JP6713120B1 - Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method - Google Patents
Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method Download PDFInfo
- Publication number
- JP6713120B1 JP6713120B1 JP2019239019A JP2019239019A JP6713120B1 JP 6713120 B1 JP6713120 B1 JP 6713120B1 JP 2019239019 A JP2019239019 A JP 2019239019A JP 2019239019 A JP2019239019 A JP 2019239019A JP 6713120 B1 JP6713120 B1 JP 6713120B1
- Authority
- JP
- Japan
- Prior art keywords
- silver
- copper
- bonding
- nanoparticles
- sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 245
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 233
- 239000010949 copper Substances 0.000 title claims abstract description 233
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 218
- 239000000758 substrate Substances 0.000 title claims abstract description 146
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229910052709 silver Inorganic materials 0.000 claims abstract description 163
- 239000004332 silver Substances 0.000 claims abstract description 163
- 239000002105 nanoparticle Substances 0.000 claims abstract description 161
- 238000005304 joining Methods 0.000 claims abstract description 136
- 239000002245 particle Substances 0.000 claims abstract description 78
- 239000011248 coating agent Substances 0.000 claims abstract description 51
- 238000000576 coating method Methods 0.000 claims abstract description 51
- 238000009826 distribution Methods 0.000 claims abstract description 33
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 15
- 238000010304 firing Methods 0.000 claims description 77
- 239000006185 dispersion Substances 0.000 claims description 47
- 238000005245 sintering Methods 0.000 claims description 44
- 239000002904 solvent Substances 0.000 claims description 42
- 239000007788 liquid Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 28
- 230000007423 decrease Effects 0.000 claims description 15
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 claims description 12
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 claims description 10
- 238000002360 preparation method Methods 0.000 claims description 9
- 238000003825 pressing Methods 0.000 claims description 7
- BWVZAZPLUTUBKD-UHFFFAOYSA-N 3-(5,6,6-Trimethylbicyclo[2.2.1]hept-1-yl)cyclohexanol Chemical compound CC1(C)C(C)C2CC1CC2C1CCCC(O)C1 BWVZAZPLUTUBKD-UHFFFAOYSA-N 0.000 claims description 6
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 abstract description 28
- 238000010586 diagram Methods 0.000 abstract description 8
- 150000003378 silver Chemical class 0.000 abstract description 3
- 229910000679 solder Inorganic materials 0.000 description 37
- 239000002184 metal Substances 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 28
- 238000012360 testing method Methods 0.000 description 22
- 230000007774 longterm Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 230000005496 eutectics Effects 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 8
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000945 filler Substances 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000006864 oxidative decomposition reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000004455 differential thermal analysis Methods 0.000 description 4
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZXSQEZNORDWBGZ-UHFFFAOYSA-N 1,3-dihydropyrrolo[2,3-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)CC2=C1 ZXSQEZNORDWBGZ-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910001958 silver carbonate Inorganic materials 0.000 description 1
- LKZMBDSASOBTPN-UHFFFAOYSA-L silver carbonate Substances [Ag].[O-]C([O-])=O LKZMBDSASOBTPN-UHFFFAOYSA-L 0.000 description 1
- 238000001778 solid-state sintering Methods 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
Landscapes
- Powder Metallurgy (AREA)
- Wire Bonding (AREA)
- Die Bonding (AREA)
Abstract
【課題】パワー半導体と銅基板の高温耐熱接合に使用でき、実装が簡便で、形成される接合の強度、電気伝導度及び熱伝導度に優れ、低コストに製造できて長期保存可能な、焼結接合用の接合シート、その製法及び接合方法を提供する。【解決手段】焼結結合した複数の銅ナノ粒子4からなる多孔質の銅焼結構造体である銅焼結基板2と、該銅焼結基板2の表面33及び微細孔21に配置された、有機被覆を有する複数の銀シングルナノ粒子5から構成される接合シート1であり、銀シングルナノ粒子5は互いに結合し、前記銅焼結構造体とも結合し、銀シングルナノ粒子5の数密度は、接合シート1の表面33で高く、内部では低く、傾斜濃度化され、銀シングルナノ粒子5は銀核の84%粒径D84が1.4〜2.0nm、粒径分布幅15%以下、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である。【選択図】図2PROBLEM TO BE SOLVED: To use for high temperature heat resistant bonding of a power semiconductor and a copper substrate, easy to mount, excellent in strength, electrical conductivity and thermal conductivity of the formed bond, capable of being manufactured at low cost, and capable of being stored for a long period of time. Provided are a joining sheet for binding and joining, a manufacturing method thereof, and a joining method. A copper sintered substrate (2), which is a porous copper sintered structure composed of a plurality of copper nanoparticles (4) sintered and bonded, and is disposed on a surface (33) and micropores (21) of the copper sintered substrate (2). A bonding sheet 1 composed of a plurality of silver single nanoparticles 5 having an organic coating, wherein the silver single nanoparticles 5 are bonded to each other and also to the copper sintered structure, and the number density of the silver single nanoparticles 5 is Is high on the surface 33 of the bonding sheet 1 and low on the inside, and is made to have a gradient concentration, and the silver single nanoparticles 5 have a silver nucleus 84% particle diameter D84 of 1.4 to 2.0 nm and a particle diameter distribution width of 15% or less. A carboxylic acid-coated silver nanoparticle having an organic coating amount of 10 to 15% by mass. [Selection diagram] Figure 2
Description
本発明は、焼結接合用の接合シートとその製法及び接合方法に関し、更に詳しくは、パワー半導体と銅基板の接合等の、高温での使用に耐える接合構造を形成するための、焼結接合用の接合シートとその製法及び接合方法に関する。 The present invention relates to a joining sheet for sinter joining, a manufacturing method thereof, and a joining method, and more specifically, a sinter joining for forming a joining structure that can be used at high temperature, such as joining a power semiconductor and a copper substrate. TECHNICAL FIELD The present invention relates to a joining sheet for a car, a manufacturing method thereof and a joining method.
最近の先端技術の高度化に伴って、半導体等接合製品の小型化・高性能化が要請され、高温環境でも使用できる耐熱性を具えた接合材料が求められている。現在の市販流通品である鉛合金はんだは、有害物質の鉛金属イオンが当該はんだを使用した工業製品が廃棄される際に排出されるため、環境有害物質に指定され、現在、代替品が無いとの理由で例外的に使用が認められている状況である。鉛フリー合金はんだ使用上限温度は現状で230℃であり、鉛はんだ使用温度320℃ですら、市場が求める耐熱性の要請からはほど遠い状況にある。より高温での使用に耐え、かつ市場が認める諸特性を備えた、鉛フリーな接合材料が要請されている。 With the recent advancement of advanced technology, miniaturization and high performance of joint products such as semiconductors are demanded, and joint materials having heat resistance that can be used even in a high temperature environment are demanded. Lead alloy solder, which is currently on the market, is designated as an environmentally harmful substance because the lead metal ions of harmful substances are emitted when industrial products using the solder are discarded, and currently there is no alternative. It is the situation where the use is permitted exceptionally for the reason. The upper limit temperature for use of lead-free alloy solder is currently 230°C, and even the use temperature of lead solder is 320°C, which is far from the demand for heat resistance required by the market. There is a demand for a lead-free bonding material that can be used at higher temperatures and has various properties that are recognized by the market.
銀ナノ粒子は比較的低温で焼結でき、優れた電気的・熱的特性を有することから、鉛はんだに代わる半導体接合材料として、種々の製法が開発されており、それを分散させた焼結性接合剤ペーストはよく知られている。また、そのペーストに高分子有機材料を混錬させて、ペーストの粘度調整溶剤等を除外させて薄くシート状にまで加工したナノ金属接合シートについても開発され、ペーストを塗布・乾燥・焼結する工程よりも実装時により簡便となる工夫がされたナノ金属接合シート(特許文献4)や、焼結を不完全な状態で終了させてあるナノ銀接合シート(特許文献6)についても知られている。しかし、これらナノ金属ペースト材料の従来品では、接合特性に関しては鉛はんだや鉛フリー型はんだに比較して優れているが、ダイアタッチ時のはみ出しやペースト塗布厚の不均一、焼結層の脆弱性など実装過程での種々の問題点が生じる。ナノ金属ペーストのシート化材料であるナノ金属接合シートでは実装過程での簡便さの問題は解決しているが、ペーストのシート化時に混錬する高分子材料の焼成過程でペーストよりさらに高温・長時間焼成が必要となり、この点での改善は不可欠である。 Since silver nanoparticles can be sintered at a relatively low temperature and have excellent electrical and thermal characteristics, various manufacturing methods have been developed as a semiconductor bonding material that replaces lead solder, and the dispersion of them has been performed. Glue pastes are well known. In addition, a nano-metal bonding sheet, which is made by kneading a high molecular weight organic material into the paste and excluding the viscosity adjusting solvent of the paste and processing it into a thin sheet, is developed, and the paste is applied, dried, and sintered. A nano metal bonding sheet (patent document 4), which is devised to be simpler when mounting than a process step, and a nano silver bonding sheet (sixth patent document 6) whose sintering is completed incompletely are also known. There is. However, these conventional nano-metal paste materials are superior in terms of bonding characteristics to lead solder and lead-free solder, but they have protrusions during die attachment, uneven paste coating thickness, and brittle sintered layers. There are various problems in the mounting process, such as compatibility. Nanometal bonding sheet, which is a sheet material of nanometal paste, has solved the problem of simplicity in the mounting process, but the temperature and temperature of the paste are higher than that of the paste during the firing process of the polymer material that is kneaded during sheet formation. Time baking is necessary, and improvement in this respect is indispensable.
特開2006−202944号公報(特許文献1)には、図15に示すように、半導体素子101の銀電極111と銅基板121aとの間に、多孔質金属層である銅ポーラス板103を介在させ、ナノ銀ペースト104を、銀電極111と銅ポーラス板103との間、及び銅基板121aと銅ポーラス板103との間に設置し、加熱して接合する接合方法の発明が開示されている。この発明は、ナノ銀ペーストの使用量削減と応力緩和の効果を有するが、ナノ銀ペーストのバインダに含まれる有機成分が焼成の際に多量にガス化するため、形成される接合構造の接合強度、耐熱性、電気伝導度及び熱伝導度に悪影響を及ぼすこと、ペースト状の接合材料であるためシート状の接合材料に比べて実装過程での種々の複雑さが存在すること、更に加熱接合過程での焼成設定温度で、長い保持時間を要すること等の欠点がある。 In JP 2006-202944 A (Patent Document 1), as shown in FIG. 15, a copper porous plate 103, which is a porous metal layer, is interposed between a silver electrode 111 of a semiconductor element 101 and a copper substrate 121a. Then, the nano silver paste 104 is placed between the silver electrode 111 and the copper porous plate 103 and between the copper substrate 121a and the copper porous plate 103, and the invention is disclosed as a method of heating and bonding. .. This invention has the effects of reducing the amount of nano silver paste used and relaxing stress, but since the organic components contained in the binder of nano silver paste are gasified in large quantities during firing, the bonding strength of the joint structure formed is increased. , Heat resistance, electrical conductivity and thermal conductivity are adversely affected, and since the paste-like joining material has various complications in the mounting process as compared with the sheet-like joining material, and the heating and joining process However, there is a drawback in that a long holding time is required at the firing set temperature.
被接合材料にナノ銀ペーストを塗布して焼成により接合する方法や、その結果生じる接合構造については、いくつかの従来技術が存在する。特開2012−074627号公報(特許文献2)には接触抵抗を低減せしめる観点から、特開2018−193604号公報(特許文献3)には放熱性の向上と損傷抑制の観点から、特開2016−021578号公報(特許文献5)にはコスト削減の観点から、特許文献1と同様な接合方法又は接合構造の発明が開示されている。しかし、いずれもペースト状の接合材料を使用するため、シート状の接合材料に比べて実装過程での種々の複雑さが存在することや焼成設定温度で
の加熱接合に長時間を要すること等の欠点がある。
There are some conventional techniques for a method of applying a nano silver paste to a material to be bonded and bonding the material by firing, and a bonding structure resulting therefrom. Japanese Unexamined Patent Application Publication No. 2012-074627 (Patent Document 2) discloses a method for reducing the contact resistance, and Japanese Unexamined Patent Application Publication No. 2018-193604 (Patent Document 3) discloses a method for improving heat dissipation and suppressing damage. From the viewpoint of cost reduction, Japanese Patent Laid-Open Publication No. 021578 (Patent Document 5) discloses an invention of a bonding method or a bonding structure similar to that of Patent Document 1. However, since each uses a paste-like bonding material, there are various complications in the mounting process as compared with a sheet-shaped bonding material, and it takes a long time to perform heating and bonding at the firing set temperature. There are drawbacks.
特開2017−069560号公報(特許文献4)には、金属微粒子を含む加熱接合用シートの発明が開示されている。しかし、この発明には、加熱接合用シートが含有する熱分解性バインダが焼成時に多量の気体を発生させるため、接合強度等が低下し、かつ焼成設定温度での加熱接合に長時間を要する欠点等がある。また、国際公開2015−056589号公報(特許文献6)には、銀ナノ粒子を含有するペーストの焼結により作製される加熱接合用の銀シートであって、該焼結を途中で停止させてある銀シートの発明が開示されている。しかし、この発明では、加圧下で焼成設定温度170℃〜250℃での加熱接合に於いて完全焼結には更に3〜30分の長時間を要することや、多量の銀ナノ粒子を含有するため高コストである等の欠点がある。 Japanese Unexamined Patent Application Publication No. 2017-069560 (Patent Document 4) discloses an invention of a heating bonding sheet containing metal fine particles. However, in the present invention, since the heat-decomposable binder contained in the heat-bonding sheet generates a large amount of gas during firing, the bonding strength and the like are reduced, and it takes a long time for heat-bonding at the firing set temperature. Etc. In addition, International Publication No. 2015-056589 (Patent Document 6) discloses a silver sheet for heat bonding, which is produced by sintering a paste containing silver nanoparticles, and the sintering is stopped halfway. Certain silver sheet inventions are disclosed. However, in the present invention, it takes a further 3 to 30 minutes for complete sintering in heating and joining at a firing temperature of 170° C. to 250° C. under pressure, and a large amount of silver nanoparticles are contained. Therefore, there are drawbacks such as high cost.
一般に加熱接合用の接合シートを用いた半導体実装分野での高精度化・微細化接合に要請される課題を要約して述べると、実装プロセスの簡易化・短時間化、低コスト化、合わせて高機能性保持と共に、長期安定性も有し、同時に量産性も保証すること、さらに近年重要となる製品の廃棄時における環境安全性が挙げられる。
より詳しくは、接合シートには工業製品として次の特性が求められる。(1)焼成前では、工業製品としての保存時における品質安定性、切断容易性など積層体形成作業の簡便性、(2)焼結進行時においては、より低い焼結温度、より短い焼結時間、焼結時に発生する分解成分の安全性、(3)焼結完了後は接合強度特性、電気伝導・熱伝導特性、環境温度の変化への適正応答性、すなわち応力緩和特性を有するなど長期品質信頼性が求められる。上記の通り、これらをすべて解決した製品は見当たらないし、はんだ等現状市場流通製品に比較して、優れた特性を有し、応力緩和が最適化なされていなければならない。本発明は、流通製品であるはんだ接合剤や接合シートより、上記のすべての点で優れている性能特性を有する製品を実現することを目的とする。
Generally speaking, the problems required for high precision and miniaturization bonding in the field of semiconductor mounting using bonding sheets for heat bonding are summarized as follows: simplification of mounting process, shortening of time, cost reduction, In addition to maintaining high functionality, it also has long-term stability and at the same time guarantees mass productivity, and environmental safety at the time of disposal of products, which has become important in recent years.
More specifically, the joining sheet is required to have the following properties as an industrial product. (1) Before firing, the stability of the quality of the product as an industrial product during storage, the ease of cutting, such as ease of cutting, and the convenience of the laminate forming work. (2) When sintering proceeds, lower sintering temperature, shorter sintering. Long time, safety of decomposed components generated during sintering, (3) Bonding strength characteristics, electric conduction/heat conduction characteristics, proper response to changes in environmental temperature after completion of sintering, that is, stress relaxation characteristics Quality reliability is required. As described above, no product that solves all of these problems can be found, and it must have excellent characteristics and be optimized for stress relaxation as compared with current market products such as solder. An object of the present invention is to realize a product having performance characteristics which are superior in all the above points to a solder bonding agent and a bonding sheet which are commercial products.
したがって本願発明の課題は、鉛フリーで、高温耐熱接合用途に用いることができ、実装が簡便で、形成される接合の強度、電気伝導度及び熱伝導度に優れ、低コストに製造でき、長期保存可能な、焼結接合用の接合シートとその製法、及び該接合シートを用いた接合方法を提供することである。 Therefore, the subject of the present invention is lead-free, can be used for high temperature heat resistant bonding applications, is easy to mount, has excellent strength, electrical conductivity and thermal conductivity of the formed bond, and can be manufactured at low cost for a long time. A storable joining sheet for sinter joining, a method for producing the joining sheet, and a joining method using the joining sheet.
