JP4976642B2 - Highly crystalline silver powder and a method of manufacturing the same - Google Patents

Highly crystalline silver powder and a method of manufacturing the same Download PDF

Info

Publication number
JP4976642B2
JP4976642B2 JP2004034121A JP2004034121A JP4976642B2 JP 4976642 B2 JP4976642 B2 JP 4976642B2 JP 2004034121 A JP2004034121 A JP 2004034121A JP 2004034121 A JP2004034121 A JP 2004034121A JP 4976642 B2 JP4976642 B2 JP 4976642B2
Authority
JP
Japan
Prior art keywords
aqueous solution
silver powder
weight
parts
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004034121A
Other languages
Japanese (ja)
Other versions
JP2005226094A (en
Inventor
卓也 佐々木
克彦 吉丸
宏之 島村
卓 藤本
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2004034121A priority Critical patent/JP4976642B2/en
Publication of JP2005226094A publication Critical patent/JP2005226094A/en
Application granted granted Critical
Publication of JP4976642B2 publication Critical patent/JP4976642B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F1/00Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition
    • B22F1/0003Metallic powders per se; Mixtures of metallic powders; Metallic powders mixed with a lubricating or binding agent
    • B22F1/0007Metallic powder characterised by its shape or structure, e.g. fibre structure
    • B22F1/0044Nanometer size structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Description

本発明は、高結晶性銀粉及びその製造方法に関し、詳しくは、例えば、チップ部品、プラズマディスプレイパネル等の電極や回路を、大幅にファイン化し、高密度及び高精度で且つ高信頼性をもって形成することができる導電性ペースト、特に微細な配線又は薄層で平滑な塗膜等を高密度及び高精度で且つ高信頼性をもって形成することができる導電性ペーストの製造に好ましい、微粒で、分散性がよく、粒度分布がシャープすぎず比較的ブロードであり、結晶子が大きいため、導電性ペーストの原料として用いた場合に、ペーストへの銀粉の分散性及び導電性ペーストにおける銀粉の充填性に優れ、銀厚膜から形成される電極や回路等をよりファイン化することができ、導電性ペーストから得られる銀厚膜が耐熱収縮性に優れると共に比抵 The present invention relates to highly crystalline silver powder and a manufacturing method thereof, particularly, for example, chip parts, an electrode or a circuit such as a plasma display panel, greatly and finer, is formed with a highly reliable high-density and high-precision it conductive paste can, preferred for the preparation of the conductive paste can be particularly formed with highly reliable in fine wiring or high density and high precision smooth film or the like with a thin layer, in fine, dispersive C., a relatively broad merely sharp particle size distribution, crystallite is large, when used as a raw material of the conductive paste is excellent in filling property of the silver powder in the dispersion and the conductive paste for silver powder to the paste , can be more finer electrodes and circuits and the like formed from the silver thick film, the ratio resistor with silver thick film obtained from the conductive paste has excellent heat shrinkage resistance (抵抗率)の低いものとすることができる高結晶性銀粉及びその製造方法に関するものである。 It relates highly crystalline silver powder and a manufacturing method thereof can be made low (resistivity).

従来、電子部品等の電極や回路を形成する方法として、導電性材料である銀粉をペーストに分散させた導電性ペーストを基板に印刷した後、該ペーストを焼成又はキュアリングし硬化させて銀厚膜を形成することにより回路を形成する方法が知られている。 As a method of forming electrodes and circuits of electronic components, printing a conductive material in which silver conductive paste dispersed in a paste to the substrate, then fired or cured by curing the paste GinAtsu there is known a method of forming a circuit by forming a film. しかし、近年、電子機器の高機能化により電子デバイスの小型高密度化が求められており、このため、導電性ペーストの材料である銀粉にも、導電性ペーストとしたときに微粒でありながら充填性や分散性に優れていることが望まれるようになってきている。 However, in recent years, the high functionality of electronic devices have smaller density is required of the electronic device, Therefore, also a material of the conductive paste silver, yet fine when the conductive paste filling it has come to be desired to have excellent resistance and dispersibility. なお、本発明において分散性とは、ペーストへの銀粉の分散性のように特に断らない限り、銀粉の一次粒子同士の凝集し難さを意味する。 Note that the dispersibility in the present invention, unless otherwise specified, as the dispersibility of the silver powder to the paste, means primary particles agglomerated difficulty between the silver powder. 例えば、分散性がよい状態とは一次粒子同士の凝集している割合が少ない又は全くない状態をいい、分散性が悪い状態とは一次粒子同士が凝集している割合が多い又は全て凝集している状態をいう。 For example, refers to the state is small or no percentage that aggregation between primary particles and good state dispersibility, and poor state dispersibility with all or proportions between primary particles are aggregated is often aggregated It refers to a state in which there.

上記導電性ペーストが印刷される基板としては、通常はセラミック基板においてICのパッケージ等の発熱が大きい部分等に用いられている。 The substrate on which the conductive paste is printed, normally used in such portions exotherm large packages such as the IC in the ceramic substrate. しかし、このセラミック基板に導電性ペーストを印刷する場合には、セラミック基板の熱収縮率と印刷した導電性ペーストから生成される銀厚膜の熱収縮率とが一般的に異なるため、焼成時においてセラミック基板と銀厚膜とが剥離したり基板自体が変形したりするおそれがある。 However, when printing a conductive paste on the ceramic substrate, since the thermal shrinkage of the silver thick film produced from the conductive paste was printed with a thermal shrinkage rate of the ceramic substrate are different in general, at the time of baking there is a possibility that the ceramic substrate and the silver thick film or deformed substrate itself or peeling. このため、セラミック基板の熱収縮率と印刷した導電性ペーストから形成される銀厚膜の熱収縮率とは、なるべく近い値を採るものであることが好ましい。 Therefore, the thermal shrinkage of the silver thick film formed of a conductive paste and printing thermal shrinkage of the ceramic substrate, it is preferable that taking as close as possible values.

このような焼成時における上記銀厚膜の熱収縮の一因としては、導電性ペースト中の銀粉が焼成時に焼結を起こすことにあるものと考えられている。 As the cause of the thermal shrinkage of such firing the silver thick film at the time, the silver powder in the conductive paste is considered to be the cause sintering during firing. すなわち、銀粉は微小な結晶子から構成される多結晶体であり、銀粉を含む導電性ペーストを銀厚膜の形成のために焼成する際に銀粉中の微小な結晶子が焼結して、銀厚膜の生成前後で寸法変化が生じ熱収縮を起こすものと考えられる。 That is, silver powder is polycrystalline composed of fine crystallites, small crystallites in the silver powder when firing a conductive paste containing a silver powder for the formation of the silver thick film is sintered, dimensional change is believed to cause the resulting heat shrinkage in the generation before and after the silver thick film. このため、熱収縮の少ない銀粉含有導電性ペーストを得るには、結晶子の焼結がなるべく生じないように、銀粉中の結晶子はできるだけ大きいものであることが望ましい。 Therefore, in order to obtain a low silver powder-containing conductive paste thermal shrinkage, as the sintering of crystallites does not occur as much as possible, it is desirable that the crystallites in the silver powder is as large as possible.

また、近年、回路の高周波特性の向上や焼成前後における基板の寸法精度をより向上させることが求められており、このため銀厚膜が形成される基板として、上記のような通常のセラミック基板に代えてLTCC(Low Temperature Co−fired Ceramic:低温同時焼成セラミック)基板が用いられるようになってきている。 In recent years, the dimensional accuracy of the substrate before and after improvement and firing in the high frequency characteristics of the circuit more and it is required to improve, as a substrate for this reason silver thick film is formed, the conventional ceramic substrate as described above place of LTCC: has come to (Low Temperature Co-fired ceramic LTCC) substrate is used. さらに、該LTCC基板は、LTCC基板のグリーンシート(生板)と銀粉等の低抵抗導体を含む導電性ペーストとを同時に焼結させて得られるため、上記の通常のセラミック基板を用いこれに導電性ペーストを印刷して銀厚膜の回路を形成する技術に比べて、焼成回数が少なくて済み、セラミック誘電体膜厚のコントロールが容易になり、導電性ペーストから形成した回路の導体抵抗が低くなり、基板の表面平滑性が向上し易いものとなりこれらの点で好ましい。 Further, the LTCC substrate, since obtained by sintering a conductive paste containing a low-resistance conductor of silver powder or the like with the LTCC substrate green sheet (raw plate) simultaneously conductive to using the above conventional ceramic substrate compared to the technique by printing sexual paste to form a circuit of the silver thick film, requires less baking times, facilitates the ceramic dielectric thickness control, the conductor resistance of the circuit formed from the conductive paste is low it becomes as easy to improve the surface smoothness of the substrate is preferred in view of these. しかし、LTCCは寸法安定性が非常に優れるため、これに用いる導電性ペーストの材料である銀粉にも熱収縮のより少ないことが強く要求され、従って銀粉中の結晶子の大きいことがより強く望まれている。 However, since the LTCC dimensional stability is very superior, it is required less it is strongly even heat shrunk is the material silver powder of the conductive paste used therefor, thus it is stronger large crystallites in the silver powder Nozomu It is rare.

また、このように銀粉中の結晶子が大きいと、一般的に銀粉の不純物の含有量が低下し、これにより銀厚膜から形成される回路の比抵抗が低くなり易いため、上記のような焼成して形成する回路のみならず非焼成で形成する回路にも銀粉を含む導電性ペーストを用いることが可能になるという点でも好ましいものとなる。 Moreover, in this way a large crystallites in the silver powder, generally decreases the content of impurities of silver powder, thereby liable specific resistance of the circuit formed from GinAtsu film is lowered, as described above in that it is possible to use a conductive paste containing silver powder in the circuit to form a non-fired not only circuit calcined to form becomes possible which is preferable.

