JP6911804B2 - Manufacturing method of joint - Google Patents

Manufacturing method of joint Download PDF

Info

Publication number
JP6911804B2
JP6911804B2 JP2018058495A JP2018058495A JP6911804B2 JP 6911804 B2 JP6911804 B2 JP 6911804B2 JP 2018058495 A JP2018058495 A JP 2018058495A JP 2018058495 A JP2018058495 A JP 2018058495A JP 6911804 B2 JP6911804 B2 JP 6911804B2
Authority
JP
Japan
Prior art keywords
silver
particle size
particles
volume
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018058495A
Other languages
Japanese (ja)
Other versions
JP2019167616A (en
Inventor
和彦 山▲崎▼
和彦 山▲崎▼
弘太郎 増山
弘太郎 増山
朋彦 山口
朋彦 山口
樋上 晃裕
晃裕 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018058495A priority Critical patent/JP6911804B2/en
Priority to PCT/JP2019/007537 priority patent/WO2019187926A1/en
Priority to TW108106988A priority patent/TW201940346A/en
Publication of JP2019167616A publication Critical patent/JP2019167616A/en
Application granted granted Critical
Publication of JP6911804B2 publication Critical patent/JP6911804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、接合体の製造方法に関するものである。 The present invention relates to a method for producing a bonded body.

半導体素子やLED(発光ダイオード)素子などの電子部品の組立てや実装等において、2つ以上の部品を接合する場合、一般的に接合材が用いられる。このような接合材として、銀粒子を有機溶媒に分散させた銀ペーストが知られている。この銀ペーストを介して、一方の部品と他方の部品とを積層し、得られた積層体を加熱して、銀ペースト中の銀粒子を焼結させて接合層(銀粒子の焼結体)を形成することによって部品を接合することができる。 When assembling or mounting electronic components such as semiconductor elements and LED (light emitting diode) elements, when joining two or more components, a bonding material is generally used. As such a bonding material, a silver paste in which silver particles are dispersed in an organic solvent is known. One component and the other component are laminated via this silver paste, the obtained laminate is heated, and the silver particles in the silver paste are sintered to form a bonding layer (silver particle sintered body). Parts can be joined by forming.

接合層の強度を向上させ、液体(例えば、水)による接合層の腐食を防止するために、接合層である銀粒子の焼結体の気孔に樹脂を充填することが検討されている。特許文献1には、(A)平均粒径が0.1μm〜50μmの加熱焼結性金属粒子と(B)揮発性分散媒とからなるペースト状金属粒子組成物を、複数の金属製部材間に介在させ、70℃以上400℃以下での加熱により、該揮発性分散媒を揮散させ該金属粒子同士の焼結物により金属製部材同士を接合させ、次いで硬化性液状樹脂組成物を該多孔質焼結物中に含浸して硬化させる接合体の製造方法が開示されている。 In order to improve the strength of the bonding layer and prevent corrosion of the bonding layer by a liquid (for example, water), it has been studied to fill the pores of the sintered body of silver particles, which is the bonding layer, with a resin. Patent Document 1 describes a paste-like metal particle composition composed of (A) heat-sinterable metal particles having an average particle size of 0.1 μm to 50 μm and (B) a volatile dispersion medium between a plurality of metal members. The volatile dispersion medium is volatilized by heating at 70 ° C. or higher and 400 ° C. or lower, the metal members are bonded to each other by a sintered metal particles, and then the curable liquid resin composition is made porous. A method for producing a bonded body which is impregnated in a quality sintered product and cured is disclosed.

特開2010−65277号公報JP-A-2010-65277

ところで、パワーモジュールや高輝度LEDでは、電子部品の発熱量が増加しており、これらの電子部品を接合する接合層では、電子部品のオン/オフや環境温度に起因する冷熱サイクルによって疲労して電子部品が剥離しないように、高い耐熱疲労性が要求される。しかしながら、銀粒子の焼結体の気孔に樹脂を充填した接合層では、冷熱サイクルによって樹脂が膨張と収縮を繰り返すことにより、銀粒子の焼結体が破損して却って耐熱疲労性が低下することがあり、冷熱サイクルに対する耐熱疲労性を向上させることが難しい場合があった。 By the way, in power modules and high-brightness LEDs, the amount of heat generated by electronic components is increasing, and the bonding layer that joins these electronic components is fatigued by the on / off of electronic components and the cold heat cycle caused by the ambient temperature. High heat and fatigue resistance is required so that electronic components do not peel off. However, in the bonding layer in which the pores of the sintered body of silver particles are filled with resin, the resin repeatedly expands and contracts due to the cooling and heating cycle, so that the sintered body of silver particles is damaged and the heat resistance is deteriorated. In some cases, it was difficult to improve the heat resistance to the thermal cycle.

この発明は、前述した事情に鑑みてなされたものであって、接合層の冷熱サイクルに対する耐熱疲労性が向上した接合体を得ることができる接合体の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a bonded body capable of obtaining a bonded body having improved heat and fatigue resistance to a cold heat cycle of the bonded layer.

上記の課題を解決するために、本発明の接合体の製造方法は、第1部材と第2部材とが接合された接合体の製造方法であって、前記第1部材と前記第2部材とを、銀ペースト層を介して積層した積層体であって、前記銀ペースト層が、溶媒と、体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm以上1.0μm以下の範囲内にあって、体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が5.0以上10以下の範囲内にある銀粒子とを含む積層体を得る工程と、前記積層体を加熱して、前記銀ペースト層の溶媒を除去すると共に前記銀粒子を部分的に焼結させて、内部に細孔径が0.5μm以上3.0μm以下の範囲内にある連続気孔を有し、気孔率が20%以上である多孔質銀焼結体層を形成する工程と、前記多孔質銀焼結体層の前記連続気孔に樹脂を充填する工程と、を有することを特徴としている。 In order to solve the above problems, the method for manufacturing a joined body of the present invention is a method for manufacturing a joined body in which a first member and a second member are joined, and the first member and the second member are used together. The silver paste layer has a particle size D50 of 50% by volume in a volume-based integrated particle size distribution under a sieve of 0.3 μm or more and 1.0 μm or less. Silver particles whose ratio D90 / D10 of 90% by volume particle size D90 to 10% by volume particle size D10 in the volume-based integrated particle size distribution under the sieve is in the range of 5.0 or more and 10 or less. In the step of obtaining a laminate containing A step of forming a porous silver sintered body layer having continuous pores within a range of 0.0 μm or less and a porosity of 20% or more, and applying a resin to the continuous pores of the porous silver sintered body layer. It is characterized by having a filling step.