本発明は、上記課題を解決するためになされたものであり、銅ナノ粒子からなる銅焼結基板と、シングルナノ銀単分散液の該銅焼結基板への塗布・乾燥を組み合わせて、強接合かつ長期信頼性を示す加圧・短時間焼結接合型の接合シートを実現することにより上記課
題を解決するものである。すなわち、ナノ金属ペーストの金属成分を銅ナノ粒子に置き換えて低価格化を図り、ナノ銅ペーストを無加圧、あるいは低加圧下で焼成して、微細孔を多数保有する均一厚みで平行度が良く、内部応力緩和機能を保有する数十ミクロン程度の厚みの焼結完了済みの銅焼結基板を作成し、その接合面となる表面、好ましくは両方の表面には、均一粒子径のシングルナノ銀単分散液を表面から内部にしみこませて塗布して乾燥させる。好ましくは低分子カルボン酸で被覆された、銀シングルナノ粒子を単分散させたシングルナノ銀分散液の塗布乾燥膜(ナノ銀含浸領域)の焼成設定温度は250℃程度が可能であり、銀シングルナノ粒子の粒径分布幅が小さく、短時間内に焼成が一気に進む設計が可能な特徴がある。
The present invention has been made in order to solve the above problems, and a combination of a copper sintered substrate composed of copper nanoparticles and a single nano silver monodispersed liquid applied to and dried on the copper sintered substrate, The object is to solve the above-mentioned problems by realizing a pressure/short-time sintering bonding type bonding sheet which is bonded and exhibits long-term reliability. That is, the metal component of the nano metal paste is replaced with copper nanoparticles to reduce the cost, and the nano copper paste is fired without pressure or under low pressure, and has a uniform thickness with a large number of fine pores and parallelism. Well, create a sintered copper substrate with a thickness of about several tens of microns that has an internal stress relaxation function, and use a single nanoparticle of uniform particle size on the surface to be the joint surface, preferably on both surfaces. The silver monodisperse liquid is soaked from the surface to the inside, coated, and dried. Preferably, the firing temperature of the coating and drying film (nanosilver-impregnated region) of a single nanosilver dispersion liquid in which silver single nanoparticles are monodispersed and coated with a low molecular weight carboxylic acid can be set to about 250° C. The particle size distribution width of the nanoparticles is small, and there is a feature that it is possible to design the firing to proceed at once in a short time.
本発明の第1の形態は、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結構造体である銅焼結基板と、該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子から構成される接合シートであり、前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていることを特徴とする接合シートである。 A first aspect of the present invention is a copper sintered substrate, which is a porous copper sintered structure composed of a plurality of copper nanoparticles bonded by sintering, and a copper sintered substrate disposed on the surface and fine pores of the copper sintered substrate. A bonding sheet composed of a plurality of silver single nanoparticles having an organic coating, wherein the silver single nanoparticles are bonded to each other and also to the copper sintered structure, and the number density of the silver single nanoparticles is The joining sheet is characterized in that it is high on at least one surface of the joining sheet, low inside, and has a gradient density.
本発明の第2の形態は、前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D84)が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子である前記接合シートである。 In a second aspect of the present invention, the silver single nanoparticles are silver having a 84% particle size (D 84 ) in the particle size distribution of silver nuclei of 1.4 to 2.0 nm and a particle size distribution width of 15% or less. The bonding sheet is nanoparticles.
本発明の第3の形態は、前記銀シングルナノ粒子が、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である前記接合シートである。 A third aspect of the present invention is the bonding sheet, wherein the silver single nanoparticles are carboxylic acid-coated silver nanoparticles having an organic coating amount of 10 to 15% by mass.
本発明の第4の形態は、前記数密度が、前記接合シートの裏表の両方の表面から内部に向けて低くなっている前記接合シートである。 A fourth aspect of the present invention is the bonding sheet, wherein the number density is lowered from both front and back surfaces of the bonding sheet toward the inside.
本発明の第5の形態は、前記数密度が、前記接合シートの裏表の表面のうち、片側の表面から他方の表面に向けて低くなっている前記接合シートである。ただし、該数密度が低い方の表面においても、銀シングルナノ粒子の数密度は、接合機能を有する程度の数密度となっている。 A fifth aspect of the present invention is the bonding sheet, wherein the number density decreases from one surface to the other surface of the front and back surfaces of the bonding sheet. However, even on the surface having the lower number density, the number density of the silver single nanoparticles is a number density having a bonding function.
本発明の第6の形態は、有機被覆を有する銀シングルナノ粒子を溶媒に分散させてシングルナノ銀分散液を得る、シングルナノ銀分散液準備工程と、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する銅焼結基板形成工程と、前記銅焼結基板の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、前記銅焼結基板の前記表面及び該表面に隣接する体積領域に、傾斜濃度化された銀シングルナノ粒子を配置して、傾斜機能を付与する傾斜機能付与工程、を有することを特徴とする接合シートの製法である。 A sixth aspect of the present invention is a single nanosilver dispersion liquid preparation step of dispersing silver single nanoparticles having an organic coating in a solvent to obtain a single nanosilver dispersion liquid, and a nanocopper paste containing copper nanoparticles. A copper sintered substrate forming step of forming a porous copper sintered substrate by firing, and applying or impregnating the single nano silver dispersion liquid on the surface of the copper sintered substrate and further drying the copper A bonding sheet, which comprises a step of imparting a gradient function by arranging gradient-concentrated silver single nanoparticles on the surface of the sintered substrate and a volume region adjacent to the surface, It is a manufacturing method.
本発明の第7の形態は、前記接合シートを介して、第1被接合物と第2被接合物を接合する接合方法であり、第1被接合物と、1枚以上の前記接合シートと、第2被接合物、をこの順に積層して積層体を形成する積層ステップと、圧力を加えつつ、当該積層体を焼成して接合体を形成するステップを有することを特徴とする接合方法である。 The 7th form of this invention is a joining method which joins a 1st to-be-joined object and a 2nd to-be-joined object via the said joining sheet, and a 1st to-be-joined object and one or more said joining sheets. And a second object to be joined in this order to form a laminate, and a step of firing the laminate while applying pressure to form a joined body. is there.
本発明の第8の形態は、前記積層ステップにおいて、積層に先立って実装時の固定化を確実にするための固定化助剤を前記接合シートの表面に添加する前記接合方法である。 An eighth aspect of the present invention is the joining method, wherein in the laminating step, an immobilization aid for ensuring immobilization at the time of mounting is added to the surface of the joining sheet prior to the lamination.
本発明の第9の形態は、被接合物に、前記接合シートを積層して仮留めしてなる積層体である。 A ninth aspect of the present invention is a laminated body obtained by laminating and temporarily fixing the joining sheet on an article to be joined.
本発明の第1の形態によれば、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結構造体である銅焼結基板と、該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子から構成される接合シートであり、前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていることを特徴とする接合シートを提供できる。 According to the first aspect of the present invention, a copper sintered substrate, which is a porous copper sintered structure composed of a plurality of copper nanoparticles bonded by sintering, and a copper sintered substrate arranged on the surface and fine pores of the copper sintered substrate. A plurality of silver single nanoparticles having an organic coating, wherein the silver single nanoparticles are bonded to each other, the copper sintered structure is also bonded, the number density of the silver single nanoparticles. Can provide a joining sheet characterized by being high in at least one surface of the joining sheet, low in the inside thereof, and having a gradient concentration.
本形態の接合シートは、焼成済の銅焼結基板と、未焼成の銀シングルナノ粒子群から構成される。銅焼結基板は銅ナノ粒子の焼結により、微細孔を有して互いに粒子間結合した銅金属の多孔質の焼結構造体(銅焼結構造体)を形成している。有機被覆を有する銀シングルナノ粒子群は、銅焼結基板の表面及び銅焼結構造体の微細孔内に吸着結合して分布している。図2を参照して、銅焼結基板2と銀シングルナノ粒子5からなるこのような構成は、例えば、銅ナノ粒子4を含むナノ銅ペーストを焼成して銅焼結基板2を作製し、銅焼結基板2の表面に銀シングルナノ粒子5を含むシングルナノ銀分散液を塗布・含浸させ、さらにシングルナノ銀分散液の溶媒を乾燥除去することにより形成することができる。「銅焼結基板と・・銀シングルナノ粒子群から構成される」とは、銀シングルナノ粒子を銅焼結基板の表面及び微細孔に配置する際に用いられる溶媒などが除去されていることを意味する。本形態の接合シートは、溶媒が除去されているゆえに、乾燥状態の表面を有するから、特にカバーの為のフィルム等を施さなくても数枚を重ねて保管することに支障がなく、空気中の塵埃も付着しにくく、取り扱いが容易で保存性にも優れる。また、溶媒が除去されているから、該接合シートを用いた接合の為の加圧焼成の際には、溶媒の熱分解や酸化分解によるガスの発生がないので、銅金属の多孔質焼結構造体の破壊・劣化がなく、銀シングルナノ粒子の銀金属成分の低温融解現象により、銅金属の多孔質焼結構造体の銀メッキ化と銀銅合金化により強固な接合構造体が形成される。 The bonding sheet of this embodiment is composed of a sintered copper sintered substrate and an unsintered silver single nanoparticle group. The copper sintered substrate has a porous sintered structure of copper metal (copper sintered structure) having fine pores and interparticle-bonded to each other by sintering copper nanoparticles. The silver single nanoparticles having an organic coating are adsorbed and distributed on the surface of the copper sintered substrate and in the fine pores of the copper sintered structure. With reference to FIG. 2, such a configuration including the copper sintered substrate 2 and the silver single nanoparticles 5 is, for example, a nano copper paste containing the copper nanoparticles 4 is fired to produce the copper sintered substrate 2. It can be formed by coating and impregnating the surface of the copper sintered substrate 2 with a single nano silver dispersion liquid containing the silver single nano particles 5, and further removing the solvent of the single nano silver dispersion liquid by drying. "Comprised of a copper sintered substrate and a silver single nanoparticle group" means that the solvent used when arranging the silver single nanoparticles on the surface of the copper sintered substrate and on the micropores has been removed. Means Since the bonding sheet of this embodiment has a dry surface because the solvent has been removed, there is no problem in storing a plurality of sheets in a stack even without applying a film or the like for the cover in the air. Dust is not easily attached, is easy to handle and has excellent storability. In addition, since the solvent has been removed, no gas is generated due to thermal decomposition or oxidative decomposition of the solvent during pressure firing for bonding using the bonding sheet. There is no destruction or deterioration of the structure, and the low temperature melting phenomenon of the silver metal component of the silver single nanoparticles forms a strong joint structure by silver plating and silver-copper alloying of the porous sintered structure of copper metal. It
本形態の接合シートには2つのタイプがある。1つは図(1A)に示すように、裏表の両面に銀シングルナノ粒子が高密度に分布しているタイプAであり、もう1つは図(1B)に示すように、銀シングルナノ粒子が片面には高密度で、裏面は焼成時の接合が可能な程度に低濃度に分布制御されたタイプBである。本形態の接合シートの使用時には、例えば2つの被接合物の間にタイプAの本接合シートを挟んで積層体を形成し、この積層体を加圧焼成することにより、本接合シートに含まれる銀シングルナノ粒子の有機被覆を酸化除去しつつ、該銀シングルナノ粒子の銀核を、他の銀シングルナノ粒子の銀核や、焼結結合済の銅ナノ粒子や、被接合物と焼結結合させて、本接合シートを介して2つの被接合物が接合した接合体を形成する。接合のために焼成する際には、銅焼結基板は焼結済であり、銀シングルナノ粒子を焼結させるだけでよいから、焼成設定温度での焼成に要する時間は短くて済む。加えて本接合シートにおいては、焼結が必要な銀シングルナノ粒子は熱伝達の速い表面付近に集中しており、焼成設定温度での焼成に要する時間は10〜60秒程度の短時間で済み、従来のナノ銀ペーストによる接合の1/5程度の時間で焼成でき、熱分解してガスを発生する溶媒がそもそも存在せず、かつ、接合強度低下の原因となる銀シングルナノ粒子の有機被覆の熱分解に伴うガスの発生量も少ないから大きな接合強度を確保できる。更に、従来のナノ銀ペーストでは必要であった塗布の手間も、はみ出しの心配も、乾燥に要する時間も不要である。加えて、本形態の接合シートは、銀の使用量が少なくて済むから低コストで製造できる。 There are two types of joining sheets of this embodiment. One is type A in which silver single nanoparticles are densely distributed on both sides, as shown in Fig. (1A), and the other is silver single nanoparticles, as shown in Fig. (1B). Is a type B in which one side has a high density and the back side has a distribution controlled to a low concentration such that bonding during firing is possible. When the joining sheet of the present embodiment is used, for example, a type A main joining sheet is sandwiched between two objects to be joined to form a laminate, and the laminate is pressure-fired to be included in the main joining sheet. While oxidizing and removing the organic coating of the silver single nanoparticles, the silver nuclei of the silver single nanoparticles are sintered with the silver nuclei of other silver single nanoparticles, the copper nanoparticles already sintered and bonded, or the object to be bonded. They are joined together to form a joined body in which two objects to be joined are joined via the present joining sheet. When firing for bonding, the copper sintered substrate has already been sintered and only the silver single nanoparticles have to be sintered, so that the firing time at the firing setting temperature can be short. In addition, in this bonding sheet, the silver single nanoparticles that need to be sintered are concentrated near the surface where heat transfer is fast, and the time required for firing at the firing setting temperature can be as short as 10 to 60 seconds. , Organic coating of silver single nanoparticles that can be fired in about 1/5 of the time of bonding with conventional nano-silver paste, has no solvent that thermally decomposes to generate gas, and causes a decrease in bonding strength Since the amount of gas generated due to the thermal decomposition of is small, a large bonding strength can be secured. Furthermore, the time and effort required for coating, worries of squeeze-out, and the time required for drying, which are required with conventional nanosilver pastes, are unnecessary. In addition, the bonding sheet of this embodiment can be manufactured at low cost because the amount of silver used is small.
更に、本形態の接合シートにおいては、表面に垂直な方向での銀シングルナノ粒子の濃度分布は、内部に進むにつれて濃度が小さくなり(図(1c)を参照)、被接合物との接合界面33付近には銀シングルナノ粒子がほぼ100%、すなわち95%以上の相対濃度(銀成分の密度の、銀成分と銅成分の密度の合計に対する割合)で集中しており、接合の
ための焼成後の接合界面での接合力は、銀シングルナノ粒子の焼結による低融点化した銀核の融液が全て担い、熱伝導度及び電気伝導度に優れた強接合が可能な設計となっている。また、接合シートの内部においては銀シングルナノ粒子の銀核と多孔質の銅焼結構造体がほぼ合金化されて一体化し、強固な結合を形成する。
Furthermore, in the bonding sheet of the present embodiment, the concentration distribution of the silver single nanoparticles in the direction perpendicular to the surface becomes smaller as it goes inward (see FIG. (1c)), and the bonding interface with the object to be bonded is decreased. In the vicinity of 33, silver single nanoparticles are concentrated at almost 100%, that is, at a relative concentration of 95% or more (ratio of the density of the silver component to the total density of the silver component and the copper component), and firing for bonding. The bonding force at the bonding interface afterward is entirely borne by the melt of the silver nuclei whose melting point is lowered by the sintering of the silver single nanoparticles, and the strong bonding with excellent thermal conductivity and electrical conductivity is designed. There is. Further, inside the bonding sheet, the silver nuclei of silver single nanoparticles and the porous copper sintered structure are almost alloyed and integrated to form a strong bond.
本明細書において、銅ナノ粒子とは、有機被覆されていない、平均粒径が約5×101nm程度の銅粒子をいう。本形態の接合シートは、焼結結合した複数の銅ナノ粒子からなる多孔質の銅焼結基板が応力緩和特性を発揮するから、接合のための焼成時には被接合物間の温度伸縮特性の相違によらない強固な接合の形成という利点を有し、接合のための焼成後には形成された接合の高耐久性及び長期信頼性という利点を有する。例えば、本形態の接合シートを間に挟んで、接合面には金属メッキ加工がなされたシリコン半導体と銅基板を、加圧焼成により強固に接合することができ、形成された接合は熱衝撃に対する長期耐久性を有する。 In the present specification, the copper nanoparticles refer to copper particles that are not organically coated and have an average particle size of about 5×10 1 nm. In the bonding sheet of the present embodiment, the porous copper sintered substrate composed of a plurality of copper nanoparticles bonded by sintering exhibits stress relaxation characteristics, so that the difference in temperature expansion/contraction characteristics between the objects to be bonded during firing for bonding. It has the advantage of forming a strong joint that does not depend on the above, and has the advantages of high durability and long-term reliability of the formed joint after firing for joining. For example, by sandwiching the bonding sheet of the present embodiment, a metal semiconductor on the bonding surface and a copper substrate can be firmly bonded by pressure firing, and the formed bonding is resistant to thermal shock. Has long-term durability.
なお、本明細書において、銀シングルナノ粒子とは、平均粒径が約2nm程度の銀ナノ粒子をいう。銅焼結基板に銀シングルナノ粒子を配置する際に使用する溶媒中での分散性の観点から、銀シングルナノ粒子は有機被覆を有しているが、上記の平均粒径とは、有機被覆の部分を含まない、銀核の粒径(直径)の平均(個数平均)をいう。 In the present specification, the silver single nanoparticles mean silver nanoparticles having an average particle size of about 2 nm. From the viewpoint of dispersibility in a solvent used when arranging silver single nanoparticles on a copper sintered substrate, the silver single nanoparticles have an organic coating. It means the average (number average) of the grain size (diameter) of the silver nuclei, which does not include the part.
