JP2014110282A - Bonding method using paste containing metal fine particle - Google Patents

Bonding method using paste containing metal fine particle Download PDF

Info

Publication number
JP2014110282A
JP2014110282A JP2012262859A JP2012262859A JP2014110282A JP 2014110282 A JP2014110282 A JP 2014110282A JP 2012262859 A JP2012262859 A JP 2012262859A JP 2012262859 A JP2012262859 A JP 2012262859A JP 2014110282 A JP2014110282 A JP 2014110282A
Authority
JP
Japan
Prior art keywords
bonded
paste
metal fine
joined
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012262859A
Other languages
Japanese (ja)
Inventor
Hiroomi Kobayashi
裕臣 小林
Masashi Furukawa
雅志 古川
Yoshiaki Uchida
圭亮 内田
Yoshinori Shibata
義範 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012262859A priority Critical patent/JP2014110282A/en
Publication of JP2014110282A publication Critical patent/JP2014110282A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding method which bonds a member to be bonded using a paste containing metal fine particles as a bonding material and is capable of obtaining an assembly with excellent durability, and in which a notch does not occur.SOLUTION: A method for bonding a first member 1 to be bonded and a second member 2 to be bonded using a paste 3 containing metal fine particles includes the steps of: applying a paste containing metal fine particles to the second member to be bonded over an area wider than an area of the first member to be bonded; laminating the first member to be bonded on the paste, pressurizing the first member to be bonded, and pushing the first member to be bonded into the paste at a thickness which is not less than 30% of the thickness of the applied paste; and performing heating.

Description

本発明は金属微粒子含有ペーストを用いる被接合部材の接合方法に関する。   The present invention relates to a method for joining members to be joined using a paste containing metal fine particles.

従来、接合材料としてはんだが使用されていたが、動作温度の高いパワーデバイス素子に対して使用することは困難であった。そのため、現在では接合材料として耐熱性の高い金属微粒子含有ペーストが使用されてきている(例えば、特許文献1)。   Conventionally, solder has been used as a bonding material, but it has been difficult to use it for power device elements having a high operating temperature. For this reason, a paste containing metal fine particles having high heat resistance has been used as a bonding material (for example, Patent Document 1).

接合材料としてはんだを使用する接合方法では、はんだが溶融して被接合部材の重みでぬれ広がるためフィレットが形成される。しかし、金属微粒子含有ペーストを接合材料として使用する場合、金属微粒子含有ペーストは溶融しないため、ぬれ広がらず、ペーストに含まれる溶媒の温度上昇による気化により、ペーストは収縮する。このため、応力集中部となる切欠きがペーストに発生し、得られる接合体の耐久性が低下してしまう。図8は従来の金属微粒子含有ペーストを用いる接合方法を示す。被接合部材5に、被接合部材4と同面積で金属微粒子含有ペースト6を塗布し、被接合部材4をペースト6に積層させ、加熱して被接合部材4と被接合部材5を接合すると、ペースト6に含まれる溶媒が気化することにより、ペースト6は収縮する。このため、図9の接合部分の拡大図に示すように、被接合部材4と被接合部材5の間に応力集中部分となる切欠きが発生し、得られる接合体の耐久性が低下する。   In the joining method using solder as the joining material, the solder melts and spreads by the weight of the member to be joined, so that a fillet is formed. However, when the metal fine particle-containing paste is used as a bonding material, the metal fine particle-containing paste does not melt and does not spread out, and the paste shrinks due to vaporization due to the temperature rise of the solvent contained in the paste. For this reason, the notch used as a stress concentration part generate | occur | produces in a paste, and durability of the obtained joined body will fall. FIG. 8 shows a conventional joining method using a paste containing metal fine particles. When the metal particle-containing paste 6 is applied to the member to be bonded 5 in the same area as the member to be bonded 4, the member to be bonded 4 is laminated on the paste 6, and heated to join the member to be bonded 4 and the member to be bonded 5, As the solvent contained in the paste 6 is vaporized, the paste 6 contracts. For this reason, as shown in the enlarged view of the joined portion in FIG. 9, a notch that becomes a stress concentration portion is generated between the joined member 4 and the joined member 5, and the durability of the obtained joined body is lowered.

また、一般に、金属微粒子含有ペーストを被接合部材よりも広い面積に塗布し、無加圧で接合する場合、加熱中にペースト層内で温度勾配が発生するため、ペーストが熱源と逆方向に反り返り、被接合部材とペーストの間に応力集中部となる切欠きが発生し、得られる接合体の耐久性が低下することが知られている。   Also, in general, when a metal fine particle-containing paste is applied over a larger area than the members to be bonded and bonded without pressure, a temperature gradient occurs in the paste layer during heating, so the paste warps in the opposite direction to the heat source. It is known that a notch that becomes a stress concentration portion is generated between the member to be bonded and the paste, and the durability of the obtained bonded body is lowered.