このような構成とされた本発明の接合体の製造方法によれば、銀ペースト層に含まれる銀粒子は、体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm以上1.0μm以下の範囲内にあって比較的微細であり、かつ体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が5.0以上10以下の範囲内とされていて粒度分布の幅が広いので、比較的低温度で加熱した場合でも部分的な焼結が起こりやすい。このため、上記の銀ペースト層を有する積層体を加熱することにより、銀粒子間に強固なネッキング構造が形成され、内部に細孔径が0.5μm以上3.0μm以下の範囲内にある連続気孔を有し、気孔率が20%以上である多孔質銀焼結体層を形成することが可能となる。そして、その多孔質銀焼結体層の連続気孔に樹脂を充填することによって、冷熱サイクルに対する耐熱疲労性が向上した接合層を第1部材と第2部材との間に形成することができる。 According to the method for producing a bonded body of the present invention having such a configuration, the silver particles contained in the silver paste layer have a particle size D50 of 50% by volume in the volume-based integrated particle size distribution under a sieve of 0.3 μm or more. The ratio D90 / D10 of 90% by volume particle size D90 to 10% by volume particle size D10 in the volume-based integrated particle size distribution under a sieve, which is within the range of 1.0 μm or less and is relatively fine, is 5.0. Since the particle size distribution is within the range of 10 or less and the particle size distribution is wide, partial sintering is likely to occur even when heated at a relatively low temperature. Therefore, by heating the laminate having the silver paste layer, a strong necking structure is formed between the silver particles, and continuous pores having a pore diameter within the range of 0.5 μm or more and 3.0 μm or less are formed inside. It is possible to form a porous silver sintered body layer having a porosity of 20% or more. Then, by filling the continuous pores of the porous silver sintered body layer with the resin, a bonding layer having improved heat resistance to the thermal cycle can be formed between the first member and the second member.

ここで、本発明の接合体の製造方法において、前記銀粒子は、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子の凝集体を含むことが好ましい。
この場合は、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある微細な銀粒子(一次粒子)は焼結しやすく、比較的低温度での加熱によって銀粒子間により強固なネッキング構造を形成することができるので、接合層の冷熱サイクルに対する耐熱疲労性がさらに向上する。
Here, in the method for producing a bonded body of the present invention, it is preferable that the silver particles contain agglomerates of primary particles having an average particle size based on the number in the range of 0.020 μm or more and 0.10 μm or less.
In this case, fine silver particles (primary particles) having an average particle size based on the number of particles in the range of 0.020 μm or more and 0.10 μm or less are easily sintered, and can be heated between silver particles at a relatively low temperature. Since a strong necking structure can be formed, the heat and fatigue resistance of the bonding layer to the cooling and heating cycle is further improved.

本発明によれば、接合層の冷熱サイクルに対する耐熱疲労性が向上した接合体を得ることができる接合体の製造方法を提供することが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a bonded body capable of obtaining a bonded body having improved heat and fatigue resistance to the thermal cycle of the bonded layer.

本発明の一実施形態に係る接合体の断面図である。It is sectional drawing of the joined body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る接合体の製造方法を説明するフロー図である。It is a flow figure explaining the manufacturing method of the bonded body which concerns on one Embodiment of this invention. 本発明例1で作製した接合体の接合層の断面のSEM(走査型電子顕微鏡)写真である。It is an SEM (scanning electron microscope) photograph of the cross section of the joint layer of the joint body produced in Example 1 of the present invention.

以下、本発明の一実施形態について、添付した図面を参照して説明する。
図1は、本発明の一実施形態である接合体の断面図である。
図1に示すように、接合体10は、第1部材11と、第1部材の一方の面(図1において下面)に接合層20を介して接合された第2部材12と、を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the attached drawings.
FIG. 1 is a cross-sectional view of a joined body according to an embodiment of the present invention.
As shown in FIG. 1, the joined body 10 includes a first member 11 and a second member 12 joined to one surface (lower surface in FIG. 1) of the first member via a joining layer 20. There is.

第1部材11としては、例えば、パワー半導体チップやLED素子が用いられる。また、第2部材12としては、例えば、回路基板が用いられる。 As the first member 11, for example, a power semiconductor chip or an LED element is used. Further, as the second member 12, for example, a circuit board is used.

接合層20は、内部に細孔径が0.5μm以上3.0μm以下の範囲内にある連続気孔を有する多孔質銀焼結体層21と、多孔質銀焼結体層21の連続気孔に充填された樹脂22とを含む。 The bonding layer 20 fills the continuous pores of the porous silver sintered body layer 21 having continuous pores having a pore diameter within the range of 0.5 μm or more and 3.0 μm or less, and the porous silver sintered body layer 21. The resin 22 is included.

多孔質銀焼結体層21は、銀粒子を部分的に焼結させた焼結体である。銀粒子を部分的に焼結させることによって銀粒子間に強固なネッキング構造が形成され、銀粒子が3次元的に結合することによって連続気孔が形成される。導電性と熱伝導性とに優れる銀粒子が3次元的に結合することによって、高い導電性と熱伝導性とを有する接合層20が得られる。 The porous silver sintered body layer 21 is a sintered body in which silver particles are partially sintered. A strong necking structure is formed between the silver particles by partially sintering the silver particles, and continuous pores are formed by three-dimensionally bonding the silver particles. By three-dimensionally bonding silver particles having excellent conductivity and thermal conductivity, a bonding layer 20 having high conductivity and thermal conductivity can be obtained.

樹脂22は、多孔質銀焼結体層21の連続気孔に3次元的に充填される。連続気孔は、細孔径が0.5μm以上とされているので、樹脂22を充填しやすい。樹脂22が3次元的に充填されることによって高温環境下で多孔質銀焼結体層21に付与される熱応力が緩和され、接合層20の冷熱サイクルに対する耐熱疲労性が向上する。また、連続気孔は、細孔径が3.0μm以下とされているので、冷熱サイクルによって樹脂22の膨張と収縮を繰り返しても、多孔質銀焼結体層21が破損しにくい。 The resin 22 is three-dimensionally filled in the continuous pores of the porous silver sintered body layer 21. Since the continuous pores have a pore diameter of 0.5 μm or more, it is easy to fill the resin 22. By three-dimensionally filling the resin 22, the thermal stress applied to the porous silver sintered body layer 21 in a high temperature environment is relaxed, and the heat and fatigue resistance of the bonding layer 20 to the cold heat cycle is improved. Further, since the pore diameter of the continuous pores is 3.0 μm or less, the porous silver sintered body layer 21 is unlikely to be damaged even if the resin 22 is repeatedly expanded and contracted by the cooling / heating cycle.

接合層20中の樹脂22の含有量は、20体積%以上であることが好ましい。樹脂22の含有量が20体積%未満であると、樹脂22による熱応力の緩和作用が低くなり、接合層20の冷熱サイクルに対する耐熱疲労性が低下するおそれがある。一方、樹脂22の含有量が多くなりすぎると、銀粒子同士の間隔が広くなりすぎて電導性や熱伝導性が低下するおそれがある。このため、接合層20中の樹脂22の含有量は50体積%以下であることが好ましい。 The content of the resin 22 in the bonding layer 20 is preferably 20% by volume or more. If the content of the resin 22 is less than 20% by volume, the effect of relaxing the thermal stress by the resin 22 is reduced, and the heat resistance to the thermal cycle of the bonding layer 20 may be reduced. On the other hand, if the content of the resin 22 is too large, the distance between the silver particles becomes too wide, and the conductivity and thermal conductivity may decrease. Therefore, the content of the resin 22 in the bonding layer 20 is preferably 50% by volume or less.

