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、12−ヒドロキシオクタデカン酸(12−ヒドロキシステアリン酸)、エイコサン酸(アラキン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)、ヘキサコサン酸(セロチン酸)、オクタコサン酸(モンタン酸)等の直鎖飽和脂肪酸;2−ペンチルノナン酸、2−ヘキシルデカン酸、2−ヘプチルドデカン酸、イソステアリン酸等の分枝飽和脂肪酸;パルミトレイン酸、オレイン酸、イソオレイン酸、エライジン酸、リノール酸、リノレン酸、リシノール酸、ガドレン酸、エルカ酸、セラコレイン酸等の不飽和脂肪酸が例示される。 The higher fatty acid is a fatty acid having 15 or more carbon atoms, such as pentadecanoic acid, hexadecanoic acid (palmitic acid), heptadecanoic acid, octadecanoic acid (stearic acid), 12-hydroxyoctadecanoic acid (12-hydroxystearic acid), eicosanoic acid ( Linear saturated fatty acids such as arachidic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosanoic acid (serotic acid), octacosanoic acid (montanic acid); 2-pentylnonanoic acid, 2-hexyldecanoic acid, 2- Examples are branched saturated fatty acids such as heptyldodecanoic acid and isostearic acid; unsaturated fatty acids such as palmitoleic acid, oleic acid, isooleic acid, elaidic acid, linoleic acid, linolenic acid, ricinoleic acid, gadrenic acid, erucic acid, and ceracoleic acid The

中級脂肪酸は、炭素原子数が6〜14の脂肪酸であり、ヘキサン酸(カプロン酸)、ヘプタン酸、オクタン酸(カプリル酸)、ノナン酸(ペラルゴン酸)、デカン酸(カプリン酸)、ウンデカン酸、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)等の直鎖飽和脂肪酸;イソヘキサン酸、イソヘプタン酸、2−エチルヘキサン酸、イソオクタン酸、イソノナン酸、2−プロピルヘプタン酸、イソデカン酸、イソウンデカン酸、2−ブチルオクタン酸、イソドデカン酸、イソトリデカン酸等の分枝飽和脂肪酸;10−ウンデセン酸等の不飽和脂肪酸が例示される。 Intermediate fatty acids are fatty acids having 6 to 14 carbon atoms, such as hexanoic acid (caproic acid), heptanoic acid, octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, Linear saturated fatty acids such as dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (myristic acid); isohexanoic acid, isoheptanoic acid, 2-ethylhexanoic acid, isooctanoic acid, isononanoic acid, 2-propylheptanoic acid, isodecanoic acid, Illustrative examples include branched saturated fatty acids such as isoundecanoic acid, 2-butyloctanoic acid, isododecanoic acid and isotridecanoic acid; and unsaturated fatty acids such as 10-undecenoic acid.

有機物の被覆量は、金属粒子の粒径、比表面積、形状などにより変わるが、加熱焼結性金属粒子(A)の0.01〜3重量%が好ましく、0.1〜2重量%がより好ましい。少なすぎると加熱焼結性金属粒子(A)が凝集しやすくなって保存安定性が低下し、ひいては加熱焼結時の接合強度が不均一になり、多すぎると加熱焼結性金属粒子(A)の加熱焼結性が低下するからである。 The coating amount of the organic matter varies depending on the particle size, specific surface area, shape, etc. of the metal particles, but is preferably 0.01 to 3% by weight, more preferably 0.1 to 2% by weight of the heat-sinterable metal particles (A). preferable. If the amount is too small, the heat-sinterable metal particles (A) tend to agglomerate and the storage stability is lowered.As a result, the bonding strength at the time of heat-sintering becomes uneven, and if too large, the heat-sinterable metal particles (A) This is because the heat sinterability of) decreases.

有機物の被覆量は通常の方法で測定できる。例えば、窒素ガス中で撥水性有機物の沸点以上に加熱して重量減少を測定する方法、加熱焼結性金属粒子(A)を酸素気流中で加熱して加熱焼結性金属粒子(A)に付着していた有機物中の炭素を炭酸ガスに変え、赤外線吸収スペクトル法により定量分析する方法が例示される。 The coating amount of the organic substance can be measured by a usual method. For example, a method of measuring weight loss by heating above the boiling point of a water-repellent organic substance in nitrogen gas, heating sinterable metal particles (A) in an oxygen stream to heat sinterable metal particles (A) An example is a method of quantitatively analyzing the carbon in the organic matter adhering to carbon dioxide gas by infrared absorption spectroscopy.

有機物で被覆したフレーク状加熱焼結性金属粒子は、例えば、ボールミル中に球状のような形状の金属粒子と有機物を投入して、ボールにより金属粒子を殴打することにより製造することができる(特公昭40−6971、特開2000−234107の[0004]参照)。
具体的には、粒状の加熱焼結性金属粒子と、高・中級脂肪酸、高・中級脂肪酸金属塩、高・中級脂肪酸エステル、高・中級脂肪酸アミド等の撥水性有機物とを、セラミック製のボールとともに、回転式ドラム装置(例えばボールミル)に投入し、ボールで金属粒子を殴打することにより、撥水性有機物が付着したフレーク状加熱焼結性金属粒子を製造することができる。この際、潤滑性向上のための高・中級脂肪酸、高・中級脂肪酸金属塩(ただし、アルカリ金属塩を除く)、高・中級脂肪酸エステル、高・中級脂肪酸アミド、高・中級アルキルアミン等の撥水性有機物が、フレーク状加熱焼結性金属粒子表面に付着する。表面を有機物で被覆した加熱焼結性金属粒子(A)は、該有機物の溶液中に加熱焼結性金属粒子を浸漬した後、該金属粒子を取り出して乾燥することにより製造することもできる。
The flaky heat-sinterable metal particles coated with an organic material can be produced, for example, by putting metal particles having a spherical shape and an organic material into a ball mill and hitting the metal particles with a ball (special feature). No. 40-6971 and JP-A 2000-234107 [0004]).
More specifically, ceramic heat-sinterable metal particles and water-repellent organic substances such as high / intermediate fatty acids, high / intermediate fatty acid metal salts, high / intermediate fatty acid esters, and high / intermediate fatty acid amides are used in ceramic balls. At the same time, it is put into a rotary drum device (for example, a ball mill), and the metal particles are beaten with a ball, whereby flaky heat-sinterable metal particles to which a water-repellent organic substance is adhered can be produced. In this case, repellent properties such as high / intermediate fatty acids, high / intermediate fatty acid metal salts (excluding alkali metal salts), high / intermediate fatty acid esters, high / intermediate fatty acid amides, and high / intermediate alkylamines for improving lubricity. The aqueous organic material adheres to the surface of the flaky heat-sinterable metal particles. The heat-sinterable metal particles (A) whose surfaces are coated with an organic material can also be produced by immersing the heat-sinterable metal particles in a solution of the organic material, and then taking out the metal particles and drying them.

加熱焼結性金属粒子(A)表面は、このような高・中級脂肪酸等により半分以上が被覆されていればよいが、全部が被覆されていることが好ましい。このように金属表面が撥水性有機物により被覆された加熱焼結性金属粒子(A)は、撥水性を示す。
表面を有機物で被覆した加熱焼結性金属粒子(A)は、有機物の溶液中に加熱焼結性金属粒子を浸漬した後、該金属粒子を取り出して乾燥することにより製造することもできる。
The surface of the heat-sinterable metal particles (A) is only required to be covered with more than half of such high / intermediate fatty acids, but it is preferable that the surface is covered entirely. Thus, the heat-sinterable metal particles (A) whose metal surface is coated with a water-repellent organic substance exhibit water repellency.
The heat-sinterable metal particles (A) whose surfaces are coated with an organic material can also be produced by immersing the heat-sinterable metal particles in an organic material solution and then taking out and drying the metal particles.

揮発性分散媒(B)は、粉状である加熱焼結性金属粒子をペースト状にするために配合される。なお、ペースト状はクリーム状やスラリー状を含むものである。加熱時に加熱焼結性金属粒子が焼結可能とするため、あるいは、ペースト状金属粒子組成物を加熱による接合剤として使用可能にするためには、非揮発性ではなく、揮発性であることが必要である。特に、加熱焼結性金属粒子(A)が銀粒子や銅粒子の場合、焼結する際に分散媒が揮散すると、銀粒子や銅粒子が焼結しやすくなり、接合剤として利用しやすくなるからである。揮発性分散媒の沸点は、60℃〜300℃であることが好ましい。沸点が60℃未満であると、ペースト状金属粒子組成物を調製する作業中に溶媒が揮散しやすく、沸点が300℃より大であると、加熱後も揮発性分散媒(B)が残留しかねないからである。 The volatile dispersion medium (B) is blended in order to form powdery heat-sinterable metal particles into a paste. The paste form includes a cream form and a slurry form. In order to make the heat-sinterable metal particles sinterable during heating, or to make the paste-like metal particle composition usable as a bonding agent by heating, it must be volatile rather than non-volatile. is necessary. In particular, when the heat-sinterable metal particles (A) are silver particles or copper particles, if the dispersion medium is volatilized during sintering, the silver particles and copper particles are easily sintered and can be easily used as a bonding agent. Because. The boiling point of the volatile dispersion medium is preferably 60 ° C to 300 ° C. When the boiling point is less than 60 ° C., the solvent easily evaporates during the preparation of the paste-like metal particle composition, and when the boiling point is higher than 300 ° C., the volatile dispersion medium (B) remains even after heating. Because it might be.

そのような揮発性分散媒(B)は、炭素原子および水素原子からなる揮発性炭化水素化合物、炭素原子、水素原子および酸素原子からなる揮発性有機化合物、炭素原子、水素原子および窒素原子からなる揮発性有機化合物、炭素原子、水素原子、酸素原子および窒素原子からなる揮発性有機化合物、前記揮発性有機化合物のうちの親水性揮発性有機化合物と水との混合物などから選択される。これらはいずれも常温において液状である。
水は純水が好ましく、その電気伝導度は100μS/cm以下が好ましく、10μS/cm以下がより好ましい。純水の製造方法は、通常の方法で良く、イオン交換法、逆浸透法、蒸留法が例示される。
Such a volatile dispersion medium (B) is composed of a volatile hydrocarbon compound composed of carbon atoms and hydrogen atoms, a volatile organic compound composed of carbon atoms, hydrogen atoms and oxygen atoms, carbon atoms, hydrogen atoms and nitrogen atoms. It is selected from volatile organic compounds, volatile organic compounds composed of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms, a mixture of hydrophilic volatile organic compounds of the volatile organic compounds and water, and the like. These are all liquid at room temperature.
The water is preferably pure water, and its electric conductivity is preferably 100 μS / cm or less, more preferably 10 μS / cm or less. The pure water production method may be a normal method, and examples include an ion exchange method, a reverse osmosis method, and a distillation method.