さらに、特定の金属粒子前駆体及び還元剤を含む金属微粒子含有ペーストを接合材料として用いた場合に、接合界面で金属結合による接合をより低温で実現可能であることが報告されているが(特許文献2)、この文献には、接合時に加圧した場合には接合体の接合面積率は20%以上となるが、加圧しない場合には接合体の接合面積率は5%以下となるので、接合時に被接合部材を加圧することが必須であると記載されている。このため、接合時に加圧を必要としない従来のはんだ用の設備では被接合部材を接合できず、接合するためには設備を改造する必要が生じる。   Furthermore, it has been reported that when a metal fine particle-containing paste containing a specific metal particle precursor and a reducing agent is used as a bonding material, bonding by metal bonding can be realized at a lower temperature at the bonding interface (patent) Document 2), in this document, when the pressure is applied during bonding, the bonded area ratio of the bonded body is 20% or more, but when the pressure is not applied, the bonded area ratio of the bonded body is 5% or less. In addition, it is described that it is essential to pressurize the member to be joined at the time of joining. For this reason, the conventional soldering equipment that does not require pressurization at the time of joining cannot join the members to be joined, and the equipment needs to be modified in order to join them.

特開2011−21255号公報JP 2011-21255 A 特開2012−94873号公報JP 2012-94873 A

上記の通り、金属微粒子含有ペーストを接合材料として用いる場合、被接合部材間に切欠きが発生し、得られる接合体の耐久性が低下する場合がある。   As described above, when the metal fine particle-containing paste is used as a bonding material, notches are generated between the members to be bonded, and the durability of the resulting bonded body may be reduced.

また、金属微粒子含有ペーストを被接合部材よりも広い面積に塗布し、無加圧で接合する場合にも、被接合部材とペーストの間に切欠きが発生し、得られる接合体の耐久性が低下する場合がある。   In addition, even when the metal fine particle-containing paste is applied to a larger area than the member to be bonded and bonded without pressure, a notch is generated between the member to be bonded and the paste, and the resulting bonded body has durability. May decrease.

そのため、本発明は、接合材料として金属微粒子含有ペーストを用いる被接合部材の接合方法において、切欠きが発生せず、耐久性に優れた接合体を得る接合方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a joining method for obtaining a joined body having no notch and having excellent durability in a joining method of members to be joined using a metal fine particle-containing paste as a joining material.

本発明は以下の発明を包含する。
(1)第1の被接合部材および第2の被接合部材を金属微粒子含有ペーストで接合する接合方法において、
金属微粒子含有ペーストを第1の被接合部材の面積より広い面積で第2の被接合部材に塗布する工程と、
第1の被接合部材を金属微粒子含有ペーストに積層させ、第1の被接合部材を加圧して、第1の被接合部材を塗布されたペーストの厚さの30%以上の厚さでペーストに押し込む工程と、
加熱する工程とを含む、前記方法。
(2)加熱を第1の被接合部材側から行う、(1)に記載の接合方法。
(3)金属微粒子含有ペーストを第1の被接合部材の面積より0.5%以上広い面積で第2の被接合部材に塗布する、(1)または(2)に記載の接合方法。
(4)加熱する工程を無加圧下で行う、(1)〜(3)のいずれかに記載の接合方法。
The present invention includes the following inventions.
(1) In the joining method of joining the first member to be joined and the second member to be joined with the metal fine particle-containing paste,
Applying the metal fine particle-containing paste to the second bonded member in an area wider than the area of the first bonded member;
The first member to be bonded is laminated on the metal fine particle-containing paste, the first member to be bonded is pressed, and the first member to be bonded is applied to the paste at a thickness of 30% or more of the thickness of the paste applied. Pushing process,
Heating the method.
(2) The joining method according to (1), wherein heating is performed from the first joined member side.
(3) The joining method according to (1) or (2), wherein the metal fine particle-containing paste is applied to the second member to be joined in an area wider by 0.5% or more than the area of the first member to be joined.
(4) The joining method according to any one of (1) to (3), wherein the heating step is performed under no pressure.

本発明によれば、接合材料として金属微粒子含有ペーストを用いる接合方法において、切欠きが発生せず、耐久性に優れた接合体が得られる接合方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the joining method using a metal microparticle containing paste as a joining material, a notch does not generate | occur | produce but the joining method which can obtain the joining body excellent in durability can be provided.