樹脂22は、硬化性樹脂の硬化物であることが好ましい。硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、アルキド樹脂、ポリエステル樹脂、シリコーン樹脂、ポリアミドイミド樹脂、ポリイミド樹脂を用いることができる。 The resin 22 is preferably a cured product of a curable resin. As the curable resin, for example, an epoxy resin, a phenol resin, a polyurethane resin, an alkyd resin, a polyester resin, a silicone resin, a polyamide-imide resin, or a polyimide resin can be used.

次に、本実施形態に係る接合体10の製造方法を説明する。
図2は、本発明の一実施形態に係る接合体の製造方法を説明するフロー図である。
図2に示すように、本実施形態の接合体10の製造方法は、積層体作製工程S01と、多孔質銀焼結体層形成工程S02と、樹脂充填工程S03を有する。
Next, a method of manufacturing the bonded body 10 according to the present embodiment will be described.
FIG. 2 is a flow chart illustrating a method for manufacturing a bonded body according to an embodiment of the present invention.
As shown in FIG. 2, the method for manufacturing the bonded body 10 of the present embodiment includes a laminated body manufacturing step S01, a porous silver sintered body layer forming step S02, and a resin filling step S03.

(積層体作製工程S01)
積層体作製工程S01では、第1部材11と第2部材12とを、銀ペースト層を介して積層した積層体を作製する。積層体は、例えば、第1部材11または第2部材の一方に銀ペーストを塗布して銀ペースト層を形成し、次いでこの銀ペースト層の上に第2部材12または第1部材11を配置する方法、第1部材11と第2部材12の両方に銀ペーストを塗布して銀ペースト層を形成し、次いで銀ペースト層同士を重ね合わせる方法によって得ることができる。
(Laminate body manufacturing step S01)
In the laminate manufacturing step S01, a laminate in which the first member 11 and the second member 12 are laminated via a silver paste layer is produced. In the laminate, for example, silver paste is applied to one of the first member 11 or the second member to form a silver paste layer, and then the second member 12 or the first member 11 is arranged on the silver paste layer. The method can be obtained by applying a silver paste to both the first member 11 and the second member 12 to form a silver paste layer, and then superimposing the silver paste layers on top of each other.

銀ペーストは、溶媒と銀粒子とを含むペースト状の組成物である。
銀ペーストの溶媒は、後述の多孔質銀焼結体層形成工程S02において、蒸発除去できるものであれば特に制限はない。溶媒としては、例えば、アルコール系溶媒、グリコール系溶媒、アセテート系溶媒、炭化水素系溶媒、アミン系溶媒を用いることができる。アルコール系溶媒の例としては、α−テルピネオール、イソプロピルアルコールが挙げられる。グリコール系溶媒の例としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコールが挙げられる。アセテート系溶媒の例としては、酢酸ブチルトールカルビテートが挙げられる。炭化水素系溶媒の例としては、デカン、ドデカン、テトラデカンが挙げられる。アミン系溶媒の例としては、ヘキシルアミン、オクチルアミン、ドデシルアミンが挙げられる。これらの溶媒は1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
The silver paste is a paste-like composition containing a solvent and silver particles.
The solvent of the silver paste is not particularly limited as long as it can be removed by evaporation in the porous silver sintered body layer forming step S02 described later. As the solvent, for example, an alcohol solvent, a glycol solvent, an acetate solvent, a hydrocarbon solvent, or an amine solvent can be used. Examples of alcohol-based solvents include α-terpineol and isopropyl alcohol. Examples of glycol-based solvents include ethylene glycol, diethylene glycol, and polyethylene glycol. Examples of acetate-based solvents include butyl toll carbitate acetate. Examples of hydrocarbon solvents include decane, dodecane, and tetradecane. Examples of amine-based solvents include hexylamine, octylamine, and dodecylamine. One of these solvents may be used alone, or two or more of these solvents may be used in combination.

銀粒子は、体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm以上1.0μm以下の範囲内にあって、体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が5.0以上10以下の範囲内とされている。このような粒度分布を有する銀粒子は、相対的に低温度で焼結しやすい微細な銀粒子と相対的に低温度で焼結しにくい粗大な銀粒子とが混在しているので、例えば150℃以上300℃以下の比較的低温度で加熱した場合は、微細な銀粒子を介して粗大な銀粒子を部分的に焼結させことができる。この銀粒子の部分的な焼結によって、銀粒子間に強固なネッキング構造が形成され、細孔径が0.5μm以上3.0μm以下の範囲内にあって、気孔率が20%以上の多孔質銀焼結体層を形成することができる。なお、体積基準の篩下積算粒度分布は、レーザー回折法によって測定することができる。 The silver particles have a particle size D50 of 50% by volume in the volume-based integrated particle size distribution under the sieve within the range of 0.3 μm or more and 1.0 μm or less, and 10% by volume in the volume-based integrated particle size distribution under the sieve. The ratio D90 / D10 of the particle size D90 of 90% by volume to the diameter D10 is in the range of 5.0 or more and 10 or less. The silver particles having such a particle size distribution are a mixture of fine silver particles that are easy to sinter at a relatively low temperature and coarse silver particles that are difficult to sinter at a relatively low temperature. When heated at a relatively low temperature of ° C. or higher and 300 ° C. or lower, coarse silver particles can be partially sintered via fine silver particles. By partial sintering of the silver particles, a strong necking structure is formed between the silver particles, the pore diameter is in the range of 0.5 μm or more and 3.0 μm or less, and the porosity is 20% or more. A silver sintered body layer can be formed. The volume-based integrated particle size distribution under the sieve can be measured by a laser diffraction method.

銀粒子の体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm未満であると、焼結によって得られる多孔質銀焼結体層の細孔径が小さくなりすぎるおそれがある。一方、銀粒子の体積基準の篩下積算粒度分布における50体積%の粒子径D50が1.0μmを超えると、強固に凝集した粗大な凝集粒子を形成するため、銀粒子が焼結しにくくなり、また、焼結によって得られる多孔質銀焼結体層は、細孔径が不均一で、かつ大きくなりすぎるおそれがある。 If the particle size D50 of 50% by volume in the volume-based integrated particle size distribution under the sieve of silver particles is less than 0.3 μm, the pore size of the porous silver sintered body layer obtained by sintering may become too small. .. On the other hand, when the particle size D50 of 50% by volume in the volume-based integrated particle size distribution under sieving of silver particles exceeds 1.0 μm, tightly aggregated coarse agglomerated particles are formed, which makes it difficult for the silver particles to be sintered. Further, the porous silver sintered body layer obtained by sintering may have a non-uniform pore diameter and may become too large.