具体的には、炭素原子、水素原子および酸素原子からなる揮発性有機化合物として、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール等の揮発性一価アルコール;エチレングリコールモノメチルエーテル(メチルセロソルブ、メチルカルビトール)、エチレングリコールモノエチルエーテル(エメチルセロソルブ、エチルカルビトール)、エチレングリコールモノプロピルエーテル(プロピルセロソルブ、プロピルカルビトール)、エチレングリコールモノブチルエーテル(ブチルセロソルブ、ブチルカルビトール)、プロピレングリコールモノメチルエーテル、メチルメトキシブタノール等のエーテル結合を有する揮発性一価アルコール;ベンジルアルコール、2−フェニルエチルアルコールなどの揮発性アラルキルアルコール;エチレングリコール、プロピレングリコール、グリセリンなどの揮発性多価脂肪族アルコールが例示される。 Specifically, as volatile organic compounds composed of carbon atoms, hydrogen atoms and oxygen atoms, volatilization of ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, etc. Monohydric alcohol: ethylene glycol monomethyl ether (methyl cellosolve, methyl carbitol), ethylene glycol monoethyl ether (emethyl cellosolve, ethyl carbitol), ethylene glycol monopropyl ether (propyl cellosolve, propyl carbitol), ethylene glycol mono Ethers such as butyl ether (butyl cellosolve, butyl carbitol), propylene glycol monomethyl ether, methylmethoxybutanol Volatile monohydric alcohols having binding; benzyl alcohol, volatile aralkyl alcohols such as 2-phenylethyl alcohol, ethylene glycol, propylene glycol, volatile polyhydric aliphatic alcohols such as glycerin are exemplified.

さらにはアセトン、メチルエチルケトン、メチルイゾブチルケトン、シクロヘキサノン、ジアセトンアルコール(4−ヒドロキシ−4−メチル−2−ペンタノン)、2−オクタノン、イソホロン(3、5、5−トリメチル−2−シクロヘキセン−1−オン)、ジイブチルケトン(2、6−ジメチル−4−ヘプタノン)等の揮発性脂肪族ケトン;酢酸エチル(エチルアセテート)、酢酸ブチル、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2−ジアセトキシエタンのような揮発性脂肪族カルボン酸エステル;テトラヒドロフラン、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2−ビス(2−ジエトキシ)エタン、1,2−ビス(2−メトキシエトキシ)エタン等の揮発性脂肪族エーテルが例示される。その他に、酢酸2−(2ブトキシエトキシ)エタンのようなエステルエーテル、2−(2−メトキシエトキシ)エタノール等のエーテルアルコールが例示される。 Furthermore, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2-pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexene-1- ON), volatile aliphatic ketones such as dibutylketone (2,6-dimethyl-4-heptanone); ethyl acetate (ethyl acetate), butyl acetate, acetoxyethane, methyl butyrate, methyl hexanoate, methyl octoate, decane Volatile aliphatic carboxylic acid esters such as methyl acid, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, 1,2-diacetoxyethane; tetrahydrofuran, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol Volatile aliphatic ethers such as ethyl diethyl ether, ethylene glycol dibutyl ether, propylene glycol dimethyl ether, ethoxyethyl ether, 1,2-bis (2-diethoxy) ethane, 1,2-bis (2-methoxyethoxy) ethane Illustrated. Other examples include ester ethers such as 2- (2-butoxyethoxy) ethane acetate and ether alcohols such as 2- (2-methoxyethoxy) ethanol.

炭素原子および水素原子からなる揮発性炭化水素化合物として、n−パラフィン、イソパラフィン等の揮発性脂肪族炭化水素;トルエン、キシレン等の揮発性芳香族炭化水素が例示される。 Examples of volatile hydrocarbon compounds composed of carbon atoms and hydrogen atoms include volatile aliphatic hydrocarbons such as n-paraffin and isoparaffin; and volatile aromatic hydrocarbons such as toluene and xylene.

炭素原子、水素原子および窒素原子からなる揮発性有機化合物として、アセトニトリル、プロピオニトリルのような揮発性アルキルニトリルが例示される。
炭素原子、水素原子、酸素原子および窒素原子からなる揮発性有機化合物として、アセトアミド、N、N-ジメチルホルムアミドのような揮発性カルボン酸アミドが例示される。その他に、低分子量の揮発性シリコーンオイルおよび揮発性有機変成シリコーンオイルが例示される。
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms and nitrogen atoms include volatile alkyl nitriles such as acetonitrile and propionitrile.
Examples of volatile organic compounds composed of carbon atoms, hydrogen atoms, oxygen atoms and nitrogen atoms include volatile carboxylic acid amides such as acetamide and N, N-dimethylformamide. Other examples include low molecular weight volatile silicone oils and volatile organic modified silicone oils.

揮発性分散媒(B)の配合量は、加熱焼結性金属粒子(A)を常温においてペースト状にするのに十分な量である。加熱焼結性金属粒子(A)の粒径、表面積、形状など、および、揮発性分散媒(B)の種類、粘度などにより、ペースト状にするのに十分な量は変動するが、具体的には、例えば、加熱焼結性金属粒子(A)100重量部当たり3〜30重量部である。
本発明で使用する(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物(ただし、バインダーを含有しない)には、本発明の目的に反しない限り、加熱焼結性金属粒子(A)以外の非金属系の粉体、金属化合物、金属錯体、安定剤または着色剤を少量ないし微量含有しても良い。
The blending amount of the volatile dispersion medium (B) is an amount sufficient to make the heat-sinterable metal particles (A) into a paste at room temperature. Depending on the particle size, surface area, shape, etc. of the heat-sinterable metal particles (A), and the type, viscosity, etc. of the volatile dispersion medium (B), the amount sufficient to make a paste varies, but the specific For example, it is 3 to 30 parts by weight per 100 parts by weight of the heat-sinterable metal particles (A).
Paste metal particle composition comprising (A) heat-sinterable metal particles having an average particle size of 0.1 μm or more and 50 μm or less and (B) a volatile dispersion medium used in the present invention (however, no binder is contained) the), unless contrary to the object of the present invention, the powder of the non-metallic non-heated sintered metal particles (a), metal compounds, metal complexes, contain small amounts or trace amounts of a stabilizer or coloring agents Also good.

本発明で使用するペースト状金属粒子組成物は、(A)平均粒径が0.1μmより大きく50μm以下である加熱焼結性金属粒子と、(B)揮発性分散媒を、ミキサーに投入し、均一なペースト状になるまで撹拌混合することにより、容易に製造することができる。 In the paste-like metal particle composition used in the present invention, (A) heat-sinterable metal particles having an average particle size of greater than 0.1 μm and 50 μm or less and (B) a volatile dispersion medium are charged into a mixer. It can be easily produced by stirring and mixing until a uniform paste is obtained.

本発明で使用するペースト状金属粒子組成物は、加熱焼結性金属粒子(A)と揮発性分散媒(B)との混合物であり、常温でペースト状である。なお、ペースト状はクリーム状やスラリー状を含む。ペースト化することによりシリンダーやノズルから細い線状に吐出でき、また、メタルマスクによる印刷塗布が容易である。複数の金属製部材間に介在させるペースト状金属粒子組成物の厚さは、加熱焼結性金属粒子(A)の加熱焼結により必要な接合強度が発現する厚さであれば、特に限定されない。通常、5μm以上、1200μm以下である。 The paste-like metal particle composition used in the present invention is a mixture of heat-sinterable metal particles (A) and a volatile dispersion medium (B), and is paste-like at room temperature. The paste form includes a cream form and a slurry form. By making it into a paste, it can be discharged in a thin line from a cylinder or nozzle, and printing with a metal mask is easy. The thickness of the paste-like metal particle composition interposed between a plurality of metal members is not particularly limited as long as the necessary bonding strength is exhibited by heat sintering of the heat sinterable metal particles (A). . Usually, it is 5 μm or more and 1200 μm or less.

本発明で使用する金属製部材は、塗布されたペースト状金属粒子組成物が加熱により該組成物中の揮発性分散媒が揮発し、加熱焼結性金属粒子同士(A)が焼結して接合する被接合体である。金属製部材の材質としては、金、銀、銅、白金、パラジウム、ニッケル、スズ、アルミニウム、および、これら各金属の合金が例示される。これらのうちでは導電性、接合性の点で、銅、銀、金、白金、パラジウムまたはこれら各金属の合金が好ましい。金属製部材は前記金属でメッキされたものであってもよい。金属製部材としては、全体または一部が金属で形成されたリードフレーム、プリント基板、半導体チップ、放熱板が例示される。 In the metal member used in the present invention, the applied paste-like metal particle composition volatilizes the volatile dispersion medium in the composition by heating, and the heat-sinterable metal particles (A) sinter. It is a to-be-joined body to join. Examples of the material of the metal member include gold, silver, copper, platinum, palladium, nickel, tin, aluminum, and alloys of these metals. Among these, copper, silver, gold, platinum, palladium, or an alloy of these metals is preferable in terms of conductivity and bondability. The metal member may be plated with the metal. Examples of the metal member include a lead frame, a printed circuit board, a semiconductor chip, and a heat sink, all or part of which is made of metal.