本発明の第2の形態によれば、前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D84)が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子である前記接合シートを提供できる。84%粒径(D84)は、多数の粒子を粒径が小さい順に並べて、最も粒径が小さい粒子を0%、最も粒径が大きい粒子を100%の位置としたとき、84%の位置に存在する粒子の粒径のことであり、粒径分布が正規分布の場合には、平均粒径(m)に標準偏差(σ)を加えた値(m+σ)に相当する粒径である。本形態の銀シングルナノ粒子は、その84%の粒径が2.0nm以下であり、粒子の融点が250℃以下であるから、250℃程度の低い温度で焼結結合して銀化することが可能である。なお、84%粒径が1.4nm未満の銀シングルナノ粒子群は、作製時の粒径制御が難しい。また、粒径分布幅(粒径分布の標準偏差の、平均粒径に対する割合)は15%以下と狭いことが好ましい。例えば、平均粒径1.7nm±0.3nm(粒径の標準偏差)であれば、粒径分布幅は15%であるから、この条件を満たす。接合シートに含まれる銀シングルナノ粒子の粒径分布幅が狭いと、接合のための焼成の際に、該銀シングルナノ粒子同士はほぼ同一温度で溶融して結合可能となるから、焼結が一気に進み、短時間で効率的に焼結結合して、強固な接合が確実に形成される利点がある。 According to the second aspect of the present invention, the silver single nanoparticles have a 84% particle size (D 84 ) in the particle size distribution of silver nuclei of 1.4 to 2.0 nm and a particle size distribution width of 15% or less. It is possible to provide the bonding sheet, which is the silver nanoparticles. The 84% particle size (D 84 ) is obtained by arranging a large number of particles in ascending order of particle size, and the particle with the smallest particle size is 0% and the particle with the largest particle size is 100%. When the particle size distribution is a normal distribution, it is a particle size corresponding to a value (m+σ) obtained by adding a standard deviation (σ) to the average particle size (m). In the silver single nanoparticles of this embodiment, 84% of the particles have a particle size of 2.0 nm or less, and the melting point of the particles is 250° C. or less. Therefore, sinter-bonding at a low temperature of about 250° C. to form silver. Is possible. Note that it is difficult to control the particle size of the silver single nanoparticle group having the 84% particle size of less than 1.4 nm during production. Further, it is preferable that the width of the particle size distribution (the ratio of the standard deviation of the particle size distribution to the average particle size) is as narrow as 15% or less. For example, if the average particle size is 1.7 nm±0.3 nm (standard deviation of particle size), the particle size distribution width is 15%, which satisfies this condition. When the particle size distribution width of the silver single nanoparticles contained in the bonding sheet is narrow, the silver single nanoparticles can be melted and bonded at almost the same temperature at the time of firing for bonding. There is an advantage that the process proceeds all at once, and the sinter bonding is efficiently performed in a short time, so that a strong bond is surely formed.
本発明の第3の形態によれば、前記銀シングルナノ粒子が、有機被覆量10〜15質量%のカルボン酸被覆銀ナノ粒子である前記接合シートを提供できる。有機被覆の成分がカルボン酸由来の銀シングルナノ粒子は、焼結時にカルボン酸の酸化分解反応により発熱する。したがって、被接合物と本形態の接合シートを250℃程度の低温の焼結環境温度で接合する場合であっても、本接合シートにおいて、被接合物との接合界面付近に存在する銀シングルナノ粒子は焼結の進行とともに連鎖的に溶融状態となり、効率的かつ加速度的に接合が確実に進行する。すなわち、加温焼結時に銀シングルナノ粒子の有機被覆の酸化分解反応がもたらす発熱効果により、接合シートの接合界面付近全体の温度が自発高温化し、焼結が一気に加速されるように設計されているのである。本形態の接合シートは焼成時に、このように設計された「機能性銀銅ハイブリッド焼結層」を形成可能であるから、低温の焼結環境温度であっても、短時間焼結及び強固な結合の形成という利点を有する。なお、銀シングルナノ粒子の有機被覆量が10質量%未満である場合には、後述するシングルナノ銀分散液の溶媒中における銀シングルナノ粒子の分散性が悪くなり凝集しやすくなるため、銀シングルナノ粒子を銅焼結基板に配置する際に、その表面に沿った方向に均一に配置することが困難になる。また、有機被覆量が15質量%を超える場合には、有機
被覆の酸化分解に時間を要し、短時間焼結が難しくなる。
According to the third aspect of the present invention, it is possible to provide the bonding sheet in which the silver single nanoparticles are carboxylic acid-coated silver nanoparticles having an organic coating amount of 10 to 15% by mass. The silver single nanoparticles whose organic coating component is derived from carboxylic acid generate heat during the sintering due to the oxidative decomposition reaction of the carboxylic acid. Therefore, even when the object to be bonded and the bonding sheet of the present embodiment are bonded at a low sintering environment temperature of about 250° C., the silver single nano-particles existing near the bonding interface with the object to be bonded in the bonding sheet. The particles will be in a molten state in a chain with the progress of sintering, and the joining will proceed reliably with efficiency and acceleration. That is, the heating effect caused by the oxidative decomposition reaction of the organic coating of the silver single nanoparticles during heating and sintering causes the temperature around the bonding interface of the bonding sheet to spontaneously rise, and the sintering is designed to be accelerated at once. There is. Since the "functional silver-copper hybrid sintered layer" designed in this way can be formed at the time of firing, the joining sheet of the present embodiment can be sintered for a short time and to be strong even at a low sintering environment temperature. It has the advantage of forming bonds. In addition, when the organic coating amount of the silver single nanoparticles is less than 10% by mass, the dispersibility of the silver single nanoparticles in the solvent of the single nanosilver dispersion described later becomes poor and the silver single nanoparticles are easily aggregated. When the nanoparticles are arranged on the copper sintered substrate, it becomes difficult to arrange them uniformly in the direction along the surface thereof. Further, when the organic coating amount exceeds 15% by mass, it takes time to oxidize and decompose the organic coating, making it difficult to sinter for a short time.
本形態においては、上記の発熱効果を確保する観点から、銀シングルナノ粒子の銀核の粒径が小さくなるほど、カルボン酸被覆のカルボン酸の分子量および炭素数は小さいことが好ましい。しかし、小さすぎる銀核は、湿式還元法で形成する際の粒径の制御が困難である。粒径が約2.0nm程度の銀核に対しては、該カルボン酸は、炭素数8のオクタン酸が最適である。 In the present embodiment, from the viewpoint of ensuring the above-mentioned heat generation effect, it is preferable that the smaller the particle size of the silver nuclei of the silver single nanoparticles, the smaller the molecular weight and the carbon number of the carboxylic acid coated with the carboxylic acid. However, if the silver nuclei are too small, it is difficult to control the particle size when they are formed by the wet reduction method. For silver nuclei having a particle size of about 2.0 nm, octanoic acid having 8 carbon atoms is optimal as the carboxylic acid.
本発明の第4の形態によれば、前記数密度が、前記接合シートの裏表の両方の表面から内部に向けて低くなっている前記接合シートを提供できる。本発明の接合シートには、タイプAとタイプBの2つのタイプがある。本形態は、このうちタイプAの接合シートである。例えばシリコン半導体と銅基板のように、温度伸縮特性の異なる2つの被接合材をタイプAの接合シートを介して積層して低温で加圧焼成することにより、強固な接合を形成することができ、形成された接合は熱衝撃に対する長期耐久性を有する。 According to the fourth aspect of the present invention, it is possible to provide the joining sheet in which the number density decreases from both surfaces of the front and back surfaces of the joining sheet toward the inside. The joining sheet of the present invention is of two types, type A and type B. The present embodiment is a type A joining sheet among them. For example, a strong bond can be formed by laminating two materials to be bonded having different temperature expansion/contraction characteristics via a bonding sheet of type A, such as a silicon semiconductor and a copper substrate, and press-baking them at a low temperature. The formed joint has long-term durability against thermal shock.
タイプAの接合シートの場合には、図(2A)に示すように、銀シングルナノ粒子の数密度は、接合シートの裏表の両方の表面で大きく、内部で小さくなり、片側の表面からの距離を横軸に、前記比の値を縦軸にとってグラフを描くと、U字型のグラフとなる。タイプBの接合シートの場合には、図(2B)に示すように、前記数密度は、接合シートの片側の表面で大きく、内部方向に進むにつれて減少し、前記片側の表面からの距離xを横軸に、前記比の値を縦軸にとってグラフを描くとおよそ指数関数的に減少するグラフとなる。dを銅焼結基板の厚さ、C,Lを正のパラメータとして、0<x≦dの範囲で前記比の値を指数関数C×exp(−x/L)でフィットしたとき、長さL×ln(2)をタイプBの接合シートの半減厚という。また、タイプAの接合シートの場合には、C,D,Lを正のパラメータとして、0<x≦dの範囲で前記比の値を2つの指数関数の和C×exp(−x/L)+D×exp((x−d)/L)でフィットしたとき、長さL×ln(2)を半減厚という。なお、いずれのタイプの接合シートでも、ナノ銀がコートされた表面における、銀シングルナノ粒子の前記相対濃度はほぼ100%、すなわち95%以上である。 In the case of the type A joining sheet, as shown in FIG. 2A, the number density of silver single nanoparticles is large on both the front and back surfaces of the joining sheet and is small inside, and the distance from one surface is large. Is plotted on the abscissa and the value of the ratio is plotted on the ordinate, a U-shaped graph is obtained. In the case of the type B joining sheet, as shown in FIG. 2B, the number density is large on the surface on one side of the joining sheet and decreases as it goes inward, and the distance x from the surface on one side is reduced. When a graph is drawn with the value of the ratio on the horizontal axis and the vertical axis, the graph decreases exponentially. When d is the thickness of the copper sintered substrate, C and L are positive parameters, and the value of the ratio is fitted with an exponential function C×exp (−x/L) in the range of 0<x≦d, the length is L×ln(2) is referred to as the half-thickness of the type B joining sheet. Further, in the case of the type A joint sheet, C, D, and L are positive parameters, and the value of the ratio is the sum of two exponential functions C×exp(−x/L) in the range of 0<x≦d. )+D×exp((x−d)/L), the length L×ln(2) is called half thickness. In any of the joining sheets, the relative concentration of silver single nanoparticles on the surface coated with nanosilver is almost 100%, that is, 95% or more.
接合シートのナノ銀がコートされた表面から深さLまでの範囲(0≦x≦L)に含まれる体積領域をナノ銀含浸領域という。ナノ銀含浸領域(3)は便宜上、定めた体積領域であって、接合シートのナノ銀含浸領域以外の部分にも銀シングルナノ粒子は存在している。また、接合シートの厚みが薄い場合には、タイプAでもタイプBでも、接合シート全体がナノ銀含浸領域となる。 The volume region included in the range (0≦x≦L) from the surface coated with nano silver of the bonding sheet to the depth L is referred to as a nano silver-impregnated region. For convenience, the nano-silver-impregnated region (3) is a defined volume region, and the silver single nanoparticles are also present in the portion other than the nano-silver-impregnated region of the bonding sheet. When the thickness of the joining sheet is thin, the entire joining sheet of both type A and type B becomes the nano silver-impregnated region.
なお、十分な接合強度を確保する観点から、最低限の銀シングルナノ粒子の含有量は必要であり、半減厚は小さすぎないことが好ましい。半減厚は限定されるものではないが、概ね1〜100μmであり、より好ましくは5〜20μmである。なお、接合シートの厚みが薄い場合には、半減厚に上限を設ける必要はない。 From the viewpoint of ensuring sufficient bonding strength, the minimum content of silver single nanoparticles is necessary, and the half-thickness is preferably not too small. Although the half-thickness is not limited, it is generally 1 to 100 μm, and more preferably 5 to 20 μm. When the thickness of the joining sheet is thin, it is not necessary to set an upper limit on the half-thickness.
本発明の第5の形態によれば、前記数密度が、前記接合シートの裏表の表面のうち、片側の表面から他方の表面に向けて低くなっている前記接合シートを提供できる。本形態は、タイプBの接合シートである。タイプBの接合シートは通常、その厚みが薄くて接合シート全体がナノ銀含浸領域であるものを使用し、半分の厚みのものを2枚重ねて使用してタイプAの代わりに用いる。そうすることで、焼成接合後には、タイプAの接合シートにおいて最も脆弱な銅焼結基板の内部のかわりに、「機能性銀銅ハイブリッド焼結層」が配置され、大きな接合強度を確保することができる。 According to the fifth aspect of the present invention, it is possible to provide the bonding sheet in which the number density decreases from one surface to the other surface of the front and back surfaces of the bonding sheet. This form is a type B joining sheet. As the type B joining sheet, one having a small thickness and having the entire joining sheet being a nano silver-impregnated region is usually used, and two sheets having a half thickness are used in piles and used in place of the type A. By doing so, after firing and bonding, the "functional silver-copper hybrid sintered layer" is arranged instead of the most fragile inside of the copper sintered substrate in the bonding sheet of type A, and a large bonding strength is secured. You can
本発明の第6の形態によれば、有機被覆を有する銀シングルナノ粒子を溶媒に分散させ
てシングルナノ銀分散液を得る、シングルナノ銀分散液準備工程と、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する、銅焼結基板形成工程と、前記銅焼結基板の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、前記銅焼結基板の前記表面及び該表面に隣接する体積領域に、傾斜濃度化された銀シングルナノ粒子を配置して、傾斜機能を付与する傾斜機能付与工程、を有することを特徴とする接合シートの製法を提供できる。
According to the sixth aspect of the present invention, a single nanosilver dispersion liquid preparation step of dispersing silver single nanoparticles having an organic coating in a solvent to obtain a single nanosilver dispersion liquid, and a nanocopper containing copper nanoparticles By firing the paste to form a porous copper sintered substrate, a copper sintered substrate forming step, and by coating or impregnating the single nano silver dispersion liquid on the surface of the copper sintered substrate, and further drying. A gradient function imparting step of imparting a gradient function by arranging gradient-concentrated silver single nanoparticles on the surface of the copper sintered substrate and a volume region adjacent to the surface. A method for manufacturing a joining sheet can be provided.
シングルナノ銀分散液準備工程においては、有機被覆を有する銀シングルナノ粒子を溶媒に分散させてシングルナノ銀分散液を得る。溶媒としては限定されるものではないが、アルカン系溶剤、例えばメチルシクロヘキサンを使用できる。粘度調整のために低沸点溶剤を少量加えてもよい。銀シングルナノ粒子は粒径分布幅が約15%以下と狭く、かつ、溶媒中に単分散していることが好ましい。エヴァポレータを用いて濃度を調整し、銀シングルナノ粒子を約10質量%の濃度で含むシングルナノ銀分散液を得る。 In the single nano silver dispersion liquid preparation step, silver single nanoparticles having an organic coating are dispersed in a solvent to obtain a single nano silver dispersion liquid. The solvent is not limited, but an alkane solvent such as methylcyclohexane can be used. A small amount of a low boiling point solvent may be added to adjust the viscosity. It is preferable that the silver single nanoparticles have a narrow particle size distribution width of about 15% or less and are monodispersed in a solvent. The concentration is adjusted using an evaporator to obtain a single nanosilver dispersion liquid containing silver single nanoparticles at a concentration of about 10% by mass.
銅焼結基板形成工程においては、銅ナノ粒子を含有するナノ銅ペーストを焼成して多孔質の銅焼結基板を形成する。鏡面研磨された基板、例えばシリコン基板上にナノ銅ペーストを約15〜200μm程度の均一な厚みで塗布し、ナノ銅ペーストに含まれる溶媒を乾燥させる工程を経て、純窒素ガス雰囲気で無加圧、若しくは低加圧で焼成して、シリコン基板から分離し、約10〜150μm程度の均一厚みの自立した焼結済みの銅焼結基板を得る。 In the step of forming a copper sintered substrate, a nano copper paste containing copper nanoparticles is fired to form a porous copper sintered substrate. A nano-copper paste is applied on a mirror-polished substrate, for example, a silicon substrate, with a uniform thickness of about 15 to 200 μm, and the solvent contained in the nano-copper paste is dried, and no pressure is applied in a pure nitrogen gas atmosphere. Alternatively, it is fired at a low pressure to separate it from the silicon substrate to obtain a self-standing sintered copper sintered substrate having a uniform thickness of about 10 to 150 μm.
傾斜機能付与工程においては、多孔質の銅焼結構造体である銅焼結基板の少なくとも片側の表面に、前記シングルナノ銀分散液を塗布若しくは含浸させ、更に低温でゆっくり乾燥させることにより、前記銅焼結基板の少なくとも前記表面の側に、傾斜濃度化された有機被覆を有する銀シングルナノ粒子を含むナノ銀含浸領域を形成して、前記銅焼結基板にナノ銀をコートしてなる接合シートを得る。このようにしてナノ銀含浸領域を形成することにより、接合シートにおける銀シングルナノ粒子の濃度は、表面が高濃度で、内部に向かって低濃度化した傾斜濃度分布となる。 In the gradient function imparting step, at least one surface of the copper sintered substrate that is a porous copper sintered structure is coated or impregnated with the single nanosilver dispersion liquid and further slowly dried at a low temperature, Bonding formed by forming a nano-silver impregnated region containing silver single nanoparticles having a gradient-concentrated organic coating on at least the surface side of a copper sintered substrate, and coating the copper sintered substrate with nano silver Get the sheet. By forming the nano-silver-impregnated region in this way, the concentration of silver single nanoparticles in the joining sheet becomes a high concentration on the surface and a concentration concentration distribution that decreases toward the inside.