また、体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が5.0未満で、銀粒子の粒度分布の幅が狭くなりすぎると、銀粒子同士の間隔が狭くなり、加熱によって得られる多孔質銀焼結体層の細孔径が小さくなりすぎるおそれがある。一方、体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が10を超えて、銀粒子の粒度分布の幅が広くなりすぎると、粗大な銀粒子の空隙に、微細な銀粒子が入り込むことにより銀粒子同士の間隔が狭くなり、加熱によって得られる多孔質銀焼結体層の細孔径が小さくなりすぎるおそれがある。 Further, if the ratio D90 / D10 of the particle size D90 of 90% by volume to the particle size D10 of 10% by volume in the volume-based integrated particle size distribution under the sieve is less than 5.0, and the width of the particle size distribution of silver particles becomes too narrow. , The distance between the silver particles becomes narrow, and the pore diameter of the porous silver sintered body layer obtained by heating may become too small. On the other hand, if the ratio D90 / D10 of 90% by volume particle size D90 to 10% by volume particle size D10 in the volume-based integrated particle size distribution under the sieve exceeds 10, and the width of the particle size distribution of silver particles becomes too wide. When fine silver particles enter the voids of the coarse silver particles, the distance between the silver particles becomes narrow, and the pore diameter of the porous silver sintered body layer obtained by heating may become too small.

銀粒子の体積基準の篩下積算粒度分布における10体積%の粒子径D10は、0.3μm以下であることが好ましい。粒子径0.3μm以下の微粒子を10体積%以上含むことによって、これらの微粒子を、相対的に粒子径の大きい粒子間の隙間に充填することができるので、細孔径が均一な接合層が形成できる。また、銀粒子の体積基準の篩下積算粒度分布における90体積%の粒子径D90は、1μm以上であることが好ましい。粒子径が1μm以上の粗大な銀粒子は焼結しにくいので、この粗大な銀粒子を10体積%以上含むことによって、銀粒子が部分的に焼結した多孔質銀焼結体層を形成しやすくなる。 The particle size D10 of 10% by volume in the volume-based integrated particle size distribution under the sieve of silver particles is preferably 0.3 μm or less. By containing 10% by volume or more of fine particles having a particle size of 0.3 μm or less, these fine particles can be filled in the gaps between particles having a relatively large particle size, so that a bonding layer having a uniform pore size is formed. can. Further, the particle size D90 of 90% by volume in the volume-based integrated particle size distribution under the sieve of silver particles is preferably 1 μm or more. Since coarse silver particles having a particle size of 1 μm or more are difficult to sinter, by containing 10% by volume or more of these coarse silver particles, a porous silver sintered body layer in which the silver particles are partially sintered is formed. It will be easier.

銀粒子は、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子の凝集体を含むことが好ましい。すなわち、上記のD10、D50、D90は、一次粒子の凝集体(二次粒子)の粒子径であることが好ましい。個数基準の平均粒子径は、銀粒子を、SEM(走査型電子顕微鏡)を用いて観察し、粒子全体の形状が確認された銀粒子100個について投影面積を測定して、この投影面積から円相当径(銀粒子の投影面積と同じ面積を持つ円の直径)を算出し、その平均を求めることによって得た値である。個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子は、焼結温度がより低温度となるので、この一次粒子の凝集体(二次粒子)は、部分的な焼結が起こりやすくなる。 The silver particles preferably contain agglomerates of primary particles having an average particle size based on the number in the range of 0.020 μm or more and 0.10 μm or less. That is, the above D10, D50, and D90 are preferably the particle diameters of the aggregates (secondary particles) of the primary particles. The average particle size based on the number is determined by observing silver particles using a scanning electron microscope (SEM) and measuring the projected area of 100 silver particles whose overall shape has been confirmed. It is a value obtained by calculating the equivalent diameter (the diameter of a circle having the same area as the projected area of silver particles) and calculating the average thereof. Since the sintering temperature of the primary particles in which the average particle size based on the number is in the range of 0.020 μm or more and 0.10 μm or less is lower, the aggregates (secondary particles) of the primary particles are partially. Sintering is likely to occur.

銀ペーストの銀粒子の含有量は、70質量%以上95質量%以下の範囲内の量であることが好ましい。70質量%未満であると、相対的に溶媒の量が多くなるため、後述の多孔質銀焼結体層形成工程S02において銀粒子の焼結が進みにくくなり、また、銀ペーストの粘度が低くなりすぎて、銀ペースト層の厚さを調整しにくくなり、接合層20の厚さを厚くすることが困難となるおそれがある。一方、銀粒子の含有量が95質量%を超えると、銀ペーストの粘度が高くなりすぎて、銀ペースト層を形成しにくくなるおそれがある。 The content of silver particles in the silver paste is preferably in the range of 70% by mass or more and 95% by mass or less. If it is less than 70% by mass, the amount of the solvent is relatively large, so that the sintering of silver particles is difficult to proceed in the porous silver sintered body layer forming step S02 described later, and the viscosity of the silver paste is low. If it becomes too large, it may be difficult to adjust the thickness of the silver paste layer, and it may be difficult to increase the thickness of the bonding layer 20. On the other hand, if the content of the silver particles exceeds 95% by mass, the viscosity of the silver paste becomes too high, and it may be difficult to form the silver paste layer.

(多孔質銀焼結体層形成工程S02)
多孔質銀焼結体層形成工程S02では、上述の積層体作製工程S01で得られた積層体を加熱して、銀ペースト層の溶媒を除去すると共に銀粒子を部分的に焼結させて、内部に細孔径が0.5μm以上3μm以下の範囲内にある連続気孔を有し、気孔率が20%以上である多孔質銀焼結体層を形成する。
(Porous Silver Sintered Body Layer Forming Step S02)
In the porous silver sintered body layer forming step S02, the laminate obtained in the above-mentioned laminate manufacturing step S01 is heated to remove the solvent of the silver paste layer and the silver particles are partially sintered. A porous silver sintered body layer having continuous pores having a pore diameter in the range of 0.5 μm or more and 3 μm or less and a porosity of 20% or more is formed inside.

多孔質銀焼結体層の細孔径(細孔直径)は、窒素ガスの吸着等温線の吸着曲線からBJH法を用いて算出した値である。BJH(Barrett,Joyner,Hallender)法とは、細孔を円筒形であると仮定して細孔径を算出する手法である。 The pore diameter (pore diameter) of the porous silver sintered body layer is a value calculated by using the BJH method from the adsorption curve of the adsorption isotherm of nitrogen gas. The BJH (Barrett, Joiner, Hallender) method is a method of calculating the pore diameter assuming that the pores are cylindrical.

多孔質銀焼結体層の気孔率は、多孔質銀焼結体層の一部を試料として採取し、この試料の質量(g)と体積(cm)と銀の密度(10.49g/cm)とから、以下の式によって算出した値である。試料の体積は、試料の縦、横、厚さから求めた。
気孔率(%)={1−試料の質量/(試料の体積×銀の密度)}×100
For the porosity of the porous silver sintered body layer, a part of the porous silver sintered body layer was sampled as a sample, and the mass (g) and volume (cm 3 ) of this sample and the silver density (10.49 g /). It is a value calculated from cm 3) by the following formula. The volume of the sample was determined from the length, width and thickness of the sample.
Porosity (%) = {1-sample mass / (sample volume x silver density)} x 100

多孔質銀焼結体層が連続気孔を有することは、多孔質銀焼結体層の断面を、SEMを用いて観察することによって確認することができる。 The fact that the porous silver sintered body layer has continuous pores can be confirmed by observing the cross section of the porous silver sintered body layer using SEM.