本発明の接合方法の工程を示す図である。It is a figure which shows the process of the joining method of this invention. 本発明の接合方法により得られた接合体の接合部分の拡大図である。It is an enlarged view of the junction part of the conjugate | zygote obtained by the joining method of this invention. 本発明の第2の実施形態を示す図である。It is a figure which shows the 2nd Embodiment of this invention. 本発明の比較例の冷熱衝撃試験前の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image before the thermal shock test of the comparative example of this invention. 本発明の実施例1の−55℃/150℃の条件における冷熱衝撃試験前の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image before the thermal shock test in the conditions of -55 degreeC / 150 degreeC of Example 1 of this invention. 本発明の実施例1の−55℃/150℃の条件における冷熱衝撃試験後の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image after the thermal shock test in the conditions of -55 degreeC / 150 degreeC of Example 1 of this invention. 本発明の実施例1の−65℃/175℃の条件における冷熱衝撃試験前の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image before the thermal shock test in the conditions of -65 degreeC / 175 degreeC of Example 1 of this invention. 本発明の実施例1の−65℃/175℃の条件における冷熱衝撃試験後の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image after the thermal shock test in the conditions of -65 degreeC / 175 degreeC of Example 1 of this invention. 本発明の実施例2の−65℃/175℃の条件における冷熱衝撃試験前の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image before the thermal shock test in the conditions of -65 degreeC / 175 degreeC of Example 2 of this invention. 本発明の実施例2の−65℃/175℃の条件における冷熱衝撃試験後の超音波顕微鏡像を示す図である。It is a figure which shows the ultrasonic microscope image after the thermal shock test in the conditions of -65 degreeC / 175 degreeC of Example 2 of this invention. 従来の接合方法を示す図である。It is a figure which shows the conventional joining method. 従来の接合方法により得られた接合体の接合部分の拡大図である。It is an enlarged view of the junction part of the conjugate | zygote obtained by the conventional joining method.

本発明の実施形態について、以下のとおり説明する。   Embodiments of the present invention will be described as follows.

本発明は、第1の被接合部材および第2の被接合部材を金属微粒子含有ペーストで接合する接合方法に関する。本発明の方法によると、切欠きが発生せず、耐久性に優れた接合体を得ることができる。   The present invention relates to a joining method for joining a first member to be joined and a second member to be joined with a metal fine particle-containing paste. According to the method of the present invention, a cutout is not generated, and a bonded body having excellent durability can be obtained.

金属微粒子含有ペーストに含まれる金属微粒子として使用される金属の種類は特に限定されず、貴金属および卑金属のいずれも使用することができる。貴金属としては、例えば、金、銀、ルテニウム、ロジウム、パラジウム、イリジウム、白金などを挙げることができる。卑金属としては、例えば、銅、アルミニウム、鉄、ニッケルなどを挙げることができる。使用する金属の種類は1種でもよいし、2種以上を組み合わせて使用してもよい。金属微粒子は電気・熱伝導性を維持している限り、金属酸化物や金属塩の形態であってもよい。本発明では、特に限定するものではないが、電気伝導性および熱伝導性の観点から銀を使用することが好ましい。   The kind of metal used as the metal fine particles contained in the metal fine particle-containing paste is not particularly limited, and any of noble metals and base metals can be used. Examples of the noble metal include gold, silver, ruthenium, rhodium, palladium, iridium, and platinum. Examples of the base metal include copper, aluminum, iron, nickel, and the like. One kind of metal may be used, or two or more kinds may be used in combination. The metal fine particles may be in the form of a metal oxide or a metal salt as long as the electrical / thermal conductivity is maintained. Although it does not specifically limit in this invention, It is preferable to use silver from a viewpoint of electrical conductivity and heat conductivity.

金属微粒子の平均粒径は、例えば、1〜60nm、好ましくは1〜20nmである。平均粒径が小さくなるほど粒子同士の接触面積が増大し接合強度や電気・熱伝導率が向上するため、平均粒径は小さいほど好ましい。金属微粒子は特定の平均粒径の範囲のものを単独で使用してもよいし、異なる平均粒径の範囲のものを複数組み合わせて使用してもよい。本発明の好ましい実施形態において、金属ナノ粒子ペーストが金属微粒子含有ペーストとして用いられる。   The average particle diameter of the metal fine particles is, for example, 1 to 60 nm, preferably 1 to 20 nm. The smaller the average particle size, the larger the contact area between the particles and the better the bonding strength and electrical / thermal conductivity. The metal fine particles having a specific average particle diameter may be used alone, or a plurality of metal fine particles having a different average particle diameter may be used in combination. In a preferred embodiment of the present invention, a metal nanoparticle paste is used as a metal fine particle-containing paste.

金属微粒子含有ペースト中の金属微粒子の含有量は例えば、80〜99重量%、好ましくは95〜99重量%である。   The content of the metal fine particles in the metal fine particle-containing paste is, for example, 80 to 99% by weight, preferably 95 to 99% by weight.

本発明の金属微粒子含有ペーストは溶媒または添加剤を含むことができる。
溶媒としては、特に限定されず、水やアルコールなどのプロトン性極性溶媒、アミド(例えばジメチルアセトアミド)、ニトリル(例えばアセトニトリル)、ケトン(例えばアセトン)、環状エーテル(例えばテトラヒドロフラン)などの非プロトン性極性溶媒などを使用することができる。
The metal fine particle-containing paste of the present invention may contain a solvent or an additive.
The solvent is not particularly limited, and is aprotic polar solvent such as water or alcohol, aprotic polar solvent such as amide (for example, dimethylacetamide), nitrile (for example, acetonitrile), ketone (for example, acetone), or cyclic ether (for example, tetrahydrofuran). A solvent or the like can be used.