傾斜機能付与工程において、銅焼結基板の表面にシングルナノ銀分散液を塗布若しくは含浸させ、更に低温でゆっくり乾燥させると、銀シングルナノ粒子が銅焼結基板の表面及び微細孔に配置され、前記有機被覆を有する銀シングルナノ粒子群は、銅焼結基板の表面及び多孔質の銅焼結構造体の微細孔内に吸着結合して分布した接合シートが得られる。一方、シングルナノ銀分散液の溶媒と、オプションで添加される低沸点溶剤とは、低温でゆっくり乾燥させる際に蒸発して除去される。したがって、接合シートの表面は乾燥状態となるから、当該接合シートは数枚を重ねて保管することに支障がなく、空気中の塵埃も付着しにくく、取り扱いが容易で保存性にも優れる。更に、接合のための焼成設定温度(250℃〜350℃)での焼成の際には、溶媒や低沸点溶剤は上記の通り蒸発除去されて存在しないから、溶媒や低沸点溶剤が銀シングルナノ粒子の焼結を妨げることはない。 In the step of imparting a gradient function, a single nano silver dispersion liquid is applied or impregnated on the surface of the copper sintered substrate, and further slowly dried at a low temperature, silver single nanoparticles are arranged on the surface and the fine pores of the copper sintered substrate, The silver single nanoparticle group having the organic coating is adsorbed and bonded to the surface of the copper sintered substrate and the fine pores of the porous copper sintered structure to form a bonding sheet. On the other hand, the solvent of the single nanosilver dispersion liquid and the optional low boiling point solvent are evaporated and removed during slow drying at low temperature. Therefore, since the surface of the bonding sheet is in a dry state, there is no problem in stacking and storing several bonding sheets, dust in the air is not easily attached, and handling is easy and storage stability is excellent. Further, during firing at a firing setting temperature (250° C. to 350° C.) for bonding, the solvent and the low boiling point solvent are not removed by evaporation as described above, so the solvent and the low boiling point solvent do not exist in the silver single nanoparticle. It does not interfere with the sintering of the particles.
本発明の第7の形態によれば、図(3A)又は図(3B)を参照して、前記接合シート(1a又は1b)を介して、第1被接合物(6a)と第2被接合物(6b)を接合する接合方法であり、第1被接合物と、1枚以上の前記接合シート(1a又は1b)と、第2被接合物、をこの順に積層して積層体(10)を形成する積層ステップと、圧力を加えつつ、当該積層体を焼成して接合体を形成するステップ、を有することを特徴とする接合方法を提供できる。被接合物は限定されるものではないが、たとえば、パワー半導体等の半導体、電子部品、金属基板、回路基板、又は放熱板であり、特に、パワー半導体と銅基板が好適である。接合シートは、被接合物の形状にあわせて、自在にカットされた切断片として利用してもよい。 According to the 7th form of this invention, with reference to FIG. 3A or FIG. 3B, the 1st to-be-joined object (6a) and the 2nd to-be-joined object via the said joining sheet (1a or 1b). A method for joining objects (6b), wherein a first article to be joined, one or more of the joining sheets (1a or 1b), and a second article to be joined are laminated in this order, and a laminate (10). It is possible to provide a joining method characterized by including a laminating step of forming a laminated body and a step of firing the laminated body while applying pressure to form a joined body. The article to be joined is not limited, but is, for example, a semiconductor such as a power semiconductor, an electronic component, a metal substrate, a circuit board, or a heat dissipation plate, and a power semiconductor and a copper substrate are particularly preferable. The joining sheet may be used as a cut piece that is freely cut according to the shape of the article to be joined.
本発明に係る接合シートは、製造時及び実装時の取り扱い容易性の観点から、その厚さは、好ましくは10〜150μmの範囲で、より好ましくは20〜100μmの範囲で変える設計が可能で、放熱基板等大面積接合には厚く、小面積の半導体接合では薄くし、多数枚のシートの重ね合わせ接合も可能である。本接合シートによって形成される接合構造をせん断破壊すると、接合界面付近ではなく銅焼結基板の内部で破壊されることから、接合界面付近のナノ銀含浸領域で形成される「機能性銀銅ハイブリッド焼結層」は内部より高強度であることがわかる。したがって、本接合シートは、1枚の厚さが約30μm以下と薄い場合、本接合シートを重ね合わせて加圧・焼成して接合する方が、接合部全体の厚みを有する1枚のみの本接合シートを加圧・焼成して接合する場合と比較して、より低温・低加圧での焼成で同等の接合強度が確保できる。 The joint sheet according to the present invention can be designed such that the thickness thereof is preferably in the range of 10 to 150 μm, more preferably 20 to 100 μm, from the viewpoint of ease of handling during manufacturing and mounting. It is thick for large area bonding such as a heat dissipation substrate and thin for small area semiconductor bonding, and it is also possible to stack and join a large number of sheets. When the joint structure formed by this joint sheet is shear-ruptured, it is destroyed inside the copper sintered substrate, not near the joint interface. Therefore, the “functional silver-copper hybrid” formed in the nano-silver impregnated region near the joint interface is destroyed. It can be seen that the "sintered layer" has a higher strength than the inside. Therefore, when the thickness of one of the main bonding sheets is as thin as about 30 μm or less, it is better to stack the main bonding sheets and press and fire to bond the main bonding sheets to each other so that the total thickness of the bonding portion is only one. Compared to the case where the joining sheet is pressed and fired for joining, the same joining strength can be secured by firing at a lower temperature and lower pressure.
本発明の第8の形態によれば、前記積層ステップにおいて、積層に先立って実装時の固定化を確実にするための固定化助剤を前記接合シートの表面に添加する前記接合方法を提供できる。本形態の接合方法によれば、積層の際、被接合物と当接する接合シートの表面に固定化助剤が添加されているから、軽く抑えるだけで本接合シートを被接合物に確実に固定化することができる利点を有する。固定化助剤は一定の条件を満足するならばその種類を問わない。その条件とは、(1)上記固定化に必要な粘性を有し、(2)銅焼結基板のナノ銀含浸領域の表面に少量を添加したとき、表面全体に一様な厚みで広がる濡れ性を有し、(3)焼成設定温度(250℃〜350℃)より低い温度で蒸発するから、接合のための焼成時に、銀シングルナノ粒子の焼結を妨げることがなく、(4)少量の使用で足りるので、上記の蒸発で発生する気体も少ないこと、である。たとえば、固定化助剤として、イソボロニルシクロヘキサノールを10〜30質量%、より好ましくは20質量%の濃度でメチルシクロヘキサンに溶解させた溶液を用い、該溶液を銅焼結基板のナノ銀含浸領域の表面に1滴若しくは数滴を滴下することで、上記(1)〜(4)の条件を満たす固定化を達成することができる。 According to the eighth aspect of the present invention, it is possible to provide the joining method in which, in the laminating step, an immobilization aid for ensuring immobilization at the time of mounting is added to the surface of the joining sheet before the lamination. .. According to the joining method of the present embodiment, since the immobilization aid is added to the surface of the joining sheet that comes into contact with the article to be joined at the time of stacking, the main joining sheet can be reliably fixed to the article to be joined by simply holding it lightly. It has the advantage that it can be realized. The immobilization aid may be of any type as long as it satisfies certain conditions. The conditions are (1) having the viscosity necessary for the above-mentioned immobilization, and (2) when a small amount is added to the surface of the nano-silver impregnated region of the copper sintered substrate, wetting that spreads over the entire surface with a uniform thickness. (3) It evaporates at a temperature lower than the preset firing temperature (250°C to 350°C), so that it does not hinder the sintering of silver single nanoparticles during firing for bonding, and (4) a small amount. Since it is sufficient to use, the amount of gas generated by the above evaporation is also small. For example, as a fixing aid, a solution of isobornylcyclohexanol dissolved in methylcyclohexane at a concentration of 10 to 30% by mass, more preferably 20% by mass is used, and the solution is impregnated with nano silver on a copper sintered substrate. Immobilization satisfying the above conditions (1) to (4) can be achieved by dropping one drop or a few drops on the surface of the region.
本発明の第9の形態によれば、図(4A)又は図(4B)を参照して、被接合物(6)に、前記接合シート(1b)を積層して仮留めしてなる積層体を提供できる。被接合物は限定されるものではないが、たとえば、パワー半導体等の半導体、電子部品、金属基板、回路基板、又は放熱板であり、特に、放熱板が好適である。接合シートは、被接合物の形状にあわせて、自在にカットされた切断片として利用してもよい。 According to a ninth aspect of the present invention, with reference to FIG. 4A or FIG. 4B, a laminate obtained by stacking the joining sheet (1b) on the article (6) to be joined and temporarily fixing the same. Can be provided. The article to be joined is not limited, but is, for example, a semiconductor such as a power semiconductor, an electronic component, a metal substrate, a circuit board, or a radiator plate, and a radiator plate is particularly preferable. The joining sheet may be used as a cut piece that is freely cut according to the shape of the article to be joined.
本形態の利用例について説明する。整流素子など電流仕様の発熱の多い半導体と一般の半導体を同一基板上に接合・配置する際に、整流素子の上面に放熱板をさらに加えて接合する必要がある。1つの実装方法は、まず、一般の半導体と整流素子を本発明に係る接合シートにより基板上に焼成接合・配置し、次に、整流素子と放熱板を本発明に係る接合シートを介して焼成接合する方法である。この場合、本形態のように放熱板にあらかじめ本発明に係る接合シートを仮留めした中間積層体を準備しておくと、整流素子と本発明に係る接合シートと放熱板をこの順に接合した積層体を形成する際の位置合わせ等の手間が省ける。なお、仮留めの方法は限定されず、接着剤による局所接着や、局所加圧焼結など様々な方法があり得る。また、用いる接合シートはタイプAでもタイプBでも構わず、タイプBの裏表は被接合物の性質に応じていずれでもよく、複数枚の接合シートを仮留めしてもよい。 An example of using this embodiment will be described. When joining and arranging a semiconductor, such as a rectifying element, which generates a lot of heat with a current specification and a general semiconductor on the same substrate, it is necessary to add a heat sink to the upper surface of the rectifying element and join them. In one mounting method, first, a general semiconductor and a rectifying element are fired and joined and arranged on a substrate by a joining sheet according to the present invention, and then a rectifying element and a heat sink are fired through the joining sheet according to the present invention. It is a method of joining. In this case, when the intermediate laminate in which the joining sheet according to the present invention is temporarily fastened to the heat sink is prepared in advance as in the present embodiment, the rectifying element, the joining sheet according to the present invention, and the heat sink are laminated in this order. It is possible to save the time and labor for positioning when forming the body. The method of temporary fixing is not limited, and various methods such as local bonding with an adhesive and local pressure sintering can be used. The bonding sheet used may be type A or type B, the front and back of type B may be any depending on the properties of the objects to be bonded, and a plurality of bonding sheets may be temporarily fixed.
以下に、本発明に係る銅焼結基板ナノ銀含浸型接合シートとその製法及び接合方法の実施形態を、図面を参照しながら詳細に説明する。 Embodiments of a copper sintered substrate nano-silver-impregnated joining sheet according to the present invention, a method for producing the same, and a joining method will be described in detail below with reference to the drawings.
<1.本発明の背景及び要点>
本発明は、銅ナノ粒子からなる銅焼結基板と、シングルナノ銀単分散液の該銅焼結基板への塗布・乾燥を組み合わせた強接合かつ長期信頼性を示す加圧・短時間焼結接合型の接合シートとその製法、及び該接合シートを用いた接合方法である。
半導体実装分野での高精度化・微細化接合に要請される既述の課題を全て解決するため、接合シートのシート基材として銅ナノ粒子が焼結を完了してなる多孔質の銅焼結基板を用い、半導体と銅基板との接合等における接合機能付与に銀シングルナノ粒子が溶媒中に単分散したシングルナノ銀分散液を用い、実装プロセスの簡易化と実装時間の短時間化を図る。すなわち、シート基材には粒径50nm程度のナノ銅主体の銅焼結基板を用い、低コスト化を図りつつ、応力緩和機能を持たせる。銅焼結基板は、ナノ銅ペーストを無加圧、あるいは低加圧下で焼成して作製され、均一厚みで平行度がよく、微細孔を多数保有して応力緩和機能を有する。その接合面となる片側の表面、あるいは好ましくは両側の表面には、平均粒径がシングルナノメートル程度と極小さく、かつ、粒径分布幅が15%以下と狭く、粒径が均一な銀シングルナノ粒子を含むシングルナノ銀分散液を表面から内部へと浸み込ませて塗布し乾燥させ、表面を高濃度に、内部に向かって低濃度化した傾斜配置分布を実現させ、接合強度の傾斜機能化を図る。すなわち、加温焼結時に銀シングルナノ粒子の有機被覆、好ましくは低分子カルボン酸被覆の酸化分解反応による発熱効果により、接合層全体の温度が自発高温化し、焼結が一気に加速されるように設計された「機能性銀銅ハイブリッド焼結層」を構成し、その接合面は250℃程度の低温域で金属化する粒径分布幅の極狭い銀シングルナノ粒子の分散液を接合面から接合層の内部に向かって、そのナノ粒子濃度を低下するように塗布せしめた、強接合性・内部応力緩和特性を保有させた安価な、半導体接合に適したシート状接合材料である接合シートとその製法、及び接合方法が提供される。焼成のとき、接合層の内部は既に焼結された銅焼結体であるから、焼結の必要な部分は熱伝達の一番早い接合界面近くのみであり、これが接合のための焼成に要する時間をごく短時間とすることを可能としている。
<1. Background and main points of the present invention>
The present invention is a pressure bonding/short time sintering showing strong bonding and long-term reliability, which is obtained by combining a copper sintered substrate made of copper nanoparticles and coating/drying a single nano silver monodisperse liquid on the copper sintered substrate. A joining type joining sheet, a method for producing the joining sheet, and a joining method using the joining sheet.
Porous copper sintering, in which copper nanoparticles have completed sintering as the sheet base material of the joining sheet, in order to solve all the above-mentioned problems required for high precision and miniaturization joining in the field of semiconductor mounting A single nano silver dispersion liquid in which silver single nanoparticles are mono-dispersed in a solvent is used to provide a bonding function when bonding a semiconductor and a copper substrate, etc. by using a substrate, and the mounting process is simplified and the mounting time is shortened. .. That is, a nano-copper-based copper sintered substrate having a particle size of about 50 nm is used as the sheet base material, and a stress relaxation function is provided while achieving cost reduction. The copper sintered substrate is produced by firing the nano-copper paste under no pressure or low pressure, has a uniform thickness and good parallelism, and has a large number of fine holes to have a stress relaxation function. On one surface, or preferably on both surfaces, which is the bonding surface, the average grain size is as small as about 1 nm, and the grain size distribution width is as narrow as 15% or less, and the grain size is uniform. A single nanosilver dispersion containing nanoparticles is dipped from the surface into the interior, applied and dried to achieve a high concentration on the surface and a graded arrangement distribution with a low concentration toward the inside, resulting in a gradient in bonding strength. Aim for functionalization. That is, the organic coating of silver single nanoparticles, preferably a low-molecular carboxylic acid coating during heating and sintering, causes the exothermic effect of the oxidative decomposition reaction to raise the temperature of the entire bonding layer to a spontaneously high temperature, so that sintering is accelerated at once. The designed "functional silver-copper hybrid sintered layer" is composed, and the bonding surface is metallized at a low temperature range of about 250°C. A dispersion liquid of silver single nanoparticles with an extremely narrow particle size distribution is bonded from the bonding surface. A bonding sheet, which is an inexpensive sheet-shaped bonding material suitable for semiconductor bonding, which has strong bonding properties and internal stress relaxation properties, and is applied so as to reduce the concentration of nanoparticles toward the inside of the layer. A manufacturing method and a joining method are provided. At the time of firing, since the inside of the bonding layer is a copper sintered body that has already been sintered, the portion that needs to be sintered is only near the joint interface where heat transfer is the fastest, and this is necessary for firing for bonding. It is possible to make the time very short.
本発明に係る接合シートは、基材である多孔質の銅焼結基板を含むゆえに応力緩和機能を有する。鉛はんだ、あるいは鉛フリー合金はんだは、接合時、構成金属成分の融点以上の温度で使用されるので、使用温度としては350℃〜230℃の範囲で使用される。被接合材料間の熱的特性の違いのために、環境温度に変化があると被接合材料を接合している接合用材料の内部には、形状や温度に依存して、内部応力が発生し、それを緩和する機構が必要となる。鉛では原子間のクリープと呼ばれる応力緩和機構が存在する。しかし、
銀や銅金属のナノ粒子を配したナノ金属ペーストは固相焼結接合であり、金属は高融点で原子間相互作用が強く、クリープ現象の発現による応力緩和を期待することはできない。焼結性金属ナノ粒子を含む接合材料を用いた接合形成においては、焼結後の環境変化で生じる内部応力の、クリープ現象以外のメカニズムによる緩和機構の発現解明と、そのような応力緩和機構を有する接合用材料の最適組成設計が必要となる。本発明では、銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板を基材として用いることで、応力緩和を実現している。
The joining sheet according to the present invention has a stress relaxation function because it includes a porous copper sintered substrate as a base material. Since the lead solder or the lead-free alloy solder is used at a temperature equal to or higher than the melting point of the constituent metal components at the time of joining, it is used in a temperature range of 350°C to 230°C. Due to the difference in thermal characteristics between the materials to be joined, internal stress is generated inside the joining material joining the materials to be joined depending on the shape and temperature when the environmental temperature changes. , A mechanism to alleviate it is needed. In lead, there is a stress relaxation mechanism called creep between atoms. But,
The nanometal paste in which the nanoparticles of silver or copper metal are arranged is solid-state sintering bonding, and the metal has a high melting point and strong interatomic interaction, and stress relaxation due to the occurrence of creep phenomenon cannot be expected. In the formation of a bond using a bonding material containing sinterable metal nanoparticles, the elucidation of the expression of the relaxation mechanism of the internal stress caused by the environmental change after sintering by a mechanism other than the creep phenomenon, and the development of such a stress relaxation mechanism. It is necessary to design the optimum composition of the bonding material to have. In the present invention, stress relaxation is realized by using a porous copper sintered substrate formed by sintering-bonding copper nanoparticles as a base material.