積層体の加熱温度は、例えば、150℃以上300℃以下の範囲内、好ましくは170℃以上270℃以下の範囲内である。加熱温度が150℃未満であると、銀ペースト層の銀粒子が焼結しにくくなり、多孔質銀焼結体層を形成できなくなるおそれがある。一方、加熱温度が300℃を超えると、銀ペースト層の銀粒子の焼結が過剰に進行して、生成する多孔質銀焼結体層の気孔率が低くなりすぎるおそれがある。 The heating temperature of the laminate is, for example, in the range of 150 ° C. or higher and 300 ° C. or lower, preferably 170 ° C. or higher and 270 ° C. or lower. If the heating temperature is less than 150 ° C., the silver particles in the silver paste layer are difficult to sinter, and the porous silver sintered body layer may not be formed. On the other hand, if the heating temperature exceeds 300 ° C., the sintering of silver particles in the silver paste layer proceeds excessively, and the porosity of the formed porous silver sintered body layer may become too low.

積層体の加熱は、積層体の積層方向に圧力を付与しながら行ってもよい。積層方向は、第1部材11および第2部材12が銀ペースト層と接する面に対して垂直となる方向である。積層体の積層方向に圧力を付与することによって、生成する多孔質銀焼結体層と第1部材および第2部材との接合力が高くなり、得られる接合体の冷熱サイクルに対する耐熱疲労性が向上する。積層体の積層方向に圧力を付与する場合、その圧力は、1MPa以上10MPa以下の範囲内にあることが好ましい。 The heating of the laminated body may be performed while applying pressure in the laminating direction of the laminated body. The stacking direction is a direction in which the first member 11 and the second member 12 are perpendicular to the surface in contact with the silver paste layer. By applying pressure in the laminating direction of the laminated body, the bonding force between the generated porous silver sintered body layer and the first member and the second member is increased, and the heat and fatigue resistance of the obtained bonded body to the cold heat cycle is increased. improves. When applying pressure in the stacking direction of the laminated body, the pressure is preferably in the range of 1 MPa or more and 10 MPa or less.

(樹脂充填工程S03)
樹脂充填工程S03では、上述の多孔質銀焼結体層形成工程S02で形成された多孔質銀焼結体層の連続気孔に樹脂を充填する。多孔質銀焼結体層の連続気孔に樹脂を充填する方法としては、硬化性樹脂の未硬化物を多孔質銀焼結体層の連続気孔に注入し、次いで、硬化性樹脂の未硬化物を硬化させる方法を用いることができる。硬化性樹脂の未硬化物を連続気孔に注入する方法としては、特に制限はないが、例えば、トランスファーモールド法を用いることができる。
(Resin filling step S03)
In the resin filling step S03, the resin is filled into the continuous pores of the porous silver sintered body layer formed in the above-mentioned porous silver sintered body layer forming step S02. As a method of filling the continuous pores of the porous silver sintered body layer with the resin, an uncured product of the curable resin is injected into the continuous pores of the porous silver sintered body layer, and then the uncured product of the curable resin is injected. A method of curing can be used. The method of injecting the uncured product of the curable resin into the continuous pores is not particularly limited, and for example, a transfer molding method can be used.

以上のような構成とされた本実施形態の接合体10の製造方法によれば、銀ペースト層に含まれる銀粒子は、体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm以上1.0μm以下の範囲内にあって比較的微細であり、かつ体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が2.0以上5.0以下の範囲内とされていて粒度分布の幅が広いので、比較的低温度で加熱した場合でも部分的な焼結が起こりやすい。このため、上記の銀ペースト層を有する積層体を加熱することにより、銀粒子間に強固なネッキング構造が形成され、内部に細孔径が0.5μm以上3μm以下の範囲内にある連続気孔を有し、気孔率が20%以上である多孔質銀焼結体層21を形成することが可能となる。そして、その多孔質銀焼結体層21の連続気孔に樹脂22を充填することによって、冷熱サイクルに対する耐熱疲労性が向上した接合層20を第1部材11と第2部材12との間に形成することができる。 According to the method for producing the bonded body 10 of the present embodiment having the above configuration, the silver particles contained in the silver paste layer have a particle size D50 of 50% by volume in the volume-based integrated particle size distribution under a sieve. The ratio D90 / D10 of the particle size D90 of 90% by volume to the particle size D10 of 10% by volume in the volume-based integrated particle size distribution under the sieve, which is within the range of 3 μm or more and 1.0 μm or less, is relatively fine. Since the particle size distribution is in the range of 2.0 or more and 5.0 or less and the particle size distribution is wide, partial sintering is likely to occur even when heated at a relatively low temperature. Therefore, by heating the laminate having the silver paste layer, a strong necking structure is formed between the silver particles, and continuous pores having a pore diameter in the range of 0.5 μm or more and 3 μm or less are provided inside. However, it is possible to form the porous silver sintered body layer 21 having a porosity of 20% or more. Then, by filling the continuous pores of the porous silver sintered body layer 21 with the resin 22, a bonding layer 20 having improved heat resistance to a thermal cycle is formed between the first member 11 and the second member 12. can do.

また、本実施形態の接合体の製造方法においては、銀粒子が、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子の凝集体を含むことによって、比較的低温度での加熱によって銀粒子間により強固なネッキング構造を形成することができるので、接合層の冷熱サイクルに対する耐熱疲労性がさらに向上する。 Further, in the method for producing a bonded body of the present embodiment, the silver particles contain agglomerates of primary particles having an average particle diameter of 0.020 μm or more and 0.10 μm or less based on the number of silver particles. Since a stronger necking structure can be formed between the silver particles by heating at a low temperature, the heat and fatigue resistance of the bonding layer to the cold heat cycle is further improved.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.

次に、本発明の作用効果を実施例により説明する。 Next, the action and effect of the present invention will be described with reference to Examples.

[本発明例1〜8、比較例1〜6]
(銀粒子)
下記の表1に示す体積基準の粒子径(D10、D50、D90、D90/D10)と、個数基準の平均粒子径とを有する銀粒子を用意した。
なお、体積基準の粒子径は、銀粒子の体積基準の篩下積算粒度分布をレーザー回折法によって測定し、得られた篩下積算粒度分布からD10、D50、D90を読み取り、D90/D10を算出した。また、個数基準の平均粒子径は、銀粒子を、SEMを用いて観察し、粒子全体の形状が確認された銀粒子100個について投影面積を測定し、得られた投影面積から円相当径を算出し、その平均を求めた。
[Examples 1 to 8 of the present invention, Comparative Examples 1 to 6]
(Silver particles)
Silver particles having a volume-based particle size (D10, D50, D90, D90 / D10) shown in Table 1 below and a number-based average particle size were prepared.
For the volume-based particle size, the volume-based integrated particle size distribution under the sieve of silver particles is measured by a laser diffraction method, and D10, D50, and D90 are read from the obtained integrated particle size distribution under the sieve to calculate D90 / D10. did. The average particle size based on the number is obtained by observing silver particles using SEM, measuring the projected area of 100 silver particles whose overall shape has been confirmed, and calculating the equivalent circle diameter from the obtained projected area. It was calculated and the average was calculated.