上記のように、導電性ペーストに用いられる銀粉には、微粒で、分散性がよく、粒度分布がシャープすぎず比較的ブロードであり、結晶子が大きいことが望まれている。 As described above, the silver powder used in the conductive paste, in fine, good dispersibility, a relatively broad merely sharp particle size distribution, it is desirable crystallite is large.

これに対し、特許文献1(特開2000−1706号公報)には、硝酸銀水溶液とアクリル酸モノマーをLアスコルビン酸水溶液に溶解した液とを、混合と同時に反応せしめる高結晶体銀粒子の製造方法が開示されており、該方法によれば、結晶子サイズが400Å以上で、粒径の範囲が2〜4μmの狭い範囲にある高結晶性銀粉が得られる。 In contrast, Patent Document 1 (JP 2000-1706), the production method of the highly crystalline body silver particles and a solution prepared by dissolving silver nitrate aqueous solution and an acrylic acid monomer in the L-ascorbic acid aqueous solution, allowed to simultaneously reaction mixture with there is disclosed, according to the method, the crystallite size is more than 400 Å, highly crystalline silver powder particle size range is in the narrow range of 2~4μm is obtained.

特開2000−1706号公報(第1頁) JP 2000-1706 JP (page 1)

しかしながら、特許文献1記載の銀粉は、微粒で結晶子も大きいが、例えば700℃程度の高温における熱収縮率が十分に小さくなり難い。 However, silver powder described in Patent Document 1, although greater crystallites in fine, for example, hard thermal shrinkage becomes sufficiently small at a high temperature of about 700 ° C.. この銀粉は、結晶子が十分に大きいにもかかわらず高温における熱収縮率が大きいが、この理由としては、該銀粉の粒径の範囲が2〜4μmであり粒度分布がシャープすぎるため銀粉同士に空隙が形成されることにより銀粉の充填性が低くなってしまっていることに起因するものと推測される。 The silver powder is crystallites are large thermal shrinkage at sufficiently large despite a high temperature, as the reason, the range of the particle diameter of the silver powder is 2~4μm silver powder together for particle size distribution is too sharp It is presumed to be due to the filling of the silver powder has got lowered by voids is formed. このため、導電性ペーストにして銀厚膜の形成やLTCC基板を用いた回路の形成に用いると、回路の形成前後における寸法変化が大きくなり、通常のセラミック基板やLTCC基板、特にLTCC基板において反りが生じ易いという問題があった。 Therefore, when used for forming a circuit using a forming or LTCC substrate of the silver thick film in the conductive paste, dimensional changes before and after the formation of the circuit is increased, warpage conventional ceramic substrate or LTCC substrate, in particular LTCC substrate there is a problem that tends to occur.

従って、本発明の目的は、微粒で、分散性がよく、粒度分布がシャープすぎず比較的ブロードであり、結晶子が大きい高結晶性銀粉、及びその製造方法を提供することにある。 Accordingly, an object of the present invention is a fine, good dispersibility, a relatively broad merely sharp particle size distribution, is to provide crystallite is greater highly crystalline silver powder, and a manufacturing method thereof.

かかる実情において、本発明者は鋭意検討を行った結果、硝酸銀、分散剤及び硝酸を含む第1水溶液と、アスコルビン酸を含む第2水溶液とを混合する方法により銀粉を製造すれば、微粒で、粒度分布がシャープすぎず比較的ブロードであり、結晶子が大きく、導電性ペーストから得られる銀厚膜を耐熱収縮性に優れたものとすることができる高結晶性銀粉が得られることを見出し、本発明を完成するに至った。 In such circumstances, the present inventors have result of intensive studies, silver nitrate, and a first aqueous solution containing a dispersing agent and nitric acid, if production of silver powder by the process of mixing the second aqueous solution containing ascorbic acid, in fine, a relatively broad merely sharp particle size distribution, found that crystallites large, highly crystalline silver powder of the silver thick film obtained from the conductive paste can be excellent in heat shrinkage resistance can be obtained, this has led to the completion of the present invention.

高結晶性銀粉: 本発明に係る高結晶性銀粉は、結晶子径が300Å以上、平均粒径D 50 が0.5μm〜10μm、D 90 /D 10 が2.1〜5.0、且つ700℃における長さ方向の熱収縮率が±3%以内であることを特徴とする。 Highly crystalline silver powder: highly crystalline silver powder according to the present invention, the crystallite diameter is 300Å or more, an average particle diameter D 50 0.5μm~10μm, D 90 / D 10 is 2.1 to 5.0, and 700 thermal shrinkage in the length direction at ℃ is equal to or is within 3% ±. ただし、前記式において、D 10 及びD 90 は、それぞれ、レーザー回折散乱式粒度分布測定法による累積分布10容量%及び90容量%におけるメジアン径(μm)を示している。 However, in the formula, D 10 and D 90, respectively, show the median diameter ([mu] m) in a cumulative distribution 10% by volume and 90% by volume by laser diffraction scattering particle size distribution measuring method.

高結晶性銀粉の製造方法: 本発明に係る高結晶性銀粉の製造方法は、上述の高結晶性銀粉の製造方法であって、ポリビニルピロリドン又はゼラチンである分散剤、硝酸銀及び硝酸を含む第1水溶液と、アスコルビン酸を含む第2水溶液とを混合することを特徴とする。 Method for producing highly crystalline silver powder: method for producing highly crystalline silver powder according to the present invention is a method for producing a highly crystalline silver powder of the above, polyvinylpyrrolidone or dispersing agent is gelatin, the including of silver nitrate and nitric acid 1 an aqueous solution, characterized by mixing a second aqueous solution containing ascorbic acid.

本発明に係る高結晶性銀粉の製造方法において、分散剤としてポリビニルピロリドンを用いる場合の前記第1水溶液は、硝酸銀100重量部に対して、ポリビニルピロリドンが5重量部〜60重量部、硝酸が35重量部〜70重量部配合することが好ましい。 In the method for manufacturing a highly crystalline silver powder according to the present invention, the first aqueous solution in the case of using polyvinylpyrrolidone as dispersing agent with respect to silver nitrate 100 parts by weight, polyvinyl pyrrolidone 5 parts by weight to 60 parts by weight, nitric acid 35 it is preferred to parts to 70 parts by weight.

本発明に係る高結晶性銀粉の製造方法において、分散剤としてゼラチンを用いる場合の前記第1水溶液は、硝酸銀100重量部に対して、ゼラチンが0.5重量部〜10重量部、硝酸が35重量部〜70重量部配合することが好ましい。 In the method for manufacturing a highly crystalline silver powder according to the present invention, the first aqueous solution in the case of using gelatin as dispersing agent with respect to silver nitrate 100 parts by weight of gelatin of 0.5 to 10 parts by weight, nitric acid 35 it is preferred to parts to 70 parts by weight.

本発明に係る高結晶性銀粉の製造方法において、前記第1水溶液と前記第2水溶液とを、前記第1水溶液に配合された硝酸銀100重量部に対して、第2水溶液中に配合されたアスコルビン酸が30重量部〜90重量部になる比率で混合することが好ましい。 In the method for manufacturing a highly crystalline silver powder according to the present invention, the first aqueous solution and the second aqueous solution, relative to the silver nitrate to 100 parts by weight which is formulated in the first aqueous solution was formulated in the second aqueous solution of ascorbic it is preferable to mix in a ratio acid of 30 parts by weight to 90 parts by weight.

本発明に係る高結晶性銀粉の製造方法において、前記第1水溶液と前記第2水溶液とを、前記第2水溶液に配合されたアスコルビン酸100重量部に対して、第1水溶液中に配合された硝酸が40重量部〜150重量部になる比率で混合することが好ましい。 In the method for manufacturing a highly crystalline silver powder according to the present invention, the first aqueous solution with said second aqueous solution, relative to the second ascorbic acid 100 parts by weight which is formulated in an aqueous solution, which is formulated in the first aqueous solution nitric acid be mixed in a ratio of 40 parts by weight to 150 parts by weight.

本発明に係る高結晶性銀粉は、微粒で、分散性がよく、粒度分布がシャープすぎず比較的ブロードであり、結晶子が大きいため、導電性ペーストの原料として用いた場合に、ペーストへの銀粉の分散性及び導電性ペーストにおける銀粉の充填性に優れ、銀厚膜から形成される電極や回路等をよりファイン化することができ、導電性ペーストから得られる銀厚膜を耐熱収縮性に優れると共に比抵抗の低いものとすることができる。 Highly crystalline silver powder according to the present invention is a fine, good dispersibility, a relatively broad merely sharp particle size distribution, crystallite is large, when used as a raw material of the conductive paste, to paste excellent filling properties silver powder in dispersibility and conductive paste silver powder, it is possible to further fine the like electrodes and circuits formed of the silver thick film, a silver thick film obtained from the conductive paste heat shrinkable it can be made low resistivity is excellent. また、本発明に係る高結晶性銀粉の製造方法は、上記本発明に係る高結晶性銀粉を効率的に製造することができる。 The method for manufacturing a highly crystalline silver powder according to the present invention, it is possible to produce a highly crystalline silver powder according to the present invention efficiently.

