JP2013168545A - Method for joining conductive members - Google Patents

Method for joining conductive members Download PDF

Info

Publication number
JP2013168545A
JP2013168545A JP2012031503A JP2012031503A JP2013168545A JP 2013168545 A JP2013168545 A JP 2013168545A JP 2012031503 A JP2012031503 A JP 2012031503A JP 2012031503 A JP2012031503 A JP 2012031503A JP 2013168545 A JP2013168545 A JP 2013168545A
Authority
JP
Japan
Prior art keywords
porous body
adhesive
conductive
metal
conductive members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012031503A
Other languages
Japanese (ja)
Inventor
Mari Ono
真里 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012031503A priority Critical patent/JP2013168545A/en
Publication of JP2013168545A publication Critical patent/JP2013168545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers

Landscapes

  • Combinations Of Printed Boards (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for joining conductive members capable of achieving both adhesiveness and conductivity with a simple configuration.SOLUTION: A metallic porous member 1 having voids 2 is prepared and conductive members A1, A2 are joined to each other by curing a resin-made adhesive 3 impregnated into the voids 2 of the porous member 1 interposed between the conductive members A1, A2. Here, the metallic porous member 1 is interposed between the conductive members A1, A2 and the resin-made adhesive 3 is cured by impregnating the resin-made adhesive 3 into the voids 2 of the metallic porous member 1. Moreover, the resin-made adhesive 3 is impregnated into the voids 2 of the metallic porous member 1, and the metallic porous member 1 is interposed between the conductive members A1, A2, thereby curing the resin-made adhesive 3.

Description

本発明は導電性部材の接合方法に関し、たとえばパワーモジュールを構成する素子と電極板を接合する方法に関するものである。   The present invention relates to a method for joining conductive members, for example, a method for joining elements constituting a power module and an electrode plate.

従来から、パワーモジュールを構成する部材同士を接合する接合材として導電性接着剤が使用されている。   Conventionally, a conductive adhesive has been used as a bonding material for bonding members constituting a power module.

上記する導電性接着剤としては、たとえばすずと鉛を主成分とするはんだ、無機または有機性の微粒子からなるフィラーを含むフィラー焼結型接着剤、フィラー分散型接着剤などを挙げることができる。   Examples of the conductive adhesive include a solder mainly composed of tin and lead, a filler sintered adhesive including a filler made of inorganic or organic fine particles, and a filler dispersion adhesive.

上記する導電性接着剤のうち、すずと鉛を主成分とするはんだは導電性に優れるという利点を有している。一方で、近時の鉛フリー対応に伴う組成変化によって、一般に高剛性で線膨張係数の大きな接合材となっており、構成部材同士を接合した際に温度変化に起因する構成部材間の熱膨張差によって生じる熱応力が相対的に高くなるといった問題がある。   Among the conductive adhesives described above, solder mainly composed of tin and lead has an advantage of excellent conductivity. On the other hand, due to the composition change accompanying the recent lead-free compatibility, it is generally a joint material with high rigidity and a large linear expansion coefficient, and thermal expansion between the structural members due to temperature changes when the structural members are joined together There is a problem that the thermal stress caused by the difference becomes relatively high.

また、フィラー焼結型の導電性接着剤は、フィラー自体が融け合って融着していることから導電性に優れるという利点を有している。一方で、接着面積が大きい場合には焼結時の収縮量が相対的に大きくなり、たとえば当該接着剤が剥離して接着力が低下する可能性があるといった問題がある。   In addition, the filler-sintered conductive adhesive has an advantage that it is excellent in conductivity because the fillers themselves melt and fuse together. On the other hand, when the adhesion area is large, there is a problem that the amount of shrinkage during sintering becomes relatively large, and for example, there is a possibility that the adhesive peels off and the adhesive force is reduced.

また、フィラー分散型の導電性接着剤は、樹脂成分が相対的に多く含まれていることから、構成部材間の熱膨張差に起因する熱応力を緩和して接着性の低下を抑制できるという利点を有している。一方で、接着剤内部でフィラーが分散されており、導通抵抗が増加して導電性が低下するといった問題や、フィラーの充填量を増加させた場合にはその製造コストが高騰するといった問題がある。   Further, since the filler-dispersed conductive adhesive contains a relatively large amount of the resin component, it can alleviate the thermal stress caused by the difference in thermal expansion between the constituent members and suppress the decrease in adhesiveness. Has advantages. On the other hand, there is a problem that the filler is dispersed inside the adhesive, the conduction resistance is increased and the conductivity is lowered, and the production cost is increased when the filler filling amount is increased. .

特に、近時のパワーモジュールはその小型化が進んでおり、このパワーモジュールの小型化に伴って素子が発する熱もより大きなものとなり、かつ単位面積当りの熱量が増大していること、小型化に伴って構成部材の熱拡散面積が低下していること、冷却器による冷却性能には自ずと限界があること、などから、発熱を許容しながらも、構成部材間の接合材に生じ得る熱応力を緩和し、構成部材間の導通を確保し得る接合方法の開発が急務の課題となっている。   In particular, the recent power modules have been downsized, and the heat generated by the elements has increased with the downsizing of the power modules, and the amount of heat per unit area has increased. As a result, the thermal diffusion area of the component members has decreased, and the cooling performance by the cooler is naturally limited. It is an urgent issue to develop a joining method that can alleviate the problem and ensure the conduction between the constituent members.

このような問題に対して、構成部材間に多孔質体を介在させ、その多孔質体の空隙に接着剤を含浸させて硬化させることによって、構成部材同士を接合する種々の方法が特許文献1〜4に開示されている。   In order to solve such a problem, Patent Document 1 discloses various methods for joining constituent members by interposing a porous body between constituent members and impregnating and curing an adhesive in the voids of the porous body. -4.

特許文献1に開示されているパワーモジュールの製造方法は、線膨張係数の異なる部材間に所定の気孔率分布を有する導電性多孔体を介在させ、該導電性多孔体の空隙にはんだを含浸させて部材同士を接合する方法である。   In the method for manufacturing a power module disclosed in Patent Document 1, a conductive porous body having a predetermined porosity distribution is interposed between members having different linear expansion coefficients, and the voids of the conductive porous body are impregnated with solder. This is a method of joining members together.

また、特許文献2に開示されている接合方法は、はんだやろうからなる低融点金属材と多孔質金属体との複合構造を有する接合材を用い、たとえば多孔質金属体と低融点金属シートとを重ねて含浸と接合を同時に行う方法である。   In addition, the bonding method disclosed in Patent Document 2 uses a bonding material having a composite structure of a low-melting-point metal material made of solder or brazing and a porous metal body, for example, a porous metal body and a low-melting-point metal sheet, In this method, impregnation and joining are performed simultaneously.

また、特許文献3に開示されている接合方法は、内部に空隙を有する多孔質金属層を金属層間に介在させ、金属を含む有機系接合材を金属層と多孔質金属層との間に設置して加熱し、有機系接合材を焼結させて2つの部材を接合する方法である。   In addition, in the bonding method disclosed in Patent Document 3, a porous metal layer having voids inside is interposed between metal layers, and an organic bonding material containing metal is installed between the metal layer and the porous metal layer. And heating and sintering the organic bonding material to bond the two members.

また、特許文献4に開示されている金属製部材接合体の製造方法は、加熱焼結性金属粒子と揮発性分散媒とからなるペースト状金属粒子組成物を複数の金属製部材間に介在させ、加熱によって揮発性分散媒を揮散させ、金属粒子同士を焼結せしめて生成した多孔質焼結物に硬化性液状樹脂組成物を含浸せしめて硬化させて金属製部材同士を接合する方法である。   Further, in the method for producing a metal member assembly disclosed in Patent Document 4, a paste-like metal particle composition comprising heat-sinterable metal particles and a volatile dispersion medium is interposed between a plurality of metal members. In this method, the volatile dispersion medium is volatilized by heating, the metal particles are sintered together, impregnated with a curable liquid resin composition, and cured to join metal members together. .

特開2009−277856号公報JP 2009-277856 A 特開2000−349100号公報JP 2000-349100 A 特開2006−202944号公報JP 2006-202944 A 特開2010−065277号公報JP 2010-065277 A

特許文献1に開示されているパワーモジュールの製造方法によれば、多孔体−はんだ複合材の気孔率を線形的に変化させることによって、接合材内部の線膨張係数やヤング率を線形的に変化させることができ、接合材内部や接合界面における応力集中を抑制して熱応力を緩和することができる。また、導電性多孔体の空隙にはんだを含浸させることによって、導電性と熱伝導性を高めることができる。   According to the power module manufacturing method disclosed in Patent Document 1, the linear expansion coefficient and Young's modulus inside the bonding material are linearly changed by linearly changing the porosity of the porous body-solder composite material. It is possible to reduce the thermal stress by suppressing the stress concentration inside the bonding material or at the bonding interface. Moreover, electroconductivity and thermal conductivity can be improved by impregnating the voids of the conductive porous body with solder.

また、特許文献2に開示されている接合方法によれば、多孔質金属体によって低融点金属材の漏れによる流出を抑制することができ、接合される部材同士を精緻に離間して配置することができるとともに、導電性と熱伝導性を高めることができる。   Moreover, according to the joining method disclosed in Patent Document 2, it is possible to suppress the outflow due to leakage of the low melting point metal material by the porous metal body, and to dispose the members to be joined precisely apart. In addition, the conductivity and thermal conductivity can be increased.

また、特許文献3に開示されている接合方法によれば、多孔質金属層内を有機物の揮発経路として用いることによって、接合面の中央付近でも有機物を揮発させることができ、接合時に加圧することなく2つの部材を接合することができる。   Moreover, according to the joining method disclosed in Patent Document 3, by using the inside of the porous metal layer as an organic matter volatilization path, the organic matter can be volatilized even near the center of the joining surface, and pressure is applied during joining. Two members can be joined.

また、特許文献4に開示されている金属製部材接合体の製造方法によれば、加熱焼結性金属粒子の焼結物によって金属製部材同士を強固に接合することができるともに、多孔質焼結物の空隙に硬化性液状樹脂組成物を含浸せしめて硬化させることによって、焼結物の空隙への液体の吸入を抑止して焼結物の硬度や強度を確保することができる。   In addition, according to the method for manufacturing a metal member assembly disclosed in Patent Document 4, metal members can be firmly bonded to each other by a sintered product of heat-sinterable metal particles, By impregnating the curable liquid resin composition into the voids of the binder and curing, it is possible to prevent the liquid from being sucked into the voids of the sintered product and ensure the hardness and strength of the sintered product.

しかしながら、特許文献1に開示されているパワーモジュールの製造方法や特許文献2に開示されている接合方法においては、導電性多孔体の空隙にはんだやろうからなる低融点金属材を含浸させているため、依然として接合材の剛性が高くその線膨張係数が大きくなる可能性があるといった課題がある。特に、特許文献1に開示されているパワーモジュールの製造方法においては、所定の気孔率分布を有する導電性多孔体を作製する工程が煩雑となり、製造コストが高騰するといった課題もある。   However, in the method for manufacturing the power module disclosed in Patent Document 1 and the joining method disclosed in Patent Document 2, the voids of the conductive porous body are impregnated with a low melting point metal material made of solder or solder. Therefore, there is a problem that the rigidity of the bonding material is still high and the linear expansion coefficient may be increased. In particular, in the method for manufacturing a power module disclosed in Patent Document 1, there is a problem that a process for manufacturing a conductive porous body having a predetermined porosity distribution becomes complicated and the manufacturing cost increases.

また、特許文献3に開示されている接合方法においては、はんだに代えてたとえばAgナノペーストを多孔質金属層の空隙に含浸させているものの、金属を多く含んだ有機系接合材を使用するため、依然として接合材の剛性が高くその線膨張係数が大きくなる可能性があるといった課題を解消し得ない。   In addition, in the joining method disclosed in Patent Document 3, for example, Ag nanopaste is impregnated in the voids of the porous metal layer instead of solder, but an organic joining material containing a large amount of metal is used. However, the problem that the rigidity of the bonding material is still high and the linear expansion coefficient may be increased cannot be solved.

さらに、特許文献3に開示されている接合方法や特許文献4に開示されている金属製部材接合体の製造方法においては、有機系接合材や加熱焼結性金属粒子を焼結させて2つの部材を接合するため、接着面積が大きい場合に焼結時の収縮量が大きくなり、接合材が剥離して接着力が低下する可能性があるといった課題を解消し得ない。   Furthermore, in the joining method disclosed in Patent Document 3 and the metal member joined body disclosed in Patent Document 4, two organic bonding materials and heat-sinterable metal particles are sintered. Since the members are joined, when the adhesion area is large, the amount of shrinkage during sintering becomes large, and the problem that the joining material may peel off and the adhesive force may be reduced cannot be solved.

このように、特許文献1〜4に開示されている接合方法においては、上記する導電性接着剤に起因する問題を個々に解消し得るものの、接着性と導電性を両立し得る接合方法を構築するには至っていない。   As described above, in the joining methods disclosed in Patent Documents 1 to 4, the problems caused by the conductive adhesive described above can be solved individually, but a joining method capable of achieving both adhesiveness and conductivity is constructed. It has not been done.

本発明は上記する問題に鑑みてなされたものであり、簡単な構成で接着性と導電性を両立し得る導電性部材の接合方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a method for joining conductive members that can achieve both adhesiveness and conductivity with a simple configuration.

前記目的を達成すべく、本発明による導電性部材の接合方法は、空隙を有する金属製多孔質体を用意し、前記導電性部材間に介在された前記金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させて導電性部材同士を接合する方法である。   In order to achieve the above object, a conductive member joining method according to the present invention provides a metal porous body having voids, and the voids of the metal porous body interposed between the conductive members are impregnated. In this method, the conductive adhesive is cured by curing the resin adhesive.

ここで、本発明の導電性部材の接合方法で用いる金属製多孔質体としては発泡金属が好ましく、その金属製多孔質体の形成素材としては、たとえばアルミニウム(Al)、銅(Cu)、ニッケル(Ni)、鉄(Fe)、金(Au)、銀(Ag)、パラジウム(Pd)やそれらの合金などを挙げることができる。また、金属製多孔質体の形状としては、たとえば矩形状や円盤状、シート状などを挙げることができる。   Here, the metal porous body used in the bonding method of the conductive member of the present invention is preferably a foam metal, and as the forming material of the metal porous body, for example, aluminum (Al), copper (Cu), nickel (Ni), iron (Fe), gold (Au), silver (Ag), palladium (Pd), and alloys thereof. In addition, examples of the shape of the metal porous body include a rectangular shape, a disk shape, and a sheet shape.

また、樹脂製接着剤としては、たとえばエポキシ系樹脂、シリコーン系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ウレタン系樹脂、フェノール系樹脂などの熱硬化性樹脂を挙げることができる。   Examples of the resin adhesive include thermosetting resins such as epoxy resins, silicone resins, polyimide resins, polyamide resins, urethane resins, and phenol resins.

上記する接合方法によれば、導電性部材間に金属製多孔質体を介在させることによって、導電性部材間に導通パスを形成して優れた導電性を確保することができるとともに、金属製多孔質体が所定の剛性を有する場合には、接合材の厚みを確保して導電性部材同士を精緻に離間して配置することができる。また、金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させて導電性部材同士を接合することによって、接合材全体の剛性を低下させることができ、温度変化に起因する導電性部材間の熱膨張差により接合材に生じ得る熱応力を緩和することができる。また、樹脂製接着剤を用いることによって、金属製多孔質体とその内部の空隙などに含まれる樹脂製接着剤の熱膨張差によって当該樹脂製接着剤に生じ得る熱応力なども緩和することができるため、その接着性を格段に高めることができる。さらに、予め用意した金属製多孔質体を導電性部材間に介在させることによって、焼結等による接合材の剥離の発生を抑制することができ、金属製多孔質体の配置工程を簡素化しながらその接着力をより一層高めることができる。   According to the bonding method described above, by interposing the metal porous body between the conductive members, a conductive path can be formed between the conductive members to ensure excellent conductivity, and the metal porous body can be secured. In the case where the material has a predetermined rigidity, the thickness of the bonding material can be ensured and the conductive members can be precisely spaced apart. Also, by curing the resin adhesive impregnated in the voids of the metal porous body and bonding the conductive members together, the rigidity of the entire bonding material can be reduced, and the conductivity caused by temperature changes Thermal stress that can occur in the bonding material due to the difference in thermal expansion between the members can be reduced. In addition, by using a resin adhesive, it is possible to relieve the thermal stress that can occur in the resin adhesive due to the difference in thermal expansion between the metal porous body and the resin adhesive contained in the voids inside the metal porous body. Therefore, the adhesiveness can be remarkably enhanced. Furthermore, by interposing a metal porous body prepared in advance between the conductive members, it is possible to suppress the occurrence of peeling of the bonding material due to sintering and the like, while simplifying the arrangement process of the metal porous body The adhesive force can be further increased.

上記する接合方法は、前記導電性部材間に前記金属製多孔質体を介在させ、該金属製多孔質体の空隙に前記樹脂製接着剤を含浸させて該樹脂製接着剤を硬化させてもよいし、前記金属製多孔質体の空隙に前記樹脂製接着剤を含浸させ、該金属製多孔質体を前記導電性部材間に介在させて該樹脂製接着剤を硬化させてもよい。   In the joining method described above, the metal porous body may be interposed between the conductive members, and the resin adhesive may be impregnated in the voids of the metal porous body to cure the resin adhesive. Alternatively, the resin adhesive may be impregnated in the voids of the metal porous body, and the resin adhesive may be cured by interposing the metal porous body between the conductive members.

たとえば導電性部材間に金属製多孔質体を介在させた後、その金属製多孔質体の空隙に樹脂製接着剤を含浸させる場合には、金属製多孔質体の配置工程を簡素化することができる。また、たとえば金属製多孔質体の空隙に樹脂製接着剤を含浸させた後、その金属製多孔質体を導電性部材間に介在させる場合には、樹脂製接着剤の含浸工程を簡素化することができる。   For example, when a metal porous body is interposed between conductive members and the resin porous adhesive is impregnated into the voids of the metal porous body, the arrangement process of the metal porous body should be simplified. Can do. Also, for example, when the metal porous body is impregnated between the conductive members after impregnating the void in the metal porous body with the resin adhesive, the resin adhesive impregnation step is simplified. be able to.

また、金属製多孔質体の気孔率は要求特性に応じて適宜設定することができるが、前記金属製多孔質体は、20〜60%の気孔率を有することが好ましく、特に40〜60%の気孔率を有することが望ましい。金属製多孔質体の気孔率が60%を超える場合には、導電性部材同士の接着強度が高まるものの、接合材全体の体積抵抗率も増加する。また、金属製多孔質体の気孔率が20%よりも低い場合には、接合材全体の体積抵抗率が減少するものの、導電性部材同士の接着強度も低下する。すなわち、金属製多孔質体が40〜60%の気孔率を有する場合に、接着性と導電性の双方をより効果的に高めることができる。   Further, the porosity of the metallic porous body can be appropriately set according to the required characteristics, but the metallic porous body preferably has a porosity of 20 to 60%, particularly 40 to 60%. It is desirable to have a porosity of When the porosity of the metal porous body exceeds 60%, the bonding strength between the conductive members is increased, but the volume resistivity of the entire bonding material is also increased. Further, when the porosity of the metal porous body is lower than 20%, although the volume resistivity of the whole bonding material is reduced, the adhesive strength between the conductive members is also reduced. That is, when the metal porous body has a porosity of 40 to 60%, both adhesion and conductivity can be improved more effectively.

以上の説明から理解できるように、本発明の導電性部材の接合方法によれば、導電性部材間に介在された金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させるという、極めて簡単な改良方法によって、導電性部材同士の接着性と導電性を効果的に高めることができる。   As can be understood from the above description, according to the conductive member bonding method of the present invention, the resin adhesive impregnated in the voids of the metal porous body interposed between the conductive members is cured. By an extremely simple improvement method, it is possible to effectively improve the adhesion and conductivity between the conductive members.

本発明の導電性部材の接合方法の実施の形態1を説明したフロー図である。It is the flowchart explaining Embodiment 1 of the joining method of the electroconductive member of this invention. 図1に示す実施の形態1の接合方法における各工程を模式的に説明した縦断面図であり、(a)は、金属製多孔質体を用意する工程、(b)は、導電性部材間に金属製多孔質体を介在させる工程、(c)は、金属製多孔質体の空隙に樹脂製接着剤を含浸させる工程、(d)は、樹脂製接着剤を硬化させる工程を説明した図である。It is the longitudinal cross-sectional view which demonstrated typically each process in the joining method of Embodiment 1 shown in FIG. 1, (a) is a process which prepares a metal porous body, (b) is between electroconductive members. (C) is a step of impregnating a metal porous body with a resin adhesive, and (d) is a diagram illustrating a step of curing the resin adhesive. It is. 本発明の導電性部材の接合方法の実施の形態2を説明したフロー図である。It is the flowchart explaining Embodiment 2 of the joining method of the electroconductive member of this invention. 実施例の試料を模式的に示した斜視図である。It is the perspective view which showed the sample of the Example typically. 検査用試料における体積抵抗率の測定方法を模式的に説明した図である。It is the figure which demonstrated typically the measuring method of the volume resistivity in the sample for a test | inspection. 実施例と比較例1、2の試料における体積抵抗率の測定結果を示した図である。It is the figure which showed the measurement result of the volume resistivity in the sample of an Example and Comparative Examples 1 and 2. FIG. 検査用試料における接着強度の測定方法を模式的に説明した図である。It is the figure which demonstrated typically the measuring method of the adhesive strength in the test sample. 実施例と比較例1、2の試料における接着強度の測定結果を示した図である。It is the figure which showed the measurement result of the adhesive strength in the sample of an Example and Comparative Examples 1 and 2. FIG. 実施例の試料における気孔率と接着強度および体積抵抗率の関係を示した図である。It is the figure which showed the relationship between the porosity in the sample of an Example, adhesive strength, and volume resistivity.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図1は、本発明の導電性部材の接合方法の実施の形態1を説明したフロー図であり、図2は、図1に示す実施の形態1の接合方法における各工程を模式的に説明した縦断面図であり、図2(a)は、金属製多孔質体を用意する工程、図2(b)は、導電性部材間に金属製多孔質体を介在させる工程、図2(c)は、金属製多孔質体の空隙に樹脂製接着剤を含浸させる工程、図2(d)は、樹脂製接着剤を硬化させる工程を説明した図である。
[Embodiment 1]
FIG. 1 is a flowchart for explaining the first embodiment of the method for joining conductive members of the present invention, and FIG. 2 schematically explains each step in the joining method of the first embodiment shown in FIG. 2A is a longitudinal sectional view, FIG. 2A is a step of preparing a metal porous body, FIG. 2B is a step of interposing a metal porous body between conductive members, and FIG. 2C. FIG. 2D is a diagram illustrating a step of impregnating a resinous adhesive into the voids of the metal porous body, and FIG. 2D is a diagram illustrating a step of curing the resinous adhesive.

図1で示すように、本実施の形態1の接合方法は、まず、内部に空隙を有する金属製多孔質体を予め用意する(S11)。次いで、導電性部材間にその金属製多孔質体を介在させる(S12)。そして、所定の手法によって金属製多孔質体の空隙に樹脂製接着剤を含浸させ(S13)、加熱等によって金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させる(S14)。   As shown in FIG. 1, in the joining method of the first embodiment, first, a metal porous body having a void inside is prepared in advance (S11). Next, the metallic porous body is interposed between the conductive members (S12). Then, the resin adhesive is impregnated in the voids of the metal porous body by a predetermined method (S13), and the resin adhesive impregnated in the voids of the metal porous body is cured by heating or the like (S14).

具体的には、図2(a)で示すように、まず、平面視で矩形状かつシート状の銅製多孔質体1を用意する。   Specifically, as shown in FIG. 2 (a), first, a rectangular and sheet-like copper porous body 1 in a plan view is prepared.

次いで、図2(b)で示すように、銅製多孔質体1を第1の導電性部材(たとえば、パワーモジュール用の半導体素子)A1と第2の導電性部材(たとえば、銅製電極板)A2との間に介在させる。   Next, as shown in FIG. 2B, the copper porous body 1 is made up of a first conductive member (for example, a semiconductor element for a power module) A1 and a second conductive member (for example, a copper electrode plate) A2. Intervene between.

次に、図2(c)で示すように、所定の手法によって銅製多孔質体1の空隙2にペースト状のエポキシ系樹脂接着剤3を含浸させる。ここで、銅製多孔質体1内に形成された空隙2はそれぞれが連通した構成を有しており、含浸された樹脂製接着剤3の一部が、第1の導電性部材A1や第2の導電性部材A2との接着面4、5に侵入するようになっている。   Next, as shown in FIG. 2C, the void 2 of the copper porous body 1 is impregnated with a paste-like epoxy resin adhesive 3 by a predetermined method. Here, the voids 2 formed in the copper porous body 1 have a configuration in which they communicate with each other, and a part of the impregnated resin adhesive 3 is used as the first conductive member A1 or the second conductive member A1. It penetrates into the adhesive surfaces 4 and 5 with the conductive member A2.

そして、図2(d)で示すように、銅製多孔質体1の空隙2に含浸されたエポキシ系樹脂接着剤3を加熱等によって硬化させ、第1の導電性部材A1と第2の導電性部材A2をエポキシ系樹脂接着剤3と銅製多孔質体1からなる接合材10を介して接合する。なお、加熱等によってエポキシ系樹脂接着剤3を硬化させる際に、接着剤3の熱膨張を考慮して第1の導電性部材A1と第2の導電性部材A2を押圧する必要がある場合にも、銅製多孔質体1を構造部材として用いることができ、第1の導電性部材A1と第2の導電性部材A2を容易に精緻な位置で離間して配置することができる。   And as shown in FIG.2 (d), the epoxy resin adhesive 3 impregnated in the space | gap 2 of the copper porous body 1 is hardened by heating etc., and 1st electroconductive member A1 and 2nd electroconductivity are carried out. The member A2 is bonded via the bonding material 10 made of the epoxy resin adhesive 3 and the copper porous body 1. When the epoxy resin adhesive 3 is cured by heating or the like, it is necessary to press the first conductive member A1 and the second conductive member A2 in consideration of the thermal expansion of the adhesive 3. In addition, the copper porous body 1 can be used as a structural member, and the first conductive member A1 and the second conductive member A2 can be easily separated from each other at precise positions.

本実施の形態1の接合方法によれば、金属製多孔質体を用いて導電性部材間に導通パスを形成することができ、導電性部材間の導電性を確保することができる。また、樹脂製接着剤を介して導電性部材同士を接合することで、導電性部材間の熱膨張差によって樹脂製接着剤に生じ得る熱応力を緩和することができ、導電性部材同士の接着強度を高めることができる。また、予め用意した金属製多孔質体を導電性部材間に介在させることによって、金属製多孔質体の配置工程を簡素化しながらその接着強度をより一層高めることができる。さらに、本実施の形態1の接合方法によれば、使用する樹脂製接着剤の量を抑制することができるといった利点もある。   According to the joining method of the first embodiment, it is possible to form a conduction path between conductive members using a metal porous body, and to ensure conductivity between the conductive members. In addition, by joining the conductive members through the resin adhesive, the thermal stress that can occur in the resin adhesive due to the difference in thermal expansion between the conductive members can be reduced, and the conductive members can be bonded to each other. Strength can be increased. In addition, by interposing a metal porous body prepared in advance between the conductive members, the bonding strength of the metal porous body can be further enhanced while simplifying the arrangement process of the metal porous body. Furthermore, according to the joining method of the first embodiment, there is an advantage that the amount of the resin adhesive to be used can be suppressed.

[実施の形態2]
図3は、本発明の導電性部材の接合方法の実施の形態2を説明したフロー図である。実施の形態2の接合方法は、実施の形態1の接合方法に対して、導電性部材間に金属製多孔質体を介在させる工程と金属製多孔質体の空隙に樹脂製接着剤を含浸させる工程の順序を変更したものである。
[Embodiment 2]
FIG. 3 is a flowchart illustrating Embodiment 2 of the method for joining conductive members of the present invention. The bonding method according to the second embodiment is different from the bonding method according to the first embodiment in that a metal porous body is interposed between the conductive members, and a void in the metal porous body is impregnated with a resin adhesive. The order of the steps is changed.

本実施の形態2の接合方法においては、まず、内部に空隙を有する金属製多孔質体を予め用意する(S21)。次いで、所定の手法によって金属製多孔質体の空隙に樹脂製接着剤を含浸させる(S22)。そして、導電性部材間にその金属製多孔質体を介在させ(S23)、加熱等によって金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させる(S24)。   In the joining method of the second embodiment, first, a metallic porous body having a void inside is prepared in advance (S21). Next, a resin adhesive is impregnated in the voids of the metal porous body by a predetermined method (S22). Then, the metallic porous body is interposed between the conductive members (S23), and the resin adhesive impregnated in the voids of the metallic porous body by heating or the like is cured (S24).

このように、導電性部材間に金属製多孔質体を介在させる工程と金属製多孔質体の空隙に樹脂製接着剤を含浸させる工程の順序を変更することによって、樹脂製接着剤の含浸工程を簡素化することができる。   Thus, the resin adhesive impregnation step is performed by changing the order of the step of interposing the metal porous body between the conductive members and the step of impregnating the metal porous body with the resin adhesive. Can be simplified.

なお、上記する実施の形態1、2の接合方法で接合される導電性部材の形成素材としては、たとえばアルミニウム(Al)、銅(Cu)、ニッケル(Ni)、金(Au)、銀(Ag)、パラジウム(Pd)、白金(Pt)やそれらの合金などを挙げることができる。具体的には、導電性部材としては、たとえば金メッキ基板、銀基板、銀メッキ金属基板、銅基板、アルミニウム基板、ニッケルメッキ基板、スズメッキ金属基板などの金属系基板や該基板に載置される半導体素子、リードフレーム、放熱板などを挙げることができる。すなわち、上記する接合方法は、たとえばパワーモジュール等の、金属系基板や金属部分などを有する電子部品や電子装置、電気部品、電気装置などの分野に適用することができる。   In addition, as a forming material of the conductive member joined by the joining method of the first and second embodiments described above, for example, aluminum (Al), copper (Cu), nickel (Ni), gold (Au), silver (Ag ), Palladium (Pd), platinum (Pt) and alloys thereof. Specifically, examples of the conductive member include a metal substrate such as a gold-plated substrate, a silver substrate, a silver-plated metal substrate, a copper substrate, an aluminum substrate, a nickel-plated substrate, and a tin-plated metal substrate, and a semiconductor placed on the substrate. An element, a lead frame, a heat sink, etc. can be mentioned. In other words, the above-described joining method can be applied to the fields of electronic components, electronic devices, electrical components, electrical devices and the like having a metal substrate or a metal part, such as a power module.

[検査用試料による接合材の体積抵抗率と接着強度を測定した実験とその結果]
本発明者等は、上記する実施の形態1の接合方法を用いて銅板同士を接合した検査用試料(実施例)を作製し、その試料に対して4端子法と引張剪断試験を用いて体積抵抗率測定と接着強度測定を実施した。
[Experiment and result of measuring volume resistivity and adhesive strength of bonding material with test sample]
The present inventors produce a test sample (Example) in which copper plates are bonded to each other using the bonding method according to Embodiment 1 described above, and volume is measured using the four-terminal method and a tensile shear test on the sample. Resistivity measurement and adhesive strength measurement were performed.

[実施例]
まず、実施例の検査用試料の作製方法を概説すると、図4で示すように、長手方向長さが100mm、短手方向長さが25mm、厚さが3.0mmの2枚の銅板(導電性部材)を用意し、双方の銅板の長手方向の反対側の端部が12.5mmだけラップする位置に略平行に配置する。次いで、その2枚の銅板の間に厚さが500μmで気孔率が約55%の銅製多孔質体を介在させ、その銅製多孔質体に塗布したエポキシ系樹脂からなる接着剤を真空環境下で銅製多孔質体の空隙に含浸させ、加熱により接着剤を硬化させて2枚の銅板を接合した。なお、銅製多孔質体と接着剤からなる接合材は、銅板の長手方向全体に亘って形成した。
[Example]
First, an outline of the method for preparing the test sample of the example is as follows. As shown in FIG. 4, two copper plates (conductivity) having a longitudinal length of 100 mm, a lateral length of 25 mm, and a thickness of 3.0 mm. Member) and arrange the two copper plates approximately parallel to the position where the opposite ends of the copper plate in the longitudinal direction overlap by 12.5 mm. Next, a copper porous body having a thickness of 500 μm and a porosity of about 55% is interposed between the two copper plates, and an adhesive made of an epoxy resin applied to the copper porous body is placed in a vacuum environment. The voids of the copper porous body were impregnated and the adhesive was cured by heating to join the two copper plates. In addition, the joining material which consists of a copper porous body and an adhesive agent was formed over the whole longitudinal direction of a copper plate.

[比較例1、2]
また、本発明者等は、上記する実施例の検査用試料と体積抵抗率と接着強度を比較するための銅板同士を接合した検査用試料(比較例1、2)を作製した。なお、比較例1の検査用試料は、接合材としてフィラー焼結型の導電性接着剤を使用し、比較例2の検査用試料は、接合材としてフィラー分散型の導電性接着剤を使用した。
[Comparative Examples 1 and 2]
In addition, the present inventors produced inspection samples (Comparative Examples 1 and 2) in which copper plates for comparing the volume resistivity and adhesive strength with the inspection samples of the above-described examples were joined. The inspection sample of Comparative Example 1 used a filler sintered conductive adhesive as the bonding material, and the inspection sample of Comparative Example 2 used a filler dispersed conductive adhesive as the bonding material. .

比較例1の検査用試料の作製方法を概説すると、実施例と同様に、長手方向長さが100mm、短手方向長さが25mm、厚さが3.0mmの2枚の銅板(導電性部材)を用意し、双方の銅板の長手方向の反対側の端部が12.5mmだけラップする位置に略平行に配置する。次いで、硬化後の接合材の厚さが200μmとなるように、その2枚の銅板の間にフィラーとしての銀粉とベース樹脂としてのエポキシ系樹脂を含むフィラー焼結型の導電性接着剤を介在させ、加熱により接着剤を硬化させて2枚の銅板を接合した。   An outline of the method for preparing the test sample of Comparative Example 1 is as follows. Like the example, two copper plates (conductive members) having a longitudinal length of 100 mm, a lateral length of 25 mm, and a thickness of 3.0 mm. Is prepared, and is arranged substantially parallel to the position where the opposite ends of the copper plates in the longitudinal direction overlap each other by 12.5 mm. Next, a filler-sintered conductive adhesive containing silver powder as a filler and an epoxy resin as a base resin is interposed between the two copper plates so that the thickness of the bonding material after curing is 200 μm. The adhesive was cured by heating, and the two copper plates were joined.

また、比較例2の検査用試料の作製方法を概説すると、実施例と同様に、長手方向長さが100mm、短手方向長さが25mm、厚さが3.0mmの2枚の銅板(導電性部材)を用意し、双方の銅板の長手方向の反対側の端部が12.5mmだけラップする位置に略平行に配置する。次いで、硬化後の接合材の厚さが200μmとなるように、その2枚の銅板の間にフィラーとして平均粒径が5.0μmの球状銀粉を80質量%、ベース樹脂としてエポキシ系樹脂を20質量%含むフィラー分散型の導電性接着剤を介在させ、加熱により接着剤を硬化させて2枚の銅板を接合した。   The outline of the method for preparing the test sample of Comparative Example 2 is as follows. As in the case of the example, two copper plates having a longitudinal length of 100 mm, a lateral length of 25 mm, and a thickness of 3.0 mm (conductive Member) and arrange the two copper plates approximately parallel to the position where the opposite ends of the copper plate in the longitudinal direction overlap by 12.5 mm. Next, 80% by mass of spherical silver powder having an average particle size of 5.0 μm as a filler and 20% by mass of epoxy resin as a base resin between the two copper plates so that the thickness of the bonded material after curing is 200 μm. % Filler-dispersed conductive adhesive was interposed, and the adhesive was cured by heating to join two copper plates.

[体積抵抗率を測定した実験とその結果]
本発明者等は、上記する作製方法で作製した検査用試料(実施例、比較例1、2)に対して4端子法を用いて体積抵抗率測定を実施した。
[Experiments and results of measuring volume resistivity]
The inventors of the present invention performed volume resistivity measurement on the test samples (Examples, Comparative Examples 1 and 2) prepared by the above-described manufacturing method using a four-terminal method.

体積抵抗率の測定方法を概説すると、図5で示すように、2枚の銅板を電流形Aおよび電圧計Vで接続し、電流形Aを用いて25℃の環境温度下で100mAの電流を流過させ、電圧計Vを用いて2枚の銅板間の抵抗値と銅板1枚分の抵抗値を測定する。そして、以下の式(1)に基づいて接合材の抵抗値を算出し、さらに接合材の寸法に基づいて接合材の体積抵抗率を算出した。   To outline the volume resistivity measurement method, as shown in FIG. 5, two copper plates are connected with a current type A and a voltmeter V, and a current of 100 mA is used at an ambient temperature of 25 ° C. using the current type A. The resistance value between two copper plates and the resistance value for one copper plate are measured using a voltmeter V. And the resistance value of the joining material was computed based on the following formula | equation (1), and also the volume resistivity of the joining material was computed based on the dimension of the joining material.

Figure 2013168545
Figure 2013168545

図6は、実施例と比較例1、2の試料における体積抵抗率の測定結果を示した図である。図示するように、実施例の検査用試料の体積抵抗率は6.0×10-4Ω・cm、比較例1の検査用試料の体積抵抗率は2.9×10-4Ω・cm、比較例2の検査用試料の体積抵抗率は9.4×108Ω・cmであった。なお、20℃における銅の体積抵抗率は1.68×10-8Ω・cm、銀の体積抵抗率は1.59×10-8Ω・cmであるため、原子間の相違による体積抵抗率への影響は極めて小さいと考えられる。 FIG. 6 is a diagram showing the measurement results of volume resistivity in the samples of Example and Comparative Examples 1 and 2. As shown in the figure, the volume resistivity of the test sample of the example is 6.0 × 10 −4 Ω · cm, and the volume resistivity of the test sample of the comparative example 1 is 2.9 × 10 −4 Ω · cm. The volume resistivity of the test sample was 9.4 × 10 8 Ω · cm. In addition, the volume resistivity of copper at 20 ° C is 1.68 × 10 -8 Ω · cm, and the volume resistivity of silver is 1.59 × 10 -8 Ω · cm. It is considered extremely small.

この実験結果より、実施例の検査用試料は、フィラー焼結型の導電性接着剤を使用した比較例1の検査用試料と同等の導電性を有し、フィラー分散型の導電性接着剤を使用した比較例2の検査用試料よりも格段に優れた導電性を有することが実証された。   From this experimental result, the test sample of the example has the same conductivity as the test sample of Comparative Example 1 using the filler sintered conductive adhesive, and the filler dispersed conductive adhesive is used. It was proved that the conductivity was much better than the test sample of Comparative Example 2 used.

[接着強度を測定した実験とその結果]
次に、本発明者等は、上記する作製方法で作製した検査用試料(実施例、比較例1、2)に対して引張剪断試験を用いて接着強度測定を実施した。
[Experiment and results of measuring adhesive strength]
Next, the present inventors performed an adhesive strength measurement on the test samples (Examples, Comparative Examples 1 and 2) produced by the production method described above using a tensile shear test.

接着強度の測定方法を概説すると、図7で示すように、ラップジョイント状の2枚の銅板の長手方向で反対側をチャック間距離100mmでチャックし、25℃の環境温度下で引張速度が5.0mm/minで長手方向の反対方向へ引張り、接合材の破断時における引張荷重を測定した。   As shown in Fig. 7, the method of measuring the adhesive strength is outlined. The opposite side in the longitudinal direction of two copper plates in the shape of a lap joint is chucked at a chuck distance of 100 mm, and the tensile speed is 5.0 at 25 ° C ambient temperature. It was pulled in the direction opposite to the longitudinal direction at mm / min, and the tensile load at the time of fracture of the bonding material was measured.

図8は、実施例と比較例1、2の試料における接着強度の測定結果を示した図である。図示するように、実施例の検査用試料の接着強度は12MPa、比較例2の検査用試料の接着強度は19Mpaであった。なお、比較例1の検査用試料は、2枚の銅板をチャックする際に発生する応力によって接合材が破断し、接着強度を測定することができなかった。   FIG. 8 is a diagram showing the measurement results of the adhesive strength in the samples of Examples and Comparative Examples 1 and 2. As shown in the figure, the bonding strength of the test sample of the example was 12 MPa, and the bonding strength of the test sample of the comparative example 2 was 19 MPa. In the test sample of Comparative Example 1, the bonding material was broken by the stress generated when chucking the two copper plates, and the adhesive strength could not be measured.

この実験結果より、実施例の検査用試料は、フィラー分散型の導電性接着剤を使用した比較例2の検査用試料よりも接着強度が低下するものの、優れた接着性を有することが実証された。   From this experimental result, it was demonstrated that the test sample of the example has excellent adhesiveness although the adhesive strength is lower than that of the test sample of Comparative Example 2 using the filler-dispersed conductive adhesive. It was.

このように、実施例の検査用試料は、フィラー焼結型の導電性接着剤を使用した比較例1の検査用試料と同等の導電性を有するとともに、フィラー焼結型の導電性接着剤を使用した比較例1の検査用試料よりも接着強度が高く、フィラー分散型の導電性接着剤を使用した比較例2の検査用試料に対して接着強度の低下が抑制されていることが確認された。   Thus, the test sample of the example has conductivity equivalent to that of the test sample of Comparative Example 1 using the filler sintered conductive adhesive, and the filler sintered conductive adhesive is used. It was confirmed that the adhesive strength was higher than the test sample of Comparative Example 1 used, and the decrease in the adhesive strength was suppressed with respect to the test sample of Comparative Example 2 using a filler-dispersed conductive adhesive. It was.

したがって、実施例の検査用試料は、導電性に優れたフィラー焼結型の導電性接着剤を使用した比較例1の検査用試料と接着性に優れたフィラー分散型の導電性接着剤を使用した比較例2の検査用試料の双方の特徴を兼ね備えており、接着性と導電性を両立し得ることが実証された。   Therefore, the inspection sample of the example uses the filler dispersion type conductive adhesive excellent in adhesiveness and the inspection sample of Comparative Example 1 using the filler sintered conductive adhesive excellent in conductivity. The characteristics of both of the test samples of Comparative Example 2 were demonstrated, and it was demonstrated that both adhesiveness and conductivity can be achieved.

[気孔率の変化による検査用試料の接合材の接着強度と体積抵抗率の変化を測定した実験とその結果]
本発明者等は、上記する実施例の検査用試料について、銅製多孔質体の気孔率の異なる7種類の検査用試料を作製し、それぞれの試料に対して接合材の接着強度測定と体積抵抗率測定を実施した。なお、接着強度と体積抵抗率の測定方法は上記する測定方法と同様である。
[Experiment and results of measuring changes in bond strength and volume resistivity of test specimens due to changes in porosity]
The present inventors made seven types of test samples having different porosity of the copper porous body for the test samples of the above-described examples, and measured the bonding strength and volume resistance of the bonding material for each sample. Rate measurements were performed. In addition, the measuring method of adhesive strength and volume resistivity is the same as the measuring method mentioned above.

図9は、実施例の試料における気孔率と接着強度および体積抵抗率の関係を示した図である。なお、図9においては、約20%、約42%、約55%、約69%、約79%の気孔率を有する銅製多孔質体についての接着強度測定と体積抵抗率測定を実施した結果を示すとともに、比較のために、0%と約100%の気孔率を有する銅製多孔質体についての接着強度測定と体積抵抗率測定を実施した結果を示している。   FIG. 9 is a diagram showing the relationship between the porosity, the adhesive strength, and the volume resistivity in the sample of the example. In addition, in FIG. 9, the result of having implemented the adhesive strength measurement and volume resistivity measurement about the copper porous body which has a porosity of about 20%, about 42%, about 55%, about 69%, and about 79%. In addition, for comparison, the results of adhesion strength measurement and volume resistivity measurement for a copper porous body having porosity of 0% and about 100% are shown.

図示するように、上記気孔率を有する銅製多孔質体について接着強度測定と体積抵抗率測定を実施した結果、実施例の試料の接着強度は、気孔率の変化に応じて略線形的に増加することが確認された(図中、実線)。また、実施例の試料の体積膨張率は、気孔率が約55%までは相対的に低く、気孔率が約69%以上になると相対的に高くなることが確認された(図中、一点鎖線)。なお、気孔率が約55%の体積膨張率と気孔率が約69%の体積膨張率の結果から、気孔率が約60%近傍で体積膨張率の増加率が高まると考えられた。   As shown in the figure, as a result of performing adhesive strength measurement and volume resistivity measurement on the copper porous body having the above porosity, the adhesive strength of the sample of the example increases substantially linearly according to the change in porosity. This was confirmed (solid line in the figure). In addition, it was confirmed that the volume expansion rate of the sample of the example was relatively low until the porosity was about 55%, and was relatively high when the porosity was about 69% or more (in the figure, a one-dot chain line). ). From the results of the volume expansion coefficient with a porosity of approximately 55% and the volume expansion coefficient with a porosity of approximately 69%, it was considered that the increase rate of the volume expansion coefficient was increased when the porosity was approximately 60%.

この実験結果より、実施例の検査用試料は接着性と導電性を両立し得るものの、銅製多孔質体の気孔率を20%、より好ましくは40%以上とすることで、所定の接着強度を確保することができ、銅製多孔質体の気孔率を60%以下とすることで、接合材の体積抵抗率を低減することができることが実証された。すなわち、銅製多孔質体の気孔率を40〜60%とすることで、所定の接着強度を確保しながら体積低効率の増加を抑制することができ、接着性と導電性の双方をより一層高められることが実証された。   From this experimental result, although the test sample of the example can achieve both adhesion and conductivity, the predetermined porous strength can be obtained by setting the porosity of the copper porous body to 20%, more preferably 40% or more. It was proved that the volume resistivity of the bonding material can be reduced by setting the porosity of the copper porous body to 60% or less. That is, by setting the porosity of the copper porous body to 40 to 60%, it is possible to suppress an increase in volume low efficiency while ensuring a predetermined adhesive strength, and to further improve both adhesiveness and conductivity. It has been demonstrated that

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…銅製多孔質体(金属製多孔質体)
2…空隙
3…エポキシ系樹脂接着剤(樹脂製接着剤)
4、5…接着面
10…接合材
A1…第1の導電性部材
A2…第2の導電性部材
1 ... Copper porous body (metal porous body)
2 ... Gap 3 ... Epoxy resin adhesive (resin adhesive)
4, 5 ... Adhesive surface 10 ... Joining material A1 ... First conductive member A2 ... Second conductive member

Claims (5)

導電性部材同士を接合する方法であって、
空隙を有する金属製多孔質体を用意し、前記導電性部材間に介在された前記金属製多孔質体の空隙に含浸された樹脂製接着剤を硬化させて導電性部材同士を接合する導電性部材の接合方法。
A method of joining conductive members together,
Conductivity for preparing a metal porous body having voids and curing the resin adhesive impregnated in the voids of the metal porous body interposed between the conductive members to join the conductive members together Member joining method.
前記導電性部材間に前記金属製多孔質体を介在させ、該金属製多孔質体の空隙に前記樹脂製接着剤を含浸させて該樹脂製接着剤を硬化させる請求項1に記載の導電性部材の接合方法。   The conductive material according to claim 1, wherein the metallic porous body is interposed between the conductive members, and the resin adhesive is cured by impregnating the resinous adhesive in the voids of the metallic porous body. Member joining method. 前記金属製多孔質体の空隙に前記樹脂製接着剤を含浸させ、該金属製多孔質体を前記導電性部材間に介在させて該樹脂製接着剤を硬化させる請求項1に記載の導電性部材の接合方法。   2. The conductive material according to claim 1, wherein the resin adhesive is impregnated in the voids of the metal porous body, and the resin adhesive is cured by interposing the metal porous body between the conductive members. Member joining method. 前記金属製多孔質体は、40〜60%の気孔率を有する請求項1〜3のいずれか一項に記載の導電性部材の接合方法。   The method for joining conductive members according to any one of claims 1 to 3, wherein the metal porous body has a porosity of 40 to 60%. 前記導電性部材は、パワーモジュールを構成する部材である請求項1〜4のいずれか一項に記載の導電性部材の接合方法。




The said conductive member is a member which comprises a power module, The joining method of the conductive member as described in any one of Claims 1-4.




JP2012031503A 2012-02-16 2012-02-16 Method for joining conductive members Pending JP2013168545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012031503A JP2013168545A (en) 2012-02-16 2012-02-16 Method for joining conductive members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012031503A JP2013168545A (en) 2012-02-16 2012-02-16 Method for joining conductive members

Publications (1)

Publication Number Publication Date
JP2013168545A true JP2013168545A (en) 2013-08-29

Family

ID=49178725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012031503A Pending JP2013168545A (en) 2012-02-16 2012-02-16 Method for joining conductive members

Country Status (1)

Country Link
JP (1) JP2013168545A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139768A (en) * 2015-01-29 2016-08-04 大日本印刷株式会社 Laminated wiring board
JP2017107731A (en) * 2015-12-09 2017-06-15 日立化成株式会社 Conductive sheet, method for producing the same, and semiconductor device and electronic component obtained by using the same
JP2019083283A (en) * 2017-10-31 2019-05-30 三菱電機株式会社 Semiconductor module, manufacturing method thereof, and power converter
JP6713120B1 (en) * 2019-12-27 2020-06-24 小松 晃雄 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
US10861816B2 (en) 2018-10-18 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Electronic assemblies having a mesh bond material and methods of forming thereof
US11752551B2 (en) 2020-04-15 2023-09-12 Nichia Corporation Resin impregnation method, method of manufacturing wavelength-conversion module, and wavelength-conversion module

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016139768A (en) * 2015-01-29 2016-08-04 大日本印刷株式会社 Laminated wiring board
JP2017107731A (en) * 2015-12-09 2017-06-15 日立化成株式会社 Conductive sheet, method for producing the same, and semiconductor device and electronic component obtained by using the same
JP2019083283A (en) * 2017-10-31 2019-05-30 三菱電機株式会社 Semiconductor module, manufacturing method thereof, and power converter
US10861816B2 (en) 2018-10-18 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Electronic assemblies having a mesh bond material and methods of forming thereof
JP6713120B1 (en) * 2019-12-27 2020-06-24 小松 晃雄 Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
JP2021107569A (en) * 2019-12-27 2021-07-29 小松 晃雄 Copper sintered substrate nano-silver impregnated joint sheet, method therefor and joining method
US11752551B2 (en) 2020-04-15 2023-09-12 Nichia Corporation Resin impregnation method, method of manufacturing wavelength-conversion module, and wavelength-conversion module

Similar Documents

Publication Publication Date Title
JP2013168545A (en) Method for joining conductive members
US10008394B2 (en) Method for mounting an electrical component, wherein a hood is used, and hood suitable for use in said method
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
US20110244636A1 (en) Manufacturing method of semiconductor chip-embedded wiring substrate
US9362242B2 (en) Bonding structure including metal nano particle
US20130256894A1 (en) Porous Metallic Film as Die Attach and Interconnect
CN109643661B (en) Power semiconductor device
JP2011238779A (en) Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device
KR20140139104A (en) Conductive paste for die bonding, and die bonding method using conductive paste for die bonding
JP6494802B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
KR102028384B1 (en) Connection device, method for manufacturing connection structure, method for manufacturing stacked chip component and method for mounting electronic component
JP5664475B2 (en) Semiconductor device
JP2018110149A (en) Manufacturing method of semiconductor device
JP2011198674A (en) Conductive bonding material, semiconductor device using this, and manufacturing method of semiconductor device
WO2017159024A1 (en) Ceramic substrate, method for producing ceramic substrate and power module
JP2014110282A (en) Bonding method using paste containing metal fine particle
JP2005014024A (en) Solder member, soldering material, and soldering method
CN107667419B (en) Method for producing a circuit carrier
KR101616080B1 (en) Method for forming a conductive adhesive at bonding object
JP2014237843A (en) Film-like adhesive and method of producing semiconductor device using the same
EP4365938A1 (en) Joining member
JP7198479B2 (en) Semiconductor device bonding structure, method for producing semiconductor device bonding structure, and conductive bonding agent
JP2012072404A (en) Filmy adhesive and production method of semiconductor device using the same
JP2006059905A (en) Semiconductor device manufacturing method
CN116982153A (en) Semiconductor device and method for manufacturing semiconductor device