本発明の金属製部材接合体の製造方法では、(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ、該金属粒子同士を焼結せしめて生成した多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に硬化性液状樹脂組成物を該焼結物中に含浸して硬化させる。このときの雰囲気ガスは、加熱焼結性金属粒子を焼結を阻害しなければ特に限定されないが、加熱焼結性金属粒子および金属製部材が銅または銅合金のように酸化されやすい材質の場合には、酸素ガスを含まない、窒素ガス等の不活性ガス、水素ガスを含む還元性ガスが好ましい。このうち水素ガス5〜25体積%と窒素ガス95〜75体積%からなるフォーミングガスと称される還元性ガスが特に好ましい。
加熱焼結性金属粒子および金属製部材が銀または銀合金からなる場合は、酸素ガスを含む酸化性ガスが好ましい。
なお、接合に使用するペースト状金属粒子組成物中の加熱焼結性金属粒子(A)と金属製部材の表面金属は、同一の金属もしくは金属合金でも良く、合金を形成しやすい金属であっても良い。
In the method for producing a metal member assembly of the present invention, a paste-like metal particle composition comprising (A) heat-sinterable metal particles having an average particle diameter of 0.1 μm or more and 50 μm or less and (B) a volatile dispersion medium. The porous sinter produced by interposing the product between a plurality of metal members, volatilizing the volatile dispersion medium by heating at 70 ° C. or more and 400 ° C. or less, and sintering the metal particles together A plurality of metal members are joined to each other, and then the curable liquid resin composition is impregnated into the sintered product and cured. The atmosphere gas at this time is not particularly limited as long as the sintering of the heat-sinterable metal particles is not inhibited, but the heat-sinterable metal particles and the metal member are easily oxidized such as copper or copper alloy. In this case, an inert gas such as nitrogen gas and a reducing gas containing hydrogen gas, which do not contain oxygen gas, are preferable. Of these, a reducing gas called a forming gas comprising 5 to 25% by volume of hydrogen gas and 95 to 75% by volume of nitrogen gas is particularly preferable.
When the heat-sinterable metal particles and the metal member are made of silver or a silver alloy, an oxidizing gas containing oxygen gas is preferable.
Note that the heat-sinterable metal particles (A) in the paste-like metal particle composition used for bonding and the surface metal of the metal member may be the same metal or metal alloy, and a metal that easily forms an alloy. Also good.

本発明で使用するペースト状金属粒子組成物は、加熱することにより揮発性分散媒が揮散する。本発明で使用するペースト状金属粒子組成物は、加熱焼結性金属粒子(A)の焼結温度以上の温度に加熱することにより、揮発性分散媒(B)が揮散して、該金属粒子同士(A)が焼結し、導電性と熱伝導性が優れた固形状の金属となり金属製部材同士を接合する。ペースト状金属粒子組成物の加熱時に圧力や超音波振動を加えても良い。 The paste-like metal particle composition used in the present invention volatilizes the volatile dispersion medium by heating. The paste-like metal particle composition used in the present invention is heated to a temperature equal to or higher than the sintering temperature of the heat-sinterable metal particles (A), whereby the volatile dispersion medium (B) is volatilized and the metal particles The metal members (A) are sintered to form a solid metal having excellent conductivity and thermal conductivity, and the metal members are joined to each other. Pressure or ultrasonic vibration may be applied during the heating of the paste-like metal particle composition.

この際、揮発性分散媒(B)が揮散し、ついで加熱焼結性金属粒子(A)同士が焼結してもよく、揮発性分散媒(B)の揮散と共に加熱焼結性金属粒子(A)同士が焼結してもよい。特に加熱焼結性金属粒子(A)が銀粒子の場合は、銀が本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、銀粒子同士の焼結物も、大きな強度ときわめて高い電気伝導性と熱伝導性を有する。また加熱焼結性金属粒子(A)が銅粒子の場合は、銅が本来極めて高い電気伝導性と熱伝導性を有するため、銅粒子同士の焼結物も、きわめて高い電気伝導性と熱伝導性を有する。 At this time, the volatile dispersion medium (B) is volatilized, and then the heat-sinterable metal particles (A) may be sintered together, and with the volatilization of the volatile dispersion medium (B), the heat-sinterable metal particles ( A) may be sintered together. In particular, when the heat-sinterable metal particles (A) are silver particles, since silver has inherently high strength and extremely high electrical and thermal conductivity, the sintered product of silver particles also has high strength and extremely high. It has electrical conductivity and thermal conductivity. Also, when the heat-sinterable metal particles (A) are copper particles, copper inherently has extremely high electrical and thermal conductivity, so the sintered product of copper particles also has extremely high electrical and thermal conductivity. Have sex.

この際の加熱温度は、揮発性分散媒(B)が揮散し、加熱焼結性金属粒子(A)が焼結できる温度であればよく、通常70℃以上であり、150℃以上がより好ましい。しかし、400℃を越えると揮発性分散媒が突沸的に蒸発して、固形状金属の形状に悪影響が出る可能性があるため、400℃以下であることが必要であり、より好ましくは300℃以下である。 The heating temperature at this time may be a temperature at which the volatile dispersion medium (B) is volatilized and the heat-sinterable metal particles (A) can be sintered, and is usually 70 ° C. or higher, and more preferably 150 ° C. or higher. . However, if the temperature exceeds 400 ° C., the volatile dispersion medium may suddenly evaporate and the shape of the solid metal may be adversely affected. Therefore, the temperature must be 400 ° C. or less, more preferably 300 ° C. It is as follows.

このようにして金属製部材間での加熱焼結性金属粒子同士の焼結物は、図1に示されるように、数多くの微細な空孔や空隙、しかも、連続した空隙すなわち、細孔を有しており、多孔質である。その空隙率は5〜50%である。なお、空隙率の測定方法は、通常の測定方法が利用できる。焼結体の断面を電子顕微鏡で写真撮影し、画像解析ソフトにより、写真における金属部分と空間部分の面積比率を求める方法、電子顕微鏡により撮影した写真を均質な紙等に印刷し、金属部分と空間部分をはさみ等で切り分けて各々の重量を測定し、その重量比率を面積比率とする方法が例示される。 In this way, the sintered product of the heat-sinterable metal particles between the metal members has many fine voids and voids, as shown in FIG. 1, and continuous voids, that is, pores. It has and is porous. The porosity is 5 to 50%. In addition, the normal measuring method can be utilized for the measuring method of the porosity. A cross section of the sintered body is photographed with an electron microscope, image analysis software is used to determine the area ratio between the metal part and the space part, and the photograph taken with the electron microscope is printed on homogeneous paper, etc. An example is a method in which a space portion is cut with scissors or the like to measure each weight, and the weight ratio is used as an area ratio.

なお、図1に示されるように、細孔の形状や大きさは、種々様々である。焼結前の焼結性金属粒子間の隙間が主に細孔になるので、通常0.1〜50μmであるが、連続的な細孔は50μmよりはるかに長い可能性がある。 As shown in FIG. 1, the shape and size of the pores are various. Since the gaps between the sinterable metal particles before sintering are mainly pores, they are usually 0.1-50 μm, but continuous pores can be much longer than 50 μm.

焼結物が多孔質であると機械的な強度が出にくいという問題があり、また、水等の液体と接触すると毛細管現象により液体を焼結物の内部に取り込む性質がある。液体が水の場合、該焼結物を腐食してマイグレーションの原因となりかねない。そこで、本発明ではこのような細孔に硬化性液状樹脂組成物を含浸させ硬化せしめているので、焼結物の硬さや機械的な強度が向上している。また、該樹脂組成物の硬化物は、通常、硬化途上で接触していた金属製部材に接着性を有するので、該焼結物による複数の金属製部材同士の接合強度は更に向上している。
念のため、硬化性液状樹脂組成物が多孔質焼結物に浸透していく状況を図2〜図5により明らかにした。
When the sintered product is porous, there is a problem that mechanical strength is difficult to be obtained, and when it comes into contact with a liquid such as water, there is a property that the liquid is taken into the sintered product by capillary action. If the liquid is water, the sintered product may be corroded and cause migration. Therefore, in the present invention, such pores are impregnated with a curable liquid resin composition and cured, so that the hardness and mechanical strength of the sintered product are improved. Moreover, since the cured product of the resin composition usually has adhesiveness to the metal member that has been in contact with the curing process, the bonding strength between the plurality of metal members by the sintered product is further improved. .
As a precaution, the situation in which the curable liquid resin composition penetrates into the porous sintered product has been clarified with reference to FIGS.

硬化性液状樹脂組成物は、前記細孔に浸透しやすく、硬化容易であれば特に限定されない。硬化性液状エポキシ樹脂組成物、硬化性液状フェノール樹脂組成物、硬化性液状ポリウレタン樹脂組成物、硬化性液状アルキド樹脂組成物、硬化性液状ポリエステル樹脂組成物、硬化性液状シリコン樹脂組成物、硬化性液状ポリアミドイミド樹脂組成物、硬化性液状ポリアミック酸型ポリイミド樹脂組成物等が例示される。これらのうちでは、接着強度向上の点で、硬化性液状エポキシ樹脂組成物または硬化性液状ポリイミド樹脂組成物が好ましく、特には硬化性液状エポキシ樹脂が好ましい。硬化機構は、熱硬化性または常温硬化性が好ましく、特に熱硬化性が好ましい。なお、硬化性液状樹脂組成物は加熱焼結性金属粒子の焼結物への含浸性の改良のため溶剤で希釈して用いても良い。硬化性液状樹脂組成物は、細孔への浸透性や硬化性が阻害されなければ、無機質系または金属系の充填剤、耐熱安定剤、酸化防止剤、着色剤等を含有してもよい。 The curable liquid resin composition is not particularly limited as long as it easily penetrates into the pores and is easily cured. Curable liquid epoxy resin composition, curable liquid phenolic resin composition, curable liquid polyurethane resin composition, curable liquid alkyd resin composition, curable liquid polyester resin composition, curable liquid silicone resin composition, curable Examples thereof include a liquid polyamideimide resin composition and a curable liquid polyamic acid type polyimide resin composition. Among these, a curable liquid epoxy resin composition or a curable liquid polyimide resin composition is preferable from the viewpoint of improving adhesive strength, and a curable liquid epoxy resin is particularly preferable. The curing mechanism is preferably thermosetting or room temperature curable, and particularly preferably thermosetting. The curable liquid resin composition may be diluted with a solvent to improve the impregnation property of the heat-sinterable metal particles into the sintered product. The curable liquid resin composition may contain an inorganic or metal filler, a heat stabilizer, an antioxidant, a colorant and the like as long as the permeability to the pores and the curability are not inhibited.