添加剤としては、特に限定されず、粘度調整剤、分散剤などを挙げることができる。
粘度調整剤としては、特に限定されず、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロースなどのセルロース誘導体、ポリオキシエチレンまたはその変性体、ポリビニルアルコールまたはその変性体、多糖類、極性溶媒などを挙げることができる。
The additive is not particularly limited, and examples thereof include a viscosity modifier and a dispersant.
The viscosity modifier is not particularly limited, and examples thereof include cellulose derivatives such as carboxymethyl cellulose (CMC), carboxyethyl cellulose, and hydroxyethyl cellulose, polyoxyethylene or a modified product thereof, polyvinyl alcohol or a modified product thereof, a polysaccharide, and a polar solvent. be able to.

分散剤としては、特に限定されずに、リン酸系分散剤、例えば、リン酸エステル系分散剤、ポリオキシアルキレンアルキルエーテルリン酸系分散剤、ポリオキシアルキレンアルキルフェニルエーテルリン酸系分散剤などを挙げることができる。   The dispersant is not particularly limited, and includes phosphoric acid dispersants such as phosphate ester dispersants, polyoxyalkylene alkyl ether phosphate dispersants, polyoxyalkylene alkyl phenyl ether phosphate dispersants, and the like. Can be mentioned.

本発明に用いる被接合部材は、特に限定されず、金属材料、プラスチック材料、セラミック材料などを使用することができる。金属材料としては、例えば、金属基板、例えば、銅基板、金基板、アルミ基板などを挙げることができる。プラスチック材料としては、例えば、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレンナフタレートなどを挙げることができる。セラミック材料としては、例えば、ガラス、シリコンなどを挙げることができる。   The to-be-joined member used for this invention is not specifically limited, A metal material, a plastic material, a ceramic material etc. can be used. Examples of the metal material include a metal substrate such as a copper substrate, a gold substrate, and an aluminum substrate. Examples of the plastic material include polyimide, polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, and polyethylene naphthalate. Examples of the ceramic material include glass and silicon.

また、被接合部材として電子部品を使用することもできる。電子部品としては、例えば、シリコン素子、シリコンカーバイド素子、窒化ガリウム素子などの化合物半導体などを挙げることができる。   Moreover, an electronic component can also be used as a member to be joined. Examples of electronic components include compound semiconductors such as silicon elements, silicon carbide elements, and gallium nitride elements.

本発明において、後述するように金属微粒子含有ペーストを第1の被接合部材の接合面積より広い面積で第2の被接合部材に塗布するので、第2の被接合部材の接合面の面積は第1の被接合部材の接合面の面積よりも広い。   In the present invention, as will be described later, the metal fine particle-containing paste is applied to the second member to be bonded in an area larger than the bonding area of the first member to be bonded, so the area of the bonding surface of the second member to be bonded is the first. It is wider than the area of the joining surface of one member to be joined.

本発明の好ましい実施形態において、第1の被接合部材は電子部品であり、第2の被接合部材は金属基板である。   In a preferred embodiment of the present invention, the first member to be bonded is an electronic component, and the second member to be bonded is a metal substrate.

第1の被接合部材および第2の被接合部材を金属微粒子含有ペーストで接合する本発明の接合方法の工程を図1に示す。本発明の接合方法は、金属微粒子含有ペースト3を第1の被接合部材1の接合面積より広い面積で第2の被接合部材2に塗布する工程(工程(i))と、第1の被接合部材1を金属微粒子含有ペースト3に積層させ、第1の被接合部材1を加圧して、第1の被接合部材1を塗布されたペースト3の厚さの30%以上の厚さでペースト3に押し込む工程(工程(ii))と、加熱して第1の被接合部材1および第2の被接合部材2を接合する工程(工程(iii))とを含む。   FIG. 1 shows the steps of the joining method of the present invention for joining the first member to be joined and the second member to be joined with the metal fine particle-containing paste. The bonding method of the present invention includes a step (step (i)) of applying the metal fine particle-containing paste 3 to the second member 2 to be bonded in a larger area than the bonding area of the first member 1. The bonding member 1 is laminated on the metal fine particle-containing paste 3, the first bonded member 1 is pressurized, and the paste has a thickness of 30% or more of the thickness of the paste 3 coated with the first bonded member 1. 3 (step (iii)) and a step (step (iii)) of heating and joining the first member 1 and the second member 2 to be joined.

工程(i)について
本発明の接合方法の工程(i)において、金属微粒子含有ペースト3が第1の被接合部材1の面積より広い面積で第2の被接合部材2に塗布される。これにより、図2の本発明の接合方法により得られた接合体の接合部分の拡大図に示すように、加熱によるペーストの収縮により切欠きが形成することを防ぎ、得られる接合体の耐久性が向上する。
Step (i) In step (i) of the bonding method of the present invention, the metal fine particle-containing paste 3 is applied to the second member 2 to be bonded in an area larger than the area of the first member 1. Thereby, as shown in the enlarged view of the joined portion of the joined body obtained by the joining method of the present invention in FIG. 2, it is possible to prevent notches from being formed due to shrinkage of the paste due to heating, and durability of the obtained joined body. Will improve.