(本発明に係る高結晶性銀粉) (Highly crystalline silver powder according to the present invention)
本発明に係る高結晶性銀粉は、実質的に粒状の粉体である。 Highly crystalline silver powder according to the present invention is a powder of substantially particulate. 本発明に係る高結晶性銀粉は、平均粒径D 50が0.5μm〜10μm、好ましくは1μm〜5μmである。 Highly crystalline silver powder according to the present invention, the average particle diameter D 50 of 0.5 ~ 10 m, preferably 1 m to 5 m. 平均粒径D 50が該範囲内にあると、導電性ペーストに用いた場合に導電性ペーストにおける銀粉の充填性に優れると共に銀厚膜から形成される回路等をよりファイン化することができるため好ましい。 Since the average particle diameter D 50 to be within the range, it is possible to further fine the circuit or the like formed of silver thick film excellent in filling property of the silver powder in the conductive paste when used in the conductive paste preferable. 一方、平均粒径D 50が0.5μm未満であると、銀粉の回収が困難になるため好ましくなく、10μmを超えると、銀粉同士が凝集していることが多いため、好ましくない。 On the other hand, when the average particle diameter D 50 is less than 0.5 [mu] m, not preferable because the recovery of the silver powder becomes difficult, and when it is more than 10 [mu] m, because it is often silver powder each other are aggregated, which is not preferable. ここで、平均粒径D 50とは、レーザー回折散乱法で求められる体積平均粒径、すなわち累積分布50%における粒径をいう。 Here, the average particle diameter D 50 is the volume average particle diameter determined by a laser diffraction scattering method, namely it refers to the particle size in cumulative distribution 50%.

本発明に係る高結晶性銀粉は、結晶子径が300Å以上、好ましくは350Å〜600Åである。 Highly crystalline silver powder according to the present invention, the crystallite diameter is 300Å or more, preferably 350A~600A. 結晶子径が該範囲内にあると、該銀粉を含む導電性ペーストをセラミック基板に塗布し、焼成して銀厚膜からなる回路等を形成した場合に、焼成前後の銀厚膜の熱収縮率がセラミック基板の熱収縮率と近くなり、銀厚膜がセラミック基板から剥離したりセラミック基板が銀厚膜の寸法変化につられて変形したりすることを抑制する効果が大きいため好ましい。 When the crystallite size is in the above range, by applying a conductive paste containing a silver powder to the ceramic substrate, firing in the case of forming a circuit or the like of silver thick film, the heat shrinkage of the silver thick film before and after baking rate is close to the thermal shrinkage of the ceramic substrate, since silver thick film suppressing effect that the ceramic substrate or peeled off from the ceramic substrate or deformed hung dimensional changes of the silver thick film greater preferred.

一方、結晶子径が300Å未満であると、該銀粉を含む導電性ペーストをセラミック基板に塗布し、焼成して銀厚膜からなる回路等を形成した場合に、焼成前後の銀厚膜の収縮がセラミック基板の収縮よりも大きくなって、銀厚膜がセラミック基板から剥離したりセラミック基板が銀厚膜の寸法変化につられて変形したりし易いため好ましくない。 On the other hand, when the crystallite size is less than 300 Å, and applying a conductive paste containing a silver powder to the ceramic substrate, in the case of forming the calcined circuit or the like of silver thick film, shrinkage of the silver thick film before and after baking There is larger than the ceramic substrate shrink, silver thick film is not preferable because easily or deformed hung dimensional changes of the release or ceramic substrate the silver thick film ceramic substrate. ここで、結晶子径とは、銀粉試料に対しX線回折を行って得られる、各結晶面の回折角のピークの半値幅から求められる結晶子径の平均値をいう。 Here, the crystallite diameter, obtained by performing X-ray diffraction to silver powder sample refers to the average value of the crystallite diameter determined from the half width of the peak of the diffraction angle of each crystal face.

本発明に係る高結晶性銀粉は、D 90 /D 10が通常2.1〜5.0、好ましくは2.5〜4.7である。 Highly crystalline silver powder according to the present invention, D 90 / D 10 is usually from 2.1 to 5.0, preferably from 2.5 to 4.7. なお、本発明において、D 10及びD 90は、それぞれ、レーザー回折散乱式粒度分布測定法による累積分布10容量%及び90容量%におけるメジアン径(μm)を示す。 In the present invention, D 10 and D 90, respectively, showing a median diameter ([mu] m) in a cumulative distribution 10% by volume and 90% by volume by laser diffraction scattering particle size distribution measuring method. 90 /D 10はバラツキを示す指標であり、D 90 /D 10が大きいと粒度分布のバラツキが大きいことを示す。 D 90 / D 10 is an index of the variation indicates that the variation of the particle size distribution and D 90 / D 10 is greater is greater. 90 /D 10が上記範囲内にあると、銀粉の粒度分布がシャープすぎず比較的ブロードになり、該銀粉を用いた導電性ペーストで回路を形成すると銀粉の充填性が優れるため回路の耐熱収縮性が優れたもの、すなわち、焼成前後における回路の寸法変化が小さいものとなり易いため好ましい。 If D 90 / D 10 is in the above range, the particle size distribution of the silver powder becomes relatively broad merely Sharp, heat of the circuit since the conductive paste to form a circuit filling property of silver powder are excellent with silver powder which shrinkability excellent, i.e., the preferred order tends to those dimensional changes of the circuit is small in before and after firing.

一方、D 90 /D 10が2.1未満であると、銀粉の粒度分布がシャープになりすぎて、該銀粉を用いた導電性ペーストで回路を形成すると銀粉の充填性が劣るため回路の耐熱収縮性が悪化したもの、すなわち、焼成前後における回路の寸法変化が大きいものとなり易いため好ましくない。 On the other hand, when D 90 / D 10 is less than 2.1, the particle size distribution of the silver powder is too sharp, the circuit for conductive paste to form a circuit filling property of silver powder is poor with silver powder heat which contractility is deteriorated, i.e., not preferable because tends assumed large dimensional changes of the circuit in the firing before and after. また、D 90 /D 10が5.0を超えると、銀粉の粒度分布がブロードになりすぎて、該銀粉を用いた導電性ペーストで回路を形成すると銀粉の充填性が劣るため回路の耐熱収縮性が悪化したもの、すなわち、焼成前後における回路の寸法変化が大きいものとなり易いため好ましくない。 Further, when D 90 / D 10 is more than 5.0, the particle size distribution of the silver powder is too broad, the heat shrinkage of the circuit for filling of the silver powder to form a circuit of a conductive paste using silver powder is poor that sex is deteriorated, i.e., not preferable because tends assumed large dimensional changes of the circuit in the firing before and after.

本発明に係る高結晶性銀粉は、700℃における長さ方向の熱収縮率が、通常±3%以内、好ましくは±2%以内である。 Highly crystalline silver powder according to the present invention, the length direction of the heat shrinkage at 700 ° C. is usually within ± 3%, preferably within 2% ±. なお、本発明において±X%以内とは、−X%〜+X%であることを意味する。 Incidentally, it means that within A ± X% in the present invention, is a -X% ~ + X%. 本発明において、700℃における長さ方向の熱収縮率とは、銀粉をペレットに形成した試料について、熱機械的分析(TMA)を用いて測定したペレットの長さ方向の熱収縮率をいう。 In the present invention, the length direction of the heat shrinkage at 700 ° C., the sample to form a silver powder into pellets, refers to thermomechanical analysis (TMA) measured thermal shrinkage in the length direction of the pellets using.

本発明に係る高結晶性銀粉は、比較的低温、例えば300℃で焼成した銀塗膜の抵抗率が低い。 Highly crystalline silver powder according to the present invention, relatively low temperature, Gin'nurimaku resistivity is calcined at eg 300 ° C. lower. すなわち、高結晶性銀粉を低温で焼結させても焼結物の抵抗率が小さくなり易い。 That is, even when sintered at a low temperature tends to be low resistivity of the sintered product highly crystalline silver powder. なお、このように300℃で焼成した銀塗膜の抵抗率が低い理由は、結晶子径が大きいことにより銀粉内の電子の動きがスムーズになるためであると推測される。 The reason why this way is low calcined Gin'nurimaku resistivity at 300 ° C., the electron motion in the silver powder is presumed to be because becomes smooth by crystallite diameter is large.

本発明に係る高結晶性銀粉は、比表面積が通常0.10m /g〜1.0m /g、好ましくは0.20m /g〜0.90m /gである。 Highly crystalline silver powder according to the present invention has a specific surface area of usually 0.10m 2 /g~1.0m 2 / g, preferably from 0.20m 2 /g~0.90m 2 / g. 該比表面積が0.10m /g未満であると、銀厚膜による電極や回路のファイン化が困難になり易いため好ましくない。 When specific surface area is less than 0.10 m 2 / g, unfavorably it tends to be difficult to finer electrode and circuit according to the silver thick film. また、該比表面積が1.0m /gを超えると、銀粉のペースト化が困難になり易いため好ましくない。 Further, when the specific surface area exceeds 1.0 m 2 / g, unfavorably tends to be difficult to paste the silver powder. 本発明において比表面積とは、BET比表面積をいう。 The specific surface area in the present invention refers to a BET specific surface area.

本発明に係る高結晶性銀粉は、タップ密度が通常3.8g/cm 以上、好ましくは4.0〜6.0g/cm である。 Highly crystalline silver powder according to the present invention, a tap density of typically 3.8 g / cm 3 or more, preferably 4.0~6.0g / cm 3. タップ密度が該範囲内にあると、導電性ペーストの作製の際に高結晶性銀粉のペーストへの銀粉の充填性が良好で導電性ペーストの作製が容易であり、また導電性ペーストの塗膜形成の際に高結晶性銀粉間に適度な空隙が形成されることにより塗膜を焼成する際に塗膜からの脱バイが容易に行われて焼成膜密度が向上し、この結果銀厚膜の抵抗を低くし易いため好ましい。 When the tap density is within the range, the production of highly crystalline silver powder filling property good conductive paste of silver powder to the paste during the preparation of the conductive paste is easy, coating conductive paste de-by from the coating upon baking the coating film by appropriate gap is formed between the highly crystalline silver powder is easily performed to improve fired film density at the time of formation, as a result of silver thick film It preferred liable to lower the resistance. 本発明に係る高結晶性銀粉は、例えば、下記の方法により製造することができる。 Highly crystalline silver powder according to the present invention, for example, can be produced by the following method.