硬化性液状エポキシ樹脂組成物は、通常、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂等の主剤と、アミン、イミダゾール、酸無水物等の硬化剤からなり、必要に応じて、さらに硬化促進剤、1官能性あるいは多官能性の反応性稀釈剤等の付加的成分からなる。 The curable liquid epoxy resin composition is usually composed of a main agent such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, and alicyclic epoxy resin, and a curing agent such as amine, imidazole, and acid anhydride. If necessary, it further comprises additional components such as a curing accelerator, a monofunctional or polyfunctional reactive diluent.

上記の硬化性液状樹脂組成物は、本発明の加熱焼結性金属粒子の焼結物の外周部の全部または一部に塗布すると、毛細管現象により該焼結物中の細孔に吸入される。この際、吸入を促進するため、焼結物を硬化性液状樹脂組成物中に浸漬した後、あるいは、硬化性液状樹脂組成物を焼結物の外周部に塗布した後、減圧にしても良く、また、粘度を下げて含浸性を良くするため該硬化性液状樹脂組成物が増粘しない程度に加熱しても良い。 When the above curable liquid resin composition is applied to all or a part of the outer peripheral portion of the sintered product of the heat-sinterable metal particles of the present invention, it is sucked into the pores in the sintered product by capillary action. . At this time, in order to promote inhalation, the pressure may be reduced after the sintered product is immersed in the curable liquid resin composition or after the curable liquid resin composition is applied to the outer periphery of the sintered product. Further, in order to improve the impregnation property by lowering the viscosity, the curable liquid resin composition may be heated to such an extent that the viscosity is not increased.

かくして該焼結物に含浸させた硬化性液状樹脂組成物は、室温放置するか、200℃以下の温度に加温すると、細孔内で硬化する。この際、該樹脂組成物は接着性を有するので硬化途上で接触していた加熱焼結性金属粒子の焼結物、金属製部材と良く接着する。さらには該焼結物の細孔内が樹脂組成物の硬化物で充填され、また該焼結物と金属製部材の界面が樹脂組成物の硬化物で充填されるので、金属製部材の硬さ等の機械的強度やせん断接着強さ等の接合強度が向上する。このため、複数の金属製部材同士の接合に用いた場合には、硬さや接合強度が向上するので、冷熱サイクルにおける熱応力による該焼結物の破壊および金属製部材との剥離が低減し、強固な接合強度を維持できるという特徴を有する。 Thus, the curable liquid resin composition impregnated in the sintered product is cured in the pores when allowed to stand at room temperature or heated to a temperature of 200 ° C. or lower. At this time, since the resin composition has adhesiveness, the resin composition adheres well to the sintered product and metal member of the heat-sinterable metal particles that have been in contact with the curing process. Further, the pores of the sintered product are filled with the cured product of the resin composition, and the interface between the sintered product and the metal member is filled with the cured product of the resin composition. Bonding strength such as mechanical strength such as thickness and shear bonding strength is improved. For this reason, when used for bonding between a plurality of metal members, the hardness and bonding strength are improved, so that the destruction of the sintered product due to thermal stress in the cooling cycle and the separation from the metal members are reduced, It has a feature that a strong bonding strength can be maintained.

本発明で使用するペースト状金属粒子組成物は、加熱により揮発性分散媒(B)が揮散し、加熱焼結性金属粒子(A)同士が焼結する。複数の金属製部材間の接合に用いた場合、加熱焼結物は、焼結時に接触していた金属製部材、例えば金メッキ基板、銀基板、銀メッキ金属基板、銅基板、アルミニウム基板、ニッケルメッキ基板、スズメッキ金属基板等の金属系基板へ強固に接着し、電気絶縁性基板上の電極等金属部分へ強固に接着する。さらに硬化性液状樹脂組成物を多孔質焼結物に含浸して硬化しているので、更に強固に接着する。このため本発明の金属製部材接合体の製造方法は、金属系基板や金属部分を有する電子部品、電子装置、電気部品、電気装置等の金属製部材接合体の製造に有用である。 In the paste-like metal particle composition used in the present invention, the volatile dispersion medium (B) is volatilized by heating, and the heat-sinterable metal particles (A) are sintered together. When used for joining a plurality of metal members, the heat-sintered material is a metal member that was in contact with the sintered material, for example, a gold-plated substrate, a silver substrate, a silver-plated metal substrate, a copper substrate, an aluminum substrate, or nickel-plated It adheres firmly to metal substrates such as substrates and tin-plated metal substrates, and adheres firmly to metal parts such as electrodes on electrically insulating substrates. Further, since the porous sinter is impregnated with the curable liquid resin composition and cured, it adheres more firmly. For this reason, the manufacturing method of the metal member assembly of the present invention is useful for manufacturing a metal member assembly such as an electronic component, an electronic device, an electrical component, and an electrical device having a metal substrate and a metal portion.

そのような接合として、コンデンサ、抵抗等のチップ部品と回路基板との接合、ダイオード、メモリ、IC、CPU等の半導体チップとリードフレームもしくは回路基板との接合、高発熱のCPUチップと冷却板との接合等が例示される。 Such bonding includes bonding of chip parts such as capacitors and resistors and circuit boards, bonding of semiconductor chips such as diodes, memories, ICs, and CPUs to lead frames or circuit boards, and high-heat generation CPU chips and cooling plates. And the like.

本発明の金属製部材接合体は、複数の金属製部材が、加熱焼結性金属粒子が焼結して生成した多孔質焼結物により接合されており、多孔質焼結物の細孔に硬化樹脂が充填されていることを特徴とする。
複数の金属製部材間で、平均粒径が0.1μmより大きく50μm以下である加熱焼結性金属粒子が加熱焼結し、しかる後に硬化性液状樹脂組成物により、多孔質である該金属粒子の焼結物に含浸して硬化させ細孔を塞ぐとともに該焼結物の硬さ等の機械的強度、接着強度が向上することを特徴とする。
In the metal member joined body of the present invention, a plurality of metal members are joined by a porous sintered product formed by sintering heat-sinterable metal particles, and the pores of the porous sintered product are joined. It is characterized by being filled with a cured resin.
Heat-sinterable metal particles having an average particle size of more than 0.1 μm and not more than 50 μm are heated and sintered between a plurality of metal members, and then the metal particles are porous by the curable liquid resin composition. The sintered product is impregnated and cured to block the pores, and mechanical strength such as hardness and adhesive strength of the sintered product are improved.

金属製部材、加熱焼結性金属粒子、加熱焼結条件、多孔質焼結物、細孔の形状や大きさ、空隙率、硬化性液状樹脂組成物、含浸とその硬化については、金属製部材接合体の製造方法に関して説明したとおりである。複数の金属製部材間に介在している加熱焼結した金属層の厚さは、必要な接合強度が発現する厚さであれば、特に限定されない。通常、3μm以上、1000μm以下である。 Metal parts, heat-sinterable metal particles, heat-sintering conditions, porous sintered products, pore shape and size, porosity, curable liquid resin composition, impregnation and curing thereof, metal parts It is as having demonstrated the manufacturing method of the conjugate | zygote. The thickness of the heat-sintered metal layer interposed between the plurality of metal members is not particularly limited as long as the necessary bond strength is exhibited. Usually, it is 3 μm or more and 1000 μm or less.

本発明の金属製部材接合体は、複数の金属製部材間で、平均粒径が0.1μmより大きく50μm以下である加熱焼結性金属粒子が加熱焼結し、さらに、該多孔質焼結物の細孔に硬化樹脂が充填されているので、金属製部材がより強固に接合している。
そのような接合体として、コンデンサ、抵抗等のチップ部品と回路基板との接合体、ダイオード、メモリ、IC、CPU等の半導体チップとリードフレームもしくは回路基板との接合体、高発熱のCPUチップと冷却板との接合体が例示される。
In the metal member assembly of the present invention, the heat-sinterable metal particles having an average particle size of greater than 0.1 μm and less than or equal to 50 μm are heat-sintered between the plurality of metal members, and the porous sintering is further performed. Since the pores of the object are filled with the cured resin, the metal member is more firmly bonded.
As such a joined body, a joined body of a chip component such as a capacitor or a resistor and a circuit board, a joined body of a semiconductor chip such as a diode, a memory, an IC, or a CPU and a lead frame or a circuit board, a high heat generating CPU chip, A joined body with a cooling plate is illustrated.

本発明の実施例と比較例を掲げる。実施例と比較例中、部と記載されているのは、重量部を意味する。ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の多孔質焼結物の硬さ、その空隙率、ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸率、多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の空隙率、その硬さ、金属製部材間の多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さは、下記のとおりに測定した。なお、特に記載のない場合の温度は23℃である。 Examples and comparative examples of the present invention will be given. In the examples and comparative examples, “parts” means “parts by weight”. Hardness of porous sintered product of heat-sinterable metal particles (A) in paste-like metal particle composition, porosity thereof, heating of heat-sinterable metal particles (A) in paste-like metal particle composition Shear bond strength of metallic members joined by sintering, impregnation ratio of resin composition when porous sinter is impregnated with curable liquid resin composition and cured, to porous sintered product Porosity after impregnating and curing curable liquid resin composition, its hardness, metal after impregnating and curing curable liquid resin composition to porous sintered material between metal members The shear bond strength of the member and the shear bond strength after impregnating the porous sinter between the metal members with the curable liquid resin composition and curing and subjecting to a cold cycle were measured as follows. . In addition, the temperature in case there is no description in particular is 23 degreeC.

[ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の多孔質焼結物の硬さ]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、ペースト状金属粒子組成物を印刷塗布した。
[Hardness of porous sintered product of heat-sinterable metal particles (A) in paste-like metal particle composition]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and the paste-like metal particle composition was applied by printing.