本発明において、「被接合部材の面積」とは、第1の被接合部材または第2の被接合部材が他方の被接合部材と接合する面の面積を意味する。   In the present invention, the “area of the member to be joined” means the area of the surface where the first member to be joined or the second member to be joined is joined to the other member to be joined.

好ましい実施形態において、金属微粒子含有ペースト3は第1の被接合部材1の面積より0.5%以上広い面積、かつ第2の被接合部材2の面積以下の面積で第2の被接合部材2に塗布される。   In a preferred embodiment, the metal fine particle-containing paste 3 has an area that is 0.5% or more larger than the area of the first member to be joined 1 and an area that is less than or equal to the area of the second member to be joined 2. To be applied.

本発明において、塗布される金属微粒子含有ペーストの厚さは、特に限定されずに50〜150μm、好ましくは100〜150μmであることができる。   In the present invention, the thickness of the applied metal fine particle-containing paste is not particularly limited and can be 50 to 150 μm, preferably 100 to 150 μm.

工程(ii)について
工程(i)の後、第1の被接合部材1を工程(i)で塗布された金属微粒子含有ペースト3に積層させ、第1の被接合部材1を加圧して、第1の被接合部材1を塗布されたペースト3の厚さの30%以上の厚さでペースト3に押し込む。これにより、加熱によるペーストの収縮により切欠きが形成することを防ぎ、得られる接合体の耐久性が向上する。
Step (ii) After step (i), the first member 1 is laminated on the metal fine particle-containing paste 3 applied in step (i), the first member 1 is pressurized, 1 to-be-joined member 1 is pushed into paste 3 at a thickness of 30% or more of the thickness of applied paste 3. Thereby, it is prevented that a notch is formed due to shrinkage of the paste due to heating, and durability of the obtained bonded body is improved.

前記のように、金属微粒子含有ペースト3は第1の被接合部材1の面積よりも広い面積で第2の被接合部材2に塗布される。本発明において、第1の被接合部材1をペースト3に積層させる際、第1の被接合部材1は塗布されたペースト3からはみ出さないように積層させる。   As described above, the metal fine particle-containing paste 3 is applied to the second bonded member 2 in an area larger than the area of the first bonded member 1. In the present invention, when the first member 1 is laminated on the paste 3, the first member 1 is laminated so as not to protrude from the applied paste 3.

第1の被接合部材1をペースト3に押し込む際の圧力は、特に限定されず、第1の被接合部材1をペースト3の厚さの30%以上の厚さでペーストに押し込むことができる圧力であればよい。   The pressure at which the first member 1 is pushed into the paste 3 is not particularly limited, and the pressure at which the first member 1 can be pushed into the paste at a thickness of 30% or more of the thickness of the paste 3. If it is.

工程(iii)について
次に、第1の被接合部材1および第2の被接合部材2ならびに塗布されたペースト3を加熱して第1の被接合部材1および第2の被接合部材2を接合する。本発明の加熱工程は無加圧条件下で実施することができる。ここで、「無加圧条件」とは、機械などを用いて高い圧力をかけることを必要としないという意味であり、人の手によって被接合部材を押し付ける程度の圧力を除外するものではない。本発明の接合方法は従来技術と比較して無加圧条件下でも強固に被接合部材を接合することが可能である。本発明の接合方法は被接合部材を無加圧条件下で接合できるので、従来のはんだを接合材料として用いる設備を改造することなく、接合体を製造することができる。
Next, in the step (iii) , the first member 1 and the second member 2 and the applied paste 3 are heated to bond the first member 1 and the second member 2 to each other. To do. The heating step of the present invention can be carried out under no pressure condition. Here, the “non-pressurized condition” means that it is not necessary to apply a high pressure using a machine or the like, and does not exclude a pressure that presses the member to be joined by a human hand. The joining method of the present invention can firmly join the members to be joined even under no pressure condition as compared with the prior art. Since the joining method of this invention can join a to-be-joined member on non-pressurized conditions, a joined body can be manufactured, without modifying the installation which uses the conventional solder as a joining material.

加熱工程は、例えば200℃以上、好ましくは250℃以上で実施する。
加熱は、第1の被接合部材1および第2の被接合部材2のいずれの側から行ってもよいが、好ましくは、第1の被接合部材側から加熱する。
The heating step is performed at, for example, 200 ° C. or higher, preferably 250 ° C. or higher.
Heating may be performed from either side of the first member to be bonded 1 and the second member 2 to be bonded, but is preferably heated from the side of the first member to be bonded.