(銀ペーストの調製)
用意した銀粒子と、エチレングリコールを質量比で85:15の割合で混合した。得られた混合物を、混練機を用いて混練して銀ペーストを調製した。
(Preparation of silver paste)
The prepared silver particles and ethylene glycol were mixed at a mass ratio of 85:15. The obtained mixture was kneaded using a kneader to prepare a silver paste.

(積層体作製工程S01)
第1部材としてシリコンウエハ(サイズ:0.5cm×0.5cm×0.03cm)を、第2部材として銅基板(サイズ:2cm×2cm×0.5cm)を用意した。
第2部材の表面に、上記のようにして調製した銀ペーストをメタルマスク印刷法により塗布して、銀ペースト層(0.5cm×0.5cm×50μm)を形成した。次いで、銀ペースト層の上に第1部材を配置して、第1部材と第2部材とを、銀ペースト層を介して積層した積層体を作製した。
(Laminate body manufacturing step S01)
A silicon wafer (size: 0.5 cm × 0.5 cm × 0.03 cm) was prepared as the first member, and a copper substrate (size: 2 cm × 2 cm × 0.5 cm) was prepared as the second member.
The silver paste prepared as described above was applied to the surface of the second member by a metal mask printing method to form a silver paste layer (0.5 cm × 0.5 cm × 50 μm). Next, the first member was arranged on the silver paste layer, and the first member and the second member were laminated via the silver paste layer to prepare a laminated body.

(多孔質銀焼結体層形成工程S02)
積層体作製工程S01で作製した積層体を、下記の表1に示す温度で、かつ下記の表1に示す圧力を積層方向に付与しながら60分間加熱して、銀ペースト層の銀粒子を部分的に焼結させて、多孔質銀焼結体層を形成した。多孔質銀焼結体層の気孔率と細孔径とは、上述の方法により測定した。その結果を、下記の表1に示す。なお、比較例2では、銀粒子が焼結しなかったため、多孔質銀焼結体層を形成することができなかった。
(Porous Silver Sintered Body Layer Forming Step S02)
The laminate produced in the laminate preparation step S01 is heated for 60 minutes at the temperature shown in Table 1 below and while applying the pressure shown in Table 1 below in the lamination direction to partially remove the silver particles of the silver paste layer. To form a porous silver sintered body layer. The porosity and pore diameter of the porous silver sintered body layer were measured by the above-mentioned method. The results are shown in Table 1 below. In Comparative Example 2, since the silver particles were not sintered, the porous silver sintered body layer could not be formed.

(樹脂充填工程S03)
上記多孔質銀焼結体層形成工程S02で形成した多孔質銀焼結体層の連続気孔に、下記の表1に示す硬化性樹脂の未硬化物をトランスファーモールド法により充填した。次いで、連続気孔に充填した硬化性樹脂の未硬化物を硬化させて、接合体を得た。
(Resin filling step S03)
The continuous pores of the porous silver sintered body layer formed in the porous silver sintered body layer forming step S02 were filled with an uncured product of the curable resin shown in Table 1 below by a transfer molding method. Next, the uncured product of the curable resin filled in the continuous pores was cured to obtain a bonded body.

[評価] [evaluation]

本発明例1〜8、比較例1、3〜6において、樹脂充填工程S03で樹脂を充填する前の多孔質銀焼結体層の細孔径と気孔率とを測定した。その結果を下記の表1に示す。なお、細孔径および気孔率は、上述の方法により測定した。 In Examples 1 to 8 of the present invention and Comparative Examples 1 to 3 to 6, the pore diameter and porosity of the porous silver sintered body layer before filling with the resin were measured in the resin filling step S03. The results are shown in Table 1 below. The pore diameter and porosity were measured by the above-mentioned method.

本発明例1〜8、比較例1、3〜6で作製した接合体について、下記の条件で冷熱サイクルを付与する前後の接合率を下記の方法により測定した。その結果を、下記の表1に示す。 With respect to the bonded bodies prepared in Examples 1 to 8 of the present invention and Comparative Examples 1 and 3 to 6, the bonding ratio before and after applying the thermal cycle under the following conditions was measured by the following method. The results are shown in Table 1 below.

(冷熱サイクルの条件)
接合体に対して、液相法にて、200℃に昇温して、その温度で15分間保持した後、200℃から−40℃に降温して、その温度で15分間保持する冷熱サイクルを1サイクルとし、1000サイクル負荷した。
(Cold heat cycle conditions)
A cold cycle is performed in which the temperature of the conjugate is raised to 200 ° C. by the liquid phase method, held at that temperature for 15 minutes, then lowered from 200 ° C. to −40 ° C., and held at that temperature for 15 minutes. One cycle was used, and 1000 cycles were loaded.

(接合率)
接合率は、超音波探傷装置(インサイト株式会社製、IS−350)を用いて、接合層と第1部材または第2部材とが剥離している部分の面積(剥離面積)を測定して、以下の式より算出した。
超音波探傷装置を用いて撮影した接合層の超音波探傷像を二値化処理した画像において、剥離部分は白色部で示されることから、この白色部の面積を剥離面積として測定した。また、初期接合面積は、第1部材と第2部材とを接合すべき面積、すなわち第1部材の面積(0.5cm×0.5cm)とした。
接合率(%)={1−(剥離面積/初期接合面積)}×100
(Joining rate)
The bonding ratio is determined by measuring the area (peeling area) of the portion where the bonding layer and the first member or the second member are separated using an ultrasonic flaw detector (IS-350, manufactured by Insight Co., Ltd.). , Calculated from the following formula.
In the image obtained by binarizing the ultrasonic flaw detection image of the joint layer taken by using the ultrasonic flaw detector, the peeled portion is shown as a white portion, so the area of this white portion was measured as the peeled area. The initial joining area is the area where the first member and the second member should be joined, that is, the area of the first member (0.5 cm × 0.5 cm).
Bonding rate (%) = {1- (peeling area / initial bonding area)} x 100