ペースト状金属粒子組成物中の金属が銀の場合は、これを熱風循環式オーブンで、200℃で1時間加熱して取り出し、ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)を焼結した。
ペースト状金属粒子組成物中の金属が銅の場合は、これを室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で250℃まで昇温し、250℃で1時間保持後、室温まで冷却して加熱焼結性銀粒子(A)を焼結した。
When the metal in the paste-like metal particle composition is silver, it is taken out by heating at 200 ° C. for 1 hour in a hot air circulating oven, and the heat-sinterable metal particles (A) in the paste-like metal particle composition (A) Was sintered.
When the metal in the paste-like metal particle composition is copper, this is put in a gas flow furnace at room temperature, the atmosphere gas is replaced with a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas, and then the mixed gas is replaced. While flowing at a flow rate of 1 liter / min, the temperature is raised from room temperature to 250 ° C. at a heating rate of 1 ° C./second, held at 250 ° C. for 1 hour, and then cooled to room temperature to sinter the heat-sinterable silver particles (A). did.

得られた多孔質焼結物をポリテトラフルオロエチレン樹脂板からはずして硬さ測定用試験体とした。2個の試験体についてJIS Z2244(ビッカース硬さ試験)に準拠して硬さを測定し、その平均値を硬さと測定した。 The obtained porous sintered product was removed from the polytetrafluoroethylene resin plate to obtain a specimen for hardness measurement. The hardness of two specimens was measured according to JIS Z2244 (Vickers hardness test), and the average value was measured as hardness.

[ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の多孔質焼結物の空隙率]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、ペースト状金属粒子組成物を印刷塗布した。
[Porosity of porous sintered product of heat-sinterable metal particles (A) in paste-like metal particle composition]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and the paste-like metal particle composition was applied by printing.

ペースト状金属粒子組成物中の金属が銀の場合は、これを熱風循環式オーブンで、200℃で1時間加熱して取り出し、ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)を焼結した。
ペースト状金属粒子組成物中の金属が銅の場合は、これを室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で250℃まで昇温し、250℃で1時間保持後、室温まで冷却して加熱焼結性銀粒子(A)を焼結した。
When the metal in the paste-like metal particle composition is silver, it is taken out by heating at 200 ° C. for 1 hour in a hot air circulating oven, and the heat-sinterable metal particles (A) in the paste-like metal particle composition (A) Was sintered.
When the metal in the paste-like metal particle composition is copper, this is put in a gas flow furnace at room temperature, the atmosphere gas is replaced with a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas, and then the mixed gas is replaced. While flowing at a flow rate of 1 liter / min, the temperature is raised from room temperature to 250 ° C. at a heating rate of 1 ° C./second, held at 250 ° C. for 1 hour, and then cooled to room temperature to sinter the heat-sinterable silver particles (A). did.

得られた多孔質焼結物をポリイミド樹脂板からはずして空隙率測定用試験体とした。
得られた板状の試験体の断面を電子顕微鏡で撮影し、画像解析ソフト(アメリカ合衆国のNational Institute of Health社製のNIH Image)を用いて、断面における空間の占める割合を算出し、その比率を%で示した。
The obtained porous sintered product was removed from the polyimide resin plate to obtain a test piece for measuring porosity.
The cross section of the obtained plate-like specimen was photographed with an electron microscope, and the ratio of space in the cross section was calculated using image analysis software (NIH Image manufactured by National Institute of Health, USA), and the ratio was calculated as follows. %.

[ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の加熱焼結による金属製部材のせん断接着強さ]
幅25mm×長さ70mm、厚さ1.0mmの銀基板(銀純度99.99%)上に、10mmの間隔をおいて4つの開口部(2.5mm×2.5mm)を有する100μm厚のメタルマスクを用いて、ペースト状金属粒子組成物を印刷塗布し、その上にサイズが2.5mm×2.5mm×0.5mmの銀チップ(銀純度99.99%)を搭載した。
[Shear bond strength of metal parts by heat sintering of heat-sinterable metal particles (A) in paste-like metal particle composition]
100 μm thick having four openings (2.5 mm × 2.5 mm) at a distance of 10 mm on a silver substrate (silver purity 99.99%) of width 25 mm × length 70 mm and thickness 1.0 mm The paste-like metal particle composition was printed and applied using a metal mask, and a silver chip (silver purity 99.99%) having a size of 2.5 mm × 2.5 mm × 0.5 mm was mounted thereon.

ペースト状金属粒子組成物中の金属が銀の場合は、銀チップを搭載した銀基板を熱風循環式オーブンで、200℃で1時間加熱して接合した。
ペースト状金属粒子組成物中の金属が銅の場合は、該銀チップを搭載した銀基板を室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で250℃まで昇温し、250℃で1時間保持後、室温まで冷却して加熱焼結性銀粒子を焼結することにより銀基板と銀チップを接合した。
When the metal in the paste-like metal particle composition was silver, the silver substrate on which the silver chip was mounted was joined by heating at 200 ° C. for 1 hour in a hot air circulation oven.
When the metal in the paste-like metal particle composition is copper, the silver substrate on which the silver chip is mounted is placed in a gas flow furnace at room temperature, and the atmosphere gas is changed to a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas. After the replacement, the mixed gas is flowed at a flow rate of 1 liter / min, the temperature is raised from room temperature to 250 ° C. at a temperature rising rate of 1 ° C./second, held at 250 ° C. for 1 hour, cooled to room temperature, and then heat-sinterable silver The silver substrate and the silver chip were joined by sintering the particles.

得られた接合強度測定用試験体を接着強さ試験機の試験体取付け具にセットし、該銀チップの側面を接着強さ試験機の押圧棒により押厚速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ(単位;MPa)とした。4個の試験体についての平均値をせん断接着強さとした。 The obtained test body for bonding strength measurement was set on a test specimen mounting tool of an adhesive strength tester, and the side surface of the silver chip was pressed with a pressing bar of the adhesive strength tester at a pressing speed of 23 mm / min. The load when the part was subjected to shear fracture was defined as the adhesive strength (unit: MPa). The average value for the four specimens was the shear bond strength.

[多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸率]
ポリテトラフルオロエチレン樹脂板上に15mm角の開口部を有する厚さ1mmのステンレス製のマスクを置き、ペースト状金属粒子組成物を印刷塗布した。ペースト状金属粒子組成物中の金属が銀の場合は、これを熱風循環式オーブンで、200℃で1時間加熱して取り出し、ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)を焼結した。
ペースト状金属粒子組成物中の金属が銅の場合は、これを室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で250℃まで昇温し、250℃で1時間保持後、室温まで冷却して加熱焼結性銀粒子(A)を焼結した。
[Impregnation rate of the resin composition when the porous sintered material is impregnated with a curable liquid resin composition and cured]
A 1 mm thick stainless steel mask having a 15 mm square opening was placed on the polytetrafluoroethylene resin plate, and the paste-like metal particle composition was applied by printing. When the metal in the paste-like metal particle composition is silver, it is taken out by heating at 200 ° C. for 1 hour in a hot air circulating oven, and the heat-sinterable metal particles (A) in the paste-like metal particle composition (A) Was sintered.
When the metal in the paste-like metal particle composition is copper, this is put in a gas flow furnace at room temperature, the atmosphere gas is replaced with a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas, and then the mixed gas is replaced. While flowing at a flow rate of 1 liter / min, the temperature is raised from room temperature to 250 ° C. at a heating rate of 1 ° C./second, held at 250 ° C. for 1 hour, and then cooled to room temperature to sinter the heat-sinterable silver particles (A). did.

得られた多孔質焼結物をポリテトラフルオロエチレン樹脂板からはずして含浸量測定用試験体とした。この焼結物の重さW1を測定した後、参考例で調製した熱硬化性液状エポキシ樹脂組成物中に浸漬し、1kPaに減圧して10分間静置後常圧に戻し、該焼結物に含浸されなかった該エポキシ樹脂組成物を拭き取って除去した。 The obtained porous sintered product was removed from the polytetrafluoroethylene resin plate and used as a specimen for impregnation amount measurement. After measuring the weight W1 of this sintered product, it was immersed in the thermosetting liquid epoxy resin composition prepared in the Reference Example, depressurized to 1 kPa, allowed to stand for 10 minutes, and then returned to normal pressure. The epoxy resin composition that was not impregnated in was wiped off and removed.

ペースト状金属粒子組成物中の金属が銀の場合は、該焼結物を熱風循環式オーブンで、150℃で1時間加熱して硬化した後、該焼結物の重さW2を測定した。
ペースト状金属粒子組成物中の金属が銅の場合は、該焼結物を室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で150℃まで昇温し、150℃で1時間保持後、室温まで冷却した後、該焼結物の重さW2を測定した。
When the metal in the paste-like metal particle composition was silver, the sintered product was cured by heating at 150 ° C. for 1 hour in a hot air circulation oven, and then the weight W2 of the sintered product was measured.
When the metal in the paste-like metal particle composition is copper, the sintered product is put into a gas flow furnace at room temperature, and the atmosphere gas is replaced with a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas. While flowing the mixed gas at a flow rate of 1 liter / min, the temperature was raised from room temperature to 150 ° C. at a heating rate of 1 ° C./second, held at 150 ° C. for 1 hour, cooled to room temperature, and then the weight W2 of the sintered product Was measured.

該エポキシ樹脂組成物の含浸率は以下の計算により求めた。
該樹脂組成物の含浸率(%)={(W2−W1)/W1}×100
The impregnation rate of the epoxy resin composition was determined by the following calculation.
Impregnation rate of the resin composition (%) = {(W2−W1) / W1} × 100

[多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の硬さ]
前記の多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸量の測定に使用した試験体について、JIS Z2244(ビッカース硬さ試験)に準拠して硬さを測定した。
[Hardness after porous sinter is impregnated with curable liquid resin composition and cured]
The specimen used for measuring the amount of impregnation of the resin composition when the porous sintered product is impregnated with a curable liquid resin composition and cured is based on JIS Z2244 (Vickers hardness test). The hardness was measured.

[多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の空隙率]
多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の空隙率=[ペースト状金属粒子組成物中の加熱焼結性金属粒子(A)の多孔質焼結物の空隙率]で測定した空隙率−[多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸率]で測定した含浸率、による計算で求めた。
[Porosity after impregnating curable liquid resin composition into porous sintered product and curing]
Porosity after impregnating and hardening curable liquid resin composition to porous sintered product = [void of porous sintered product of heat-sinterable metal particles (A) in paste-like metal particle composition The porosity measured by [Ratio] − [Impregnation rate of the resin composition in the case where the porous sintered product is impregnated with the curable liquid resin composition and cured] is obtained by calculation.