(本発明に係る高結晶性銀粉の製造方法) (Method for producing highly crystalline silver powder according to the present invention)
本発明に係る高結晶性銀粉の製造方法は、硝酸銀、分散剤及び硝酸を含む第1水溶液と、アスコルビン酸を含む第2水溶液とを混合するものである。 Method for producing highly crystalline silver powder according to the present invention, silver nitrate, is to mix a first aqueous solution containing a dispersing agent and nitric acid, and a second aqueous solution containing ascorbic acid.

本発明において第1水溶液とは、硝酸銀、分散剤及び硝酸を含む水溶液をいう。 The first aqueous solution in the present invention, silver nitrate, refers to dispersing agents and an aqueous solution containing nitric acid. 第1水溶液の調製に用いられる水としては、純水、イオン交換水、超純水等が、銀粉への不純物の混入防止のため好ましい。 The water used in the preparation of the first aqueous solution, pure water, ion exchange water, ultra pure water or the like is preferable because of contamination prevention of impurities into silver powder. 本発明で用いられる硝酸銀としては、特に限定されず、固形のもの及び水溶液にしたもののいずれも用いることができる。 The silver nitrate used in the present invention is not particularly limited, it can be used any of those to those solid and aqueous solution.

本発明で用いられる分散剤としては、ポリビニルピロリドン(PVP)又はゼラチンを用いる。 As the dispersing agent used in the present invention, polyvinylpyrrolidone (PVP) or use gelatin. なお、本発明においてゼラチンとはニカワを含む概念で用いる。 Note that the gelatin in the present invention used in the concept including glue. 本発明においては、第1水溶液に分散剤を配合することにより、銀粉の分散性を向上させると共に、銀粉が微粒でその粒度分布をシャープすぎず比較的ブロードにする作用がある。 In the present invention, by incorporating a dispersing agent into the first aqueous solution, improves the dispersibility of the silver powder, silver powder has an effect of the relatively broad merely sharp particle size distribution in fine. この他の分散剤として、例えば、ポリエチレングリコール、ポリビニルアルコール等が挙げられる。 As another dispersant, for example, polyethylene glycol, polyvinyl alcohol and the like. しかし、本発明で用いられる分散剤は、ポリビニルピロリドン、ゼラチンを用いると銀粉の耐熱収縮性を特に高くすることができる。 However, dispersing agent used in the present invention include polyvinyl pyrrolidone, in particular a higher heat shrinkage silver powder when using a gelatin.

本発明で用いられる硝酸としては、特に限定されず、濃硝酸、希硝酸のいずれも用いることができる。 The nitric acid used in the present invention is not particularly limited, concentrated nitric acid, can be used any of dilute nitric acid. 本発明においては、第1水溶液に硝酸を配合することにより、銀イオンから銀を生成する反応速度が比較的遅くなるように制御されるため、銀粉の粒度分布をシャープすぎず比較的ブロードにし、且つ結晶子を大きくする作用がある。 In the present invention, by incorporating nitric acid to the first aqueous solution, because it is controlled so that the reaction rate to form silver from silver ions is relatively slow, the relatively broad merely sharpen the particle size distribution of the silver powder, and it has an action to increase the crystallite. なお、硝酸を配合せずに銀粉を製造すると、銀イオンから銀を生成する反応速度が速すぎて反応が直ちに生じるため、本発明のように硝酸を配合して製造する場合に比べて、得られる銀粉は、粒径が小さく、且つ、結晶子径が小さくなり易い。 Note that when manufacturing the silver powder was not added nitric acid, for the reaction to occur immediately reaction rate is too fast to form silver from silver ions, as compared with the case of producing by incorporating a nitrate as in the present invention, obtained It is silver powder has a small particle size, and easily crystallite diameter becomes small.

第1水溶液は、分散剤がポリビニルピロリドンである場合、硝酸銀100重量部に対して、ポリビニルピロリドンを通常5重量部〜60重量部、好ましくは15重量部〜50重量部、さらに好ましくは20重量部〜40重量部含む。 The first aqueous solution, if the dispersant is a polyvinyl pyrrolidone, relative to the silver nitrate to 100 parts by weight, usually 5 parts by weight of polyvinyl pyrrolidone 60 parts by weight, preferably 50 parts by weight 15 parts by weight, more preferably 20 parts by weight 40 including parts by weight. ポリビニルピロリドンの配合量が該範囲内にあると、銀粉の分散性を向上させると共に、銀粉の粒度分布がシャープすぎず比較的ブロードになり易いため好ましい。 If the amount of polyvinylpyrrolidone is within the range, improves the dispersibility of the silver powder, the particle size distribution of the silver powder is preferable because tends to relatively broad merely sharp. 一方、ポリビニルピロリドンの配合量が5重量部未満であると得られる銀粉が凝集し易いため好ましくなく、60重量部を超えると得られる銀粉中の不純物濃度が高くなり易く、環境を汚染し易く、生産コストが高くなり易いため好ましくない。 Meanwhile, polyvinylpyrrolidone unfavorably easily obtained silver powder is aggregated and the amount is less than 5 parts by weight of, it tends higher impurity concentration in the obtained silver powder exceeds 60 parts by weight, easily pollute the environment, unfavorable for easy production cost is high.

第1水溶液は、分散剤がゼラチンである場合、硝酸銀100重量部に対して、ゼラチンを通常0.5重量部〜10重量部、好ましくは1重量部〜8重量部、さらに好ましくは2重量部〜6重量部含む。 The first aqueous solution, if the dispersing agent is gelatin, with respect to silver nitrate 100 parts by weight, usually 0.5 to 10 parts by weight of gelatin, preferably 1 part by weight to 8 parts by weight, more preferably 2 parts by weight 6 including parts by weight. ゼラチンの配合量が該範囲内にあると、銀粉の分散性を向上させると共に、銀粉の粒度分布がシャープすぎず比較的ブロードになり易いため好ましい。 When the amount of the gelatin is within the range, improves the dispersibility of the silver powder, the particle size distribution of the silver powder is preferable because tends to relatively broad merely sharp. 一方、ゼラチンの配合量が0.5重量部未満であると得られる銀粉が凝集し易いため好ましくなく、10重量部を超えると得られる銀粉中の不純物濃度が高くなり易く、環境を汚染し易く、生産コストが高くなり易いため好ましくない。 On the other hand, it is not preferable because easily aggregated silver powder the amount of the gelatin is obtained is less than 0.5 part by weight, tends to be higher impurity concentration in the obtained silver powder exceeds 10 parts by weight, easily pollute the environment , it is not preferable because easy production cost is high.

第1水溶液は、分散剤がポリビニルピロリドンである場合、水100重量部に対しポリビニルピロリドンを、通常1重量部〜10重量部、好ましくは2重量部〜4重量部含む。 The first aqueous solution, if the dispersing agent is polyvinylpyrrolidone, the polyvinylpyrrolidone in water 100 parts by weight, usually 1 to 10 parts by weight, preferably from to 4 parts by weight 2 parts by weight. ポリビニルピロリドンの配合量が該範囲内にあると、銀粉の分散性を向上させると共に、銀粉の粒度分布がシャープすぎず比較的ブロードになり易いため好ましい。 If the amount of polyvinylpyrrolidone is within the range, improves the dispersibility of the silver powder, the particle size distribution of the silver powder is preferable because tends to relatively broad merely sharp. 一方、ポリビニルピロリドンの配合量が1重量部未満であると得られる銀粉が凝集し易いため好ましくなく、10重量部を超えると得られる銀粉中の不純物濃度が高くなり易く、環境を汚染し易く、生産コストが高くなり易いため好ましくない。 On the other hand, the amount of polyvinylpyrrolidone is not preferable because easily aggregated silver powder obtained is less than 1 part by weight, it tends to be higher impurity concentration in the obtained silver powder exceeds 10 parts by weight, easily pollute the environment, unfavorable for easy production cost is high.

第1水溶液は、分散剤がゼラチンである場合、水100重量部に対しゼラチンを、通常0.1重量部〜5重量部、好ましくは0.4重量部〜2重量部含む。 The first aqueous solution, if the dispersing agent is gelatin, a gelatin to 100 parts by weight of water, usually 0.1 to 5 parts by weight, preferably from 2 wt parts 0.4 parts by weight. ゼラチンの配合量が該範囲内にあると、銀粉の分散性を向上させると共に、銀粉の粒度分布がシャープすぎず比較的ブロードになり易いため好ましい。 When the amount of the gelatin is within the range, improves the dispersibility of the silver powder, the particle size distribution of the silver powder is preferable because tends to relatively broad merely sharp. 一方、ゼラチンの配合量が0.1重量部未満であると得られる銀粉が凝集し易いため好ましくなく、5重量部を超えると得られる銀粉中の不純物濃度が高くなり易く、環境を汚染し易く、生産コストが高くなり易いため好ましくない。 On the other hand, it is not preferable because easily aggregated silver powder the amount of the gelatin is obtained is less than 0.1 part by weight, tends to be higher impurity concentration in the obtained silver powder exceeds 5 parts by weight, easily pollute the environment , it is not preferable because easy production cost is high.

第1水溶液は、硝酸銀100重量部に対して、硝酸を、通常35重量部〜70重量部、好ましくは40重量部〜60重量部、さらに好ましくは48重量部〜54重量部含む。 The first aqueous solution, with respect to silver nitrate 100 parts by weight of nitric acid, 35 parts by weight to 70 parts by weight usually preferably 40 parts by weight to 60 parts by weight, more preferably to 54 parts by weight 48 parts by weight. 硝酸の配合量が該範囲内にあると、銀粉の粒度分布がシャープすぎず比較的ブロードになり、且つ結晶子を大きくする効果が大きいため好ましい。 When the amount of nitric acid is within the range, the particle size distribution of the silver powder becomes relatively broad merely Sharp, and preferred for the effect of increasing the crystallites is greater. 一方、硝酸の配合量が35重量部未満であると銀粉の結晶性が低くなり易いため好ましくなく、70重量部を超えると得られる銀粉が凝集し易いため好ましくない。 On the other hand, it is not preferable because apt amount of nitric acid is low crystalline silver powder is less than 35 parts by weight, undesirably silver powder liable to agglomerate obtained exceeds 70 parts by weight. なお、本発明において硝酸の配合量とは、濃度61%の濃硝酸に換算した配合量を意味する。 Note that the amount of nitric acid in the present invention means the amount in terms of the concentration of 61% concentrated nitric acid.

本発明において第2水溶液とは、アスコルビン酸を含む水溶液をいう。 In the present invention the second solution refers to an aqueous solution containing ascorbic acid. 第2水溶液の調製に用いられる水としては、純水、イオン交換水、超純水等が、銀粉への不純物の混入防止のため好ましい。 The water used in the preparation of the second aqueous solution, pure water, ion exchange water, ultra pure water or the like is preferable because of contamination prevention of impurities into silver powder. 本発明で用いられるアスコルビン酸としては、L体、D体のいずれも用いることができる。 The ascorbic acid used in the present invention, L body, can be any of D-form.

本発明に係る製造方法では、上記第1水溶液と第2水溶液とを混合して、混合液中で高結晶性銀粉を析出させる。 In accordance with the present invention, by mixing the first solution and the second aqueous solution to precipitate a highly crystalline silver powder in a mixture. 混合形態としては、例えば、第1水溶液を攪拌しておきこれに第2水溶液を添加する方法が挙げられる。 The mixing forms, for example, a method of adding the second aqueous solution to keep the first solution with stirring and the like. この場合の第2水溶液の添加方法としては、第2水溶液の全量を第1水溶液に一括添加してもよいし、第2水溶液を少量ずつ第1水溶液に徐々に添加してもよい。 As the second aqueous solution addition methods in the case, the total amount of the second aqueous solution may be collectively added to the first aqueous solution may be slowly added to the first aqueous solution little by little second aqueous solution. なお、第1水溶液中の分散剤がポリビニルピロリドンである場合は、第2水溶液の全量を第1水溶液に一括添加する方法を採用すると微粒で粒度分布がシャープすぎず比較的ブロードである銀粉を得易いため好ましく、第1水溶液中の分散剤がゼラチンである場合は、第2水溶液を少量ずつ第1水溶液に徐々に添加する方法を採用すると銀粉の粒径の制御をし易いため好ましい。 In the case the dispersant in the first aqueous solution is polyvinyl pyrrolidone, give the total amount of the second aqueous particle size distribution in fine to adopt a method of adding bulk to the first aqueous solution is relatively broad merely sharp silver easy for preferably, when dispersant first aqueous solution is gelatin is preferred because easy to control the particle size of the silver powder when employing the method of gradually added to the first aqueous solution little by little second aqueous solution.

第1水溶液と第2水溶液との混合においては、第1水溶液に配合された硝酸銀100重量部に対して、第2水溶液中に配合されたアスコルビン酸が、通常30重量部〜90重量部、好ましくは40重量部〜80重量部、さらに好ましくは50重量部〜75重量部になる比率で混合する。 In mixing the first aqueous solution and the second aqueous solution, relative to the silver nitrate to 100 parts by weight which is formulated in the first aqueous solution, ascorbic acid formulated in the second aqueous solution is usually 30 parts by weight to 90 parts by weight, preferably 40 to 80 parts by weight, more preferably mixed at a ratio of 50 parts to 75 parts by weight. 硝酸銀に対するアスコルビン酸の配合量が該範囲内にあると、銀粉の収率が高くなり易いため好ましい。 If the amount of ascorbic acid to nitrate is within the range, it preferred liable increases the yield of the silver powder. 一方、硝酸銀100重量部に対するアスコルビン酸の配合量が30重量部未満であると還元が不十分で銀粉の収率が低くなり易いため好ましくなく、硝酸銀100重量部に対するアスコルビン酸の配合量が90重量を超えると環境を汚染し易く、生産コストが高くなり易いため好ましくない。 On the other hand, it is not preferable because the amount of ascorbic acid tends to be less than 30 parts by weight reduction lowered the yield of insufficient silver powder for silver nitrate 100 parts by weight amount of ascorbic acid to nitrate 100 parts by weight 90 weight by weight, easily pollute the environment, undesirably liable increases the production cost.

また、第1水溶液と第2水溶液との混合においては、得られた混合液中の銀イオン濃度が、通常10g/l〜80g/l、好ましくは30g/l〜65g/lになる比率で混合する。 The mixing in the mixing of the first solution and the second aqueous solution, the silver ion concentration in the mixed solution obtained is usually 10 g / to 80 g / l, in a ratio preferably comprised in 30g / l~65g / l to. 混合液中の銀イオン濃度が該範囲内にあると、銀粉の収率が高く且つ得られる銀粉が凝集し難いため好ましい。 When the silver ion concentration in the mixture is within the range, silver powder silver powder yields are obtained high and preferably for hard aggregate. 一方、銀イオン濃度が10g/l未満であると銀粉の生産性が悪くなり易いため好ましくなく、銀イオン濃度が80g/lを超えると得られる銀粉が凝集し易いため好ましくない。 Meanwhile, the silver ion concentration is not preferable for easily deteriorates the productivity of the silver powder is less than 10 g / l, the silver ion concentration is not preferable for easily aggregated silver powder obtained exceeds 80 g / l.

また、第1水溶液と第2水溶液との混合においては、第2水溶液に配合されたアスコルビン酸100重量部に対して、第1水溶液中に配合された硝酸が、通常40重量部〜150重量部、好ましくは50重量部〜120重量部、さらに好ましくは65重量部〜100重量部になる比率で混合する。 In the mixing of the first solution and the second aqueous solution, with respect to ascorbic acid 100 parts by weight which is formulated in the second aqueous solution, nitric acid, which is formulated in the first aqueous solution is usually 40 parts by weight to 150 parts by weight , preferably 120 parts by weight 50 parts by weight, more preferably mixed at a ratio to be 65 parts by weight to 100 parts by weight. アスコルビン酸に対する硝酸の配合量が該範囲内にあると、銀粉の収率が高くなり易いため好ましい。 If the amount of nitric acid for ascorbic acid is within the range, it preferred liable increases the yield of the silver powder. 一方、アスコルビン酸100重量部に対する硝酸の配合量が40重量部未満であると得られる銀粉の結晶子径を十分に大きくさせることが困難であるため好ましくなく、アスコルビン酸100重量部に対する硝酸の配合量が150重量部を超えると得られる銀粉が凝集し易いため好ましくない。 On the other hand, it is not preferable because the amount of nitric acid it is difficult to sufficiently increase the crystallite size of the silver powder obtained is less than 40 parts by weight with respect to 100 parts by weight of ascorbic acid, the formulation of nitric acid with respect to 100 parts by weight of ascorbic acid amount unfavorably liable aggregated silver powder obtained exceeds 150 parts by weight.

第1水溶液と第2水溶液との混合により、混合液中に析出した銀粉は、第1水溶液と第2水溶液との混合終了後、混合液をさらに通常3分間以上、好ましくは5分間〜10分間混合続けることにより混合液中で銀粉を成長させると、銀粉の粒径及び粒度分布並びに分散性が、本発明に係る銀粉の特定範囲内のものとなり易いため好ましい。 By mixing with the first solution and the second aqueous solution, silver powder precipitated in the mixture after the end of mixing the first solution and the second aqueous solution, mixture more usually 3 minutes or more, preferably 5 to 10 minutes When growing silver powder in a mixture by mixing continuing, the particle size and particle size distribution and the dispersibility of the silver powder is preferable because tends to those within a certain range of the silver powder according to the present invention. 混合液中に得られた銀粉は、例えば、ヌッチェ等の濾過手段で濾過した後、濾滓を純水で洗浄し、乾燥すると、本発明に係る高結晶性銀粉が得られる。 Mixture silver powder obtained during, for example, after filtered through a filter means such as a suction filter, washing the filter cake with pure water, and dried, highly crystalline silver powder according to the present invention is obtained.

上記本発明に係る高結晶性銀粉は、例えば、チップ部品、プラズマディスプレイパネル、ガラスセラミックパッケージ、セラミックフィルター等の電極や回路を形成することができる導電性ペーストの原料として使用することができ、特に、銀粉の熱収縮率が非常に小さいことを利用して、回路を形成する基板として通常のセラミック基板のみならず、LTCC基板用の導電性ペーストの原料として好適に使用することができる。 Highly crystalline silver powder according to the present invention, for example, chip parts, plasma display panels, can be used as a raw material of the glass ceramic package, a conductive paste capable of forming an electrode or a circuit such as a ceramic filter, in particular , by utilizing the thermal shrinkage of the silver powder is very small, not as a substrate for forming a circuit only conventional ceramic substrate, can be suitably used as a raw material of the conductive paste for LTCC substrate. また、本発明に係る高結晶性銀粉の製造方法は、本発明に係る高結晶性銀粉の製造に使用することができる。 The method for manufacturing a highly crystalline silver powder according to the present invention can be used for the production of highly crystalline silver powder according to the present invention.

以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 While the following examples are set forth, the present invention is not to be construed as being limited thereto.