Figure 0006911804
Figure 0006911804

比較例1、3〜6で得られた接合体は、冷熱サイクル後の接合率が低く、冷熱サイクルに対する耐熱疲労性が不十分であった。また、比較例4では、冷熱サイクル前の接合率も低くなった。
D50とD90/D10が本発明の範囲よりも小さい銀粒子を用いた比較例1では、原料の銀粒子が微細な粒子を多く含むため、多孔質銀焼結体層形成工程S02において銀粒子の焼結が進み、多孔質銀焼結体層の細孔径が本発明の範囲よりも小さくなり、気孔に樹脂を十分に充填できなかったためであると考えられる。
一方、D50とD90/D10が本発明の範囲よりも大きい銀粒子を用いた比較例2では、多孔質銀焼結体層を形成することができなった。これは、原料の銀粒子が粗大で焼結性が低いため、150℃では銀粒子の焼結が起こりにくくなったためであると考えられる。
The bonded bodies obtained in Comparative Examples 1 and 3 to 6 had a low bonding ratio after the thermal cycle, and had insufficient heat fatigue resistance to the thermal cycle. Further, in Comparative Example 4, the bonding rate before the thermal cycle was also low.
In Comparative Example 1 in which silver particles having D50 and D90 / D10 smaller than the range of the present invention were used, since the raw material silver particles contained many fine particles, the silver particles were found in the porous silver sintered body layer forming step S02. It is considered that this is because the sintering progressed, the pore diameter of the porous silver sintered body layer became smaller than the range of the present invention, and the pores could not be sufficiently filled with the resin.
On the other hand, in Comparative Example 2 using silver particles in which D50 and D90 / D10 were larger than the range of the present invention, the porous silver sintered body layer could not be formed. It is considered that this is because the silver particles of the raw material are coarse and have low sinterability, so that the silver particles are less likely to be sintered at 150 ° C.

D50は本発明の範囲にあるが、D90/D10が本発明の範囲よりも小さい銀粒子を用いた比較例3では、粒度分布の幅の狭い微細な銀粒子同士の焼結によって、多孔質銀焼結体層形成工程S02で得られた多孔質銀焼結体層の細孔径が本発明の範囲よりも小さくなって、気孔に樹脂を十分に充填できなかったためであると考えられる。
また、D90/D10は本発明の範囲にあるが、D50が本発明の範囲よりも大きい銀粒子を用いた比較例4では、原料の銀粒子が粗大で焼結性が低いため、粒子間の接合強度の高い多孔質銀焼結体層が形成されなかった。冷熱サイクル後の接合率が低くなったのは、冷熱サイクルによる樹脂の膨張と収縮によって、粒子間の接合強度の低い多孔質銀焼結体層が破損したためであると考えられる。
Although D50 is within the scope of the present invention, in Comparative Example 3 in which silver particles having D90 / D10 smaller than the scope of the present invention were used, porous silver was obtained by sintering fine silver particles having a narrow particle size distribution. It is considered that this is because the pore diameter of the porous silver sintered body layer obtained in the sintered body layer forming step S02 became smaller than the range of the present invention, and the pores could not be sufficiently filled with the resin.
Further, although D90 / D10 are within the range of the present invention, in Comparative Example 4 in which silver particles having D50 larger than the range of the present invention are used, the raw material silver particles are coarse and have low sinterability, so that the particles are interleaved with each other. A porous silver sintered body layer having high bonding strength was not formed. It is considered that the reason why the bonding rate after the thermal cycle was low was that the porous silver sintered body layer having low bonding strength between the particles was damaged due to the expansion and contraction of the resin due to the thermal cycle.

D50は本発明の範囲よりも大きく、D90/D10が本発明の範囲よりも小さい銀粒子を用いた比較例5では、粒度分布の幅の狭い粗大な銀粒子同士の焼結によって、多孔質銀焼結体層形成工程S02で得られた多孔質銀焼結体層の細孔径が本発明の範囲より大きくなり、冷熱サイクルによる樹脂の膨張と収縮によって、多孔質銀焼結体層が破損したためであると考えられる。
D50は本発明の範囲にあるが、D90/D10が本発明の範囲よりも小さい銀粒子を用い、焼結温度350℃とした比較例6では、多孔質銀焼結体層形成工程S02において銀粒子の焼結が進み、多孔質銀焼結体層の気孔率が低くなり、多孔質銀焼結体層に充填された樹脂の含有量が少なくなったためであると考えられる。
In Comparative Example 5 using silver particles in which D50 is larger than the range of the present invention and D90 / D10 is smaller than the range of the present invention, porous silver is obtained by sintering coarse silver particles having a narrow particle size distribution. The pore diameter of the porous silver sintered body layer obtained in the sintered body layer forming step S02 became larger than the range of the present invention, and the porous silver sintered body layer was damaged by the expansion and contraction of the resin due to the cooling and heating cycle. Is considered to be.
Although D50 is within the range of the present invention, in Comparative Example 6 in which silver particles having D90 / D10 smaller than the range of the present invention were used and the sintering temperature was 350 ° C., silver was used in the porous silver sintered body layer forming step S02. It is considered that this is because the sintering of the particles has progressed, the porosity of the porous silver sintered body layer has decreased, and the content of the resin filled in the porous silver sintered body layer has decreased.

これに対して、D50とD90/D10が本発明の範囲にある銀粒子を用いて、細孔径と気孔率が本発明の範囲にある多孔質銀焼結体層を形成した本発明例1〜8で得られた接合体は、冷熱サイクル後の接合率が高く、冷熱サイクルに対する耐熱疲労性が向上することが確認された。特に、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子の凝集体を含む銀粒子を用いた本発明例1〜6で得られた接合体は、冷熱サイクル後の接合率が高く、冷熱サイクルに対する耐熱疲労性がより向上することが確認された。 On the other hand, Examples 1 to 1 of the present invention in which silver particles having D50 and D90 / D10 within the range of the present invention were used to form a porous silver sintered body layer having a pore diameter and a porosity within the range of the present invention. It was confirmed that the bonded body obtained in No. 8 had a high bonding rate after the thermal cycle and improved heat and fatigue resistance to the thermal cycle. In particular, the conjugates obtained in Examples 1 to 6 of the present invention using silver particles containing agglomerates of primary particles having an average particle size based on the number of particles in the range of 0.020 μm or more and 0.10 μm or less are subjected to a cold cycle. It was confirmed that the later bonding rate was high and the heat and fatigue resistance to the thermal cycle was further improved.

本発明例1で得られた接合体を樹脂埋めした状態で、断面を研磨して、接合層を露出させた。露出させて接合層の断面を、SEMを用いて観察した。そのSEM写真を図3に示す。図3のSEM写真から明らかなように、本発明例1で得られた接合体の接合層は、銀粒子が3次元的に結合することによって形成された連続気孔を有する多孔質銀焼結体層と、その連続気孔に充填された樹脂とを含むことが確認された。 With the bonded body obtained in Example 1 of the present invention embedded in resin, the cross section was polished to expose the bonded layer. The cross section of the exposed and bonded layer was observed using SEM. The SEM photograph is shown in FIG. As is clear from the SEM photograph of FIG. 3, the bonding layer of the bonded body obtained in Example 1 of the present invention is a porous silver sintered body having continuous pores formed by three-dimensionally bonding silver particles. It was confirmed that the layer and the resin filled in the continuous pores were contained.