本発明に係る接合シートとその製法、及び接合方法を、接合を形成するための半導体等の実装過程の観点から見た場合の特徴は、(1)ペーストの塗布作業工程を省き、焼結が完了した銅焼結基板を基材として用いること。(2)焼結では短時間化を実現する。すなわち、粒径分布幅の少ない銀シングルナノ粒子は、その有機被覆成分が低分子カルボン酸由来のため、有機被覆量約13質量%である銀ナノ粒子は焼結時にカルボン酸の酸化分解反応により発熱し、焼結環境温度では銅焼結基板と被接合材間でナノ銀は溶融状態となり、効率的・加速度的に接合プロセスが確実に進行すること。(3)合わせて焼結完了後は、基材である銅焼結基板のミクロ構造が接合層内での応力緩和特性を発現する高機能性焼結性の接合シートを提供できるので、長期信頼性を有する接合構造を形成できること、である。 The characteristics of the bonding sheet according to the present invention, the manufacturing method thereof, and the bonding method from the viewpoint of the mounting process of a semiconductor or the like for forming the bonding are (1) Use the completed copper sintered substrate as a base material. (2) Sintering shortens the time. That is, since the organic coating component of the silver single nanoparticles with a small particle size distribution width is derived from the low molecular weight carboxylic acid, the silver nanoparticles with an organic coating amount of about 13% by mass are generated by the oxidative decomposition reaction of the carboxylic acid during sintering. Heat is generated, and nano-silver becomes molten between the copper sintered substrate and the material to be bonded at the sintering environment temperature, and the bonding process surely progresses efficiently and at an accelerated rate. (3) After the sintering is completed, since the microstructure of the copper sintered substrate, which is the base material, can provide a highly functional sinterable bonding sheet that exhibits stress relaxation characteristics in the bonding layer, long-term reliability That is, it is possible to form a bonded structure having properties.
本発明を成し遂げるためには、第1に粒径分布幅の狭い銀シングルナノ粒子の製法を確立し、更に、該銀シングルナノ粒子を分散させたシングルナノ銀分散液の製法を確立すること。第2に銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板の製法を確立すること。第3に銅焼結基板への銀シングルナノ粒子の傾斜塗布の方法を確立すること。第4に得られた接合シートを被接合体に配置して、短時間実装による機能性を評価し、形成される接合構造の長期安定性を適切な評価方法で証明すること、が必要であった。以下、製法を示すフロー図である図5を参照しながら、本発明の一実施形態を順に説明する。 In order to achieve the present invention, first, a method for producing silver single nanoparticles having a narrow particle size distribution width is established, and further, a method for producing a single nanosilver dispersion liquid in which the silver single nanoparticles are dispersed is established. Secondly, to establish a method for producing a porous copper sintered substrate in which copper nanoparticles are sintered and bonded. Third, to establish a method for the gradient coating of silver single nanoparticles on copper sintered substrates. Fourthly, it is necessary to dispose the obtained bonding sheet on an object to be bonded, evaluate the functionality by short-time mounting, and prove the long-term stability of the formed bonding structure by an appropriate evaluation method. It was Hereinafter, one embodiment of the present invention will be described in order with reference to FIG. 5, which is a flowchart showing a manufacturing method.
<2.シングルナノ銀分散液の準備>
シングルナノ銀分散液を準備するためのシングルナノ銀分散液準備工程S1は、銀シングルナノ粒子形成工程S11と、銀シングルナノ粒子分散工程S12を含む。銀シングルナノ粒子に要請される条件として重要なものを挙げると、(1)粒径分布幅15%以下、(2)平均粒径約2nm程度、(3)有機被覆量15質量%以下、(4)焼成時の有機被覆の酸化分解反応で発熱があること、(5)アルカン溶媒への単分散性に優れていること、である。加えて、焼成設定温度250℃を実現するためには、条件(6)84%粒径(D84)が2.0nm以下、が要請される。
<2. Preparation of Single Nano Silver Dispersion>
The single nano silver dispersion liquid preparation step S1 for preparing the single nano silver dispersion liquid includes a silver single nano particle formation step S11 and a silver single nano particle dispersion step S12. Important conditions required for silver single nanoparticles are (1) particle size distribution width of 15% or less, (2) average particle size of about 2 nm, (3) organic coating amount of 15% by mass or less, 4) The oxidative decomposition reaction of the organic coating during firing produces heat, and (5) the monodispersity in the alkane solvent is excellent. In addition, in order to achieve the firing set temperature of 250° C., the condition (6) 84% particle size (D 84 ) is required to be 2.0 nm or less.
<2−1.銀シングルナノ粒子形成工程>
粒径分布幅の狭い銀シングルナノ粒子を製造するための銀シングルナノ粒子形成工程S11では、例えば、180℃まで加温したアルコール溶液中に被覆試薬のカルボン酸を投入し、炭酸銀を投入して撹拌し、反応で生じた分解ガスである炭酸ガスの発生が終了後、反応液を直ちにマイナス40℃まで冷却したイソプロピルアルコール中に排出して、超急速冷却して粒径成長を止める。冷却後の反応液はろ過生成をする過程で、60℃に加温したイソプロピルアルコールで洗浄し、精製された銀シングルナノ銀粒子を得る。
今回は、アルコールとしてオクタノールを、被覆試薬としてオクタン酸を用いて銀シングルナノ粒子の試料#C8AgSN(実施例)を得、また、アルコールとしてデカノールを、被覆試薬としてデカン酸を用いて銀シングルナノ粒子の試料#C10AgSN(比較例)を得た。反応条件や試料の特性を表1に示す。特性のうち、銀化温度の測定方法については後述する。試料#C8AgSNは上記の6つの条件をすべて満足するが、試料#C10AgSNは条件(3),(4),(6)を満たさない。
<2-1. Silver single nanoparticle formation process>
In the silver single nanoparticle forming step S11 for producing silver single nanoparticles having a narrow particle size distribution width, for example, the carboxylic acid of the coating reagent and the silver carbonate are added to an alcohol solution heated to 180° C. After stirring, and the generation of carbon dioxide gas, which is a decomposition gas generated in the reaction, is finished, the reaction solution is immediately discharged into isopropyl alcohol cooled to -40°C, and ultra-rapid cooling is performed to stop the particle size growth. The reaction liquid after cooling is washed with isopropyl alcohol heated to 60° C. in the process of forming by filtration to obtain purified silver single nano silver particles.
This time, sample #C8AgSN (Example) of silver single nanoparticles was obtained using octanol as the alcohol and octanoic acid as the coating reagent, and silver single nanoparticles using decanol as the alcohol and decanoic acid as the coating reagent. Sample #C10AgSN (Comparative Example) was obtained. The reaction conditions and the characteristics of the sample are shown in Table 1. Among the characteristics, the method of measuring the silvering temperature will be described later. The sample #C8AgSN satisfies all the above six conditions, but the sample #C10AgSN does not satisfy the conditions (3), (4) and (6).
<2−2.銀シングルナノ粒子分散工程>
次に、溶媒、好ましくはアルカン系溶媒中に銀シングルナノ粒子を単分散させる銀シングルナノ粒子分散工程S12では、例えば、メチルシクロヘキサンを溶媒として用い、該溶媒中に上記銀シングルナノ銀粒子を分散させて銀シングルナノ粒子の単分散状態を作り、エヴァポレータを用いて溶媒を蒸発させ、銀シングルナノ粒子の濃度が約10質量%程度のシングルナノ銀分散液を得る。高分解透過型電子顕微鏡(HRTEM)を用いた粒径分布観測結果は、後述するように(1.7±0.3)nmが得られ、粒径分布幅は約15%と極めて小さい。
<2-2. Silver single nanoparticles dispersion process>
Next, in the silver single nanoparticle dispersion step S12 in which the silver single nanoparticles are monodispersed in a solvent, preferably an alkane-based solvent, for example, methylcyclohexane is used as a solvent, and the silver single nanosilver particles are dispersed in the solvent. Then, a monodispersed state of silver single nanoparticles is prepared, and the solvent is evaporated using an evaporator to obtain a single nanosilver dispersion liquid in which the concentration of silver single nanoparticles is about 10% by mass. As a result of particle size distribution observation using a high resolution transmission electron microscope (HRTEM), (1.7±0.3) nm was obtained as described later, and the particle size distribution width was extremely small at about 15%.
<2−3.銀シングルナノ粒子の熱解析結果>
銀シングルナノ粒子を用いて形成したシングルナノ銀分散液を試料として、熱重量示差熱分析装置を用いて温度を30℃から400℃まで変化させて熱重量示差熱分析(TG−DTA)を行った。一例として、試料#C8AgSN(下記の<注>を参照)の銀シングルナノ粒子を用いて形成したシングルナノ銀分散液についての熱重量示差熱分析の結果を図6に示す。昇温速度は5℃/分とした。分析に先立って、エヴァポレータを用いてシングルナノ銀分散液の溶媒を十分に蒸発させた。曲線81は示差熱流量(μV)を示し、参照物質と試料との間の温度差を、熱電対を用いて電圧に換算して測定したものである。曲線82は質量比(%)を示し、初期値に対する質量の割合を表している。30℃〜198℃の間では溶媒の蒸発により質量が減少する。198℃における質量は初期値の97.8%である(図6の点B2を参照)。その後、198℃〜260℃の間で銀シングルナノ粒子のカルボン酸被覆が酸化反応により過剰発熱を伴いながら分解し、緩やかに質量が減少する(図6の点A2〜A3〜A4及び点B2〜B4を参照)。更に、銀シングルナノ粒子の銀核が240℃付近から焼結を開始し、約250℃で発熱のピークとなり(点A3を参照)、約260℃で焼結が完了する。したがって、試料#C8AgSNの銀シングルナノ粒子の焼結温度(銀化温度)は約250℃である。焼結完了時における質量は初期値の85.3%であるから(点B4を参照)、試料#C8AgSNの銀シングルナノ粒子の有機被覆量はおよそ
(97.8%−85.3%)/0.978 = 12.8質量%
であるとわかる。
<2-3. Thermal analysis results of silver single nanoparticles>
Thermogravimetric differential thermal analysis (TG-DTA) was performed by using a single nanosilver dispersion liquid formed using silver single nanoparticles as a sample and changing the temperature from 30°C to 400°C using a thermogravimetric differential thermal analyzer. It was As an example, the results of thermogravimetric differential thermal analysis of a single nanosilver dispersion formed using silver single nanoparticles of sample #C8AgSN (see <Note> below) are shown in FIG. The heating rate was 5° C./min. Prior to analysis, the solvent of the single nanosilver dispersion was fully evaporated using an evaporator. A curve 81 shows a differential heat flow rate (μV), which is measured by converting the temperature difference between the reference substance and the sample into a voltage using a thermocouple. A curve 82 shows the mass ratio (%), which represents the ratio of the mass to the initial value. The mass decreases between 30°C and 198°C due to evaporation of the solvent. The mass at 198° C. is 97.8% of the initial value (see point B2 in FIG. 6). Thereafter, the carboxylic acid coating of the silver single nanoparticles decomposes with excessive heat generation due to the oxidation reaction between 198° C. and 260° C., and the mass gradually decreases (points A2 to A3 to A4 and point B2 to FIG. 6). See B4). Furthermore, the silver nuclei of the silver single nanoparticles start to sinter at around 240° C., reach a peak of exotherm at about 250° C. (see point A3), and complete sintering at about 260° C. Therefore, the sintering temperature (silvering temperature) of the silver single nanoparticles of sample #C8AgSN is about 250°C. Since the mass at the time of completion of sintering is 85.3% of the initial value (see point B4), the organic coating amount of silver single nanoparticles of sample #C8AgSN is approximately (97.8%-85.3%)/ 0.978 = 12.8 mass%
I understand.
また、試料#C10AgSNについても熱重量示差熱分析(TG−DTA)を行い、該試料の銀シングルナノ粒子の有機被覆量が約18質量%で、焼結温度(銀化温度)が約275℃であるとの結果を得た。 Thermogravimetric differential thermal analysis (TG-DTA) was also performed on sample #C10AgSN, and the organic coating amount of silver single nanoparticles in the sample was about 18% by mass, and the sintering temperature (silvering temperature) was about 275°C. I got the result.
金属ナノ粒子はその粒径が小さくなると、金属の融点が粒径に依存して降下する現象が認められ、シングルナノの粒径ではバルク値の1/3程度まで融点の降下することが、非特許文献1に記されている。銀や銅のナノ粒子を用いた焼結性接合材料の焼成温度は、すべてこの原理に基づいている。銀シングルナノ粒子の融点が250℃であれば、該銀シングルナノ粒子の銀核の粒径は約2.0nmである。200℃〜300℃の範囲では、銀核の粒径が0.1nm小さくなる毎に、融点は約10℃降下する。 When the particle size of metal nanoparticles decreases, it is observed that the melting point of the metal decreases depending on the particle size. With the particle size of single nano particles, the melting point decreases to about 1/3 of the bulk value. It is described in Patent Document 1. The firing temperatures of sinterable bonding materials using silver or copper nanoparticles are all based on this principle. If the melting point of the silver single nanoparticles is 250° C., the particle size of the silver nuclei of the silver single nanoparticles is about 2.0 nm. In the range of 200° C. to 300° C., the melting point drops by about 10° C. every time the particle size of silver nuclei decreases by 0.1 nm.
<2−4.銀シングルナノ粒子のTEM像>
試料#C8AgSNの銀シングルナノ粒子を用いて形成したシングルナノ銀分散液をシリコン基板に塗布し、溶媒を蒸発させたのち、高分解透過型電子顕微鏡(HRTEM)を用いて観察した。そのTEM像を図7に示す。数個の銀シングルナノ粒子で形成された直径4〜6nm程度のクラスタがいくつか存在している。各クラスタ内の銀シングルナノ粒子は粒径1.2〜2.3nm程度の銀核と有機被覆とで構成されている。各銀核の金属銀の結晶構造が観察できる。なお、このTEM像ではシングルナノ銀分散液の溶媒を蒸発させた状態で観察しているので、銀シングルナノ粒子は凝集してクラスタを形成しているが、溶媒を蒸発させる前の状態ではほぼ単分散していると考えられる。TEM像の解析に基づく銀核の粒径分布として平均粒径1.7nm±0.3nm(標準偏差)が得られた。試料#C8AgSNの銀シングルナノ粒子の銀核の粒径分布幅は約15%とごく狭い。この平均粒径及び粒径分布幅は、既述のTG−DTA分析の結果と整合的である。
<2-4. TEM image of silver single nanoparticles>
A single nanosilver dispersion liquid formed using silver single nanoparticles of Sample #C8AgSN was applied to a silicon substrate, the solvent was evaporated, and then the observation was performed using a high resolution transmission electron microscope (HRTEM). The TEM image is shown in FIG. There are some clusters formed of several silver single nanoparticles and having a diameter of about 4 to 6 nm. The silver single nanoparticles in each cluster are composed of silver nuclei having a particle size of about 1.2 to 2.3 nm and an organic coating. The crystal structure of metallic silver of each silver nucleus can be observed. In this TEM image, since the solvent of the single nanosilver dispersion liquid was observed to be evaporated, the silver single nanoparticles aggregated to form clusters, but in the state before the solvent was evaporated, it was almost the same. It is considered to be monodisperse. As a particle size distribution of silver nuclei based on the analysis of the TEM image, an average particle size of 1.7 nm±0.3 nm (standard deviation) was obtained. The size distribution width of the silver nuclei of the silver single nanoparticles of sample #C8AgSN is about 15%, which is very narrow. The average particle size and the particle size distribution width are consistent with the results of the TG-DTA analysis described above.
<3.銅焼結基板の形成>
銅ナノ粒子が焼結結合してなる多孔質の銅焼結基板を形成するための銅焼結基板形成工程S2は、ナノ銅ペーストを基板上に塗布するナノ銅ペースト塗布工程S21と、基板上に塗布されたナノ銅ペーストを焼成して銅焼結基板を得るためのナノ銅ペースト焼成工程S22を含む。
<3. Formation of copper sintered substrate>
The copper sintered substrate forming step S2 for forming a porous copper sintered substrate formed by sintering-bonding copper nanoparticles includes a nano copper paste applying step S21 of applying a nano copper paste on the substrate, and a copper A nano-copper paste firing step S22 for firing the nano-copper paste applied to the substrate to obtain a copper sintered substrate is included.
<3−1.ナノ銅ペースト>
ナノ銅ペーストは、銅ナノ粒子、増粘剤及び粘度調整溶剤を混練して作製される。平均粒径50nmの有機被覆を有さない銅ナノ粒子を用い、増粘剤としてイソボロニルシクロヘキサノール(商品名:テルソルブ MTPH、日本テルペン化学株式会社製)を、粘度調整溶剤として日本テルペン化学株式会社製のテルソルブTHA−90を、表2に示す質量比で用いて、#高粘度タイプ、#中粘度タイプ、#低粘度タイプの3タイプのナノ銅ペーストを得た。
<3-1. Nano copper paste>
The nano-copper paste is prepared by kneading copper nanoparticles, a thickener and a viscosity adjusting solvent. Using copper nanoparticles having an average particle diameter of 50 nm and having no organic coating, isobornyl cyclohexanol (trade name: Tersolv MTPH, manufactured by Nippon Terpene Chemical Co., Ltd.) as a thickener, and Nippon Terpene Chemical Co., Ltd. as a viscosity adjusting solvent The Tersolve THA-90 manufactured by the company was used at the mass ratios shown in Table 2 to obtain three types of nano-copper paste: #high viscosity type, #medium viscosity type, #low viscosity type.