従って、本発明の接合方法の第2の実施形態は、金属微粒子含有ペーストを第1の被接合部材の面積より広い面積で第2の被接合部材に塗布する工程と、第1の被接合部材を金属微粒子含有ペーストに積層させ、第1の被接合部材を加圧して、第1の被接合部材を塗布されたペーストの厚さの30%以上の厚さでペーストに押し込む工程と、第1の被接合部材側から加熱する工程とを含む、第1の被接合部材および第2の被接合部材を金属微粒子含有ペーストで接合する接合方法である。   Therefore, the second embodiment of the bonding method of the present invention includes a step of applying the metal fine particle-containing paste to the second member to be bonded in an area larger than the area of the first member to be bonded, and the first member to be bonded. Laminating a metal fine particle-containing paste, pressurizing the first member to be bonded, and pressing the first member to be bonded into the paste at a thickness of 30% or more of the thickness of the applied paste; The first member to be joined and the second member to be joined using a metal fine particle-containing paste.

図3に第1の被接合部材側から加熱した場合の本発明の接合方法を接合部分を拡大して示した。第1の被接合部材1側から加熱すると、加熱中に金属微粒子含有ペースト3の内部で、第1の被接合部材1側の温度が高くなり、第2の被接合部材2側に向かって温度が低くなる温度勾配が生じる。従って、第1の被接合部材1側のペースト3が先に焼結し、その後、第2の被接合部材2側のペースト3が焼結する。ペースト3に含まれる溶媒が温度上昇により気化し、ペースト3が収縮する際、第1の被接合部材1側のペーストは第2の被接合部材2側のペースト3よりも速く焼結しているので、第2の被接合部材2側のペースト3が大きく収縮し、その結果、ペースト3は第2の被接合部材2側に反り返る。従って、ペースト3と第2の被接合部材2の接合面積が大きくなり、切欠きも発生しない。よって、第1の被接合部材側から加熱した場合、第2の被接合部材側から加熱した場合と比較して、金属微粒子含有ペーストと第2の接合体の接合面積が大きくなり、切欠きも発生しないので、得られる接合体の耐久性が向上する。   FIG. 3 is an enlarged view of the joining method of the joining method of the present invention when heated from the first joined member side. When heated from the first bonded member 1 side, the temperature on the first bonded member 1 side is increased inside the metal fine particle-containing paste 3 during heating, and the temperature is increased toward the second bonded member 2 side. A temperature gradient is produced. Accordingly, the paste 3 on the first bonded member 1 side is sintered first, and then the paste 3 on the second bonded member 2 side is sintered. When the solvent contained in the paste 3 is vaporized by the temperature rise and the paste 3 contracts, the paste on the first bonded member 1 side is sintered faster than the paste 3 on the second bonded member 2 side. Therefore, the paste 3 on the second bonded member 2 side contracts greatly, and as a result, the paste 3 warps toward the second bonded member 2 side. Therefore, the bonding area between the paste 3 and the second member 2 is increased, and no notch is generated. Therefore, when heated from the first member to be bonded side, the bonding area between the metal fine particle-containing paste and the second bonded body is larger than that when heated from the second member to be bonded side, and notches are also formed. Since it does not occur, the durability of the resulting bonded body is improved.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

(実施例1)
金属微粒子含有ペーストとして表1に示した銀ナノ粒子ペーストを用いた。

Figure 2014110282
Example 1
The silver nanoparticle paste shown in Table 1 was used as the metal fine particle-containing paste.
Figure 2014110282

第1の被接合部材として、シリコン素子(7.6mm×7.6mm、厚さ0.5mm)を、第2の被接合部材として銅基板(30mm×15mm、厚さ1.0mm)を用いた。   A silicon element (7.6 mm × 7.6 mm, thickness 0.5 mm) was used as the first member to be bonded, and a copper substrate (30 mm × 15 mm, thickness 1.0 mm) was used as the second member to be bonded. .

銅基板に銀ナノ粒子ペーストを8.6mm×8.6mmの面積、厚さ110μmで塗布した。シリコン素子を銀ナノ粒子ペーストに積層させ、シリコン素子を加圧して銀ナノ粒子ペースト中に35μm押し込んだ。シリコン素子、銅基板および銀ナノ粒子ペーストをホットプレートで、大気中、無加圧下、250℃の条件下で30分間、銅基板側から加熱した。得られた接合体の冷熱衝撃試験を−55℃/+150℃および−65℃/+175℃の条件でそれぞれ500サイクル行い、接合面積率(シリコン素子の接合面の面積に対する接合面積の割合)を二値化処理して算出し、比較した。   The silver nanoparticle paste was applied to a copper substrate with an area of 8.6 mm × 8.6 mm and a thickness of 110 μm. The silicon element was laminated on the silver nanoparticle paste, and the silicon element was pressurized and pressed into the silver nanoparticle paste by 35 μm. The silicon element, the copper substrate, and the silver nanoparticle paste were heated from the copper substrate side with a hot plate in the air under no pressure and at 250 ° C. for 30 minutes. The obtained thermal shock test of the joined body was performed 500 cycles at −55 ° C./+150° C. and −65 ° C./+175° C., respectively. It calculated and compared by valuation processing.