10 接合体
11 第1部材
12 第2部材
20 接合層
21 多孔質銀焼結体層
22 樹脂
10 Joined body 11 1st member 12 2nd member 20 Joined layer 21 Porous silver sintered body layer 22 Resin

Claims (2)

第1部材と第2部材とが接合された接合体の製造方法であって、
前記第1部材と前記第2部材とを、銀ペースト層を介して積層した積層体であって、前記銀ペースト層が、溶媒と、体積基準の篩下積算粒度分布における50体積%の粒子径D50が0.3μm以上1.0μm以下の範囲内にあって、体積基準の篩下積算粒度分布における10体積%の粒子径D10に対する90体積%の粒子径D90の比D90/D10が5.0以上10以下の範囲内にある銀粒子とを含む積層体を得る工程と、
前記積層体を加熱して、前記銀ペースト層の溶媒を除去すると共に前記銀粒子を部分的に焼結させて、内部に細孔径が0.5μm以上3.0μm以下の範囲内にある連続気孔を有し、気孔率が20%以上である多孔質銀焼結体層を形成する工程と、
前記多孔質銀焼結体層の前記連続気孔に樹脂を充填する工程と、
を有することを特徴とする接合体の製造方法。
A method for manufacturing a joined body in which a first member and a second member are joined.
It is a laminate in which the first member and the second member are laminated via a silver paste layer, and the silver paste layer is a particle size of 50% by volume in a volume-based integrated sieving particle size distribution with a solvent. When D50 is in the range of 0.3 μm or more and 1.0 μm or less, the ratio D90 / D10 of 90% by volume particle size D90 to 10% by volume particle size D10 in the volume-based integrated particle size distribution under the sieve is 5.0. A step of obtaining a laminate containing silver particles in the range of 10 or less, and
The laminate is heated to remove the solvent of the silver paste layer and the silver particles are partially sintered, so that continuous pores having a pore diameter in the range of 0.5 μm or more and 3.0 μm or less are inside. And a step of forming a porous silver sintered body layer having a porosity of 20% or more.
A step of filling the continuous pores of the porous silver sintered body layer with a resin, and
A method for producing a bonded body, which comprises.
前記銀粒子は、個数基準の平均粒子径が0.020μm以上0.10μm以下の範囲内にある一次粒子の凝集体を含むことを特徴とする請求項1に記載の接合体の製造方法。 The method for producing a bonded body according to claim 1, wherein the silver particles contain an aggregate of primary particles having an average particle size based on the number of particles in the range of 0.020 μm or more and 0.10 μm or less.
JP2018058495A 2018-03-26 2018-03-26 Manufacturing method of joint Active JP6911804B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018058495A JP6911804B2 (en) 2018-03-26 2018-03-26 Manufacturing method of joint
PCT/JP2019/007537 WO2019187926A1 (en) 2018-03-26 2019-02-27 Method for manufacturing bonded body
TW108106988A TW201940346A (en) 2018-03-26 2019-03-04 Method for manufacturing joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018058495A JP6911804B2 (en) 2018-03-26 2018-03-26 Manufacturing method of joint

Publications (2)

Publication Number Publication Date
JP2019167616A JP2019167616A (en) 2019-10-03
JP6911804B2 true JP6911804B2 (en) 2021-07-28

Family

ID=68061365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018058495A Active JP6911804B2 (en) 2018-03-26 2018-03-26 Manufacturing method of joint

Country Status (3)

Country Link
JP (1) JP6911804B2 (en)
TW (1) TW201940346A (en)
WO (1) WO2019187926A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6930578B2 (en) * 2019-12-20 2021-09-01 三菱マテリアル株式会社 Manufacturing method of silver paste and bonded body
JP2022133735A (en) 2021-03-02 2022-09-14 三菱マテリアル株式会社 Preform-layered joining sheet, method of making joined body, and to-be-joined preform-layered member

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227373B2 (en) * 2001-08-07 2009-02-18 三井金属鉱業株式会社 Flake copper powder and copper paste using the flake copper powder
JP4178374B2 (en) * 2002-08-08 2008-11-12 三井金属鉱業株式会社 Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4163987B2 (en) * 2003-04-10 2008-10-08 三井金属鉱業株式会社 Flaked copper powder, method for producing flaky copper powder and conductive paste
JP4976642B2 (en) * 2004-02-10 2012-07-18 三井金属鉱業株式会社 High crystalline silver powder and method for producing the same
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 High crystal silver powder and method for producing the high crystal silver powder
JP4748279B2 (en) * 2006-04-13 2011-08-17 日立化成工業株式会社 Conductive paste, and prepreg, metal foil-clad laminate, and printed wiring board using the same
JP4756652B2 (en) * 2007-10-09 2011-08-24 三井金属鉱業株式会社 Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP4685145B2 (en) * 2008-09-10 2011-05-18 ニホンハンダ株式会社 Method for manufacturing metal member assembly and metal member assembly
JP2010171271A (en) * 2009-01-23 2010-08-05 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP4870223B1 (en) * 2010-09-02 2012-02-08 ニホンハンダ株式会社 Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP5945480B2 (en) * 2012-09-07 2016-07-05 ナミックス株式会社 Silver paste composition and method for producing the same
CN104051101B (en) * 2013-03-12 2018-04-27 北京中科三环高技术股份有限公司 A kind of rare-earth permanent magnet and preparation method thereof

Also Published As

Publication number Publication date
JP2019167616A (en) 2019-10-03
WO2019187926A1 (en) 2019-10-03
TW201940346A (en) 2019-10-16

Similar Documents

Publication Publication Date Title
CN109841580B (en) Microelectronic assembly with integrated heat dissipation pillars, system including the same, and method of making
TWI609462B (en) Producing method of semiconductor device, and ceramics circuit substrate and semiconductor device
JP6911804B2 (en) Manufacturing method of joint
KR102272847B1 (en) Bonding material and bonding method in which same is used
JP2012515266A (en) Sintered material, sintered joint and method for producing sintered joint
JP2011165871A (en) Electronic device, and method of manufacturing the same
TWI781246B (en) Power module substrate with heatsink and method of producing power module substrate with heatsink
TW201338650A (en) Wiring board and manufacturing method therefor
US20160207286A1 (en) Composite and multilayered silver films for joining electrical and mechanical components
WO2015104954A1 (en) Electronic circuit device
KR102401410B1 (en) The manufacturing method of the joined body, the manufacturing method of an insulated circuit board, and the manufacturing method of the insulated circuit board with a heat sink
JP2011096994A (en) Cooler, wiring board and light emitting body
JP2011041955A (en) Method for producing joined body, and joined body
JP5480320B2 (en) Electronic device and manufacturing method thereof
JP2011204811A (en) Module with built-in circuit part and manufacturing method thereof
JP5119825B2 (en) Power module substrate
JP2018148168A (en) Semiconductor device
JP6022492B2 (en) Manufacturing method for forming a conductor in a minute space
JP2014017302A (en) Bonding method of electronic component
JP5059486B2 (en) Manufacturing method of module with built-in components
JP2012028433A (en) Packaging method of electronic component
JP2008169245A (en) Heat-radiating material and method for producing the same
JP6093633B2 (en) Bonding method of electronic parts
JP2014160707A (en) Method for manufacturing conjugant, method for manufacturing power module, and power module
JP2022026653A (en) Graphite laminate, graphite plate, and manufacturing method of graphite laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150