<3−2.ナノ銅ペーストの塗布及び焼成>
ナノ銅ペーストを基板上に塗布するナノ銅ペースト塗布工程S21においては、例えば
、まず清浄な鏡面研磨されたシリコン基板等の基板上に、ナノ銅ペーストを15〜200μm程度の均一な厚みで塗布する。次いで、基板上に塗布されたナノ銅ペーストを焼成して銅焼結基板を得るナノ銅ペースト焼成工程S22においては、高純度窒素ガスフロー下において350℃程度まで2℃/s程度の昇温速度で約3分間、無加圧下又は低加圧下で焼成して、10〜150μm程度の厚みの剥離・自立した銅焼結基板を得る。無加圧下で焼成する場合には、低粘度ペーストの塗布はスピンコートにより行うことが出来る。低加圧下で焼成する場合には、焼成中に200℃程度の温度の溶剤蒸発工程を設けて、完全乾燥しない温度・時間内に鏡面で押圧することにより数MPa程度の低加圧を行い、塗布されたナノ銅ペーストの表面を平坦化し、焼成後の銅焼結基板の厚みの均一化を図る。塗付したナノ銅ペーストの表面を平坦化しておくことにより、焼成後の銅焼結基板及びその表面に銀シングルナノ粒子をコートしてなる接合シートが均一厚みとなるから、該接合シートを用いた加圧焼成接合の際に、被接合物と接合シートとの接触面積が大きくなり、強い接合強度が確保される。今回は、表3に示す5種類のシート厚と焼成条件に対応した銅ナノペーストを塗布して焼成することにより、銅焼結基板の試料#Cu1〜#Cu5を得た。焼成後の銅焼結基板のシート厚も表3に示した。作成した銅焼結基板の平面サイズは100mm×100mmである。
<3-2. Application and firing of nano copper paste>
In the nano-copper paste applying step S21 of applying the nano-copper paste onto the substrate, for example, first, the nano-copper paste is applied onto a substrate such as a clean mirror-polished silicon substrate with a uniform thickness of about 15 to 200 μm. .. Next, in the nano-copper paste firing step S22 in which the nano-copper paste applied on the substrate is fired to obtain a copper-sintered substrate, in a high-purity nitrogen gas flow, a heating rate of about 2° C./s up to about 350° C. And is calcined for about 3 minutes under no pressure or low pressure to obtain a peeled and self-standing copper sintered substrate having a thickness of about 10 to 150 μm. When firing without pressure, the low-viscosity paste can be applied by spin coating. When firing under low pressure, a solvent evaporation step at a temperature of about 200° C. is provided during firing, and a pressure of a few MPa is applied by pressing with a mirror surface within a temperature/time that does not completely dry, The surface of the applied nano copper paste is flattened to make the thickness of the sintered copper substrate uniform after firing. By flattening the surface of the applied nano-copper paste, the sintered copper substrate after firing and the bonding sheet obtained by coating the surface with silver single nanoparticles have a uniform thickness. At the time of pressure baking and joining, the contact area between the article to be joined and the joining sheet is increased, and a strong joining strength is secured. This time, samples #Cu1 to #Cu5 of the copper sintered substrate were obtained by applying and baking the copper nanopaste corresponding to the five types of sheet thicknesses and firing conditions shown in Table 3. Table 3 also shows the sheet thickness of the copper sintered substrate after firing. The planar size of the produced copper sintered substrate is 100 mm×100 mm.
図8は、シリコン基板7上に銅ナノペースト(#高粘度タイプ)42を塗布した状態の写真図である。
図9は、シリコン基板7上に銅ナノペースト(#高粘度タイプ)を塗布し、高純度窒素ガス中で昇温速度100℃/分、350℃3分間保持の条件で無加圧焼成して得られた銅焼結基板2の写真図である。2つの帯状(平面サイズ10mm×40mm,厚み50μm)の銅焼結基板2が示されている。
図(10A)は、上記の銅焼結基板2において、焼結した銅ナノ粒子4を示す、焼結表面状態のSEM写真図である。倍率は3万倍である。また、図(10B)は上記SEM写真図の拡大図で、倍率は10万倍である。銅焼結基板2は多孔質であり、多数の微細孔21を有し、微細孔21のサイズは数百nm〜1μmであることがわかる。
FIG. 8 is a photograph showing a state in which the copper nano paste (#high viscosity type) 42 is applied on the silicon substrate 7.
In FIG. 9, a copper nanopaste (#high-viscosity type) is applied on a silicon substrate 7, and pressureless firing is performed in high-purity nitrogen gas under conditions of a temperature rising rate of 100° C./min and 350° C. for 3 minutes. It is a photograph figure of the obtained copper sintered substrate 2. Two strip-shaped (planar size 10 mm×40 mm, thickness 50 μm) copper sintered substrate 2 is shown.
FIG. 10A is an SEM photograph of a sintered surface state showing the sintered copper nanoparticles 4 in the copper sintered substrate 2. The magnification is 30,000 times. Further, FIG. 10B is an enlarged view of the SEM photograph, and the magnification is 100,000 times. It can be seen that the copper sintered substrate 2 is porous and has a large number of fine holes 21, and the size of the fine holes 21 is several hundred nm to 1 μm.
本発明に係る接合シートは、平均粒径5×101nm程度の銅ナノ粒子を主成分とするナノ銅ペーストを焼結させた銅焼結基板が、その質量の大部分を占めるから、ナノ銀と銀フィラーからなるナノ銀ペーストに比べて低価格で作製することができる。なお、接合シートの量産性を念頭におくと、銅ナノ粒子にはかなりの量産製造能力が要請される。 In the bonding sheet according to the present invention, since the copper sintered substrate obtained by sintering the nano-copper paste containing copper nanoparticles having an average particle size of about 5×10 1 nm as the main component occupies most of the mass, It can be manufactured at a lower cost than a nano silver paste composed of silver and a silver filler. When the mass productivity of the bonding sheet is taken into consideration, the copper nanoparticles are required to have a considerable mass production capability.
<4.ナノ銀含浸領域の形成>
銅焼結基板の少なくとも一方の表面の側に、傾斜濃度化された銀シングルナノ粒子を含むナノ銀含浸領域を形成するための傾斜機能付与工程S3においては、銅焼結基板の少な
くとも片側の表面に、シングルナノ銀分散液を塗布若しくは含浸させ、更に乾燥させることにより、その目的を達成する。
例えば、(1)銅焼結基板を2mm角程度の薄いSUS製メッシュ状板上にのせ、表面に、あらかじめ作製しておいたシングルナノ銀分散液をゆっくりスプレー塗布し、80℃程度のホットプレート上でゆっくり乾燥させて傾斜濃度化されたナノ銀コートの銅焼結基板(接合シート)を得る。または、(2)平らな浅い容器にシングルナノ銀分散液を入れ、銅焼結基板を該シングルナノ銀分散液中に浸し、引き出して乾燥させて、傾斜濃度化されたナノ銀コートの銅焼結基板(接合シート)を得ることもできる。
今回は、銅焼結基板の試料#Cu1〜#Cu5のそれぞれについて、その両側の表面に、片面ずつ、上記(1)の方法でシングルナノ銀分散液(#C8AgSN)をスプレー塗布し、更に乾燥させることにより、両方の表面の側にナノ銀含浸領域を有する接合シート(#1〜#5)を作製した。作製されたタイプAの接合シートのシート厚を表4に示す。銅焼結基板に銀シングルナノ粒子を含浸させて接合シートとしても、その厚みはほとんど変わらず、厚みの増加はサブミクロン以下である。また、各接合シートの平面形状は100mm×100mmである。
<4. Formation of nano silver impregnated region>
In at least one surface of the copper sintered substrate, in at least one surface of the copper sintered substrate in the gradient function imparting step S3 for forming the nano-silver impregnated region containing the gradient-concentrated silver single nanoparticles. The purpose is achieved by applying or impregnating a single nano silver dispersion liquid on the above, and further drying.
For example, (1) a copper sintered substrate is placed on a thin SUS mesh plate of about 2 mm square, the single nano silver dispersion liquid prepared in advance is slowly spray-coated on the surface, and a hot plate of about 80° C. The above is slowly dried to obtain a nano silver-coated copper sintered substrate (bonding sheet) having a graded concentration. Alternatively, (2) the single nanosilver dispersion liquid is placed in a flat shallow container, the copper sintered substrate is dipped in the single nanosilver dispersion liquid, pulled out and dried to form a gradient-concentrated nanosilver-coated copper calcination. It is also possible to obtain a bonding substrate (bonding sheet).
This time, with respect to each of the samples #Cu1 to #Cu5 of the copper sintered substrate, the single nano silver dispersion liquid (#C8AgSN) was spray-coated by the method (1) on both surfaces, and then dried. By doing so, joining sheets (#1 to #5) having nano silver-impregnated regions on both surface sides were produced. Table 4 shows the sheet thickness of the produced type A joining sheet. Even if a copper sintered substrate is impregnated with silver single nanoparticles to form a bonding sheet, its thickness is almost unchanged, and the increase in thickness is submicron or less. The planar shape of each joining sheet is 100 mm×100 mm.
図11は、焼成済みの銅焼結基板(#Cu3)2の表面にシングルナノ銀分散液(銀シングルナノ粒子(#C8AgSN)を用いて作製)を帯状にスプレー塗布し、乾燥した状態の表面の写真図である。銅焼結基板の表面のうち、ナノ銀含浸領域3が形成されている領域は青みを帯びた色を呈し、そうでない領域は銅焼結基板2の表面が露出しているので赤みを帯びた色を呈している。なお、図11の上部の明度が高いのは光源光の反射による。 FIG. 11 shows the surface of a sintered copper substrate (#Cu3) 2 that has been dried by spraying a single nanosilver dispersion liquid (prepared using silver single nanoparticles (#C8AgSN)) in a strip shape on the surface of the substrate. It is a photograph figure of. Of the surface of the copper sintered substrate, the region where the nano-silver-impregnated region 3 is formed has a bluish color, and the other region is reddish because the surface of the copper sintered substrate 2 is exposed. It has a color. The high brightness at the top of FIG. 11 is due to the reflection of the light from the light source.
接合シートは、適切なサイズにカットし、被接合物に配置して使用する。図12は、平面サイズ10mm×10mm及び5mm×5mmにカットした接合シートの切断片を示す。図で左側に2列に配置された6枚の接合シートの切断片は、シングルナノ銀分散液(#C8AgSNを用いて作製)を片面に塗布し乾燥させた厚み約12μmのタイプBの接合シートの切断片であり、紫がかった色を呈している。図で右側に2列に配置された6枚の接合シートの切断片は、同じシングルナノ銀分散液を両面に塗布し乾燥させた厚み約12μmのタイプAの接合シート(試料#1)の切断片であり、青みを帯びた色を呈している。色の違いは、銀シングルナノ粒子の表面濃度の違いによる。銅焼結基板の厚みが約10μm程度と薄い場合には、シングルナノ銀分散液を銅焼結基板の片面にのみ塗布して乾燥させても、銀シングルナノ粒子は微細孔を通して浸透するので、銅焼結基板の他方の面の側にも銀シングルナノ粒子はいくらか配置され、両面塗布の場合には片面塗布の場合より、一般に表面濃度が大きくなるので、上記の色の違いが生じる。 The joining sheet is cut to an appropriate size and placed on the article to be joined before use. FIG. 12 shows cut pieces of the joining sheet cut into plane sizes of 10 mm×10 mm and 5 mm×5 mm. The cut pieces of the six bonding sheets arranged in two rows on the left side in the figure are the bonding sheets of type B having a thickness of about 12 μm obtained by applying a single nano silver dispersion liquid (prepared using #C8AgSN) on one surface and drying. It is a cut piece of and has a purplish color. The cut pieces of the six bonding sheets arranged in two rows on the right side of the figure are the cutting of the type A bonding sheet (sample #1) having a thickness of about 12 μm, which was obtained by applying the same single nanosilver dispersion liquid on both surfaces and drying. It is a piece and has a bluish color. The difference in color is due to the difference in surface concentration of silver single nanoparticles. When the thickness of the copper sintered substrate is as thin as about 10 μm, the silver single nanoparticles penetrate through the fine pores even if the single nano silver dispersion liquid is applied to only one surface of the copper sintered substrate and dried. Some silver single nanoparticles are also arranged on the other surface side of the copper sintered substrate, and in the case of double-sided coating, the surface concentration is generally higher than in the case of single-sided coating, so that the above color difference occurs.
<5.接合シートの諸特性>
このようにして得られた接合シートは、実装に用いる電子回路部品や回路基板の電極等の被接合物のサイズに応じて、適切なサイズにカットし、被接合物に配置して、被接合物の熱容量や耐熱性に応じて、高純度窒素雰囲気で、温度250℃〜350℃、圧力20MPa以上の加圧環境下で、10秒〜3分程度、より好ましくは10秒〜60秒程度の短時間、最短では約10秒の間、上記温度を保持して焼成し、接合構造を形成し、実装過程を完了させる。この短時間実装による機能性を評価し、さらに形成される接合構造の長期安定性を評価した。
<5. Various characteristics of bonding sheet>
The joining sheet thus obtained is cut into an appropriate size according to the size of the article to be joined such as the electrodes of the electronic circuit component or the circuit board used for mounting, placed on the article to be joined, and Depending on the heat capacity and heat resistance of the object, in a high-purity nitrogen atmosphere, under a pressure environment of a temperature of 250° C. to 350° C. and a pressure of 20 MPa or more, about 10 seconds to 3 minutes, more preferably about 10 seconds to 60 seconds. The above temperature is maintained and baked for a short time, about 10 seconds at the shortest, to form a bonded structure and complete the mounting process. The functionality of this short-time mounting was evaluated, and the long-term stability of the joint structure formed was evaluated.
<5−1.銅試験片の接合における接合強度>
図13に示すように、2つの銅試験片61を、銅焼結基板の両方の側にナノ銀含浸領域を有するタイプAの接合シート1aを用いて接合し、接合強度を調べる試験を行った。銅試験片は、直径10mm、厚み5mmの円柱形の銅試験片(大)61aと、直径5mm、厚み2mmの円柱形の銅試験片(小)61bである。銅試験片(大)61a、接合シート1a、銅試験片(小)61bをこの順に積層して積層体10を形成し、加圧しながら短時間焼成して、接合体を得た。用いた接合シートの試料名と厚み、焼成設定温度、加圧の圧力、保持時間(焼成設定温度を保持する時間)は次の表5の通りである。昇温速度は約2℃/秒であった。得られた接合のせん断強度と最大変位はダイシェアテスターを用いて測定した。表5に測定結果を示す。
<5-1. Joining strength in joining copper test pieces>
As shown in FIG. 13, two copper test pieces 61 were joined using the joining sheet 1a of type A having nano silver-impregnated regions on both sides of the copper sintered substrate, and a test for examining the joining strength was conducted. .. The copper test pieces are a cylindrical copper test piece (large) 61a having a diameter of 10 mm and a thickness of 5 mm, and a cylindrical copper test piece (small) 61b having a diameter of 5 mm and a thickness of 2 mm. A copper test piece (large) 61a, a bonding sheet 1a, and a copper test piece (small) 61b were laminated in this order to form a laminate 10, which was fired for a short time while applying pressure to obtain a joined body. The following Table 5 shows the sample name and thickness of the bonding sheet used, the firing temperature setting, the pressure applied, and the holding time (holding the firing temperature setting). The heating rate was about 2° C./sec. The shear strength and maximum displacement of the obtained joint were measured using a die shear tester. Table 5 shows the measurement results.
銅試験片の接合テストでは、焼成設定温度350℃、20〜40MPaの加圧下、30秒〜3分の短い保持時間で、接合シートの厚み(20〜50μm)によらず、80〜113MPaの大きな接合強度を有する強固な接合が形成できることがわかった。比較例のPb5Snはんだによる接合では30分の保持時間で35MPaの接合強度にとどまる。本接合シートははんだ接合に比べて短時間で強固な接合を形成できる。最大変位は約1mm以内に収まっており、接合シートが有する多孔質の銅焼結基板が応力緩和機能を発揮して接合の安定性に寄与していると考えられる。3つの接合構造No.1,No.2,No.3は、接合シートの厚み以外の焼成条件が共通であるが、接合強度はいずれも約110MPaでほぼ等しい。また、破断面を光学顕微鏡で観察すると、破断は接合シートの表面付近のナノ銀含浸領域ではなく、接合シート(銅焼結基板)の内部で生じていることがわかる。本接合シートを用いた加圧焼成接合により形成される接合の接合強度は、接合シートの厚みにはあまり依存せず、銅焼結基板の強度で決まる。 In the joining test of the copper test piece, a large holding temperature of 80 to 113 MPa was obtained regardless of the thickness (20 to 50 μm) of the joining sheet with a short holding time of 30 seconds to 3 minutes under a preset firing temperature of 350° C. and a pressure of 20 to 40 MPa. It was found that a strong bond having bond strength can be formed. In the joining with the Pb5Sn solder of the comparative example, the joining strength of 35 MPa is retained in the holding time of 30 minutes. This bonding sheet can form a strong bond in a shorter time than solder bonding. The maximum displacement is within about 1 mm, and it is considered that the porous copper sintered substrate of the bonding sheet exerts a stress relaxation function and contributes to the stability of bonding. Three joining structure No. 1, No. 2, No. In No. 3, the firing conditions other than the thickness of the joining sheet are common, but the joining strengths are about 110 MPa and are almost equal. Further, when the fracture surface is observed with an optical microscope, it is found that the fracture occurs not inside the nano-silver-impregnated region near the surface of the bonding sheet but inside the bonding sheet (copper sintered substrate). The bonding strength of the bonding formed by the pressure firing bonding using the present bonding sheet does not depend much on the thickness of the bonding sheet, and is determined by the strength of the copper sintered substrate.