[金属製部材間の多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させた後の金属製部材のせん断接着強さ]
幅25mm×長さ70mm、厚さ1.0mmの銀基板(銀純度99.99%)上に、10mmの間隔をおいて4つの開口部(2.5mm×2.5mm)を有する100μm厚のメタルマスクを用いて、ペースト状金属粒子組成物を印刷塗布し、その上にサイズが2.5mm×2.5mm×0.5mmの銀チップ(銀純度99.99%)を搭載した。
[Shear bond strength of metal member after impregnating curable liquid resin composition into porous sintered material between metal members and curing]
100 μm thick having four openings (2.5 mm × 2.5 mm) at a distance of 10 mm on a silver substrate (silver purity 99.99%) of width 25 mm × length 70 mm and thickness 1.0 mm The paste-like metal particle composition was printed and applied using a metal mask, and a silver chip (silver purity 99.99%) having a size of 2.5 mm × 2.5 mm × 0.5 mm was mounted thereon.

ペースト状金属粒子組成物中の金属が銀の場合は、該銀チップを搭載した銀基板を熱風循環式オーブンで、200℃で1時間加熱して接合した。
ペースト状金属粒子組成物中の金属が銅の場合は、該銀チップを搭載した銀基板を室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で250℃まで昇温し、250℃で1時間保持後、室温まで冷却して加熱焼結性銀粒子を焼結することにより銀基板と銀チップを接合した。
When the metal in the paste-like metal particle composition was silver, the silver substrate on which the silver chip was mounted was joined by heating at 200 ° C. for 1 hour in a hot air circulation oven.
When the metal in the paste-like metal particle composition is copper, the silver substrate on which the silver chip is mounted is placed in a gas flow furnace at room temperature, and the atmosphere gas is changed to a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas. After the replacement, the mixed gas is flowed at a flow rate of 1 liter / min, the temperature is raised from room temperature to 250 ° C. at a temperature rising rate of 1 ° C./second, held at 250 ° C. for 1 hour, cooled to room temperature, and then heat-sinterable silver The silver substrate and the silver chip were joined by sintering the particles.

この接合体の加熱焼結性金属粒子の焼結物の周囲に、硬化性液状エポキシ樹脂組成物を塗布し、30分間放置して該焼結物中の細孔に含浸した後、該焼結物からはみ出ている液状の該樹脂組成物をふき取り、ペースト状金属粒子組成物中の金属が銀の場合は、該焼結物を熱風循環式オーブンで、150℃で1時間加熱して硬化した。
ペースト状金属粒子組成物中の金属が銅の場合は、該焼結物を室温のガス流通炉に入れ、雰囲気ガスを水素ガス10体積%と窒素ガス90体積%の混合ガスに置換後、該混合ガスを流量1リットル/分で流しながら室温から昇温速度1℃/秒で150℃まで昇温し、150℃で1時間保持後、室温まで冷却して硬化した。
A curable liquid epoxy resin composition is applied around the sintered product of the heat-sinterable metal particles of the joined body, and left to stand for 30 minutes to impregnate the pores in the sintered product. When the metal in the paste-like metal particle composition is silver, the sintered product is cured by heating at 150 ° C. for 1 hour in a hot air circulating oven. .
When the metal in the paste-like metal particle composition is copper, the sintered product is put into a gas flow furnace at room temperature, and the atmosphere gas is replaced with a mixed gas of 10% by volume of hydrogen gas and 90% by volume of nitrogen gas. While flowing the mixed gas at a flow rate of 1 liter / min, the temperature was raised from room temperature to 150 ° C. at a heating rate of 1 ° C./second, held at 150 ° C. for 1 hour, and then cooled to room temperature and cured.

かくして得られた接合強度測定用試験体を接着強さ試験機の試験体取付け具にセットし、該銀チップの側面を接着強さ試験機の押圧棒により押厚速度23mm/分で押圧し、接合部がせん断破壊したときの荷重をもって接着強さ(単位;MPa)とした。4個の平均値をせん断接着強さとした。 The test specimen for measuring the bonding strength thus obtained was set on a test specimen fixture of an adhesive strength tester, and the side surface of the silver chip was pressed at a pressing speed of 23 mm / min with a pressing bar of the adhesive strength tester, The bond strength (unit: MPa) was defined as the load when the joint was sheared and broken. The average value of the four pieces was taken as the shear bond strength.

[金属製部材間の多孔質焼結物へ硬化性液状樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さ]
金属製部材の接合強度測定用試験体を、−40℃で30分間放置と+125℃で30分間放置を1サイクルとする冷熱衝撃試験機で1000サイクルをおこない、金属製部材として銀の接合強度試験と同様にして接着強さを測定してせん断接着強さとした。
[Shear bond strength after impregnating curable liquid resin composition into porous sintered material between metal members and curing and applying to cold cycle]
The test specimen for measuring the joint strength of a metal member was subjected to 1000 cycles in a thermal shock tester in which the test specimen was left at −40 ° C. for 30 minutes and left at + 125 ° C. for 30 minutes, and a silver joint strength test as a metal member. The adhesive strength was measured in the same manner as described above to obtain the shear adhesive strength.

[参考例1]
[熱硬化性液状エポキシ樹脂組成物の調製]
ミキサー中で、東都化成株式会社製ビスフェノールA型エポキシ樹脂(商品名:ZX1059、粘度3Pa・s、エポキシ当量160g)50部、炭素原子数が平均10個であるアルカン酸のグリシジルエステル(粘度0.1Pa・s、エポキシ当量250g)6部、炭素原子数が平均13個であるアルキルアルコールのモノグリシジルエーテル(粘度0.2Pa・s、エポキシ当量280g)6部、硬化剤としてのポリオキシプロピレンジアミン(粘度0.2Pa・s、活性水素当量100g)33部、硬化促進剤としての2,4,6−トリ(ジメチルアミノメチル)フェノール(粘度0.3Pa・s)5部を均一に混合することにより、粘度3Pa・sの熱硬化性液状エポキシ樹脂組成物を調製した。
[Reference Example 1]
[Preparation of thermosetting liquid epoxy resin composition]
In a mixer, bisphenol A type epoxy resin (trade name: ZX1059, viscosity 3 Pa · s, epoxy equivalent 160 g) manufactured by Tohto Kasei Co., Ltd., glycidyl ester of alkanoic acid having an average of 10 carbon atoms (viscosity: 0. 6 parts of 1 Pa · s, epoxy equivalent 250 g), 6 parts of monoglycidyl ether of alkyl alcohol having an average of 13 carbon atoms (viscosity 0.2 Pa · s, epoxy equivalent 280 g), polyoxypropylene diamine ( By uniformly mixing 33 parts of a viscosity of 0.2 Pa · s and an active hydrogen equivalent of 100 g) and 5 parts of 2,4,6-tri (dimethylaminomethyl) phenol (viscosity 0.3 Pa · s) as a curing accelerator. A thermosetting liquid epoxy resin composition having a viscosity of 3 Pa · s was prepared.

[実施例1]
市販の、還元法で製造され表面がステアリン酸で被覆された銀粒子(形状:粒状、1次粒子の平均粒径:1.1μm、ステアリン酸量:0.3重量%)100部に、揮発性分散媒として酢酸2−(2ブトキシエトキシ)エタン(和光純薬工業株式会社製、試薬1級)8部を添加し、ヘラを用いて均一に混合することによりペースト状銀粒子組成物を調製した。
[Example 1]
Volatile in 100 parts of commercially available silver particles produced by the reduction method and coated with stearic acid on the surface (shape: granular, average particle size of primary particles: 1.1 μm, amount of stearic acid: 0.3 wt%) 8 parts of acetic acid 2- (2-butoxyethoxy) ethane (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) is added as an aqueous dispersion medium, and a paste-like silver particle composition is prepared by uniformly mixing with a spatula did.

ペースト状金属粒子組成物として上記ペースト状銀粒子組成物を用い、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いて、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の多孔質焼結物の硬さ、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸量、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の硬さ、その空隙率、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表1にまとめて示した。以上の結果により、この接合方法が金属製部材同士を強固に接合するのに有用なことがわかった。
前記多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を完全に含浸して硬化させたものの断面拡大写真を図4、図5に示した。
Heating in the paste-like silver particle composition using the paste-like silver particle composition as the paste-like metal particle composition and using the thermosetting liquid epoxy resin composition prepared in the reference example as the curable liquid resin composition Hardness of porous sintered product of sinterable silver particles (A), shear adhesion strength of metal parts joined by heat sintering of heat-sinterable silver particles (A) in paste-like silver particle composition When the porous sintered product is impregnated with the thermosetting liquid epoxy resin composition and cured, the amount of the resin composition impregnated, and the porous sintered product is impregnated with the thermosetting liquid epoxy resin composition. Hardness after being cured, its porosity, the shear adhesive strength of the metallic member after impregnating and curing the thermosetting liquid epoxy resin composition to the porous sintered product between the metallic members, And a thermosetting liquid epoxy resin composition to a porous sintered product between metal members. Soak the measurement of shear bond strength after being subjected to thermal cycling cured, results are summarized in Table 1. From the above results, it was found that this joining method is useful for firmly joining metal members together.
FIGS. 4 and 5 are enlarged cross-sectional photographs of the porous sintered product obtained by completely impregnating and curing the thermosetting liquid epoxy resin composition.

[参考例2]
実施例1において前記多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を途中まで含浸して硬化させたものの断面拡大写真を図2、図3に示した。
[Reference Example 2]
In FIG. 2 and FIG. 3, the cross-sectional enlarged photographs of the porous sintered product obtained by impregnating the thermosetting liquid epoxy resin composition partway and curing it in Example 1 are shown.

[実施例2]
ボールミルに、市販の還元法で製造された銀粒子(形状:粒状、1次粒子の平均粒径:1.0μm、有機物による被覆なし)を投入し、オレイン酸を添加して稼働することにより、表面がオレイン酸で被覆されたフレーク状銀粒子(1次粒子の平均粒径:3.0μm、オレイン酸量:0.3重量%)を調製した。
実施例1において用いた銀粒子の代わりに、上記フレーク状銀粒子を用いたほかは、実施例1と同様の条件でペースト状銀粒子組成物を調製した。
[Example 2]
By putting silver particles (shape: granular, average particle size of primary particles: 1.0 μm, no coating with organic matter) manufactured by a commercially available reduction method into a ball mill, and adding oleic acid, Flake-like silver particles having a surface coated with oleic acid (average particle size of primary particles: 3.0 μm, oleic acid amount: 0.3% by weight) were prepared.
A pasty silver particle composition was prepared under the same conditions as in Example 1 except that the flaky silver particles were used in place of the silver particles used in Example 1.