常温の純水500gにPVP(K価:30)10g、硝酸銀50g及び濃硝酸(濃度61%)24.6gを入れ、攪拌し溶解して第1水溶液を調製した(第1水溶液A)。 Pure water 500g at room temperature PVP (K value: 30) 10 g, nitrate 50g and concentrated nitric acid (61% concentration) were placed 24.6 g, and stirred to dissolve to prepare a first aqueous solution (first aqueous solution A). 一方、常温の純水500gにアスコルビン酸35.8gを入れ、攪拌し溶解して第2水溶液を調製した(第2水溶液A)。 Meanwhile, put the ascorbic acid 35.8g of pure water 500g at room temperature, and the second aqueous solution was prepared and stirred to dissolve (the second aqueous solution A). 第1水溶液及び第2水溶液の組成を表1及び表2に示す。 The composition of the first aqueous solution and the second aqueous solution shown in Table 1 and Table 2.
次に、第1水溶液Aを攪拌した状態にし、該第1水溶液Aに第2水溶液Aを一括添加し、添加終了後からさらに5分間攪拌して混合液中で粒子を成長させた。 Next, a first aqueous solution A and the stirring state, the second aqueous solution A batch was added to the first aqueous solution A, were grown particles after completion of the addition the further stirring to a mixture of 5 minutes. その後攪拌を止め、混合液中の粒子を沈降させた後、混合液の上澄みを捨て、混合液をヌッチェを用いて濾過し、濾滓を純水で洗浄し、乾燥して、高結晶性銀粉を得た。 Then the stirring was stopped, after the particles to settle in the mixture, discard the supernatant liquid mixture, the mixture was filtered using a Buchner funnel, washing the filter cake with pure water, dried, highly crystalline silver powder It was obtained.
得られた銀粉について、D 10 、D 50 、D 90 、D 100 、SD、結晶子径、比表面積、タップ密度、熱収縮率及び抵抗率を下記方法により測定し、D 90 /D 10を算出した。 The obtained silver powder, calculated D 10, D 50, D 90 , D 100, SD, crystallite diameter, specific surface area, tap density, thermal shrinkage and resistivity were measured by the following method, the D 90 / D 10 did. 結果を表3〜表6に示す。 The results are shown in Tables 3 6.

(D 10 、D 50 、D 90 、D 100 、SD):日機装株式会社製マイクロトラックHRAを用いて、レーザー回折散乱法で求められる累積分布が10%、50%、90%及び100%の時点における粒径を、それぞれD 10 (μm)、D 50 (μm)、D 90 (μm)、D 100 (μm)とし、得られた粒度分布の標準偏差をSDとした。 (D 10, D 50, D 90, D 100, SD): Nikkiso using steel Microtrac HRA Co., cumulative distribution is 10% as determined by a laser diffraction scattering method, of 50%, 90% and 100% point the particle size of each D 10 (μm), D 50 (μm), and D 90 (μm), D 100 (μm), the standard deviation of the resulting particle size distribution was SD.
(結晶子径):リガク株式会社製X線回折装置RINT2000PCを用いて粉末X線回折を行い、得られた各結晶面の回折角のピークの半値幅から結晶子径を求めた。 (Crystallite size): performs a powder X-ray diffraction using an X-ray diffraction apparatus RINT2000PC Rigaku Corporation to determine the crystallite size from the half-value width of the peak of the diffraction angle of each crystal face obtained.
(比表面積):ユアサアイオニクス株式会社製モノソーブを用いて測定したBET比表面積を用いた。 (Specific surface area): using the BET specific surface area was measured using a Yuasa Ionics Co., Ltd. monosorb.
(タップ密度):蔵持科学機械製作所製タップデンサーを用いて試料をタッピングすることによりタップ密度を測定した。 (Tap density) was measured tap density by tapping the sample using Kuramochi Scientific Machinery Mfg Tap Denser.
(熱収縮率):銀粉を押し固めて円柱状のペレットを作製し、セイコーインスツルメンツ株式会社製TMA/SS6300を用い、該ペレットについて、Air(空気)中、昇温速度10℃/minで常温から850℃までの範囲でTMA分析を行い、ペレットの長さ方向の熱収縮率を測定した。 (Heat shrinkage): compacted silver powder to prepare a cylindrical pellet, with a Seiko Instruments Co., Ltd. TMA / SS6300, for the pellets, in Air (air) from a room temperature at a heating rate of 10 ° C. / min performed TMA analysis in the range up to 850 ° C., was measured for thermal shrinkage rate in the longitudinal direction of the pellet. 測定温度は300℃、500℃及び700℃とした。 Measurement temperature 300 ° C., was 500 ° C. and 700 ° C..
(抵抗率):ターピネオール95重量部とエチルセルロース5重量部とを混合して混合溶媒を調製し、該混合溶媒15重量部と試料粉体85重量部とを混合してペーストを作製し、該ペーストを300℃で焼成して数μm程度の厚みを有する銀塗膜を作製した。 (Resistivity): terpineol 95 by mixing parts by weight ethyl cellulose 5 parts by weight of a mixed solvent prepared by mixing a mixture solvent 15 parts by weight of the sample powder 85 parts by weight to prepare a paste, the paste It was prepared Gin'nurimaku having several μm thickness of approximately and calcined at 300 ° C.. また、焼成温度を300℃に代えて、400℃及び500℃とした以外は上記と同様にして銀塗膜を作製した。 In place of the firing temperature to 300 ° C., except for using 400 ° C. and 500 ° C. to prepare a silver coating in the same manner as described above.
次いで、(Hewlett−Packard株式会社製、MILLIOHM METER)を用いて、四端子法で上記銀塗膜の抵抗(Ω)を測定した後、銀塗膜の断面積と端子間の長さとから抵抗率ρ(Ω・m)を求めた。 Then, (Hewlett-Packard Co., MILLIOHM METER) using, after measuring the resistance of the Gin'nurimaku (Omega) with a four-terminal method, the resistivity of the length between the cross-sectional area of ​​Gin'nurimaku and terminal I was asked to ρ (Ω · m).

常温の純水500gにPVP(K価:30)20g、硝酸銀50g及び濃硝酸(濃度61%)24.6gを入れ、攪拌し溶解して第1水溶液を調製した(第1水溶液B)。 Pure water 500g at room temperature PVP (K value: 30) 20 g, nitrate 50g and concentrated nitric acid (concentration 61%) 24.6 g were charged, and stirred to dissolve to prepare a first aqueous solution (first aqueous solution B). 一方、常温の純水500gにアスコルビン酸35.8gを入れ、攪拌し溶解して第2水溶液を調製した(第2水溶液A)。 Meanwhile, put the ascorbic acid 35.8g of pure water 500g at room temperature, and the second aqueous solution was prepared and stirred to dissolve (the second aqueous solution A). 第1水溶液及び第2水溶液の組成を表1及び表2に示す。 The composition of the first aqueous solution and the second aqueous solution shown in Table 1 and Table 2.
次に、第1水溶液Bを攪拌した状態にし、該第1水溶液Bに第2水溶液Aを一括添加し、添加終了後からさらに5分間攪拌して混合液中で粒子を成長させた。 Next, a first aqueous solution B to the stirred state, the second aqueous solution A batch was added to the first aqueous solution B, were grown particles after completion of the addition the further stirring to a mixture of 5 minutes. その後攪拌を止め、混合液中の粒子を沈降させた後、混合液の上澄みを捨て、混合液をヌッチェを用いて濾過し、濾滓を純水で洗浄し、乾燥して、高結晶性銀粉を得た。 Then the stirring was stopped, after the particles to settle in the mixture, discard the supernatant liquid mixture, the mixture was filtered using a Buchner funnel, washing the filter cake with pure water, dried, highly crystalline silver powder It was obtained.
得られた銀粉について、実施例1と同様にして、D 10 、D 50 、D 90 、D 100 、SD、結晶子径、比表面積、タップ密度、熱収縮率及び抵抗率を下記方法により測定し、D 90 /D 10を算出した。 The obtained silver powder, in the same manner as in Example 1, D 10, D 50, D 90, D 100, SD, crystallite diameter, specific surface area, tap density, thermal shrinkage and resistivity were measured by the following method , it was calculated D 90 / D 10. 結果を表3〜表6に示す。 The results are shown in Tables 3 6.

[比較例1] [Comparative Example 1]
常温の純水500gにPVP(K価:30)10g及び硝酸銀50gを入れ、攪拌し溶解して第1水溶液を調製した(第1水溶液C)。 Normal temperature pure water 500g in PVP (K value: 30) were placed 10g and silver nitrate 50 g, to prepare a first aqueous solution and stirred to dissolve (the first aqueous solution C). 一方、常温の純水500gにアスコルビン酸26gを入れ、攪拌し溶解して第2水溶液を調製した(第2水溶液B)。 Meanwhile, put the ascorbic acid 26g of pure water 500g at room temperature, and the second aqueous solution was prepared and stirred to dissolve (the second aqueous solution B). 第1水溶液及び第2水溶液の組成を表1及び表2に示す。 The composition of the first aqueous solution and the second aqueous solution shown in Table 1 and Table 2.
次に、第1水溶液Cを攪拌した状態にし、該第1水溶液Cに第2水溶液Bを一括添加し、添加終了後からさらに5分間攪拌して混合液中で粒子を成長させた。 Next, the first aqueous solution C to a stirred state, the second aqueous solution B simultaneously added to the first aqueous solution C, were grown particles after completion of the addition the further stirring to a mixture of 5 minutes. その後攪拌を止め、混合液中の粒子を沈降させた後、混合液の上澄みを捨て、混合液をヌッチェを用いて濾過し、濾滓を純水で洗浄し、乾燥して、銀粉を得た。 Then the stirring was stopped, after the particles to settle in the mixture, discard the supernatant liquid mixture, the mixture was filtered using a Buchner funnel, washing the filter cake with deionized water and dried to give the silver powder .
得られた銀粉について、実施例1と同様にして、D 10 、D 50 、D 90 、D 100 、SD、結晶子径、比表面積、タップ密度、熱収縮率及び抵抗率を下記方法により測定し、D 90 /D 10を算出した。 The obtained silver powder, in the same manner as in Example 1, D 10, D 50, D 90, D 100, SD, crystallite diameter, specific surface area, tap density, thermal shrinkage and resistivity were measured by the following method , it was calculated D 90 / D 10. 結果を表3〜表6に示す。 The results are shown in Tables 3 6.

常温の純水250gにゼラチン(新田ゼラチン株式会社製)1.0g、硝酸銀50g及び濃硝酸(濃度61%)26.4gを入れ、50℃まで加熱し攪拌することによりこれらを溶解して第1水溶液を調製した(第1水溶液D)。 Gelatin pure water 250g at room temperature (manufactured by Nitta Gelatin Co., Ltd.) 1.0 g, was placed silver nitrate 50g and concentrated nitric acid (61% strength) 26.4 g, first by dissolving them by stirring and heated to 50 ° C. 1 aqueous solution was prepared (first aqueous solution D). 一方、常温の純水250gにアスコルビン酸26.4gを入れ、攪拌し溶解して第2水溶液を調製した(第2水溶液C)。 Meanwhile, put the ascorbic acid 26.4g of pure water 250g at room temperature, and the second aqueous solution was prepared and stirred to dissolve (the second aqueous solution C). 第1水溶液及び第2水溶液の組成を表1及び表2に示す。 The composition of the first aqueous solution and the second aqueous solution shown in Table 1 and Table 2.
次に、50℃の第1水溶液Dを攪拌した状態にし、該第1水溶液Dに常温の第2水溶液Cを30分かけて徐々に添加し、添加終了後からさらに5分間攪拌して混合液中で粒子を成長させた。 Next, the state of being stirred first aqueous solution D of 50 ° C., over a period of 30 minutes a second aqueous solution C of room temperature to the first aqueous solution D was added slowly and the mixture was stirred for an additional 5 minutes after completion of addition the particles were allowed to grow in the medium. その後攪拌を止め、混合液中の粒子を沈降させた後、混合液の上澄みを捨て、混合液をヌッチェを用いて濾過し、濾滓を純水で洗浄し、乾燥して、高結晶性銀粉を得た。 Then the stirring was stopped, after the particles to settle in the mixture, discard the supernatant liquid mixture, the mixture was filtered using a Buchner funnel, washing the filter cake with pure water, dried, highly crystalline silver powder It was obtained.
得られた銀粉について、実施例1と同様にして、D 10 、D 50 、D 90 、D 100 、SD、結晶子径、比表面積、タップ密度、熱収縮率及び抵抗率を下記方法により測定し、D 90 /D 10を算出した。 The obtained silver powder, in the same manner as in Example 1, D 10, D 50, D 90, D 100, SD, crystallite diameter, specific surface area, tap density, thermal shrinkage and resistivity were measured by the following method , it was calculated D 90 / D 10. 結果を表3〜表6に示す。 The results are shown in Tables 3 6.

常温の純水500gにゼラチン(新田ゼラチン株式会社製)3.0g、硝酸銀50g及び濃硝酸(濃度61%)24.6gを入れ、50℃まで加熱し攪拌することによりこれらを溶解して第1水溶液を調製した(第1水溶液E)。 Gelatin pure water 500g at room temperature (manufactured by Nitta Gelatin Co., Ltd.) 3.0 g, was placed silver nitrate 50g and concentrated nitric acid (61% strength) 24.6 g, first by dissolving them by stirring and heated to 50 ° C. 1 aqueous solution was prepared (first aqueous solution E). 一方、常温の純水500gにアスコルビン酸25.9gを入れ、攪拌し溶解して第2水溶液を調製した(第2水溶液D)。 Meanwhile, put the ascorbic acid 25.9g of pure water 500g at room temperature, and the second aqueous solution was prepared and stirred to dissolve (the second aqueous solution D). 第1水溶液及び第2水溶液の組成を表1及び表2に示す。 The composition of the first aqueous solution and the second aqueous solution shown in Table 1 and Table 2.
次に、50℃の第1水溶液Eを攪拌した状態にし、該第1水溶液Eに常温の第2水溶液Dを30分かけて徐々に添加し、添加終了後からさらに5分間攪拌して混合液中で粒子を成長させた。 Next, the state of being stirred first aqueous solution E of 50 ° C., over a period of 30 minutes a second aqueous solution D at room temperature in the first aqueous solution E was added slowly and the mixture was stirred for an additional 5 minutes after completion of addition the particles were allowed to grow in the medium. その後攪拌を止め、混合液中の粒子を沈降させた後、混合液の上澄みを捨て、混合液をヌッチェを用いて濾過し、濾滓を純水で洗浄し、乾燥して、高結晶性銀粉を得た。 Then the stirring was stopped, after the particles to settle in the mixture, discard the supernatant liquid mixture, the mixture was filtered using a Buchner funnel, washing the filter cake with pure water, dried, highly crystalline silver powder It was obtained. 得られた銀粉について、実施例1と同様にして、D 10 、D 50 、D 90 、D 100 、SD、結晶子径、比表面積、タップ密度、熱収縮率及び抵抗率を下記方法により測定し、D 90 /D 10を算出した。 The obtained silver powder, in the same manner as in Example 1, D 10, D 50, D 90, D 100, SD, crystallite diameter, specific surface area, tap density, thermal shrinkage and resistivity were measured by the following method , it was calculated D 90 / D 10. 結果を表3〜表6に示す。 The results are shown in Tables 3 6.

表1〜表5より、分散剤及び硝酸を用いて作製した銀粉は、結晶子径が大きくて高結晶性であり、700℃における熱収縮率が小さいことが判る。 From Table 1 to Table 5, silver powder prepared by using a dispersing agent and nitric acid, crystallite diameter is larger high crystallinity, it can be seen that the thermal shrinkage at 700 ° C. is small. また、分散剤としてゼラチンを用いたものは、特に700℃における熱収縮率が小さいことが判る。 Moreover, those using gelatin as dispersing agent, it can be seen that the thermal shrinkage rate is small, especially in 700 ° C.. また、表6より、分散剤及び硝酸を用いて作製した銀粉は、硝酸を用いずに作製した銀粉に比べて、300℃で焼成した銀塗膜の抵抗率ρが低いことが判る。 From Table 6, the silver powder prepared by using a dispersing agent and nitric acid, as compared with the silver powder was produced without using nitric acid, it can be seen that a low resistivity calcined Gin'nurimaku ρ at 300 ° C.. この理由は、結晶子径が大きいことにより銀粉内の電子の動きがスムーズになるためであると推測される。 The reason for this is that the movement of electrons in the silver powder is presumed to be because becomes smooth by crystallite diameter is large.

本発明に係る高結晶性銀粉及び高結晶性銀粉の製造方法は、例えば、チップ部品、プラズマディスプレイパネル、ガラスセラミックパッケージ、セラミックフィルター等の電極や回路を形成することができる導電性ペーストの原料として使用することができ、特に、LTCC基板用の導電性ペーストの原料として好適に使用することができる。 Method for producing highly crystalline silver powder and the highly crystalline silver powder according to the present invention, for example, chip parts, plasma display panels, glass ceramic packages, as a raw material of the conductive paste capable of forming an electrode or a circuit, such as a ceramic filter can be used, in particular, it can be suitably used as a raw material of the conductive paste for LTCC substrate.

Claims (6)

  1. 結晶子径が300Å以上、平均粒径D 50が0.5μm〜10μm、D 90 /D 10が2.1〜5.0、且つ700℃における長さ方向の熱収縮率が±3%以内であることを特徴とする高結晶性銀粉。 Crystallite diameter 300Å or more, average particle diameter D 50 of 0.5μm~10μm, D 90 / D 10 is 2.1 to 5.0, and the length direction of the heat shrinkage at 700 ° C. is within 3% ± highly crystalline silver powder which is characterized in that.
    (ただし、前記式において、D 10及びD 90は、それぞれ、レーザー回折散乱式粒度分布測定法による累積分布10容量%及び90容量%におけるメジアン径(μm)を示す。) (However, in the formula, D 10 and D 90 are respectively the median diameter in cumulative distribution 10 volume% and 90 volume% by a laser diffraction scattering particle size distribution measuring method ([mu] m).)
  2. 請求項1に記載の高結晶性銀粉の製造方法であって、 A method of manufacturing a highly crystalline silver powder according to claim 1,
    ポリビニルピロリドン又はゼラチンである分散剤、硝酸銀及び硝酸を含む第1水溶液と、アスコルビン酸を含む第2水溶液とを混合することを特徴とする高結晶性銀粉の製造方法。 Polyvinylpyrrolidone or dispersing agent is gelatin, the first aqueous solution containing silver nitrate and nitric acid, highly crystalline silver powder manufacturing method, which comprises mixing the second aqueous solution containing ascorbic acid.
  3. 前記第1水溶液は、硝酸銀100重量部に対して、ポリビニルピロリドンが5重量部〜60重量部、硝酸が35重量部〜70重量部配合された請求項2記載の高結晶性銀粉の製造方法。 Wherein the first aqueous solution, with respect to silver nitrate 100 parts by weight, polyvinyl pyrrolidone 5 parts by weight to 60 parts by weight, the production method of the highly crystalline silver powder of the nitric acid according to claim 2, wherein is 35 parts by weight to 70 parts by weight.
  4. 前記第1水溶液は、硝酸銀100重量部に対して、ゼラチンが0.5重量部〜10重量部、硝酸が35重量部〜70重量部配合された請求項2記載の高結晶性銀粉の製造方法。 Wherein the first aqueous solution, with respect to silver nitrate 100 parts by weight of gelatin of 0.5 to 10 parts by weight, the production method of the highly crystalline silver powder of the nitric acid according to claim 2, wherein it is 35 parts by weight to 70 parts by weight blended .
  5. 前記第1水溶液と前記第2水溶液とを、前記第1水溶液に配合された硝酸銀100重量部に対して、第2水溶液中に配合されたアスコルビン酸が30重量部〜90重量部になる比率で混合された請求項2〜4のいずれか1項記載の高結晶性銀粉の製造方法。 And said second aqueous solution and the first aqueous solution, with respect to the silver nitrate to 100 parts by weight which is formulated in the first aqueous solution, at a ratio of ascorbic acid formulated in the second aqueous solution is 30 parts by weight to 90 parts by weight mixed highly crystalline silver powder production method of any one of claims 2-4.
  6. 前記第1水溶液と前記第2水溶液とを、前記第2水溶液に配合されたアスコルビン酸100重量部に対して、第1水溶液中に配合された硝酸が40重量部〜150重量部になる比率で混合された請求項2〜5のいずれか1項記載の高結晶性銀粉の製造方法。 And said second aqueous solution and the first aqueous solution, with respect to the second ascorbic acid 100 parts by weight which is formulated in aqueous solution, at a ratio of nitric acid which is formulated in the first aqueous solution is 40 parts by weight to 150 parts by weight mixed highly crystalline silver powder production method of any one of claims 2-5.
JP2004034121A 2004-02-10 2004-02-10 Highly crystalline silver powder and a method of manufacturing the same Active JP4976642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004034121A JP4976642B2 (en) 2004-02-10 2004-02-10 Highly crystalline silver powder and a method of manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004034121A JP4976642B2 (en) 2004-02-10 2004-02-10 Highly crystalline silver powder and a method of manufacturing the same
TW94103609A TWI286090B (en) 2004-02-10 2005-02-04 Highly crystalline silver powder and method for production thereof
US10/588,970 US20090023007A1 (en) 2004-02-10 2005-02-04 Highly crystalline silver powder and method for producing the same
PCT/JP2005/001660 WO2005075133A1 (en) 2004-02-10 2005-02-04 Highly crystalline silver powder and method for production thereof
EP20050709726 EP1721690A1 (en) 2004-02-10 2005-02-04 Highly crystalline silver powder and method for production thereof
CN 200580006356 CN1925941A (en) 2004-02-10 2005-02-04 Highly crystalline silver powder and method for production thereof

Publications (2)

Publication Number Publication Date
JP2005226094A JP2005226094A (en) 2005-08-25
JP4976642B2 true JP4976642B2 (en) 2012-07-18

Family

ID=34836167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004034121A Active JP4976642B2 (en) 2004-02-10 2004-02-10 Highly crystalline silver powder and a method of manufacturing the same

Country Status (6)

Country Link
US (1) US20090023007A1 (en)
EP (1) EP1721690A1 (en)
JP (1) JP4976642B2 (en)
CN (1) CN1925941A (en)
TW (1) TWI286090B (en)
WO (1) WO2005075133A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032005B2 (en) * 2005-07-05 2012-09-26 三井金属鉱業株式会社 Method for producing highly crystalline silver powder and the highly crystalline silver powder
JP2007270312A (en) * 2006-03-31 2007-10-18 Mitsui Mining & Smelting Co Ltd Method for manufacturing silver powder, and silver powder
US7648557B2 (en) 2006-06-02 2010-01-19 E. I. Du Pont De Nemours And Company Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
JP4879762B2 (en) * 2007-01-24 2012-02-22 三井金属鉱業株式会社 Silver powder production methods and silver powder
JP5275342B2 (en) 2007-05-11 2013-08-28 エスディーシー マテリアルズ インコーポレイテッド Particle production system and particle production methods
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
WO2010045223A2 (en) * 2008-10-14 2010-04-22 Laird Technologies, Inc. Acicular metal particles having a high aspect ratio and non-catalytic methods for making same
CN101716685B (en) 2009-12-14 2011-08-24 昆明理工大学 Method for preparing spherical superfine silver powder by using chemical reduction method
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
CN101834004B (en) * 2010-05-28 2013-01-09 中国乐凯胶片集团公司 Silver powder for conductive silver paste of solar battery electrode and preparation method thereof
US8366799B2 (en) * 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
CN102133645B (en) * 2011-03-04 2012-12-26 华南理工大学 Preparation method of environment-friendly micron-size triangular silver sheet
US8715387B2 (en) * 2011-03-08 2014-05-06 E I Du Pont De Nemours And Company Process for making silver powder particles with small size crystallites
TWI532059B (en) * 2011-03-31 2016-05-01 Taiyo Holdings Co Ltd
CN102133635B (en) * 2011-05-02 2012-09-19 杨荣春 Silver powder and manufacturing method thereof
TWI428285B (en) * 2011-08-05 2014-03-01 China Steel Corp Micro-scaled flake silver particles and method for producing the same
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
CN102310200B (en) * 2011-08-24 2014-09-03 明基材料有限公司 Nano silver particle forming method
JP5790433B2 (en) * 2011-11-18 2015-10-07 住友金属鉱山株式会社 Silver powder and a method of manufacturing the same
WO2013115339A1 (en) * 2012-02-02 2013-08-08 戸田工業株式会社 Silver microparticles, method for producing same, and electronic device, conductive film, and conductive paste containing said silver microparticles
WO2013133103A1 (en) * 2012-03-07 2013-09-12 住友金属鉱山株式会社 Silver powder and method for producing same
CN102689018B (en) * 2012-06-11 2015-02-25 清华大学深圳研究生院 Production method of nanometer silver wire material
JP5916547B2 (en) * 2012-07-18 2016-05-11 福田金属箔粉工業株式会社 Ultrathin flaky silver powder and a method of manufacturing the same
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2015013545A1 (en) 2013-07-25 2015-01-29 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters
CA2926135A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
MX2016004991A (en) 2013-10-22 2016-08-01 Sdcmaterials Inc Catalyst design for heavy-duty diesel combustion engines.
CN103831444B (en) * 2014-03-11 2015-12-02 上海交通大学 A method for preparing a high crystalline silver flake
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP6029719B2 (en) * 2014-07-31 2016-11-24 Dowaエレクトロニクス株式会社 Silver powder and a method of manufacturing the same, and conductive paste
WO2017073057A1 (en) * 2015-10-30 2017-05-04 Dowaエレクトロニクス株式会社 Silver powder and method for producing same
KR101953619B1 (en) 2018-05-08 2019-03-05 대주전자재료 주식회사 Silver powder including radial hollow silver particle and it's fabrication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307206A (en) * 1987-06-08 1988-12-14 Tanaka Kikinzoku Kogyo Kk Production of fine silver particles
JPH01104338A (en) * 1987-10-15 1989-04-21 Tanaka Kikinzoku Kogyo Kk Manufacture of silver colloid
JP2000001706A (en) * 1998-06-17 2000-01-07 Tanaka Kikinzoku Kogyo Kk High crystal silver particle, its production and conductor paste consisting of high crystal silver particle

Also Published As

Publication number Publication date
WO2005075133A1 (en) 2005-08-18
US20090023007A1 (en) 2009-01-22
TW200536636A (en) 2005-11-16
TWI286090B (en) 2007-09-01
JP2005226094A (en) 2005-08-25
CN1925941A (en) 2007-03-07
EP1721690A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
US5952040A (en) Passive electronic components from nano-precision engineered materials
JP5303552B2 (en) Conductive paste and an electric circuit for the ceramic board
KR950010806B1 (en) Oxide powder sintered body process for preparation thereof and target composed thereof
JP4145127B2 (en) Flaky copper powder and flake copper powder preparation and a conductive paste using the flaky copper powder
CA2230506C (en) Nickel powder and process for preparing the same
CN1267934C (en) A silver compound paste
JP4868716B2 (en) Flaky copper powder and a conductive paste
US20090116998A1 (en) Highly crystalline silver powder and production method of highly crystalline silver powder
CN101835557B (en) Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
US4859364A (en) Conductive paste composition
CN1913044B (en) Thick film conductor composition, and its use in ltcc circuit and device
JP2006183072A (en) Silver particulate, method for producing the same and conductive paste containing silver particulate
JP2007042301A (en) Conductive composition, conductive paste, and conductive film
KR101484651B1 (en) Low-temperature sintering conductive paste, conductive film using same, and method for forming conductive film
JP2001516142A (en) Mechanical grinding the formed nanocrystallites powder-based varistor by
JP2567491B2 (en) High thermal conductivity colored aluminum nitride sintered body and manufacturing method thereof
JPH08246001A (en) Nickel superfine powder for multilayer ceramic capacitor
JP4697539B2 (en) Nickel powder, the conductive paste and multilayer electronic component using the same
JP3675264B2 (en) Ceramic slurry, ceramic green sheet and a method of manufacturing a multilayer ceramic electronic components
CN102264494B (en) Fine silver particle powder and its manufacturing method and use of silver paste and methods of using the powder
JP4094480B2 (en) Chain-shaped metal powder and a manufacturing method thereof, and conductivity imparting agent using the same
Park et al. Preparation of Pb-free silver paste containing nanoparticles
KR100853279B1 (en) Method for producing conductive paste for internal electrode of multilayer ceramic electronic component
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
JP2005298259A (en) Glass ceramic raw material composition, glass ceramic sintered compact, and glass ceramic multilayer substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250