<5−2.接合シートの熱伝導度>
パワー半導体素子等の電子部品の接合に係る接合構造には、高い熱伝導度と高い電気伝導度が求められる。そこで、熱伝導率測定装置を用いて銅焼結基板及び(接合前の)接合シートの熱伝導度を測定した。熱伝導度は、レーザーフラッシュ法で測定した。これは、
試料の表面にレーザ光を瞬間的に照射して加熱し、裏面に伝わる温度勾配から熱拡散率、比熱容量を測定し、試料の密度に基づいて熱伝導率を算出する方法である。この測定のために特別に、ナノ銅ペースト(#高粘度タイプ)を焼成して厚み1.22mmの銅焼結基板(#Cu6)を作製し、また、同様に厚み1.25mmの銅焼結基板を焼成して、その両面にナノ銀含浸領域を設けた接合シート(#6)を作製した。測定にはいずれも、平面サイズが直径8.81mmの円形にカットした切断片を用い、厚みが薄い試料の熱伝導率を計測するための基板測定アタッチメントを使用して測定を行った。その結果を表6に示す。表6には参考のため、鉛共晶はんだ、銀、及び銅の熱伝導度及び比抵抗の数値も記載している。比抵抗の値は、ウィーデマンとフランツによる、金属における熱伝導度と電気伝導度の関係に基づいて、熱伝導度の測定値から計算した。
<5-2. Thermal conductivity of bonding sheet>
High thermal conductivity and high electrical conductivity are required for a joint structure for joining electronic components such as power semiconductor elements. Therefore, the thermal conductivity of the copper sintered substrate and the bonding sheet (before bonding) was measured using a thermal conductivity measuring device. The thermal conductivity was measured by the laser flash method. this is,
In this method, the surface of the sample is instantaneously irradiated with laser light to be heated, the thermal diffusivity and the specific heat capacity are measured from the temperature gradient transmitted to the back surface, and the thermal conductivity is calculated based on the density of the sample. For this measurement, a nano copper paste (#high-viscosity type) was fired to produce a 1.22 mm-thick copper sintered substrate (#Cu6). Similarly, a 1.25-mm-thick copper sintered substrate was also prepared. The substrate was fired to prepare a bonding sheet (#6) having nano silver-impregnated regions on both sides thereof. In each measurement, a cut piece cut into a circle having a plane size of 8.81 mm in diameter was used, and the measurement was performed using a substrate measurement attachment for measuring the thermal conductivity of a thin sample. The results are shown in Table 6. For reference, Table 6 also shows numerical values of thermal conductivity and specific resistance of lead eutectic solder, silver, and copper. The value of the specific resistance was calculated from the measured values of the thermal conductivity based on the relationship between the thermal conductivity and the electrical conductivity in the metal by Wiedemann and Franz.
銅焼結基板(#Cu6)と接合シート(#6)のいずれもが、熱伝導度、電気伝導度(比抵抗の逆数)ともに、バルク金属と同じオーダーの高い値を示している。これは該銅焼結基板及び該接合シートの金属含有率が高く、かつ、銅ナノ粒子が焼結により結合して、比抵抗の低い電気伝導経路ネットワークを形成し、熱エネルギーもその経路に沿って容易に輸送されるからである。それに対して鉛共晶はんだの、熱伝導度及び電気伝導度はバルク金属と比べて1桁小さい低い値となっている。 Both the copper sintered substrate (#Cu6) and the bonding sheet (#6) have high thermal conductivity and electrical conductivity (reciprocal of specific resistance), which are as high as those of bulk metal. This is because the copper sintered substrate and the bonding sheet have a high metal content, and the copper nanoparticles are bonded by sintering to form an electric conduction path network with a low specific resistance, and thermal energy is also along the path. It is easy to transport. On the other hand, the thermal conductivity and the electrical conductivity of the lead eutectic solder are low values that are smaller by one digit than those of the bulk metal.
<5−3.接合シートの長期安定性>
接合シートを用いて形成される接合構造の熱衝撃に対する安定性を調べるため、熱サイクル負荷試験(パワーサイクル試験)を行った。
<5−3−1.半導体実装サンプルの作製>
まず、パワーダイオード(ドープトSi製,面実装タイプNPジャンクション,平面サイズ10mm×10mm,厚み150μm)と、平面サイズ約10mm×10mmにカットした接合シート(#4,厚み40μm)の切断片と、銅板(平面サイズ20mm×20mm,厚み2mm)を上からこの順で積層し、40MPaで加圧しながら350℃の焼成設定温度で1分間保持して焼成して、接合シート接合体(半導体実装サンプル)を作製した。昇温速度は約2℃/秒とした。
<5-3. Long-term stability of bonding sheet>
A thermal cycle load test (power cycle test) was performed in order to investigate the stability of the bonded structure formed using the bonding sheet against thermal shock.
<5-3-1. Preparation of semiconductor mounting sample>
First, a power diode (made of doped Si, surface mount type NP junction, plane size 10 mm×10 mm, thickness 150 μm), a cut piece of a bonding sheet (#4, thickness 40 μm) cut into a plane size of about 10 mm×10 mm, and a copper plate. (Plane size 20 mm×20 mm, thickness 2 mm) are laminated in this order from the top, and the bonded sheet bonded body (semiconductor mounted sample) is baked by holding at a baking setting temperature of 350° C. for 1 minute while applying pressure at 40 MPa. It was made. The temperature rising rate was about 2° C./sec.
<5−3−2.はんだ接合の作製>
比較例として、同じパワーダイオードと上記と同じサイズの銅板とを、市販の鉛フリーはんだ(Sn3.0Ag0.5Cu)で接合して鉛フリーはんだ接合体を形成した。同様に、市販の鉛共晶はんだを用いて鉛共晶はんだ接合体を形成した。接合層の厚みはいずれも約50μmであった。
<5-3-2. Preparation of solder joints>
As a comparative example, the same power diode and a copper plate of the same size as above were joined with a commercially available lead-free solder (Sn3.0Ag0.5Cu) to form a lead-free solder joint body. Similarly, a lead eutectic solder joint body was formed using a commercially available lead eutectic solder. The thickness of each bonding layer was about 50 μm.
<5−3−3.熱サイクル負荷試験>
上記の接合シート接合体(半導体実装サンプル)を試料として、熱サイクル負荷試験装置を用いて、200℃〜−40℃の熱サイクル負荷を試料にかけた。試料は、上記の銅板が−40℃のヒートシンクの上面に当接する状態で載置される。パワーダイオードの上面と銅板にそれぞれ電極を接続し、電極間に電圧を印加できるようにする。1サイクルは30分間である。1サイクルは、数秒間、順方向の一定の大電流(順方向電流パルス)を試料に通電して接合部の温度を200℃まで上昇させるステップと、その後、電流を遮断して試料を−40℃のヒートシンクにより冷却するステップとで構成される。サイクル数毎の試料の熱抵抗値を、高い順方向電流パルス印加後の電極間の電気抵抗の変化率に基づいて計測する。熱抵抗値が初期値の30%増となったところを上限値として計測を終了する。
同様に、上記の鉛フリーはんだ接合体、及び、鉛共晶はんだ接合体を試料として、サイクル数毎の試料の熱抵抗値を計測した。その結果を表7に示す。鉛フリーはんだ接合体及び鉛共晶はんだ接合体の熱抵抗値は、それぞれ熱抵抗値の初期値で規格化して示した。また、接合シート接合体の熱抵抗値は、鉛共晶はんだ接合体の熱抵抗値の初期値で規格化して示した。図14は、接合シート接合体と鉛共晶はんだ接合体について、表7に示したサイクル数による熱抵抗値の変化の様子をそれぞれ初期値で規格化(標準化)してグラフ化したグラフ図である。
<5-3-3. Thermal cycle load test>
Using the above bonded sheet assembly (semiconductor mounted sample) as a sample, a thermal cycle load of 200° C. to −40° C. was applied to the sample using a thermal cycle load tester. The sample is placed with the above-mentioned copper plate in contact with the upper surface of the heat sink at -40°C. Electrodes are connected to the upper surface of the power diode and the copper plate so that a voltage can be applied between the electrodes. One cycle is 30 minutes. In one cycle, a constant large forward current (forward current pulse) is applied to the sample for several seconds to raise the temperature of the junction to 200° C., and then the current is cut off to set the sample to −40. Cooling with a heat sink at ℃. The thermal resistance value of the sample for each cycle number is measured based on the rate of change in the electrical resistance between the electrodes after application of a high forward current pulse. The measurement ends when the thermal resistance value increases by 30% from the initial value.
Similarly, the above-mentioned lead-free solder joint body and lead eutectic solder joint body were used as samples, and the thermal resistance value of each sample was measured. The results are shown in Table 7. The thermal resistance values of the lead-free solder joint body and the lead eutectic solder joint body are shown by standardizing the initial thermal resistance value. Further, the thermal resistance value of the bonded sheet bonded body is shown by standardizing the initial value of the thermal resistance value of the lead eutectic solder bonded body. FIG. 14 is a graph chart in which the state of change in thermal resistance value with the number of cycles shown in Table 7 is standardized (standardized) with respect to each of the bonded sheet bonded body and the lead eutectic solder bonded body, and is a graph. is there.
鉛フリーはんだ接合体では曲線83が示すように200サイクル負荷後に熱抵抗値が80%増、鉛共晶はんだ接合体では500サイクル負荷後に熱抵抗値が60%増となったのに対し、本発明に係る接合シート接合体では曲線84が示すように2000サイクル負荷後でも熱抵抗値が3%程度の増加に留まる。本発明に係る接合シートを用いた接合には、熱衝撃及び冷熱衝撃に対する長期安定性があることが確認された。 In the lead-free solder joint, as shown by the curve 83, the thermal resistance value increased by 80% after 200 cycles, and in the lead eutectic solder joint, the thermal resistance value increased by 60% after 500 cycles. In the joined sheet joined body according to the invention, as shown by the curve 84, the thermal resistance value only increases by about 3% even after 2000 cycles of loading. It was confirmed that the joining using the joining sheet according to the present invention has long-term stability against thermal shock and cold shock.
一般に、はんだ接合の場合には、接合形成のための加熱後の冷却中にも加圧が必要であり、さらに冷却にも時間を要する。冷却中に加圧無しに、冷却を短時間で行うと、接合部に割れが生じ易いからである。本発明に係る接合シートでは、銅焼結基板は初めから焼結しており、焼結を要する部分が薄いナノ銀含浸領域のみであり、焼結で形成されたバルク銀若しくは銀銅合金の融点は高く、かつ、多孔質の銅焼結基板が応力緩和機能を有するから、冷却時に大きな加圧の必要はなく、冷却も短時間で済む利点がある。 Generally, in the case of solder bonding, pressurization is required during cooling after heating for bonding formation, and further cooling requires time. This is because if the cooling is performed for a short time without applying pressure during cooling, cracks are likely to occur at the joint. In the bonding sheet according to the present invention, the copper sintered substrate is sintered from the beginning, and the portion requiring sintering is only the thin nano-silver impregnated region, and the melting point of bulk silver or silver-copper alloy formed by sintering. Is high, and since the porous copper sintered substrate has a stress relaxation function, there is an advantage that large pressurization is not required during cooling and cooling can be completed in a short time.
<5−4.短時間焼成における接合強度のナノ銀ペーストとの比較>
本発明に係る接合シートと比較例としてのナノ銀ペーストを用いて、焼成条件(焼成設定温度、加圧の圧力、保持時間)を変えながら、短時間焼成によりそれぞれ接合体を形成し、せん断強度を比較する。
<5−4−1.ナノ銀ペーストの作製>
比較例として、ペーストの焼成による接合体を形成するために、銅フィラーを含有する
ナノ銀ペースト1及びナノ銀ペースト2を作製した。ナノ銀ペースト1は、銀シングルナノ粒子#C8AgSNと銅フィラーを4:6の質量比で含み、銅フィラーは平均粒径0.10μmの有機被覆を有さない銅粒子であり、更に、増粘剤(イソボルニルシクロヘキサノール)及び粘度調整溶剤(ドデカン)が全質量に対して合わせて約7質量%含有されている。ナノ銀ペースト2は、銀シングルナノ粒子#C10AgSNと銅フィラーを4:6の質量比で含み、銅フィラーは平均粒径0.45μmの有機被覆を有さない銅粒子であり、更に、増粘剤(イソボルニルシクロヘキサノール)及び粘度調整溶剤(ドデカン)が全質量に対して合わせて約7質量%含有されている。
<5-4. Comparison of bonding strength in short-time firing with nano silver paste>
Using the bonding sheet according to the present invention and the nano silver paste as a comparative example, a bonding body was formed by short-time baking while changing the baking conditions (baking set temperature, pressurizing pressure, holding time), and the shear strength was measured. To compare.
<5-4-1. Preparation of nano silver paste>
As a comparative example, nano silver paste 1 and nano silver paste 2 containing a copper filler were produced in order to form a joined body by firing the paste. The nano-silver paste 1 contains silver single nanoparticles #C8AgSN and a copper filler in a mass ratio of 4:6, and the copper filler is a copper particle having an average particle diameter of 0.10 μm and having no organic coating. The agent (isobornylcyclohexanol) and the viscosity adjusting solvent (dodecane) are contained in a total amount of about 7% by mass based on the total mass. The nano-silver paste 2 contains silver single nanoparticles #C10AgSN and a copper filler in a mass ratio of 4:6, and the copper filler is a copper particle having an average particle diameter of 0.45 μm and having no organic coating. The agent (isobornylcyclohexanol) and the viscosity adjusting solvent (dodecane) are contained in a total amount of about 7% by mass based on the total mass.
<5−4−2.接合強度の比較>
上記のナノ銀ペースト又は本発明に係る接合シートを用いて、前記の銅試験片(大)と銅試験片(小)を次の表8に示す焼成条件で、加圧下で10〜60秒の短い保持時間(焼成設定温度に保持する時間)で焼成して2つの銅試験片を接合した接合体を形成し、前記と同様にして最大せん断強度を計測した。その結果を表8に示す。ここで、昇温速度は約2℃/秒であった。なお、本発明に係る接合シートを介して2つの銅試験片を積層して積層体を形成する際には、積層に先立って、実装時の固定化を確実にするための固定化助剤を接合シートの表面にスポイドで1滴ないし数滴、添加した。固定化助剤としては、イソボロニルシクロヘキサノールを20質量%の濃度でメチルシクロヘキサンに溶解させた溶液を用いた。
<5-4-2. Comparison of bonding strength>
Using the above-mentioned nano silver paste or the bonding sheet according to the present invention, the copper test piece (large) and the copper test piece (small) were baked under pressure for 10 to 60 seconds under the firing conditions shown in Table 8 below. Firing was performed for a short holding time (holding at the firing setting temperature) to form a joined body in which two copper test pieces were joined, and the maximum shear strength was measured in the same manner as above. The results are shown in Table 8. Here, the temperature rising rate was about 2° C./sec. When laminating two copper test pieces via the bonding sheet according to the present invention to form a laminate, an immobilization aid for ensuring immobilization during mounting is provided prior to lamination. One or a few drops were added to the surface of the bonding sheet with a spoid. As the immobilization aid, a solution in which isobornyl cyclohexanol was dissolved in methylcyclohexane at a concentration of 20 mass% was used.
表8から読み取れるように、ナノ銀ペーストでは焼成の前にペースト中に含まれるバインダ等の有機成分を除去するための乾燥工程に最低でも3分程度の時間を要するが、本発明に係る接合シートでは、銅焼結基板はすでに焼結済であるから、乾燥工程が不要である。本接合シートを用いれば、接合シートの厚み(20〜50μm)によらず、10〜60秒程度、最短では10秒の短時間の間、焼成設定温度を維持するだけで、ナノ銀ペーストを用いた接合と同等もしくはそれ以上のせん断強度を有する強固な接合を形成することができる。
本発明に係る接合シートを用いて加圧下で10〜60秒程度、焼成設定温度に保持することにより形成した接合構造のせん断強度は、焼成設定温度、焼成時の加圧の圧力、及び保持時間にも依存している。表8に示す6つの接合構造(No.11〜No.16)の接合強度の線形回帰分析(重相関係数R=0.84)により、焼成設定温度が10℃高いとせん断強度は約3MPa大きくなり、焼成時の加圧の圧力が10MPa高いとせん断強度は約13MPa大きくなり、保持時間が10秒長いとせん断強度は約3.5MPa大きくなることがわかる。回帰式によると、焼成設定温度300℃、加圧の圧力30MPa、保
持時間30秒に対して、せん断強度は約65MPaと高強度である。また、接合構造(No.16)は、焼成設定温度250℃、加圧の圧力20MPa、保持時間10秒に対して、せん断強度は約38MPaであるが、これは鉛共晶半田の接合強度(約35MPa)を上回っている。
As can be seen from Table 8, with the nano silver paste, the drying process for removing the organic components such as the binder contained in the paste before firing requires at least about 3 minutes, but the bonding sheet according to the present invention Then, since the copper sintered substrate has already been sintered, the drying step is unnecessary. If the present bonding sheet is used, the nano silver paste can be used by maintaining the firing set temperature for a short time of about 10 to 60 seconds and a minimum of 10 seconds regardless of the thickness (20 to 50 μm) of the bonding sheet. A strong bond having a shear strength equal to or higher than that of the existing bond can be formed.
The shear strength of the joining structure formed by holding the firing temperature for about 10 to 60 seconds using the joining sheet according to the present invention is set at the firing setting temperature, the pressure applied during firing, and the holding time. Also depends on. By linear regression analysis (multiple correlation coefficient R=0.84) of the joint strengths of the six joint structures (No. 11 to No. 16) shown in Table 8, the shear strength is about 3 MPa when the firing set temperature is 10° C. higher. It can be seen that when the pressure applied during firing is 10 MPa higher, the shear strength increases by about 13 MPa, and when the holding time is 10 seconds longer, the shear strength increases by about 3.5 MPa. According to the regression equation, the shear strength is as high as about 65 MPa for a firing setting temperature of 300° C., a pressure of 30 MPa and a holding time of 30 seconds. Further, the joint structure (No. 16) has a shear strength of about 38 MPa with respect to a firing set temperature of 250° C., a pressure of 20 MPa, and a holding time of 10 seconds, which is the joint strength of lead eutectic solder ( Above about 35 MPa).