(実施例2)
ホットプレートによる加熱をシリコン素子側から行う以外は実施例1と同様にした。
(Example 2)
The same procedure as in Example 1 was performed except that heating by the hot plate was performed from the silicon element side.

(比較例)
銅基板に銀ナノ粒子ペーストを7.6mm×7.6mmの塗布面積で塗布する以外は実施例1と同様にした。
(Comparative example)
The same procedure as in Example 1 was performed except that the silver nanoparticle paste was applied to a copper substrate with a coating area of 7.6 mm × 7.6 mm.

実施例1、2および比較例の接合体の冷熱衝撃試験前後の超音波顕微鏡像を図4〜図7Bに示した。ここで、図4〜図7Bの超音波顕微鏡像において、正方形の輪郭はシリコン素子の接合面の輪郭を表し、灰色の部分は接合面積に対応している。比較例の接合体は、冷熱衝撃試験前の状態で接合面積が確保されておらず(図4)、−55℃/150℃の条件の冷熱衝撃試験を行うとシリコン素子が剥離した。実施例1の接合体は、−55℃/150℃の条件の冷熱衝撃試験後においても接合面積が確保されていた(図5A、図5B)。しかし、より広い温度範囲の−65℃/175℃の条件の冷熱衝撃試験を行うと試験後の接合面積が大きく低下した(図6A、図6B)。実施例2の接合体は、−55℃/150℃および−65℃/175℃のいずれの条件下でも冷熱衝撃試験後の接合面積は低下しなかった。実施例2の−65℃/175℃の条件の冷熱衝撃試験の超音波顕微鏡像を図7A、図7Bに示した。   Ultrasonic microscope images before and after the thermal shock test of the joined bodies of Examples 1 and 2 and the comparative example are shown in FIGS. 4 to 7B. Here, in the ultrasonic microscope images of FIGS. 4 to 7B, the square outline represents the outline of the bonding surface of the silicon element, and the gray portion corresponds to the bonding area. In the bonded body of the comparative example, the bonding area was not ensured in the state before the thermal shock test (FIG. 4), and the silicon element was peeled off when performing the thermal shock test under the condition of −55 ° C./150° C. In the joined body of Example 1, the joining area was secured even after the thermal shock test under the condition of −55 ° C./150° C. (FIGS. 5A and 5B). However, when a thermal shock test was performed under the conditions of −65 ° C./175° C. in a wider temperature range, the bonding area after the test was greatly reduced (FIGS. 6A and 6B). In the joined body of Example 2, the joint area after the thermal shock test did not decrease under any conditions of −55 ° C./150° C. and −65 ° C./175° C. Ultrasonic microscope images of the thermal shock test under the conditions of -65 ° C / 175 ° C in Example 2 are shown in FIGS. 7A and 7B.

実施例1、2および比較例の各温度条件における冷熱衝撃試験前後の接合面積の評価を表2にまとめた。

Figure 2014110282
Table 2 summarizes the evaluation of the bonding area before and after the thermal shock test in each temperature condition of Examples 1 and 2 and Comparative Example.
Figure 2014110282

以上の結果から、比較例の接合体の接合面積低下は、実施例1の接合方法により解決され、さらに、実施例2の接合方法により、より広い温度範囲で接合面積低下の問題を解決することができた。   From the above results, the bonding area reduction of the joined body of the comparative example is solved by the bonding method of Example 1, and further, the bonding method of Example 2 solves the problem of the reduction of the bonding area in a wider temperature range. I was able to.

1.第1の被接合部材
2.第2の被接合部材
3.金属微粒子含有ペースト
4.被接合部材
5.被接合部材
6.金属微粒子含有ペースト
1. 1. First member to be joined 2. Second member to be joined 3. Metal fine particle-containing paste 4. Joined member 5. Joined member Paste containing fine metal particles

Claims (4)

第1の被接合部材および第2の被接合部材を金属微粒子含有ペーストで接合する接合方法において、
金属微粒子含有ペーストを第1の被接合部材の面積より広い面積で第2の被接合部材に塗布する工程と、
第1の被接合部材を金属微粒子含有ペーストに積層させ、第1の被接合部材を加圧して、第1の被接合部材を塗布されたペーストの厚さの30%以上の厚さでペーストに押し込む工程と、
加熱する工程とを含む、前記方法。
In the joining method of joining the first member to be joined and the second member to be joined with the metal fine particle-containing paste,
Applying the metal fine particle-containing paste to the second bonded member in an area wider than the area of the first bonded member;
The first member to be bonded is laminated on the metal fine particle-containing paste, the first member to be bonded is pressed, and the first member to be bonded is applied to the paste at a thickness of 30% or more of the thickness of the paste applied. Pushing process,
Heating the method.
加熱を第1の被接合部材側から行う、請求項1に記載の接合方法。   The joining method according to claim 1, wherein the heating is performed from the first joined member side. 金属微粒子含有ペーストを第1の被接合部材の面積より0.5%以上広い面積で第2の被接合部材に塗布する、請求項1または2に記載の接合方法。   The joining method according to claim 1 or 2, wherein the metal fine particle-containing paste is applied to the second member to be joined in an area that is 0.5% or more wider than the area of the first member to be joined. 加熱する工程を無加圧下で行う、請求項1〜3のいずれか1項に記載の接合方法。   The joining method according to any one of claims 1 to 3, wherein the heating step is performed under no pressure.
JP2012262859A 2012-11-30 2012-11-30 Bonding method using paste containing metal fine particle Pending JP2014110282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262859A JP2014110282A (en) 2012-11-30 2012-11-30 Bonding method using paste containing metal fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262859A JP2014110282A (en) 2012-11-30 2012-11-30 Bonding method using paste containing metal fine particle

Publications (1)

Publication Number Publication Date
JP2014110282A true JP2014110282A (en) 2014-06-12

Family

ID=51030759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262859A Pending JP2014110282A (en) 2012-11-30 2012-11-30 Bonding method using paste containing metal fine particle

Country Status (1)

Country Link
JP (1) JP2014110282A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP2018148168A (en) * 2017-03-09 2018-09-20 日立化成株式会社 Semiconductor device
KR20190022893A (en) 2016-08-22 2019-03-06 센주긴조쿠고교 가부시키가이샤 Metal sintering assembly and die joining method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113254A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Junction material for pellet bonding
JPH02241040A (en) * 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP2003332362A (en) * 2002-05-13 2003-11-21 Shinkawa Ltd Curing apparatus
JP2005516399A (en) * 2002-01-18 2005-06-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling die attach fillet height to reduce die shear stress
JP2011249257A (en) * 2010-05-31 2011-12-08 Hitachi Ltd Method of connecting sintered silver paste material and semiconductor chip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113254A (en) * 1978-02-24 1979-09-04 Hitachi Ltd Junction material for pellet bonding
JPH02241040A (en) * 1989-03-15 1990-09-25 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP2005516399A (en) * 2002-01-18 2005-06-02 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method and apparatus for controlling die attach fillet height to reduce die shear stress
JP2003332362A (en) * 2002-05-13 2003-11-21 Shinkawa Ltd Curing apparatus
JP2011249257A (en) * 2010-05-31 2011-12-08 Hitachi Ltd Method of connecting sintered silver paste material and semiconductor chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016127219A (en) * 2015-01-08 2016-07-11 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
KR20190022893A (en) 2016-08-22 2019-03-06 센주긴조쿠고교 가부시키가이샤 Metal sintering assembly and die joining method
US11024598B2 (en) 2016-08-22 2021-06-01 Senju Metal Industry Co., Ltd. Metallic sintered bonding body and die bonding method
JP2018148168A (en) * 2017-03-09 2018-09-20 日立化成株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
KR100976026B1 (en) Method of bonding
KR102280653B1 (en) Electronic part mounting substrate and method for producing same
JP5852795B2 (en) Method of manufacturing a structure of two joining elements including low-temperature pressure sintering joining
US8569109B2 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
US11390054B2 (en) Composite and multilayered silver films for joining electrical and mechanical components
JP2012515266A (en) Sintered material, sintered joint and method for producing sintered joint
JP2014199852A (en) Bonding method, and method of manufacturing semiconductor module
US20080292874A1 (en) Sintered power semiconductor substrate and method of producing the substrate
TW201325330A (en) Wiring substrate and method for manufacturing same and semiconductor device
TW201733792A (en) Metal joining structure using metal nanoparticles and metal joining method and metal joining material
JP6713120B1 (en) Copper Sintered Substrate Nano Silver Impregnated Bonding Sheet, Manufacturing Method and Bonding Method
KR20140139104A (en) Conductive paste for die bonding, and die bonding method using conductive paste for die bonding
WO2014027418A1 (en) Electronic component, and method for producing electronic component
JP2016168625A (en) Method for manufacturing conjugate, method for manufacturing power module substrate with heat sink, and method for manufacturing heat sink
JP2015093295A (en) Metal joint structure using metal nanoparticle, and metal joining method and metal joint material
Zhang et al. Reliability of Ag sinter-joining die attach under harsh thermal cycling and power cycling tests
JP2006059904A (en) Semiconductor device and its manufacturing method
JP2006228804A (en) Ceramic substrate for semiconductor module and its manufacturing method
JP2014110282A (en) Bonding method using paste containing metal fine particle
JP6849374B2 (en) Conductive paste for joining
TWI651814B (en) Substrate and power module for power module with Ag substrate layer
JP6239173B1 (en) Metal member joining sheet, metal member joining method, and metal member joined body
JP6115215B2 (en) Manufacturing method of power module substrate and manufacturing method of power module
Zhang et al. Thermal properties of silver nanoparticle sintering bonding paste for high-power led packaging
JP6458759B2 (en) Stress relaxation structure and thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906