ペースト状金属粒子組成物として上記ペースト状銀粒子組成物を用い、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いて、
ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の多孔質焼結物の硬さ、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸量、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の硬さ、その空隙率、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表1にまとめて示した。以上の結果により、この接合方法が金属製部材同士を強固に接合するのに有用なことがわかった。
Using the above paste-like silver particle composition as the paste-like metal particle composition, and using the thermosetting liquid epoxy resin composition prepared in the reference example as the curable liquid resin composition,
Hardness of porous sintered product of heat-sinterable silver particles (A) in paste-like silver particle composition, bonding by heat-sintering of heat-sinterable silver particles (A) in paste-like silver particle composition Shear bond strength of the metal member made, impregnated amount of the resin composition when the porous sintered product is impregnated with a thermosetting liquid epoxy resin composition and cured to the porous sintered product After impregnating and curing the curable liquid epoxy resin composition, the porosity, the porosity, and the porous sintered material between the metal members after impregnating the thermosetting liquid epoxy resin composition and curing Measure the shear bond strength of metal members and the shear bond strength after the porous sintered product between metal members is impregnated with a thermosetting liquid epoxy resin composition and cured and subjected to a cold cycle. The results are summarized in Table 1. From the above results, it was found that this joining method is useful for firmly joining metal members together.

[実施例3]
市販の、還元法で製造され表面がオレイン酸で被覆された銅粒子(形状:粒状、1次粒子の平均粒径:1.0μm、オレイン酸量:0.7重量%)100部に、揮発性分散媒として1,2−ビス(2−メトキシエトキシ)エタン(和光純薬工業株式会社製、試薬1級)8部を添加し、ヘラを用いて均一に混合することによりペースト状銅粒子組成物を調製した。
[Example 3]
Volatile in 100 parts of commercially available copper particles produced by the reduction method and coated with oleic acid on the surface (shape: granular, average particle size of primary particles: 1.0 μm, oleic acid amount: 0.7% by weight) Paste-like copper particle composition by adding 8 parts of 1,2-bis (2-methoxyethoxy) ethane (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) as a porous dispersion medium and mixing uniformly using a spatula A product was prepared.

ペースト状金属粒子組成物として上記ペースト状銅粒子組成物を用い、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いて、
ペースト状銅粒子組成物中の加熱焼結性銅粒子(A)の多孔質焼結物の硬さ、ペースト状銅粒子組成物中の加熱焼結性銅粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた場合の該樹脂組成物の含浸量、多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の硬さ、その空隙率、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させた後の金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表1にまとめて示した。以上の結果により、この接合方法が金属製部材同士を強固に接合するのに有用なことがわかった。
Using the paste copper particle composition as the paste metal particle composition, using the thermosetting liquid epoxy resin composition prepared in the reference example as the curable liquid resin composition,
Bonding by hardness of porous sintered product of heat-sinterable copper particles (A) in paste-like copper particle composition, heat-sintering of heat-sinterable copper particles (A) in paste-like copper particle composition Shear bond strength of the metal member made, impregnated amount of the resin composition when the porous sintered product is impregnated with a thermosetting liquid epoxy resin composition and cured to the porous sintered product After impregnating and curing the curable liquid epoxy resin composition, the porosity, the porosity, and the porous sintered material between the metal members after impregnating the thermosetting liquid epoxy resin composition and curing Measure the shear bond strength of metal members and the shear bond strength after the porous sintered product between metal members is impregnated with a thermosetting liquid epoxy resin composition and cured and subjected to a cold cycle. The results are summarized in Table 1. From the above results, it was found that this joining method is useful for firmly joining metal members together.

[比較例1]
実施例1において、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いないほかは同様にして、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の多孔質焼結物の硬さ、その空隙率、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表2にまとめて示した。以上の結果により、硬化性液状樹脂組成物を用いない接合方法は、金属製部材同士の接合強度が低いことがわかった。なお、上記多孔質焼結物の断面部分拡大写真を図1として掲げた。
[Comparative Example 1]
In Example 1, heat-sinterable silver particles (A in the paste-like silver particle composition (A) were similarly used except that the thermosetting liquid epoxy resin composition prepared in the reference example was not used as the curable liquid resin composition. ) Of the porous sintered product, its porosity, the shear adhesive strength of the metal members joined by heat sintering of the heat-sinterable silver particles (A) in the paste-like silver particle composition, and Then, the porous sintered material between the metal members was impregnated with the thermosetting liquid epoxy resin composition, cured, and subjected to a cooling and heating cycle. Then, the shear bond strength was measured, and the results are summarized in Table 2. . From the above results, it was found that the bonding method using no curable liquid resin composition has low bonding strength between metal members. In addition, the cross-sectional part enlarged photograph of the said porous sintered compact was hung up as FIG.

[比較例2]
実施例2において、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いないほかは同様にして、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の多孔質焼結物の硬さ、その空隙率、ペースト状銀粒子組成物中の加熱焼結性銀粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表2にまとめて示した。以上の結果により、硬化性液状樹脂組成物を用いない接合方法は、金属製部材同士の接合強度が低いことがわかった。
[Comparative Example 2]
In Example 2, the heat-sinterable silver particles (A in the paste-like silver particle composition (A) were similarly used except that the thermosetting liquid epoxy resin composition prepared in the reference example was not used as the curable liquid resin composition. ) Of the porous sintered product, its porosity, the shear adhesive strength of the metal members joined by heat sintering of the heat-sinterable silver particles (A) in the paste-like silver particle composition, and Then, the porous sintered material between the metal members was impregnated with the thermosetting liquid epoxy resin composition, cured, and subjected to a cooling and heating cycle. Then, the shear bond strength was measured, and the results are summarized in Table 2. . From the above results, it was found that the bonding method using no curable liquid resin composition has low bonding strength between metal members.

[比較例3]
実施例3において、硬化性液状樹脂組成物として参考例で調製した熱硬化性液状エポキシ樹脂組成物を用いないほかは同様にして、ペースト状銅粒子組成物中の加熱焼結性銅粒子(A)のの多孔質焼結物の硬さ、その空隙率、ペースト状銅粒子組成物中の加熱焼結性銅粒子(A)の加熱焼結により接合された金属製部材のせん断接着強さ、および、金属製部材間の多孔質焼結物へ熱硬化性液状エポキシ樹脂組成物を含浸して硬化させ冷熱サイクルにかけた後のせん断接着強さの測定をし、結果を表2にまとめて示した。以上の結果により、硬化性液状樹脂組成物を用いない接合方法は、金属製部材同士の接合強度が低いことがわかった。
[Comparative Example 3]
In Example 3, heat-sinterable copper particles (A in the paste-like copper particle composition (A) were similarly used except that the thermosetting liquid epoxy resin composition prepared in the reference example was not used as the curable liquid resin composition. ) Of the porous sintered product, the porosity thereof, the shear adhesive strength of the metal member joined by heat sintering of the heat-sinterable copper particles (A) in the paste-like copper particle composition, In addition, the porous adhesive sintered between the metal members was impregnated with the thermosetting liquid epoxy resin composition, cured, and subjected to a cooling and heating cycle. Then, the shear bond strength was measured, and the results are summarized in Table 2. It was. From the above results, it was found that the bonding method using no curable liquid resin composition has low bonding strength between metal members.

本発明の金属製部材の接合方法によると、加熱焼結性金属粒子の焼結物により強固に接合され、さらに多孔質である該焼結物の細孔に硬化性液状樹脂組成物を含浸して硬化しているため、導電性を損なうことなく金属製部材同士を更に強固に接合させることができるので、本発明の金属製部材の接合方法はコンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接合、放熱用部材の接合などに有用である。
本発明の金属製部材接合体は、電子部品、電子装置、電気部品、電気装置などに有用である。
According to the metal member joining method of the present invention, the sintered material is firmly joined by the sintered product of heat-sinterable metal particles, and the porous pores of the sintered product are impregnated with the curable liquid resin composition. Since the metal members can be bonded to each other more firmly without impairing the conductivity, the metal member bonding method of the present invention includes a capacitor, a resistor, a diode, a memory, an arithmetic element (CPU). It is useful for joining chip components such as) to a substrate, joining a heat radiating member, and the like.
The metal member assembly of the present invention is useful for electronic components, electronic devices, electrical components, electrical devices, and the like.

比較例1の多孔質焼結物の断面部分拡大写真である。2 is an enlarged cross-sectional view of a porous sintered product of Comparative Example 1. 熱硬化性液状エポキシ樹脂組成物を途中まで含浸して硬化させた多孔質焼結物(参考例2)の断面拡大写真である。周辺部の濃いところは浸透部分であり、中心部の薄いところは未浸透部分である。It is a cross-sectional enlarged photograph of the porous sintered compact (reference example 2) which impregnated the thermosetting liquid epoxy resin composition to the middle and was hardened. The dark part of the peripheral part is the permeation part, and the thin part of the central part is the non-penetration part. 図2の部分拡大写真である。It is the elements on larger scale of FIG. 実施例の熱硬化性液状エポキシ樹脂組成物を完全に含浸して硬化させた多孔質焼結物の断面拡大写真である。It is a cross-sectional enlarged photograph of the porous sintered compact which was completely impregnated and hardened with the thermosetting liquid epoxy resin composition of the Example. 図4の部分拡大写真であるIt is the elements on larger scale of FIG. 実施例におけるせん断接着強さ測定用試験体Aの平面図である。銀基板1と銀チップ3とが、銀粒子または銅粒子の加熱焼結物である固体状銀または固体状銅2により接合されている。It is a top view of the test body A for shear bond strength measurement in an Example. The silver substrate 1 and the silver chip 3 are joined by solid silver or solid copper 2 which is a heat-sintered product of silver particles or copper particles. 図6におけるX−X線断面図である。It is the XX sectional view taken on the line in FIG.

符号の説明Explanation of symbols

A せん断接着強さ測定用試験体
1 銀基板
2 ペースト状銀粒子組成物またはペースト状銅粒子組成物(加熱焼結後は固体状銀または固体状銅)
3 銀チップ
A Test specimen for measuring shear bond strength 1 Silver substrate 2 Paste-like silver particle composition or paste-like copper particle composition (solid silver or solid copper after heat sintering)
3 Silver chip

Claims (9)

(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物(ただし、バインダーを含有しない)を、複数の金属製部材間に介在させ,70℃以上400℃以下での加熱により,該揮発性分散媒を揮散させ,該金属粒子同士を焼結せしめて生成した、連続した細孔を有する多孔質焼結物により複数の金属製部材同士を接合させ、しかる後に硬化性液状樹脂組成物を該焼結物の連続した細孔中に含浸せしめ硬化させることを特徴とする、金属製部材接合体の製造方法。 A paste-like metal particle composition (but not containing a binder) composed of (A) a heat-sinterable metal particle having an average particle diameter of 0.1 μm or more and 50 μm or less and (B) a volatile dispersion medium, It is interposed between the metal member, by heating at 70 ° C. or higher 400 ° C. or less, to volatilize volatile dispersion medium, and the said metallic particles are generated allowed sintered, porous sintered with continuous pores A method for producing a metal member assembly comprising: joining a plurality of metal members with an object, and then impregnating and curing the curable liquid resin composition in continuous pores of the sintered product. . 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、請求項1に記載の金属製部材接合体の製造方法。 The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of each of these metals The method for producing a metal member assembly according to claim 1, wherein 多孔質焼結物の空隙率が5〜50%であることを特徴とする、請求項1に記載の金属製部材接合体の製造方法。 The method for producing a metal member assembly according to claim 1, wherein the porosity of the porous sintered product is 5 to 50%. 硬化性液状樹脂組成物が熱硬化性または室温硬化性であることを特徴とする、請求項1に記載の金属製部材接合体の製造方法。 The method for producing a metal member assembly according to claim 1, wherein the curable liquid resin composition is thermosetting or room temperature curable. 複数の金属製部材が、複数の金属製部材間に介在したペースト状金属粒子組成物(ただし、バインダーを含有しない)中の(A)平均粒径が0.1μm以上50μm以下である加熱焼結性金属粒子が焼結して生成した,連続した細孔を有する多孔質焼結物により接合されており、多孔質焼結物の,連続した細孔に硬化樹脂が充填されていることを特徴とする、金属製部材接合体。 (A) The average particle diameter in the paste-like metal particle composition (however, containing no binder) in which a plurality of metal members are interposed between the plurality of metal members is 0.1 μm or more and 50 μm or less. sex metal particles produced by sintering, characterized in that are joined by a porous sintered product having a continuous pore, the porous sintered material, curing the resin in the continuous pores are filled A metal member assembly. 加熱焼結性金属粒子の金属が銀、銀合金、銅または銅合金であり、かつ、金属製部材の金属が銅、銀、金、白金、パラジウム、または、これら各金属の合金であることを特徴とする、請求項5に記載の金属製部材接合体。 The metal of the heat-sinterable metal particles is silver, silver alloy, copper or copper alloy, and the metal of the metal member is copper, silver, gold, platinum, palladium, or an alloy of each of these metals The metal member assembly according to claim 5, wherein the metal member assembly is characterized in that: 多孔質焼結物の空隙率が5〜50%であることを特徴とする、請求項5に記載の金属製部材接合体。 The metal member assembly according to claim 5, wherein the porosity of the porous sintered product is 5 to 50%. 硬化樹脂が、熱硬化性液状樹脂組成物または室温硬化性液状樹脂組成物の硬化物であることを特徴とする、請求項5に記載の金属製部材接合体。 The metal member assembly according to claim 5, wherein the curable resin is a cured product of a thermosetting liquid resin composition or a room temperature curable liquid resin composition. 金属製部材が金属系基板または金属部分を有する電子部品であることを特徴とする、請求項5に記載の金属製部材接合体。 The metal member assembly according to claim 5, wherein the metal member is a metal substrate or an electronic component having a metal portion.
JP2008232703A 2008-09-10 2008-09-10 Method for manufacturing metal member assembly and metal member assembly Active JP4685145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232703A JP4685145B2 (en) 2008-09-10 2008-09-10 Method for manufacturing metal member assembly and metal member assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232703A JP4685145B2 (en) 2008-09-10 2008-09-10 Method for manufacturing metal member assembly and metal member assembly

Publications (2)

Publication Number Publication Date
JP2010065277A JP2010065277A (en) 2010-03-25
JP4685145B2 true JP4685145B2 (en) 2011-05-18

Family

ID=42191108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232703A Active JP4685145B2 (en) 2008-09-10 2008-09-10 Method for manufacturing metal member assembly and metal member assembly

Country Status (1)

Country Link
JP (1) JP4685145B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5486868B2 (en) * 2009-08-06 2014-05-07 Dowaエレクトロニクス株式会社 Metal nanoparticle dispersion and method for producing metal nanoparticle dispersion
WO2012053034A1 (en) * 2010-10-20 2012-04-26 ニホンハンダ株式会社 Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
KR101157422B1 (en) * 2010-10-21 2012-06-22 김범재 A Heat sink and joining methods of the heat sink thereof
JP5971909B2 (en) * 2011-09-21 2016-08-17 古河電気工業株式会社 Conductive paste and joined body obtained by firing the conductive paste
JP5912663B2 (en) * 2012-02-29 2016-04-27 Jx金属株式会社 Cobalt-plated copper fine powder, conductive paste produced using cobalt-plated copper fine powder, and method for producing cobalt-plated copper fine powder
DE102013108753A1 (en) * 2013-08-13 2015-02-19 Epcos Ag Multi-layer component with an external contact and method for producing a multilayer component with an external contact
JP6121001B2 (en) * 2014-08-29 2017-04-26 三井金属鉱業株式会社 Conductor connection structure and manufacturing method thereof, conductive composition, and electronic component module
JP5941588B2 (en) * 2014-09-01 2016-06-29 Dowaエレクトロニクス株式会社 Bonding material and bonding method using the same
JP6536991B2 (en) * 2015-03-03 2019-07-03 国立大学法人大阪大学 Bonding structure and method of manufacturing bonding structure
JP2017107731A (en) * 2015-12-09 2017-06-15 日立化成株式会社 Conductive sheet, method for producing the same, and semiconductor device and electronic component obtained by using the same
JP6565710B2 (en) 2016-01-27 2019-08-28 三菱マテリアル株式会社 Manufacturing method of copper member assembly
JP2018049981A (en) * 2016-09-23 2018-03-29 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method of the same
JP6984146B2 (en) * 2017-03-15 2021-12-17 昭和電工マテリアルズ株式会社 Resin-containing copper sintered body and its manufacturing method, bonded body, and semiconductor device
JP6881238B2 (en) * 2017-10-31 2021-06-02 三菱電機株式会社 Semiconductor module, its manufacturing method and power converter
JP6911804B2 (en) * 2018-03-26 2021-07-28 三菱マテリアル株式会社 Manufacturing method of joint
EP3852507A4 (en) * 2018-09-14 2021-11-10 Showa Denko Materials Co., Ltd. Electronic component and method for manufacturing electronic component
WO2020217358A1 (en) * 2019-04-24 2020-10-29 日立化成株式会社 Manufacturing method for conductor-filled through-hole substrate and conductor-filled through-hole substrate
JP2021038427A (en) * 2019-09-02 2021-03-11 株式会社大阪ソーダ Sintered compact of silver particle
JP6713120B1 (en) * 2019-12-27 2020-06-24 小松 晃雄 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
WO2022030089A1 (en) 2020-08-04 2022-02-10 ナミックス株式会社 Conductive composition, die attachment material, pressure-sintered die attachement material, and electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153705A (en) * 1982-03-05 1983-09-12 Sumitomo Electric Ind Ltd Rein impregnated sintered parts and manufacture thereof
JPS63295693A (en) * 1987-05-28 1988-12-02 Agency Of Ind Science & Technol Impregnant for porous material and method of sealing pore of material to be treated
JP3185324B2 (en) * 1992-02-03 2001-07-09 株式会社スリーボンド Impregnation treatment method for impregnated work

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195974A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Joining method

Also Published As

Publication number Publication date
JP2010065277A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP4685145B2 (en) Method for manufacturing metal member assembly and metal member assembly
JP4870223B1 (en) Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP4633857B1 (en) Method for evaluating heat-sinterability of organic-coated metal particles, method for producing heat-sinterable metal paste, and method for producing metal member assembly
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP6866893B2 (en) Copper paste for bonding, manufacturing method of bonded body and manufacturing method of semiconductor device
WO2009122467A1 (en) Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
JP5301385B2 (en) Metal member bonding agent, metal member assembly manufacturing method, metal member assembly, and electric circuit connecting bump manufacturing method
EP3348337B1 (en) Copper paste for joining, method for manufacturing joined body, and method for manufacturing semiconductor device
JP6118489B2 (en) Paste-like metal particle composition, method for producing metal member assembly, and method for producing porous metal particle sintered product
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
JP5425962B2 (en) Heat-sinterable silver particle production method, paste-like silver particle composition, solid silver production method, metal member joining method, printed wiring board production method, and electrical circuit connection bump production method
KR20190105610A (en) Copper pastes, assemblies and semiconductor devices for pressureless bonding
JP2010053377A (en) Method for joining metallic member and method for producing metallic member-joined body
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
TWI818074B (en) Electronic components and manufacturing methods of electronic components
JP7210842B2 (en) Method for manufacturing joined body, copper paste for forming sintered copper pillars, and joining member with pillars
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
KR20220081338A (en) Silver sintering formulation and its use for the connection of electronic components
TWI655693B (en) Manufacturing method of semiconductor device
WO2012053034A1 (en) Method for evaluating heat sinterability of metal particles coated in organic matter, method for producing heat sinterable metal paste, and production method for metal member bonded product
JP7375295B2 (en) Electronic components and electronic component manufacturing methods
WO2020256012A1 (en) Conductive pillar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100326

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250