<5−5.本接合シートの特徴のまとめ>
本発明に係る接合シートでは、接合のための焼結の後に形成される金属(銀、銅、銀銅合金)の融点が779℃以上であるから、共晶生成による効果を考慮しても700℃で融解することはない。したがって、本接合シートは高温耐熱接合用途に用いることができる。多くの同種の金属ナノペーストやいくつかの接合シートが提案されているが、接合状態の諸物性、および、その長期安定性を対比し、本発明がすべての点で優れた接合機能性を付与できる。接合の長期安定性は、環境温度の大幅な変化で生じる内部応力の緩和が、本接合シートの多孔質の銅焼結基板により実現されていることによる。実施例における比較表に示したように、本接合シートの優れた点の概要は、(1)長期保存性:常温保存、年以上の期間が可能、(2)金属含有量:99質量%以上(∵銅焼結基板は100質量%。金属含有量85質量%以上のシングルナノ銀の、接合シートにおける総使用量は5質量%以下であるので99質量%以上となる)、(3)電気伝導度:比抵抗3μΩ・cm以下、(4)熱伝導度:200W/(m・K)以上、(5)接合強度(せん断強度):78MPa以上(350℃,20MPa加圧下1分間焼成時の接合強度。鉛共晶はんだでの2.4倍以上)、(6)長期安定性:熱サイクル負荷試験((200℃(数秒),−40℃(約30分))/サイクル)の結果において、2000サイクル負荷後の熱抵抗値が初期値に対して約3%増以下。一方、鉛共晶はんだは同条件負荷では500サイクル時で初期値に対して60%増と高温環境負荷試験では長期安定性に欠ける、および、(7)低コストに製造できることによる経済効果、にある。
<5-5. Summary of features of the main bonding sheet>
In the joining sheet according to the present invention, the melting point of the metal (silver, copper, silver-copper alloy) formed after sintering for joining is 779° C. or higher, and therefore 700 even if the effect of eutectic formation is taken into consideration. It does not melt at °C. Therefore, the present bonding sheet can be used for high temperature heat resistant bonding. Although many similar metal nano pastes and some bonding sheets have been proposed, the present invention provides excellent bonding functionality in all respects, comparing the physical properties of the bonded state and its long-term stability. it can. The long-term stability of the bonding is due to the fact that the relaxation of internal stress caused by a large change in the ambient temperature is realized by the porous copper sintered substrate of the bonding sheet. As shown in the comparison table in the examples, the advantages of the present joining sheet are summarized as follows: (1) Long-term storage stability: storage at room temperature, possible for a period of more than a year, (2) Metal content: 99 mass% or more (∵ Copper sintered substrate is 100% by mass. Single nanosilver with a metal content of 85% by mass or more is 99% by mass or more because the total amount used in the bonding sheet is 5% by mass or less), (3) Electricity Conductivity: Specific resistance 3 μΩ·cm or less, (4) Thermal conductivity: 200 W/(m·K) or more, (5) Bonding strength (shear strength): 78 MPa or more (350° C., 20 MPa under pressure for 1 minute firing) Bonding strength: 2.4 times or more of lead eutectic solder), (6) Long-term stability: in the result of thermal cycle load test ((200°C (several seconds), -40°C (about 30 minutes))/cycle) , The thermal resistance value after 2000 cycles of loading is about 3% or less higher than the initial value. On the other hand, lead eutectic solder is 60% more than the initial value after 500 cycles under the same condition load, and lacks long-term stability in a high temperature environmental load test. (7) Economical effect due to low cost manufacturing is there.
本接合シートを適切なサイズにカットした切断片を、半導体素子と銅基板など、2つの被接合物の間に配置して加圧焼成することで接合体を形成することができる。従来の各種ナノ金属ペースト塗布による接合方法と比較して、塗布工程・乾燥時間が不要で、焼成設定温度に保持する保持時間も1/5以下と短いから、実装量産性は10倍以上に向上できる特徴がある。また、従来のナノ金属ペーストに樹脂を配した組成の接合シートとの比較でも、本接合シートの焼成設定温度及び保持時間は、より低温で、10〜60秒、最短では10秒と短時間であり、銀ナノ粒子の使用量も少なく、経済性により優れている特徴がある。さらに高温半導体素子との実装では、小型化・大電流負荷によって生じる動作時の発熱を、バルク金属並みの十分な熱伝導性により回避して半導体機能を劣化させない接合特性を発揮し、耐熱性は従来から使用されている鉛共晶はんだを大きく上まわり、熱伝導度では5倍以上であり、加えて電気伝導性もバルク金属並みに優れており、接合特性は従来品のはんだ製品を大きく超えている。また、環境に有害な鉛を含まないので、環境負荷安全性も保有している。 A joined body can be formed by arranging a cut piece obtained by cutting the present joining sheet into an appropriate size between two objects to be joined such as a semiconductor element and a copper substrate and pressurizing and firing. Compared with the conventional joining method by applying various nano metal pastes, the application process and drying time are not required, and the holding time for holding at the firing set temperature is as short as 1/5 or less, so the mass productivity of mounting is improved 10 times or more. There is a feature that can be done. In addition, even when compared with a conventional bonding sheet having a composition in which a resin is arranged in a nano metal paste, the firing setting temperature and the holding time of the main bonding sheet are 10 to 60 seconds at the lower temperature, and 10 seconds at the shortest. In addition, the amount of silver nanoparticles used is small, and it is characterized by being more economical. Furthermore, when mounting with high-temperature semiconductor elements, heat generation during operation caused by miniaturization and large current load is avoided by sufficient thermal conductivity similar to bulk metal, and the junction characteristics that do not deteriorate the semiconductor function are exhibited, and heat resistance is high. Greatly exceeds conventional lead eutectic solder, thermal conductivity is more than 5 times, and electrical conductivity is as good as bulk metal. Bonding characteristics greatly exceed conventional solder products. ing. In addition, because it does not contain lead, which is harmful to the environment, it also has environmental load safety.
本発明に係る接合シートは、簡便に使用でき、低コストで製造でき、短い保持時間の焼成で強固な接合を形成でき、形成される接合は従来のはんだ製品を大きく超える接合特性を有し、環境安全性も具備している。従来のはんだ製品及び接合シートの代替品等として、また、従来のはんだ製品では実現不可能であった高温使用に耐える接合形成のための接合用材料として、本接合シートとその製造方法及びそれを用いた接合方法は、幅広い産業上の利用可能性を有する。 The bonding sheet according to the present invention can be easily used, can be manufactured at low cost, can form a strong bond by firing for a short holding time, and the bond formed has bonding properties that greatly exceed conventional solder products, It also has environmental safety. As a substitute for conventional solder products and bonding sheets, and as a bonding material for bonding formation that can withstand high-temperature use, which cannot be realized with conventional solder products, the bonding sheet, its manufacturing method, and the bonding sheet The joining method used has wide industrial applicability.
1 接合シート 1a タイプAの接合シート
1b タイプBの接合シート
2 銅焼結基板 21 微細孔
3 ナノ銀含浸領域 31 第1ナノ銀含浸領域
32 第2ナノ銀含浸領域 33 表面(接合面,接合界面)
4 銅ナノ粒子 42 ナノ銅ペースト
5 銀シングルナノ粒子 5c 銀核
6 被接合物 6a 第1被接合物
6b 第2被接合物 61 銅試験片
61a 銅試験片(大) 61b 銅試験片(小)
7 シリコン基板 10 積層体
81〜84 曲線
1 Bonding Sheet 1a Type A Bonding Sheet 1b Type B Bonding Sheet 2 Copper Sintered Substrate 21 Micropores 3 Nano Silver Impregnation Area 31 1st Nano Silver Impregnation Area 32 2nd Nano Silver Impregnation Area 33 Surface (bonding surface, bonding interface) )
4 Copper Nanoparticles 42 Nanocopper Paste 5 Silver Single Nanoparticles 5c Silver Nucleus 6 Objects 6a First Objects 6b Second Objects 61 Copper Specimens 61a Copper Specimens (Large) 61b Copper Specimens (Small)
7 Silicon Substrate 10 Laminates 81-84 Curve
Claims (9)
該銅焼結基板の表面及び微細孔に配置された、有機被覆を有する複数の銀シングルナノ粒子と、
のみから構成される接合シートであり、
前記銀シングルナノ粒子は互いに結合し、前記銅焼結構造体とも結合し、
前記銀シングルナノ粒子の数密度は、前記接合シートの少なくとも片側の表面で高く、内部では低く、傾斜濃度化されていて、
前記銀シングルナノ粒子を分散させて前記銅焼結基板に配置する際に用いる溶媒が蒸発除去されて、乾燥状態の表面を有し、
前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D 84 )が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子であることを特徴とする接合シート。 A copper sintered substrate which is a porous copper sintered structure composed of a plurality of copper nanoparticles sintered and bonded,
A plurality of silver single nanoparticles having an organic coating, which are arranged on the surface and the micropores of the copper sintered substrate ,
It is a joint sheet consisting of only
The silver single nanoparticles are bonded to each other, and also bonded to the copper sintered structure,
The number density of the silver single nanoparticles is high on at least one surface of the bonding sheet, low inside, and has a graded concentration ,
The solvent used when the silver single nanoparticles are dispersed and placed on the copper sintered substrate is removed by evaporation, and has a surface in a dry state,
The silver single nanoparticles, and wherein 84% particle diameter in the particle size distribution of the silver nuclei (D 84) is 1.4~2.0Nm, the particle size distribution width is a Oh Rukoto silver nanoparticles 15% or less Bonding sheet.
前記接合シートは乾燥状態の表面を有し、
前記銀シングルナノ粒子は、銀核の粒径分布における84%粒径(D 84 )が1.4〜2.0nm、粒径分布幅が15%以下の銀ナノ粒子であることを特徴とする接合シートの製法。 Single nano silver dispersion liquid preparation step of dispersing silver single nano particles having an organic coating in a solvent to obtain a single nano silver dispersion liquid, and sintering a nano copper paste containing copper nanoparticles to sinter porous copper a sintered copper substrate forming step of forming a substrate, the surface of the sintered copper substrate, wherein is coated or impregnated with a single nanosilver dispersion by Rukoto to remove the solvent and further dried, the sintered copper a volumetric region adjacent the surface and the surface of the substrate, by arranging the inclined concentration of silver single nanoparticles, FGM step of applying a gradient function, a method of joining sheet that have a,
The bonding sheet has a dry surface,
The silver single nanoparticles, and wherein 84% particle diameter in the particle size distribution of the silver nuclei (D 84) is 1.4~2.0Nm, the particle size distribution width is a Oh Rukoto silver nanoparticles 15% or less Manufacturing method of joining sheet.
前記固定化助剤は、イソボロニルシクロヘキサノールを10〜30質量%の濃度でメチルシクロヘキサンに溶解させた溶液である請求項7に記載の接合方法。 In the stacking step, prior to stacking, an immobilization aid for ensuring immobilization during mounting is added to the surface of the bonding sheet ,
The bonding method according to claim 7, wherein the immobilization aid is a solution in which isobornyl cyclohexanol is dissolved in methylcyclohexane at a concentration of 10 to 30 mass % .
A laminate obtained by stacking the joining sheet according to any one of claims 1 to 5 on a material to be joined and temporarily fixing the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019239019A JP6713120B1 (en) | 2019-12-27 | 2019-12-27 | Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019239019A JP6713120B1 (en) | 2019-12-27 | 2019-12-27 | Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6713120B1 true JP6713120B1 (en) | 2020-06-24 |
JP2021107569A JP2021107569A (en) | 2021-07-29 |
Family
ID=71104014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019239019A Active JP6713120B1 (en) | 2019-12-27 | 2019-12-27 | Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6713120B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113664205A (en) * | 2021-08-25 | 2021-11-19 | 中国核动力研究设计院 | Alloy plate with continuously controllable resistivity and preparation method thereof |
WO2022030327A1 (en) * | 2020-08-04 | 2022-02-10 | 石原ケミカル株式会社 | Joining method, copper sintered body and copper paste |
CN114131018A (en) * | 2021-12-10 | 2022-03-04 | 中国矿业大学 | Preparation method of heat dissipation material of net pressing copper nano packed bed |
CN115662946A (en) * | 2022-11-03 | 2023-01-31 | 广东工业大学 | Superfine pitch all-copper interconnection method and superfine pitch all-copper interconnection structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202944A (en) * | 2005-01-20 | 2006-08-03 | Nissan Motor Co Ltd | Joining method and joining structure |
JP2007151805A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Materials Corp | Medical device and surface modification method for medical device |
JP2010065277A (en) * | 2008-09-10 | 2010-03-25 | Nippon Handa Kk | Method for manufacturing jointed body of metallic member, and jointed body of metallic member |
JP2013168545A (en) * | 2012-02-16 | 2013-08-29 | Toyota Motor Corp | Method for joining conductive members |
JP2016054098A (en) * | 2014-09-04 | 2016-04-14 | 日立化成株式会社 | Silver paste, semiconductor device using the same and method for producing silver paste |
JP2017057488A (en) * | 2015-09-18 | 2017-03-23 | 株式会社応用ナノ粒子研究所 | Manufacturing method of nano silver particle and nano silver particle |
-
2019
- 2019-12-27 JP JP2019239019A patent/JP6713120B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006202944A (en) * | 2005-01-20 | 2006-08-03 | Nissan Motor Co Ltd | Joining method and joining structure |
JP2007151805A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Materials Corp | Medical device and surface modification method for medical device |
JP2010065277A (en) * | 2008-09-10 | 2010-03-25 | Nippon Handa Kk | Method for manufacturing jointed body of metallic member, and jointed body of metallic member |
JP2013168545A (en) * | 2012-02-16 | 2013-08-29 | Toyota Motor Corp | Method for joining conductive members |
JP2016054098A (en) * | 2014-09-04 | 2016-04-14 | 日立化成株式会社 | Silver paste, semiconductor device using the same and method for producing silver paste |
JP2017057488A (en) * | 2015-09-18 | 2017-03-23 | 株式会社応用ナノ粒子研究所 | Manufacturing method of nano silver particle and nano silver particle |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022030327A1 (en) * | 2020-08-04 | 2022-02-10 | 石原ケミカル株式会社 | Joining method, copper sintered body and copper paste |
JP2022029194A (en) * | 2020-08-04 | 2022-02-17 | 石原ケミカル株式会社 | Joint method, copper sintered body and copper paste |
JP7026739B2 (en) | 2020-08-04 | 2022-02-28 | 石原ケミカル株式会社 | Joining method, copper sintered body and copper paste |
CN113664205A (en) * | 2021-08-25 | 2021-11-19 | 中国核动力研究设计院 | Alloy plate with continuously controllable resistivity and preparation method thereof |
CN114131018A (en) * | 2021-12-10 | 2022-03-04 | 中国矿业大学 | Preparation method of heat dissipation material of net pressing copper nano packed bed |
CN115662946A (en) * | 2022-11-03 | 2023-01-31 | 广东工业大学 | Superfine pitch all-copper interconnection method and superfine pitch all-copper interconnection structure |
Also Published As
Publication number | Publication date |
---|---|
JP2021107569A (en) | 2021-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6713120B1 (en) | Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method | |
TWI572582B (en) | Cu/ceramics jointed body, method of producing cu/ceramics jointed body and power module substrate | |
JP6337909B2 (en) | Manufacturing method of electronic component module | |
WO2013115359A1 (en) | Substrate for power modules, substrate with heat sink for power modules, power module, method for producing substrate for power modules, and paste for bonding copper member | |
EP3217424B1 (en) | Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly | |
JP6166117B2 (en) | Method for producing composite material of metal and carbon fiber | |
JP6056432B2 (en) | Power module substrate, power module substrate with heat sink, power module, power module substrate manufacturing method | |
WO2014204013A1 (en) | Joining material and joining method using same | |
JP6659026B2 (en) | Low temperature joining method using copper particles | |
EP3349262B1 (en) | Metal paste and thermoelectric module | |
JP2015180600A (en) | Power module substrate, power module substrate with heat sink, power module, method for manufacturing power module substrate, and paste for bonding copper member | |
WO2019021637A1 (en) | Method for producing metal bonded laminate | |
JP2007136503A (en) | Clad solder for joining | |
JP6170045B2 (en) | Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof | |
JP6347385B2 (en) | Copper material joining method | |
JP2014110282A (en) | Bonding method using paste containing metal fine particle | |
KR20180073767A (en) | Bonding paste for high temperature applications and bonding method using the in situ formation of fine Ag bumps | |
JP6845444B1 (en) | Joining material, manufacturing method of joining material and joining body | |
JP7194922B2 (en) | Mounting structures and nanoparticle mounting materials | |
CN113751922A (en) | Lead-free solder and preparation method and application thereof | |
JP2006120973A (en) | Circuit board and manufacturing method thereof | |
JP3416594B2 (en) | PTC thermistor and method of manufacturing the same | |
CN112563231A (en) | Filling type chip interconnection structure and preparation method of chip interconnection structure | |
JP2020007593A (en) | Joint material, joint material paste containing the same, and joint method and semiconductor device using the same | |
JP7424652B2 (en) | Self-supporting membrane, laminated sheet, and method for manufacturing self-supporting membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200108 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20200108 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20200116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200507 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6713120 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |