JP4347381B2 - Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend - Google Patents

Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend Download PDF

Info

Publication number
JP4347381B2
JP4347381B2 JP2007517877A JP2007517877A JP4347381B2 JP 4347381 B2 JP4347381 B2 JP 4347381B2 JP 2007517877 A JP2007517877 A JP 2007517877A JP 2007517877 A JP2007517877 A JP 2007517877A JP 4347381 B2 JP4347381 B2 JP 4347381B2
Authority
JP
Japan
Prior art keywords
alcohol
volatile
silver
less
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007517877A
Other languages
Japanese (ja)
Other versions
JPWO2006126614A1 (en
Inventor
君男 山川
勝利 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Priority to JP2007517877A priority Critical patent/JP4347381B2/en
Publication of JPWO2006126614A1 publication Critical patent/JPWO2006126614A1/en
Application granted granted Critical
Publication of JP4347381B2 publication Critical patent/JP4347381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【技術分野】
【0001】
本発明は、実質的に球状の銀粒子と揮発性分散媒からなり、加熱により焼結して優れた強度と電気伝導性と熱伝導性を有する固形状銀となる金属系被着体接着用ペースト状銀組成物、その製造方法、および、当該ペースト状銀組成物を使用しての金属系被着体の接着方法に関する。
【0002】
銀粉末を熱硬化性樹脂組成物中に分散させてなる導電性ペーストは、加熱により硬化して導電性被膜が形成されるので、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極、特にアモルファスシリコン半導体を用いた高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に使用されている。
近年チップ部品の高性能化によりチップ部品からの発熱量が増え、電気伝導性はもとより、熱伝導性の向上が要求されるので、銀粒子の含有率を可能な限り増加して電気伝導性、熱伝導性を向上しようとすると、ペーストの粘度が上昇し、作業性が著しく低下するという問題がある。
【0003】
一方、チップ部品、プラズマディスプレイパネル等の電極や回路を、大幅のファイン化、高密度、高精度、高信頼性で形成することのできる導電ペーストの製造に最適な高分散性球状銀粉末およびそれを使用した銀ペーストが特許文献1に教示されている。また、回路板への導電性ペーストの塗布方法としてスクリーン印刷法に加えてインクジェット法が使用されだしており、そのために走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径DIAが0.6μm以下である銀粉とポリオール類、必要に応じてさらに粘度調整剤等からなる銀インクが提案されている(特許文献2参照)。
【0004】
特許文献1では、銀粉は、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンの水溶液を接触反応させて銀粉を還元析出させ、濾過し、残渣を水で洗浄し、加熱下乾燥させて調製している。特許文献1にはこのようにして調製した銀粉を使用して銀ペーストを調製したと記載されているが、その処方は不明である。そこで本発明者らは当該銀粉に少量の水を混ぜてペースト状とし加熱したところ、当該銀粉が十分に焼結しないという問題があること、あるいは、焼結して固形状の銀が生成しても、強度と電気伝導性と熱伝導性が予想外に小さいという問題があることに気が付いた。特許文献2では、銀粉は、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これと有機還元剤(ヒドロキノン、アスコルビン酸、グルコース等)、特にはヒドロキノンの水溶液を接触反応させて銀粉を還元析出させ、濾過し、残渣を水とメタノールで洗浄し、加熱下乾燥させて調製している。ところが、本発明者らは、このようにして調製された銀粉とポリオール類(例えば、1,4−ブタンジオール、ジプロピレングリコール)からなる銀インクを加熱したところ、当該銀粉が十分に焼結しないという問題があること、あるいは、焼結して固形状の銀が生成しても、強度と電気伝導性と熱伝導性が予想外に小さいという問題があることに気が付いた。
【0005】
【特許文献1】
特開2001−107101号公報
【特許文献2】
特開2005−93380号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明者らは、上記問題のない球状銀粒子ペースト、すなわち、ペースト状銀組成物を開発すべく鋭意研究した結果、球状銀粒子の炭素含有量が焼結性と焼結して生成した固形状銀の強度と電気伝導性と熱伝導性に影響していることを見出し、本発明を完成するに至った。本発明の目的は、加熱すると球状銀粒子が容易に焼結して強度と電気伝導性と熱伝導性が優れた固形状銀となる金属系被着体接着用ペースト状銀組成物、その製造方法、および、当該ペースト状銀組成物を使用して金属系被着体を電気伝導性と熱伝導性よく強固に接着する方法を提供することにある。
【0007】
この目的は、
[1] (A)平均粒径が0.1〜6μmであり,炭素含有量が0.50重量%以下である還元法で作られた球状銀粒子と、(B) 沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒とからなるペースト状物であり、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になることを特徴とする、金属系被着体同士の接合用ペースト状銀組成物。
[2] 体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になることを特徴とする、[1]記載の金属系被着体同士の接合用ペースト状銀組成物。
[3] 炭素含有量が0.25重量%以下であることを特徴とする、[1]記載の金属系の被着体同士の接合用ペースト状銀組成物。
[4] 揮発性一価アルコールがエチルアルコール,プロピルアルコール,ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールであり、揮発性脂肪族炭化水素が低級n-パラフィンまたは低級イソパラフィンであることを特徴とする、[1]または[2]記載の金属系被着体同士の接合用ペースト状銀組成物。
[5] 揮発性分散媒が、水と、ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールとの混合物であることを特徴とする、[1]または[2]記載の金属系被着体同士の接合用ペースト状銀組成物。
[6] 平均粒径が0.1〜6μmである還元法で作られた球状銀粒子を洗浄して,その炭素含有量を0.50重量%以下とし、(B)沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒と混合することを特徴とする、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になる金属系被着体同士の接合用ペースト状銀組成物の製造方法。
[7] 体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になる、[6]記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。
[8] 球状銀粒子の炭素含有量を0.25重量%以下とすることを特徴とする、[6]記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。
[9] 洗浄剤が水,揮発性の親水性溶剤または脂肪族炭化水素系溶剤であることを特徴とする、[6]記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。
[10] (A)平均粒径が0.1〜6μmであり,炭素含有量が0.50重量%以下である還元法で作られた球状銀粒子と、(B) 沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒とからなるペースト状物であり、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になるペースト状銀組成物を、複数の金属系被着体間に介在させ、100℃以上250℃以下での加熱により、該揮発性分散媒が揮散し,該球状銀粒子同士が焼結して,複数の金属系被着体同士を接着させることを特徴とする、金属系被着体同士接合方法。
[11] ペースト状銀組成物が、体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になるペースト状銀組成物であることを特徴とする、[10]記載の金属系被着体同士接合方法。
[12] 球状銀粒子の炭素含有量が0.25重量%以下であることを特徴とする、[10]記載の金属系被着体同士接合方法。
[13] 揮発性一価アルコールがエチルアルコール,プロピルアルコール,ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールであり、揮発性脂肪族炭化水素が低級n-パラフィンまたは低級イソパラフィンであることを特徴とする、[10]または[11]記載の金属系被着体同士接合方法。
[14] 揮発性分散媒が水と、ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールとの混合物であることを特徴とする、[10]または[11]記載の金属系被着体同士接合方法。
[15] 金属系の被着体が金属部材を有する電子部品であることを特徴とする、[10]または[11]記載の金属系被着体同士接合方法。;により達成される。
【0008】
本発明の金属系被着体接着用ペースト状銀組成物は、加熱により該揮発性分散媒が揮散し、特には100℃以上での加熱により該球状銀粒子同士が焼結して強度と電気伝導性と熱伝導性が優れた固形状銀となる。本発明の金属系被着体接着用ペースト状銀組成物の製造方法は、加熱により該揮発性分散媒が揮散し、特には100℃以上での加熱により該球状銀粒子同士が焼結して強度と電気伝導性と熱伝導性が優れた固形状銀となる金属系被着体接着用ペースト状銀組成物を容易に製造することができる。本発明の金属系被着体の接着方法は、ペースト状銀組成物を複数の金属系被着体間に介在させ、100℃以上250℃以下での加熱により該揮発性分散媒が揮散し該球状銀粒子同士が焼結して複数の金属系被着体同士を電気伝導性と熱伝導性よく強固に接着させることができる。
【図面の簡単な説明】
[0009]
[図1]実施例における固着強度測定用試験体Aの平面図である。チップコンデンサ端子電極3と電極ランド(パッド)部4がハンダ付けされることにより、チップコンデンサ2がガラス繊維強化エポキシ樹脂基板1に搭載されている固着強度測定用試験体Aを固定し、チップコンデンサ2の側面を矢印の方向に押圧して、チップコンデンサ2とガラス繊維強化エポキシ樹脂基板1との接合部分の固着強度を測定するものである。
[図2]図1におけるY−Y´断面図である。
符号の説明
[0010]
A 固着強度測定用試験体
1 ガラス繊維強化エポキシ樹脂基板
2 チップコンデンサ
3 チップコンデンサの端子電極
4 電極ランド(パッド)部
5 ペースト状銀組成物
発明を実施するための最良の形態
【0011】
本発明のペースト状銀組成物は、(A)平均粒径が0.1〜6μmであり,炭素含有量が0.50重量%以下である球状銀粒子と、(B)水,沸点が70〜250℃である揮発性一価アルコールおよび沸点が70〜250℃である非アルコール系の揮発性分散媒から選択される揮発性分散媒とからなる。当該球状銀粒子の平均粒径は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径である。平均粒径が6μmを越えると球状銀同士の焼結性が小さくなり、優れた強度と電気伝導性、熱伝導性、接着性を得にくい。そのため平均粒子径は小さい方がより好ましく、特には3μm以下であることが好ましい。いわゆるナノサイズとなる0.1μm未満の場合、球状銀粒子の表面活性が強すぎてペースト状銀組成物の保存安定性が低下する恐れがあるため、0.1μm以上である。
当該球状銀粒子の炭素含有量は、0.50重量%以下であり、下限値は0重量%である。加熱時の球状銀粒子の焼結性と、焼結してできた固形状銀の強度と電気伝導性と熱伝導性の点で好ましくは0.25重量%以下、より好ましくは0.13重量%以下である。ここで炭素含有量は、球状銀粒子を酸素気流中で加熱して球状銀粒子に付着していた有機化合物中の炭素を炭酸ガスに変えて赤外線吸収スペクトル法により定量したものである。なお熱重量測定法(TGA)による減少量から炭素含有量を算出しても良い。
[0012]
当該球状銀粒子は、特には還元法で作られた球状銀粒子である。前記特許文献に記載されているように、還元法では、通常、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンの水溶液を接触反応させて銀粉を還元析出させ、濾過し、残渣を水で洗浄し、加熱下乾燥させて調製している。あるいは、硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、これと有機還元剤(ヒドロキノン、アスコルビン酸、グルコース等)の水溶液を接触反応させて銀粉を還元析出させ、濾過し、洗浄し、乾燥させて調製している。濾過残渣はアンモニアとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンを含有しており、銀粉表面にアンモニアとヒドロキノンと無水亜硫酸カリウムもしくはアンモニウムとゼラチンが付着しているため、清浄な水で繰り返し洗浄している。あるいは、濾過残渣はアンモニアと有機還元剤(ヒドロキノン、アスコルビン酸またはグルコース)を含有しており、銀粒子表面にアンモニアと有機還元剤(ヒドロキノン、アスコルビン酸またはグルコース)が付着しているため、清浄な水とメタノールで繰り返し洗浄している。
【0013】
しかし、ヒドロキノンのような水溶性が小さく、メタノールへの溶解性が小さい有機還元剤が付着した球状銀粒子を水、あるいは、水とメタノールで繰り返し洗浄しても有機還元剤を十分には除去できるものではない。特に凝集した球状銀粒子間に存在するヒドロキノンは、水とメタノールへの溶解性が小さいので、水とメタノールで繰り返し洗浄しても容易に除去できるものではない。また、アスコルビン酸やグルコースは水溶性であるが、凝集した球状銀粒子間に存在するアスコルビン酸またはグルコースは、水、あるいは、水とメタノールで繰り返し洗浄しても容易に除去できるものではない。
【0014】
市販の還元法による球状銀粒子は、水でよく洗浄された球状銀粒子、あるいは、水とメタノールで洗浄された球状銀粒子であってもその炭素含有量は通常0.50重量%を大幅に上回るので、本発明では、これをエタノールのような炭素原子数2以上の低級アルコールにより洗浄することにより、あるいは水とメタノールにより洗浄することによりその炭素含有量が0.50重量%以下、好ましくは0.25重量%以下となった球状銀粒子を使用するものである。それも、単に洗浄するだけでなく、凝集物が1次粒子またはそれに近い状態に分散するよう物理的、機械的な力を加えつつ洗浄し、濾過して洗浄液を捨て、残渣を再度エタノールのような炭素原子数2以上の低級アルコール、あるいは水とメタノールにより洗浄することによりその炭素含有量が0.50重量%以下、好ましくは0.25重量%以下、より好ましくは0.13重量%以下となった球状銀粒子を使用するものである。特には乳鉢等により球状銀粒子の凝集物を壊すように攪拌することにより球状銀粒子の1次粒子またはそれに近い状態で洗浄したものを使用するものである。洗浄後の球状銀粒子は乾燥させることが好ましい。乾燥条件は限定されないが、乾燥中に球状銀粒子同士の融着を防止するため100℃未満で乾燥することが好ましく、特には常温であることが好ましい。乾燥を促進するため減圧下や、通風下に置いても良い。
【0015】
しかるに、市販の還元法によるよく洗浄された球状銀粒子製品の一部の製品には、多数のロットのうちの一部のロットには炭素含有量が0.50重量%以下のものがあることが見出されたので、本発明では、入手した球状銀粒子製品の炭素含有量を検査して0.50重量%以下である球状銀粒子を選定して、ペースト状銀組成物の調製に使用してもよい。
【0016】
かくして得られた球状銀粒子の炭素含有量は0.50重量%以下、好ましくは0.25重量%以下、より好ましくは0.13重量%以下であるので、100℃以上の温度で加熱時の銀粒子の焼結性と、焼結してできた固形状銀の強度と電気伝導性と熱伝導性が優れている。球状銀粒子の表面は、少々酸化されていてもよい。酸化銀の割合が高いと加熱時に多量の酸素が発生し、焼結してできた固形状銀中にボイドが発生する原因となる恐れがあるため、表面が酸化銀である割合は球状銀粒子の全表面の50%以下が好ましく、特には20%以下、更には2%以下が好ましい。特にメモリやCPUのような大型チップ接続のため比較的大きな接合面積で半密閉系となるダイボンド剤のような使用例では、酸化銀の存在はボイド発生により接着強度の低下の原因となり好ましくない。
【0017】
本発明のペースト状銀組成物は、炭素含有量が0.50重量%以下、好ましくは0.25重量%以下、より好ましくは0.13重量%以下の実質的に球状の銀粒子と揮発性分散媒との混合物であり、粉末状の球状銀粒子が揮発性分散媒の作用によりペースト化している。ペースト化することによりシリンダーやノズルから細い線状に吐出しやすくなり、電極の形に適用しやすくなる。非揮発性分散媒ではなく、揮発性分散媒を使用するのは、加熱により球状銀粒子が焼結する際に分散媒が揮散すると、球状銀粒子が焼結しやすく、その結果固形状銀の強度と電気伝導性や熱伝導性が大きくなりやすいからである。揮発性分散媒は、球状銀粒子表面を変質させず、その沸点は70℃以上であり、250℃以下であることが好ましい。沸点が70℃未満であるとペースト状銀組成物を調製する作業中に溶媒が揮散しやすく、沸点が250℃より大であると、球状銀粒子が焼結後も揮発性分散媒が残留しかねないからである。そのような揮発性分散媒として、水;エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール等の揮発性一価アルコール;低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素;アセトン、メチルエチルケトン等の揮発性ケトン;酢酸エチルエステルのような揮発性低級脂肪族カルボン酸エステル、低分子量の揮発性シリコーンオイルが例示される。球状銀粒子との混合時および加熱時の安全性ならびにVOCの発生が実質的にゼロという点で水がもっとも好ましく、ついで、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ベンジルアルコール等の揮発性一価アルコールが好ましい。これら炭素原子数が2〜10である揮発性一価直鎖状アルコールはペースト状銀組成物にしたときにメタルマスクやシリンジからの押出性、吐出性に優れているからである。;ついで低級n−パラフィン、低級イソパラフィン等の揮発性脂肪族炭化水素が好ましい。水は純水が好ましく、その電気伝導度は100μs/cm以下が好ましく、10μs/cm以下、さらには3μs/cm以下がより好ましい。純水の製造方法は通常の方法で良く、イオン交換法、逆浸透法、蒸留法などが例示される。
揮発性分散媒が水である場合、炭素原子数が4〜10である一価アルコールを水に添加すると、高温域で表面張力が上昇する(マランゴニ効果)ので、塗布形状保持性を制御しやすくなる。ペースト状銀組成物中の水に対し重量比で0.01〜5倍量のブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコールまたはベンジルアルコールを添加することが例示される。
【0018】
揮発性分散媒の配合量は、該球状銀粒子をペースト状にするのに十分な量でよく、目安として該球状銀粒子100重量部あたり、5〜20重量部であり、好ましくは6〜16重量部である。本発明のペースト状銀組成物には、本発明の目的に反しない限り銀以外の金属系や非金属系の粉体、チクソ剤、安定剤、着色剤等の添加物を少量ないし微量添加しても良い。
【0019】
本発明のペースト状銀組成物は、加熱することにより揮発性分散媒が揮散し、該球状銀粒子同士が焼結することにより強度と電気伝導性と熱伝導性が優れた固形状の銀となる。この際、揮発性分散媒が揮散し、ついで球状銀粒子同士が焼結してもよく、揮発性分散媒の揮散と共に球状銀粒子同士が焼結してもよいが、後者の方が焼結性が優れている。銀は本来大きな強度と極めて高い電気伝導性と熱伝導性を有するため、本発明の該球状銀粒子同士の焼結物も大きな強度ときわめて高い電気伝導性と熱伝導性を有する。この際の加熱温度は、揮発性分散媒が揮散し、球状銀粒子が焼結できる温度であればよく、通常100℃以上であり、150℃以上がより好ましく、180℃以上がさらに好ましい。しかし、300℃以上では揮発性分散媒が突沸的に蒸発して固形状銀の形状に悪影響が出る可能性があるため250℃以下であることが好ましい。
該球状銀粒子が焼結してできた固形状銀は、その電気伝導性が体積抵抗率で1×10 - Ω・cm以下であるが、好ましくは1×10-5Ω・cm以下である。その熱伝導性は、5W/m・K以上であるが、好ましくは10W/m・K以上である。該球状銀粒子が焼結してできた固形状銀の形状は特に限定されず、シート状、フィルム状、テープ状、回路状、円盤状、ブロック状が例示される。
[0020]
本発明のペースト状銀組成物は、100℃以上で加熱すると揮発性分散媒が揮散し球状銀粒子同士が焼結することにより大きな強度と極めて高い電気伝導性と熱伝導性を有する固形状の銀となるので、回路板用基板に塗布して加熱することにより耐摩耗性と基板への接着性に優れた銀回路を形成することができる。本発明の回路板の製造方法は、回路板用基板に本発明のペースト状銀組成物を塗布し、100℃以上で加熱することよりなる。加熱温度は、150℃以上がより好ましく、180℃以上がさらに好ましい。しかし、300℃以上では揮発性分散媒が突沸的に蒸発して銀回路の形状に悪影響が出る可能性があるため250℃以下であることが好ましい。塗布する方法は特に制限されず、ディスペンス塗布、印刷塗布、スプレー塗布、はけ塗り等がある。回路板用基板として、ガラス繊維強化エポキシ樹脂板が代表的であるが、その他にポリイミドフィルム、ポリアミドイミドフィルム、BTレジン板、アルミナセラミック板、ガラス板等が例示される。
【0021】
本発明のペースト状銀組成物は100℃以上で加熱すると揮発性分散媒が揮散し該球状銀粒子が焼結することにより、強度と電気伝導性、熱伝導性が優れ、接触していた基材、例えば銀板、銀メッキ金属板への接着性を有する固形状銀となるので、複数の被着体間に介在させ、100℃以上で加熱することにより複数の被着体、特には銀、金、銅、銀メッキ、金メッキのような金属系の着体同士を強固に接着・接合させるのに有用である。したがって、本発明の接着方法は、銀、金、銅、銀メッキ、金メッキのような金属部材を有する電子部品や電子装置の接着・接合に有用である。図1、図2はそのような接着・接合の一実施形態でもある。そのような接合として、コンデンサ、抵抗等のチップ部品と回路基板との接合;ダイオード、メモリ、CPU等の半導体チップとリードフレームもしくは回路基板との接合;高発熱のCPUチップと冷却板との接合が例示される。なお、回路基板として単層プリント配線基板、多層プリント配線基板が例示される。
【0022】
なお、本発明のペースト状銀組成物は、加熱して銀粒子を焼結した後の洗浄は不要であるが、少量ないし微量の有機系添加剤を含む場合は、有機系添加剤を溶解可能な溶媒で洗浄することが好ましい。特に揮発性分散媒が水である場合は水で洗浄することができ、アルコール等の有機溶媒による洗浄の場合のようなVOC発生の問題がない。基本的に本発明のペースト状銀組成物の各成分は不純物が少ないため容易に洗浄ができる。
【0023】
本発明のペースト状銀組成物は、揮発性分散媒を含有するので、密閉容器に保存することが好ましい。長期間保存後に使用するときは、容器を振とうしてから、あるいは容器内を攪拌してから使用することが好ましい。保存安定性を向上する目的で冷蔵保管をしても良く、保管温度として5℃以下が例示される。
【実施例】
【0024】
本発明の実施例と比較例を掲げる。実施例と比較例中、部とあるのは重量部を意味する。球状銀粒子中の炭素含有量、ならびに、ペースト状銀組成物を加熱して焼結することにより生成した固形状銀の固着強度、体積抵抗率および熱伝導率は、下記の方法により25℃で測定した。
【0025】
[炭素含有量]
球状銀粒子を酸素気流中で高周波により加熱して球状銀粒子に付着していた有機化合物中の炭素を炭酸ガスに変えて赤外線吸収スペクトル法により定量した。
【0026】
[固着強度]
100mm×40mmのガラス繊維強化エポキシ樹脂基板上に1mmの間隔をおいて設けられた2つの0.8mm×1.2mmの電極ランド(パッド)部(銀メッキ仕上げ)に150μm厚のメタルマスクを用いてペースト状銀組成物を塗布し、チップマウンタにより2012チップコンデンサ(両端部は銀メッキ仕上げ)を搭載後、強制循環式オーブン内で200℃で30分間加熱したところ、水、低級イソパラフィンまたはアルコールの揮散とともに球状銀粒子が焼結してランド(パッド)部と2012チップコンデンサ(両端部銀メッキ仕上げ)が接合した。かくして得られた接合試験体を固着強度試験機により押厚速度23mm/分で加圧し、せん断破壊したときの荷重をもって固着強度(単位;kgf)とした。
【0027】
[体積抵抗率]
幅10mm、長さ50mmの開口部を有する厚さ100μmの金属製のマスクを用い、電気絶縁性のFR−4ガラス繊維強化エポキシ樹脂基板上にペースト状銀組成物を印刷塗布し、強制循環式オーブン内で200℃で30分間加熱したところ、水、低級イソパラフィンまたはアルコールの揮散とともに球状銀粒子が焼結してフィルム状となった。フィルム状の銀について、50mm長の測定端間で10ボルトの電圧を印加して抵抗を測定し、体積抵抗率(単位;Ω・cm)を算出した。
【0028】
[熱伝導率]
10mmX10mm角のシリコンウエハー間に40μmまたは80μm厚となるようペースト状銀組成物を塗布し、強制循環式オーブン内で200℃で30分間加熱したところ、水、低級イソパラフィンまたはアルコールの揮散とともに球状銀粒子が焼結してフィルム状となった。フィルム状の銀について、各々の厚さにおける熱抵抗(単位;℃/W)を測定した。各厚さ(単位;m)と熱抵抗の関係をグラフにプロットして直線を引き、その傾きを熱伝導率(単位;W/mK)として算出した。
【0029】
[実施例1]
市販の還元法で製造された球状銀粒子多数の炭素含有量を検査することにより見出したA社品、すなわち、還元法で製造されよく洗浄された、走査型電子顕微鏡像の画像解析により得られる1次粒子の平均粒径が0.4μmであり実質的に球状の銀粒子(炭素含有量が0.21重量%であり、銀表面に酸化銀は検出されない)20部に、純度99.5%のエタノール(和光純薬工業株式会社発売の試薬1級エタノール)20部を添加し、乳鉢を用いて1分間攪拌混合した。1分間静置後、上澄み液を可能な限りスポイトで系外へ抜き出した。その後更に純度99.5%のエタノールを用いて同様に2回洗浄し、その後常温で放置しエタノール臭がしなくなるまで風乾したところ球状銀粒子の炭素含有量は0.11重量%であった。
この球状銀粒子粉末に電気伝導度が5μs/cmであるイオン交換水1.5部を添加し、ヘラを用いて均一に混合しペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。この塗布したガラス繊維強化エポキシ樹脂基板を強制循環式オーブン内で200℃で30分間加熱したところ、加熱焼結物である固形状銀は、精錬法による銀と遜色ない強度を有していた。上記ペースト状銀組成物について、加熱焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0030】
[実施例2]
実施例1において実質的に球状の銀粒子(炭素含有量が0.21重量%であり、銀表面に酸化銀は検出されない)をエタノールで洗浄しない以外は実施例1と同様にしてペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。この塗布したガラス繊維強化エポキシ樹脂基板を強制循環式オーブン内で200℃で30分間加熱したところ、加熱焼結物である固形状銀は、精錬法による銀と遜色ない強度を有していた。上記ペースト状銀組成物について、加熱焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0031】
[実施例3]
実施例1において、イオン交換水の代りに蒸留範囲が106℃から202℃である低級イソパラフィン(新日本石油化学株式会社製、商品名アイソゾール300)を使用した以外は実施例1と同様にしてペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。この塗布したガラス繊維強化エポキシ樹脂基板を強制循環式オーブン内で200℃で30分間加熱したところ、加熱焼結物である固形状銀は、精錬法による銀と遜色ない強度を有していた。上記ペースト状銀組成物について、加熱焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0032】
[実施例4]
実施例1においてイオン交換水1.5部の代りに、0.5部のn−デシルアルコール(1−デカノール)および1.0部のイオン交換水を使用した以外は実施例1と同様にしてペースト状組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。この塗布したガラス繊維強化エポキシ樹脂基板を強制循環式オーブン内で200℃で30分間加熱したところ、加熱焼結物である固形状銀は、精錬法による銀と遜色ない強度を有していた。上記ペースト状銀組成物について、加熱焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であたり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0033】
[実施例5]
市販の還元法で製造され、走査型電子顕微鏡像の画像解析により得られる1次粒子の平均粒径が1.8μmであり実質的に球状の銀粒子(B社品、炭素含有量が0.88重量%であり、銀表面に酸化銀は検出されない)20部に、電気伝導度が5μs/cmである純水を20部添加し、乳鉢を用いて1分間攪拌混合した。1分間静置後、上澄み液を可能な限りスポイトで系外へ抜き出した。その後同様に純水により5回球状銀粒子を洗浄した。その後、純度99.8%のメタノール20部を添加して同様に攪拌混合し、1分間静置後、上澄み液を可能な限りスポイトで系外へ抜き出した。常温で放置しメタノール臭がしなくなるまで風乾したところ、球状銀粒子の炭素含有量は0.46重量%であった。
この実質的に球状の銀粒子20部に純度99%の1−オクタノール2部を添加し、ヘラを用いて均一に混合してペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。この塗布したガラス繊維強化エポキシ樹脂基板を強制循環式オーブン内で200℃で30分間加熱したところ、加熱焼結物である固形状銀は、精錬法による銀と遜色ない強度を有していた。上記ペースト状銀組成物について、加熱焼結物である固形状銀の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0034】
[実施例6]
実施例5において、炭素含有量が0.46重量%の実質的に球状の銀粒子の代りに、実施例1で調製した炭素含有量が0.11重量%の実質的に球状の銀粒子10部と炭素含有量が0.46重量%の実質的に球状の銀粒子10部とを混合して得た、平均炭素含有量が0.285重量%の球状銀粒子20部を使用した他は、実施例5と同一条件でペースト状銀組成物を調製して、塗布性、焼結性および加熱硬化後の固着強度、体積抵抗率、熱伝導率を測定し、結果を表1にまとめて示した。以上の結果より、このペースト状銀組成物が、被着体を電気伝導性と熱伝導性よく強固に接着したり、耐摩耗性と基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【0035】
[比較例1]
実施例1で得られたエタノール洗浄した実質的に球状の銀粒子(炭素含有量が0.21重量%であり、銀表面に酸化銀は検出されない)85部、粘度が2500mmPa・sである液状エポキシ樹脂(ビスフェノールA:ビスフェノールF=1:1)14部、2−メチルイミダゾール1部を混合してエポキシ樹脂がバインダーであるペースト状銀組成物の調製を試みたが、このペースト状銀組成物は粘度が高く均一に混合するのが困難であった。結果を表2にまとめて示した。
【0036】
[比較例2]
実施例1で得られたエタノール洗浄した実質的に球状の銀粒子(炭素含有量が0.21重量%であり、銀表面に酸化銀は検出されない)80部、粘度が2500mmPa・sである液状エポキシ樹脂(ビスフェノールA:ビスフェノールF=1:1)19部、2−メチルイミダゾール1部を均一に混合してエポキシ樹脂がバインダーであるペースト状銀組成物を調製した。
このペースト状銀組成物は粘度が非常に高い(300Pa・S以上)が、メタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。200℃で30分間加熱したところ、エポキシ樹脂状の硬い硬化物であった。
加熱硬化後の固着強度、体積抵抗率、熱伝導率を測定し、結果を表2にまとめて示した。
【0037】
[比較例3]
B社品である還元法で製造され、走査型電子顕微鏡像の画像解析により得られる1次粒子の平均粒径が1.8μmで実質的に球状の銀粒子(炭素含有量が0.88重量%であり、銀表面に酸化銀は検出されない)20部に、純度99.8%のメタノールと電気伝導度が5μs/cmである純水が重量比で1:1である混合洗浄液を20部添加し、乳鉢を用いて1分間攪拌混合した。1分間静置後、上澄み液を可能な限りスポイトで系外へ抜き出した。その後更に前記混合洗浄液を用いて同様に2回洗浄し、その後常温で放置しメタノール臭がしなくなるまで風乾したところ、実質的に球状の銀粒子の炭素含有量は0.61重量%であった。
この実質的に球状の銀粒子に電気伝導度が5μs/cmであるイオン交換水1.5部を添加し、ヘラを用いて均一に混合してペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクにてよりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。ところが、200℃で30分間加熱しても球状銀粒子が充分に焼結せず、フィルム状ではあるが、もろく指で触ると容易に壊れた。結果を表2にまとめて示した。
【0038】
[比較例4]
実施例1において、炭素含有量が0.11重量%の実質的に球状の銀粒子にイオン交換水を添加しないでガラス繊維強化エポキシ樹脂基板上に塗布し、200℃で30分間加熱したところ、この実質的に球状の銀粒子は焼結せず、粒子状のままであった。結果を表2にまとめて示した。
【0039】
[比較例5]
実施例5において、炭素含有量が0.46重量%の実質的に球状の銀粒子の代りに、未洗浄の炭素含有量が0.88重量%の実質的に球状の銀粒子を使用した以外は実施例5と同様にしてペースト状銀組成物を調製した。
このペースト状銀組成物をメタルマスクによりガラス繊維強化エポキシ樹脂基板上に塗布したところ、ダレ、流れ等はなく良好な形状に塗布できた。ところが、200℃で30分間加熱しても実質的に球状の銀粒子は充分に焼結せず、フィルム状となったが、もろく指で触ると容易に壊れた。結果を表2にまとめて示した。
【0040】
【表1】

Figure 0004347381
【0041】
【表2】
Figure 0004347381
【0042】
以上の結果により、本発明のペースト状銀組成物が、加熱焼結性に優れ、被着体を電気伝導性と熱伝導性よく強固に接着させるのに有用であり、耐磨耗性を基板への接着性と電気伝導性と熱伝導性が優れた銀回路を形成するのに有用であることがわかる。
【産業上の利用可能性】
【0043】
本発明の金属系被着体接着用ペースト状銀組成物および金属系被着体の接着方法は、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ、抵抗、ダイオード、メモリ、演算素子(CPU)等のチップ部品の基板への接着、太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等に有用である。本発明の金属系被着体接着用ペースト状銀組成物の製造方法は、ペースト状銀組成物を効率よく製造するのに有用である。 【Technical field】
[0001]
The present invention comprises substantially spherical silver particles and a volatile dispersion medium, and is sintered by heating to form solid silver having excellent strength, electrical conductivity and thermal conductivity.For bonding metal adherendsPasty silver composition, method for producing the same,and,Using the pasty silver compositionOf metallic adherendThe present invention relates to an adhesion method.
[0002]
Conductive paste made by dispersing silver powder in thermosetting resin composition is cured by heating to form a conductive film, so that conductive circuit formation on printed circuit boards, resistors, capacitors, etc. Electrode formation of various electronic parts and display elements, formation of a conductive film for electromagnetic wave shielding, adhesion of chip parts such as capacitors, resistors, diodes, memories and arithmetic elements (CPUs) to substrates, solar cell electrodes, In particular, it is used for forming electrodes of solar cells that cannot be processed at high temperature using amorphous silicon semiconductors, forming external electrodes of chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, and the like.
In recent years, the amount of heat generated from chip parts has increased due to the high performance of chip parts, and it is required to improve the thermal conductivity as well as the electrical conductivity. When trying to improve the thermal conductivity, there is a problem that the viscosity of the paste increases and the workability is remarkably lowered.
[0003]
On the other hand, highly dispersible spherical silver powder that is optimal for the production of conductive paste that can form electrodes and circuits for chip parts, plasma display panels, etc. with significant fineness, high density, high precision, and high reliability, and the like Patent Document 1 teaches a silver paste using In addition to the screen printing method, an ink jet method has been used as a method for applying the conductive paste to the circuit board. For this reason, the average particle diameter D of the primary particles obtained by image analysis of a scanning electron microscope image.IAA silver ink composed of silver powder and polyols having a particle size of 0.6 μm or less and, if necessary, a viscosity modifier or the like has been proposed (see Patent Document 2).
[0004]
In Patent Literature 1, silver powder is mixed with an aqueous solution of silver nitrate and aqueous ammonia to obtain a silver ammine complex aqueous solution, which is contacted with an aqueous solution of hydroquinone, anhydrous potassium sulfite or ammonium and gelatin to reduce the silver powder. And the residue is washed with water and dried under heating. Patent Document 1 describes that a silver paste was prepared using the silver powder prepared as described above, but its prescription is unknown. Therefore, when the present inventors mixed a small amount of water with the silver powder and heated it to a paste, there was a problem that the silver powder was not sufficiently sintered, or solid silver was produced by sintering. However, I realized that there was a problem that strength, electrical conductivity and thermal conductivity were unexpectedly small. In Patent Document 2, silver powder is obtained by mixing a silver nitrate aqueous solution and aqueous ammonia to react to obtain a silver ammine complex aqueous solution, which is contacted with an organic reducing agent (hydroquinone, ascorbic acid, glucose, etc.), in particular, an aqueous solution of hydroquinone. The silver powder is reduced and precipitated by reaction, filtered, and the residue is washed with water and methanol and dried under heating. However, when the present inventors heated the silver ink comprising the silver powder and polyols prepared in this way (for example, 1,4-butanediol, dipropylene glycol), the silver powder was not sufficiently sintered. I noticed that there was a problem that even if solid silver was formed by sintering, the strength, electrical conductivity, and thermal conductivity were unexpectedly small.
[0005]
[Patent Document 1]
JP 2001-107101 A
[Patent Document 2]
JP 2005-93380 A
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0006]
As a result of earnest research to develop a spherical silver particle paste without the above problems, that is, a paste-like silver composition, the present inventors have determined that the carbon content of the spherical silver particles is formed by sintering and sintering. It has been found that the strength, electrical conductivity, and thermal conductivity of shape silver are affected, and the present invention has been completed. The object of the present invention is that when heated, the spherical silver particles are easily sintered to form solid silver having excellent strength, electrical conductivity and thermal conductivity.For bonding metal adherendsPasty silver composition, method for producing the same,and,Using the pasty silver compositionMetallicA method of firmly bonding adherends with good electrical and thermal conductivityThe lawIt is to provide.
[0007]
This purpose is
[1] (A) Spherical silver particles produced by a reduction method having an average particle diameter of 0.1 to 6 μm and a carbon content of 0.50% by weight or less; and (B) a boiling point of 70 to 250 ° C. InTheWater, volatile monohydric alcohol, volatile aliphatic hydrocarbon, volatile ketone, volatile lower aliphatic carboxylic acid esterandSelected from volatile silicone oilVolatile dispersion mediumThe volatile dispersion medium is volatilized by heating at 100 ° C. or more and 250 ° C. or less, and the spherical silver particles are sintered with each other, and the volume resistivity is 1 × 10.-FourMetal system characterized in that it is solid silver having Ω · cm or less and thermal conductivity of 5 W / m · K or more.ofAdherendJoining each otherPasty silver composition.
[2] Volume resistivity is 1 × 10-FiveThe metal system according to [1], characterized in that it is a solid silver having an Ω · cm or less and a thermal conductivity of 10 W / m · K or more.ofAdherendJoining each otherPasty silver composition.
[3] The carbon content is 0.25% by weight or less, according to [1]For joining metal substratesPasty silver composition.
[4] The volatile monohydric alcohol is ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, and volatile aliphatic hydrocarbons are lower n -Metal system according to [1] or [2], characterized in that it is paraffin or lower isoparaffinofAdherendJoining each otherPasty silver composition.
[5] The volatile dispersion medium is a mixture of water and butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, [1] or [2] Metal system describedofAdherendJoining each otherPasty silver composition.
[6] Spherical silver particles produced by a reduction method having an average particle diameter of 0.1 to 6 μm are washed to reduce their carbon content to 0.50% by weight or less, and (B) a boiling point of 70 to 250 ° C. InTheWater, volatile monohydric alcohol, volatile aliphatic hydrocarbon, volatile ketone, volatile lower aliphatic carboxylic acid esterandSelected from volatile silicone oilVolatile dispersion mediumThe volatile dispersion medium is volatilized by heating at 100 ° C. or more and 250 ° C. or less, and the spherical silver particles are sintered with each other.-FourMetal system that becomes solid silver with Ω · cm or less and thermal conductivity of 5 W / m · K or moreofAdherendJoining each otherFor producing a paste-like silver composition.
[7] Volume resistivity is 1 × 10-FiveThe metal system according to [6], wherein the solid silver is Ω · cm or less and has a thermal conductivity of 10 W / m · K or more.ofAdherendJoining each otherFor producing a paste-like silver composition.
[8] The metal system according to [6], wherein the carbon content of the spherical silver particles is 0.25% by weight or less.ofAdherendJoining each otherFor producing a paste-like silver composition.
[9] The metal system according to [6], wherein the cleaning agent is water, a volatile hydrophilic solvent or an aliphatic hydrocarbon solvent.ofAdherendJoining each otherFor producing a paste-like silver composition.
[10] (A) Spherical silver particles produced by a reduction method having an average particle diameter of 0.1 to 6 μm and a carbon content of 0.50% by weight or less, and (B) a boiling point of 70 to 250 ° C. InTheWater, volatile monohydric alcohol, volatile aliphatic hydrocarbon, volatile ketone, volatile lower aliphatic carboxylic acid esterandSelected from volatile silicone oilVolatile dispersion mediumThe volatile dispersion medium is volatilized by heating at 100 ° C. or more and 250 ° C. or less, and the spherical silver particles are sintered with each other, and the volume resistivity is 1 × 10.-FourA paste-like silver composition that becomes solid silver having a Ω · cm or less and a thermal conductivity of 5 W / m · K or more is interposed between a plurality of metal-based adherends, and is 100 ° C. or more and 250 ° C. The metal system characterized in that the volatile dispersion medium is volatilized by heating at the following, the spherical silver particles are sintered together, and a plurality of metal-based adherends are bonded to each other.ofAdherendMutualofJoiningMethod.
[11] The pasty silver composition has a volume resistivity of 1 × 10-FiveThe metal system according to [10], characterized in that it is a paste-like silver composition that becomes solid silver having an Ω · cm or less and a thermal conductivity of 10 W / m · K or more.ofAdherendMutualofJoiningMethod.
[12] The metal system according to [10], wherein the spherical silver particles have a carbon content of 0.25% by weight or less.ofAdherendMutualofJoiningMethod.
[13] The volatile monohydric alcohol is ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, and volatile aliphatic hydrocarbons are lower n -The metal system according to [10] or [11], which is paraffin or lower isoparaffinofAdherendMutualofJoiningMethod.
[14] The volatile dispersion medium is a mixture of water and butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, [10] or [ 11] Metal system describedofAdherendMutualofJoiningMethod.
[15]MetallicThe metal system according to [10] or [11], wherein the adherend is an electronic component having a metal memberofAdherendMutualofJoiningMethod. Achieved by;
[0008]
Of the present inventionFor bonding metal adherendsIn the paste-like silver composition, the volatile dispersion medium is volatilized by heating, and the spherical silver particles are sintered by heating at 100 ° C. or more, and the solid, excellent in strength, electrical conductivity, and thermal conductivity. Shape silver. Of the present inventionFor bonding metal adherendsThe method for producing a paste-like silver composition is such that the volatile dispersion medium is volatilized by heating, and particularly when the spherical silver particles are sintered by heating at 100 ° C. or higher, strength, electrical conductivity and thermal conductivity are obtained. Excellent solid silverFor bonding metal adherendsPasty silver composition can be easily manufactured. BookInventionOf metallic adherendThe bonding method is to paste a pasty silver composition into a plurality ofMetallicInterpose between adherends, 100 ° C or higher250 ° C or lessThe volatile dispersion medium is volatilized by heating at a temperature, and the spherical silver particles are sintered to form a plurality ofMetallicAdherents can be firmly bonded with good electrical and thermal conductivity.The
[Brief description of the drawings]
[0009]
FIG. 1 is a plan view of a test specimen A for measurement of adhesion strength in an example. The chip capacitor terminal electrode 3 and the electrode land (pad) portion 4 are soldered, so that the chip capacitor 2 fixes the test body A for fixing strength mounted on the glass fiber reinforced epoxy resin substrate 1, and the chip capacitor 2 is pressed in the direction of the arrow to measure the fixing strength of the joint portion between the chip capacitor 2 and the glass fiber reinforced epoxy resin substrate 1.
2 is a cross-sectional view taken along line YY ′ in FIG.
Explanation of symbols
[0010]
A Test specimen for measuring bond strength
1 Glass fiber reinforced epoxy resin substrate
2 Chip capacitor
3 Terminal electrode of chip capacitor
4 Electrode land (pad) part
5 Pasty silver composition
BEST MODE FOR CARRYING OUT THE INVENTION
[0011]
The pasty silver composition of the present invention comprises (A) spherical silver particles having an average particle diameter of 0.1 to 6 μm and a carbon content of 0.50% by weight or less, (B) water and a boiling point of 70. It consists of a volatile monohydric alcohol having ˜250 ° C. and a volatile dispersion medium selected from non-alcoholic volatile dispersion media having a boiling point of 70 to 250 ° C. The average particle size of the spherical silver particles is the average particle size of primary particles obtained by image analysis of a scanning electron microscope image.The flatWhen the average particle size exceeds 6 μm, the sinterability between spherical silver particles becomes small, and it is difficult to obtain excellent strength, electrical conductivity, thermal conductivity, and adhesiveness. Therefore, it is more preferable that the average particle size is small, and it is particularly preferable that the average particle size is 3 μm or less. When the so-called nano-size is less than 0.1 μm, the surface activity of the spherical silver particles is too strong, and the storage stability of the pasty silver composition may be lowered.
The carbon content of the spherical silver particles is 0.50% by weight or less, and the lower limit is 0% by weight. In terms of the sinterability of spherical silver particles during heating and the strength, electrical conductivity, and thermal conductivity of the solid silver obtained by sintering, it is preferably 0.25% by weight or less, more preferably 0.13% by weight. % Or less. Here, the carbon content is determined by an infrared absorption spectrum method in which spherical silver particles are heated in an oxygen stream and carbon in an organic compound adhering to the spherical silver particles is changed to carbon dioxide. Note that the carbon content may be calculated from the decrease by thermogravimetry (TGA).
[0012]
The spherical silver particles are particularly spherical silver particles produced by a reduction method. As described in the above-mentioned patent document, in the reduction method, an aqueous silver ammine complex solution is usually obtained by mixing and reacting an aqueous silver nitrate solution and aqueous ammonia, and an aqueous solution of hydroquinone, anhydrous potassium sulfite or ammonium and gelatin. The silver powder is reduced and deposited by contact reaction, filtered, and the residue is washed with water and dried under heating. Alternatively, a silver nitrate aqueous solution and aqueous ammonia are mixed and reacted to obtain a silver ammine complex aqueous solution, which is contacted with an aqueous solution of an organic reducing agent (hydroquinone, ascorbic acid, glucose, etc.) to cause silver powder to be reduced and precipitated, and filtered. It is prepared by washing and drying. The filtration residue contains ammonia, hydroquinone, anhydrous potassium sulfite or ammonium, and gelatin. Since ammonia, hydroquinone, anhydrous potassium sulfite, ammonium, and gelatin adhere to the silver powder surface, it is repeatedly washed with clean water. . Alternatively, the filtration residue contains ammonia and an organic reducing agent (hydroquinone, ascorbic acid or glucose), and since ammonia and an organic reducing agent (hydroquinone, ascorbic acid or glucose) are attached to the surface of the silver particles, the filtration residue is clean. Washed repeatedly with water and methanol.
[0013]
However, the organic reducing agent can be sufficiently removed even if spherical silver particles with a small water solubility such as hydroquinone and poorly soluble in methanol adhere to water or repeatedly washed with water and methanol. It is not a thing. In particular, hydroquinone present between aggregated spherical silver particles has low solubility in water and methanol, and thus cannot be easily removed even by repeated washing with water and methanol. Further, ascorbic acid and glucose are water-soluble, but ascorbic acid or glucose present between the aggregated spherical silver particles cannot be easily removed even by repeated washing with water or water and methanol.
[0014]
Commercially available spherical silver particles obtained by the reduction method are spherical silver particles that have been washed well with water, or spherical silver particles that have been washed with water and methanol. In the present invention, the carbon content is 0.50% by weight or less, preferably by washing with a lower alcohol having 2 or more carbon atoms such as ethanol, or by washing with water and methanol. Spherical silver particles having a concentration of 0.25% by weight or less are used. It is not only washed, but also washed with physical and mechanical force so that the aggregates are dispersed in or near the primary particles, filtered and discarded, and the residue again like ethanol. By washing with a lower alcohol having 2 or more carbon atoms, or water and methanol, the carbon content is 0.50% by weight or less, preferably 0.25% by weight or less, more preferably 0.13% by weight or less. The resulting spherical silver particles are used. In particular, the primary particles of spherical silver particles or those washed in the vicinity thereof are used by stirring so as to break up aggregates of spherical silver particles with a mortar or the like. The spherical silver particles after washing are preferably dried. The drying conditions are not limited, but it is preferable to dry at less than 100 ° C., particularly at room temperature, in order to prevent fusion of spherical silver particles during drying. It may be placed under reduced pressure or ventilation to promote drying.
[0015]
However, some of the well-cleaned spherical silver particle products that are commercially available by the reduction method have a carbon content of less than 0.50% by weight in some of the lots. Therefore, in the present invention, the carbon content of the obtained spherical silver particle product is inspected and selected to be 0.50% by weight or less, and used to prepare a paste-like silver composition. May be.
[0016]
The carbon content of the spherical silver particles thus obtained is 0.50% by weight or less, preferably 0.25% by weight or less, and more preferably 0.13% by weight or less. The sinterability of silver particles and the strength, electrical conductivity, and thermal conductivity of solid silver obtained by sintering are excellent. The surface of the spherical silver particles may be slightly oxidized. If the ratio of silver oxide is high, a large amount of oxygen is generated during heating, which may cause voids in the solid silver produced by sintering. 50% or less of the entire surface is preferable, particularly 20% or less, and more preferably 2% or less. In particular, in use cases such as a die bond agent that becomes a semi-sealed system with a relatively large bonding area for connecting a large chip such as a memory or a CPU, the presence of silver oxide is not preferable because it causes a decrease in adhesive strength due to the generation of voids.
[0017]
The pasty silver composition of the present invention has substantially spherical silver particles and volatility having a carbon content of 0.50% by weight or less, preferably 0.25% by weight or less, more preferably 0.13% by weight or less. It is a mixture with a dispersion medium, and powdery spherical silver particles are made into a paste by the action of a volatile dispersion medium. By making a paste, it becomes easy to discharge from a cylinder or nozzle in a thin line shape, and it becomes easy to apply to the shape of an electrode. The volatile dispersion medium is used instead of the non-volatile dispersion medium because the spherical silver particles are easily sintered when the dispersion medium volatilizes when the spherical silver particles are sintered by heating. This is because strength, electrical conductivity, and thermal conductivity tend to increase. The volatile dispersion medium does not alter the surface of the spherical silver particles and has a boiling point of 70 ° C. or higher and preferably 250 ° C. or lower. When the boiling point is less than 70 ° C., the solvent easily evaporates during the preparation of the paste-like silver composition, and when the boiling point is greater than 250 ° C., the volatile dispersion medium remains after the spherical silver particles are sintered. Because it might be. As such a volatile dispersion medium, water; volatile monohydric alcohols such as ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, benzyl alcohol; -Volatile aliphatic hydrocarbons such as paraffin and lower isoparaffin; volatile ketones such as acetone and methyl ethyl ketone; volatile lower aliphatic carboxylic acid esters such as ethyl acetate, and low molecular weight volatile silicone oils. Water is most preferable in terms of safety when mixed with spherical silver particles and heating, and generation of VOC is substantially zero, followed by ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, Volatile monohydric alcohols such as octyl alcohol, nonyl alcohol, decyl alcohol and benzyl alcohol are preferred. This is because these volatile monovalent linear alcohols having 2 to 10 carbon atoms are excellent in extrudability and dischargeability from a metal mask or syringe when made into a paste-like silver composition. Then volatile aliphatic hydrocarbons such as lower n-paraffins and lower isoparaffins are preferred. The water is preferably pure water, and its electric conductivity is preferably 100 μs / cm or less, more preferably 10 μs / cm or less, and even more preferably 3 μs / cm or less. A pure water production method may be a normal method, and examples include an ion exchange method, a reverse osmosis method, and a distillation method.
When the volatile dispersion medium is water, adding monohydric alcohol having 4 to 10 carbon atoms to water increases the surface tension in the high temperature range (Marangoni effect), making it easy to control the coating shape retention. Become. Illustrative is adding 0.01 to 5 times the amount of butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol in a weight ratio to the water in the pasty silver composition. Is done.
[0018]
The blending amount of the volatile dispersion medium may be an amount sufficient to make the spherical silver particles into a paste, and as a guide, it is 5 to 20 parts by weight, preferably 6 to 16 parts per 100 parts by weight of the spherical silver particles. Parts by weight. The paste-like silver composition of the present invention may be added with a small amount or a small amount of additives such as metal-based or non-metallic powder other than silver, thixotropic agent, stabilizer, colorant, etc., unless it is contrary to the object of the present invention. May be.
[0019]
The paste-like silver composition of the present invention is a solid silver having excellent strength, electrical conductivity, and thermal conductivity by volatilization of the volatile dispersion medium by heating and sintering of the spherical silver particles. Become. At this time, the volatile dispersion medium is volatilized, and then the spherical silver particles may be sintered together, or the spherical silver particles may be sintered together with the volatilization of the volatile dispersion medium. The property is excellent. Since silver inherently has high strength and extremely high electrical and thermal conductivity, the sintered product of the spherical silver particles of the present invention also has high strength and extremely high electrical and thermal conductivity. The heating temperature at this time should just be the temperature which a volatile dispersion medium volatilizes and a spherical silver particle can be sintered, and is 100 degreeC or more normally, 150 degreeC or more is more preferable, 180 degreeC or more is further more preferable. However, at 300 ° C. or higher, the volatile dispersion medium may suddenly evaporate and the solid silver shape may be adversely affected.
Solid silver made by sintering the spherical silver particles has an electrical conductivity of volume resistivity.1 × 10 - 4 Ω · cm or less, preferably1 × 10-FiveΩ · cm or less. Its thermal conductivity is5W / m · K or more, preferably10 W / m · K or more. The shape of the solid silver formed by sintering the spherical silver particles is not particularly limited, and examples thereof include a sheet shape, a film shape, a tape shape, a circuit shape, a disk shape, and a block shape.
[0020]
When the paste-like silver composition of the present invention is heated at 100 ° C. or higher, the volatile dispersion medium is volatilized and the spherical silver particles are sintered together, so that the solid silver paste has a large strength, extremely high electrical conductivity and thermal conductivity. Since it becomes silver, a silver circuit excellent in wear resistance and adhesion to the substrate can be formed by applying to a circuit board substrate and heating. The manufacturing method of the circuit board of this invention consists of apply | coating the pasty silver composition of this invention to the board | substrate for circuit boards, and heating at 100 degreeC or more. The heating temperature is more preferably 150 ° C. or higher, and further preferably 180 ° C. or higher. However, when the temperature is 300 ° C. or higher, the volatile dispersion medium may be suddenly evaporated to adversely affect the shape of the silver circuit. The method of applying is not particularly limited, and includes dispensing application, printing application, spray application, brush application, and the like. A typical example of the circuit board substrate is a glass fiber reinforced epoxy resin plate, but other examples include a polyimide film, a polyamideimide film, a BT resin plate, an alumina ceramic plate, and a glass plate.
[0021]
When the paste-like silver composition of the present invention is heated at 100 ° C. or higher, the volatile dispersion medium is volatilized and the spherical silver particles are sintered, whereby the strength, electrical conductivity, and thermal conductivity are excellent, and the contacted group Since it becomes solid silver having adhesiveness to a material, for example, a silver plate or a silver-plated metal plate, it is interposed between a plurality of adherends and heated at 100 ° C. or more, so that a plurality of adherends, particularly silver Metal system like gold, copper, silver plating, gold platingCoveredThis is useful for firmly bonding and joining the kimonos. Therefore, the bonding method of the present invention is useful for bonding / joining electronic components and electronic devices having metal members such as silver, gold, copper, silver plating, and gold plating. 1 and 2 also show an embodiment of such adhesion and bonding. Such bonding includes bonding of chip components such as capacitors and resistors and circuit boards; bonding of semiconductor chips such as diodes, memories, and CPUs to lead frames or circuit boards; bonding of high heat generating CPU chips and cooling plates. Is exemplified. Examples of the circuit board include a single-layer printed wiring board and a multilayer printed wiring board.
[0022]
The pasty silver composition of the present invention does not require cleaning after heating to sinter the silver particles, but it can dissolve the organic additive if it contains a small or trace amount of organic additive. It is preferable to wash with an appropriate solvent. In particular, when the volatile dispersion medium is water, it can be washed with water, and there is no problem of VOC generation as in the case of washing with an organic solvent such as alcohol. Basically, each component of the pasty silver composition of the present invention can be easily cleaned because it contains few impurities.
[0023]
Since the pasty silver composition of the present invention contains a volatile dispersion medium, it is preferably stored in a sealed container. When used after long-term storage, it is preferable to use the container after shaking or stirring the container. Refrigerated storage may be performed for the purpose of improving storage stability, and the storage temperature is exemplified by 5 ° C. or less.
【Example】
[0024]
Examples and comparative examples of the present invention will be given. In the examples and comparative examples, “parts” means “parts by weight”. The carbon content in the spherical silver particles, and the fixing strength, volume resistivity and thermal conductivity of the solid silver produced by heating and sintering the paste-like silver composition are 25 ° C. by the following methods. It was measured.
[0025]
[Carbon content]
Spherical silver particles were heated by high frequency in an oxygen stream, and carbon in the organic compound adhering to the spherical silver particles was changed to carbon dioxide gas and quantified by infrared absorption spectroscopy.
[0026]
[Fixing strength]
A 150 μm-thick metal mask is used for two 0.8 mm × 1.2 mm electrode land (pad) portions (silver plating finish) provided on a 100 mm × 40 mm glass fiber reinforced epoxy resin substrate with a 1 mm interval. After applying a paste-like silver composition and mounting a 2012 chip capacitor (silver plated on both ends) with a chip mounter, heating in a forced circulation oven at 200 ° C. for 30 minutes resulted in water, lower isoparaffin or alcohol. The spherical silver particles were sintered together with the volatilization, and the land (pad) part and the 2012 chip capacitor (both ends silver plating finish) were joined. The bonded specimen thus obtained was pressed at a pressing speed of 23 mm / min with a bond strength tester, and the load when sheared was used as the bond strength (unit: kgf).
[0027]
[Volume resistivity]
Using a metal mask having a thickness of 10 mm and an opening having a length of 50 mm and a thickness of 100 μm, a paste-like silver composition is printed and applied onto an electrically insulating FR-4 glass fiber reinforced epoxy resin substrate. When heated in an oven at 200 ° C. for 30 minutes, spherical silver particles were sintered together with a volatilization of water, lower isoparaffin or alcohol to form a film. About film-form silver, the voltage of 10 volts was applied between the measurement ends of 50 mm length, resistance was measured, and volume resistivity (unit; ohm * cm) was computed.
[0028]
[Thermal conductivity]
A pasty silver composition was applied between 10 mm × 10 mm square silicon wafers to a thickness of 40 μm or 80 μm and heated in a forced circulation oven at 200 ° C. for 30 minutes. Sintered into a film. The film-like silver was measured for thermal resistance (unit: ° C./W) at each thickness. The relationship between each thickness (unit: m) and thermal resistance was plotted on a graph, a straight line was drawn, and the slope was calculated as thermal conductivity (unit: W / mK).
[0029]
[Example 1]
Products obtained by inspecting the carbon content of a large number of spherical silver particles produced by a commercially available reduction method, that is, obtained by image analysis of a scanning electron microscope image produced by the reduction method and washed well The primary particles have an average particle size of 0.4 μm and substantially spherical silver particles (carbon content is 0.21% by weight and no silver oxide is detected on the silver surface). 20 parts of ethanol (reagent primary ethanol sold by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred and mixed for 1 minute using a mortar. After standing for 1 minute, the supernatant liquid was extracted out of the system with a dropper as much as possible. Thereafter, it was further washed twice using ethanol having a purity of 99.5%, and then allowed to stand at room temperature and air-dried until no ethanol odor was found. The carbon content of the spherical silver particles was 0.11% by weight.
To this spherical silver particle powder, 1.5 parts of ion-exchanged water having an electric conductivity of 5 μs / cm was added and mixed uniformly using a spatula to prepare a pasty silver composition.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. When the coated glass fiber reinforced epoxy resin substrate was heated at 200 ° C. for 30 minutes in a forced circulation oven, the solid silver as the heat-sintered product had a strength comparable to silver by a refining method. About the said paste-form silver composition, the fixed strength, volume resistivity, and thermal conductivity of solid silver which is a heat-sintered product were measured, and the results are shown in Table 1. From the above results, this pasty silver composition is useful for firmly adhering an adherend with good electrical and thermal conductivity, and has excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity. It can be seen that it is useful for forming a silver circuit having excellent properties.
[0030]
[Example 2]
Paste silver in the same manner as in Example 1 except that substantially spherical silver particles (carbon content is 0.21% by weight and silver oxide is not detected on the silver surface) are not washed with ethanol in Example 1. A composition was prepared.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. When the coated glass fiber reinforced epoxy resin substrate was heated at 200 ° C. for 30 minutes in a forced circulation oven, the solid silver as the heat-sintered product had a strength comparable to silver by a refining method. About the said paste-form silver composition, the fixed strength, volume resistivity, and thermal conductivity of solid silver which is a heat-sintered product were measured, and the results are shown in Table 1. From the above results, this pasty silver composition is useful for firmly adhering an adherend with good electrical and thermal conductivity, and has excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity. It can be seen that it is useful for forming a silver circuit having excellent properties.
[0031]
[Example 3]
In Example 1, paste was used in the same manner as in Example 1 except that lower isoparaffin having a distillation range of 106 ° C. to 202 ° C. (trade name Isosol 300, manufactured by Nippon Petrochemical Co., Ltd.) was used instead of ion-exchanged water. A silver-like composition was prepared.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. When the coated glass fiber reinforced epoxy resin substrate was heated at 200 ° C. for 30 minutes in a forced circulation oven, the solid silver as the heat-sintered product had a strength comparable to silver by a refining method. About the said paste-form silver composition, the fixed strength, volume resistivity, and thermal conductivity of solid silver which is a heat-sintered product were measured, and the results are shown in Table 1. From the above results, this pasty silver composition is useful for firmly adhering an adherend with good electrical and thermal conductivity, and has excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity. It can be seen that it is useful for forming a silver circuit having excellent properties.
[0032]
[Example 4]
In the same manner as in Example 1 except that 0.5 part of n-decyl alcohol (1-decanol) and 1.0 part of ion exchange water were used instead of 1.5 parts of ion exchange water in Example 1. A pasty composition was prepared.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. When the coated glass fiber reinforced epoxy resin substrate was heated at 200 ° C. for 30 minutes in a forced circulation oven, the solid silver as the heat-sintered product had a strength comparable to silver by a refining method. About the said paste-form silver composition, the fixed strength, volume resistivity, and thermal conductivity of solid silver which is a heat-sintered product were measured, and the results are shown in Table 1. From the above results, this paste-like silver composition is useful for firmly adhering adherends with good electrical and thermal conductivity, and wear resistance, adhesion to substrates, electrical conductivity and thermal conductivity. It can be seen that it is useful for forming a silver circuit having excellent properties.
[0033]
[Example 5]
The primary particles produced by a commercially available reduction method and obtained by image analysis of a scanning electron microscope image have an average particle diameter of 1.8 μm and are substantially spherical silver particles (B company product, carbon content is 0.5. 20 parts of pure water having an electric conductivity of 5 μs / cm was added to 20 parts, and the mixture was stirred and mixed for 1 minute using a mortar. After standing for 1 minute, the supernatant liquid was extracted out of the system with a dropper as much as possible. Thereafter, spherical silver particles were washed five times with pure water in the same manner. Thereafter, 20 parts of methanol having a purity of 99.8% was added and stirred and mixed in the same manner. After allowing to stand for 1 minute, the supernatant was taken out of the system with a dropper as much as possible. When it was allowed to stand at room temperature and air-dried until it did not smell of methanol, the carbon content of the spherical silver particles was 0.46% by weight.
To 20 parts of these substantially spherical silver particles, 2 parts of 1-octanol having a purity of 99% was added and mixed uniformly using a spatula to prepare a pasty silver composition.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. When the coated glass fiber reinforced epoxy resin substrate was heated at 200 ° C. for 30 minutes in a forced circulation oven, the solid silver as the heat-sintered product had a strength comparable to silver by a refining method. About the said paste-form silver composition, the fixed strength, volume resistivity, and thermal conductivity of solid silver which is a heat-sintered product were measured, and the results are shown in Table 1. From the above results, this pasty silver composition is useful for firmly adhering an adherend with good electrical and thermal conductivity, and has excellent wear resistance, adhesion to a substrate, electrical conductivity and thermal conductivity. It can be seen that it is useful for forming a silver circuit having excellent properties.
[0034]
[Example 6]
In Example 5, instead of the substantially spherical silver particles having a carbon content of 0.46% by weight, the substantially spherical silver particles 10 having a carbon content of 0.11% by weight prepared in Example 1 were used. Except that 20 parts of spherical silver particles having an average carbon content of 0.285% by weight obtained by mixing 10 parts of substantially spherical silver particles having a carbon content of 0.46% by weight were used. Then, a paste-like silver composition was prepared under the same conditions as in Example 5, and coating properties, sintering properties, fixing strength after heat curing, volume resistivity, and thermal conductivity were measured. The results are summarized in Table 1. Indicated. From the above results, this pasty silver composition has excellent adherence to the adherend with good electrical and thermal conductivity, and excellent wear resistance, adhesion to the substrate, electrical and thermal conductivity. It can be seen that it is useful for forming a silver circuit.
[0035]
[Comparative Example 1]
85 parts by weight of ethanol-washed substantially spherical silver particles obtained in Example 1 (carbon content is 0.21 wt%, silver oxide is not detected on the silver surface), and the viscosity is 2500 mmPa · s An attempt was made to prepare a pasty silver composition in which 14 parts of an epoxy resin (bisphenol A: bisphenol F = 1: 1) and 1 part of 2-methylimidazole were mixed and the epoxy resin was a binder. Was highly viscous and difficult to mix uniformly. The results are summarized in Table 2.
[0036]
[Comparative Example 2]
80 parts by weight of ethanol-washed substantially spherical silver particles obtained in Example 1 (carbon content is 0.21 wt%, silver oxide is not detected on the silver surface), and the viscosity is 2500 mmPa · s 19 parts of epoxy resin (bisphenol A: bisphenol F = 1: 1) and 1 part of 2-methylimidazole were uniformly mixed to prepare a pasty silver composition in which the epoxy resin is a binder.
This pasty silver composition had a very high viscosity (300 Pa · S or more), but when applied to a glass fiber reinforced epoxy resin substrate with a metal mask, it could be applied in a good shape without sagging or flowing. When heated at 200 ° C. for 30 minutes, it was an epoxy resin-like hard cured product.
The fixing strength, volume resistivity, and thermal conductivity after heat curing were measured, and the results are summarized in Table 2.
[0037]
[Comparative Example 3]
A primary particle produced by a reduction method, which is a product of Company B, obtained by image analysis of a scanning electron microscope image and having an average particle diameter of 1.8 μm and substantially spherical silver particles (carbon content is 0.88 wt. 20 parts of a mixed cleaning solution in which methanol having a purity of 99.8% and pure water having an electric conductivity of 5 μs / cm is 1: 1 in a weight ratio is 20 parts. The mixture was added and stirred and mixed for 1 minute using a mortar. After standing for 1 minute, the supernatant liquid was extracted out of the system with a dropper as much as possible. Thereafter, the mixture was further washed twice in the same manner as described above, and then allowed to stand at room temperature and air-dried until it did not smell of methanol. As a result, the carbon content of the substantially spherical silver particles was 0.61% by weight. .
To the substantially spherical silver particles, 1.5 parts of ion-exchanged water having an electric conductivity of 5 μs / cm was added and mixed uniformly using a spatula to prepare a pasty silver composition.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate with a metal mask, it could be applied in a good shape without sagging or flowing. However, even when heated at 200 ° C. for 30 minutes, the spherical silver particles did not sinter sufficiently, and although they were film-like, they were easily broken when touched with a fragile finger. The results are summarized in Table 2.
[0038]
[Comparative Example 4]
In Example 1, a substantially spherical silver particle having a carbon content of 0.11% by weight was coated on a glass fiber reinforced epoxy resin substrate without adding ion exchange water and heated at 200 ° C. for 30 minutes. The substantially spherical silver particles did not sinter and remained particulate. The results are summarized in Table 2.
[0039]
[Comparative Example 5]
In Example 5, instead of substantially spherical silver particles having a carbon content of 0.46% by weight, substantially spherical silver particles having an unwashed carbon content of 0.88% by weight were used. Prepared a pasty silver composition in the same manner as in Example 5.
When this pasty silver composition was applied onto a glass fiber reinforced epoxy resin substrate using a metal mask, it could be applied in a good shape without sagging or flowing. However, even when heated at 200 ° C. for 30 minutes, the substantially spherical silver particles did not sinter sufficiently and became a film, but they were easily broken when touched with a finger. The results are summarized in Table 2.
[0040]
[Table 1]
Figure 0004347381
[0041]
[Table 2]
Figure 0004347381
[0042]
Based on the above results, the paste-like silver composition of the present invention has excellent heat sinterability, is useful for firmly bonding an adherend with good electrical and thermal conductivity, and has excellent wear resistance. It can be seen that it is useful for forming a silver circuit having excellent adhesion, electrical conductivity and thermal conductivity.
[Industrial applicability]
[0043]
Of the present inventionFor bonding metal adherendsPasty silver compositionAnd metal-based adherendsBonding methods include the formation of conductive circuits on printed circuit boards, the formation of various electronic components such as resistors and capacitors and the electrodes of various display elements, the formation of conductive films for electromagnetic shielding, capacitors, resistors, diodes, memories, Useful for bonding chip components such as arithmetic elements (CPU) to substrates, forming electrodes for solar cells, forming external electrodes for chip-type ceramic electronic components such as multilayer ceramic capacitors, multilayer ceramic inductors, multilayer ceramic actuators, etc. . Of the present inventionFor bonding metal adherendsThe manufacturing method of the paste-like silver composition is:TheUseful for efficient production of pasty silver compositionThe

Claims (15)

(A)平均粒径が0.1〜6μmであり,炭素含有量が0.50重量%以下である還元法で作られた球状銀粒子と、(B)沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒とからなるペースト状物であり、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になることを特徴とする、金属系被着体同士の接合用ペースト状銀組成物。(A) an average particle size of 0.1~6Myuemu, spherical silver particles carbon content was made by reduction method is 0.50 wt% or less, Ri (B) having a boiling point of 70 to 250 ° C. der , A paste-like material comprising a volatile dispersion medium selected from water, volatile monohydric alcohol, volatile aliphatic hydrocarbon, volatile ketone, volatile lower aliphatic carboxylic acid ester and volatile silicone oil, When heated at 100 ° C. or more and 250 ° C. or less, the volatile dispersion medium is volatilized, the spherical silver particles are sintered together, and the volume resistivity is 1 × 10 −4 Ω · cm or less, and the thermal conductivity There characterized by comprising a solid silver is 5W / m · K or more, the bonding paste like silver composition adherend each other metallic. 体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になることを特徴とする、請求項1記載の金属系被着体同士の接合用ペースト状銀組成物。And a volume resistivity of less than 1 × 10 -5 Ω · cm, and wherein the thermal conductivity becomes solid silver is 10 W / m · K or more, the metal-based of claim 1, wherein A paste-like silver composition for bonding between bonded bodies. 炭素含有量が0.25重量%以下であることを特徴とする、請求項1記載の金属系の被着体同士の接合用ペースト状銀組成物。The paste-like silver composition for joining metal-based adherends according to claim 1, wherein the carbon content is 0.25% by weight or less. 揮発性一価アルコールがエチルアルコール,プロピルアルコール,ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールであり、揮発性脂肪族炭化水素が低級n-パラフィンまたは低級イソパラフィンであることを特徴とする、請求項1または請求項2記載の金属系被着体同士の接合用ペースト状銀組成物。Volatile monohydric alcohol is ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, and volatile aliphatic hydrocarbon is lower n-paraffin or It characterized in that it is a lower isoparaffins, claim 1 or claim 2 for bonding paste silver composition adherends each other metallic described. 揮発性分散媒が、水と、ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールとの混合物であることを特徴とする、請求項1または請求項2記載の金属系被着体同士の接合用ペースト状銀組成物。3. The volatile dispersion medium is a mixture of water and butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol. bonding paste silver composition adherends each other metallic described. 平均粒径が0.1〜6μmである還元法で作られた球状銀粒子を洗浄して,その炭素含有量を0.50重量%以下とし、(B)沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒と混合することを特徴とする、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になる金属系被着体同士の接合用ペースト状銀組成物の製造方法。Washing the spherical silver particles made of an average particle diameter of 0.1~6μm reduction method, the carbon content was 0.50 wt% or less, Ri (B) having a boiling point of 70 to 250 ° C. der , water, volatile monohydric alcohols, volatile aliphatic hydrocarbons, volatile ketones, comprising mixing a volatile dispersion medium is selected from volatile lower aliphatic carboxylic acid esters and volatile silicone oils, When heated at 100 ° C. or more and 250 ° C. or less, the volatile dispersion medium is volatilized, the spherical silver particles are sintered together, and the volume resistivity is 1 × 10 −4 Ω · cm or less, and the thermal conductivity method of manufacturing but bonding paste silver composition adherends each other metallic become solid silver is 5W / m · K or more. 体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になる、請求項6記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。And a volume resistivity of less than 1 × 10 -5 Ω · cm, and thermal conductivity becomes solid silver is 10 W / m · K or more, the bonding adherends each other metallic claim 6, wherein For producing a paste-like silver composition. 球状銀粒子の炭素含有量を0.25重量%以下とすることを特徴とする、請求項6に記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。The carbon content of the spherical silver particles, characterized in that 0.25 wt% or less, the production method of the joining paste like silver composition adherend between metal system according to claim 6. 洗浄剤が水,揮発性の親水性溶剤または脂肪族炭化水素系溶剤であることを特徴とする、請求項6記載の金属系被着体同士の接合用ペースト状銀組成物の製造方法。Detergent water, characterized in that it is a volatile hydrophilic solvent or aliphatic hydrocarbon solvents, the production method of the joining paste like silver composition adherend between metal system according to claim 6, wherein. (A)平均粒径が0.1〜6μmであり,炭素含有量が0.50重量%以下である還元法で作られた球状銀粒子と、(B)沸点が70〜250℃であり、水,揮発性一価アルコール,揮発性脂肪族炭化水素,揮発性ケトン,揮発性低級脂肪族カルボン酸エステルおよび揮発性シリコーンオイルから選択される揮発性分散媒とからなるペースト状物であり、100℃以上250℃以下での加熱により,該揮発性分散媒が揮散し該球状銀粒子同士が焼結して体積抵抗率が1×10-4Ω・cm以下であり,かつ,熱伝導度が5W/m・K以上である固形状銀になるペースト状銀組成物を、複数の金属系被着体間に介在させ、100℃以上250℃以下での加熱により、該揮発性分散媒が揮散し,該球状銀粒子同士が焼結して,複数の金属系被着体同士を接着させることを特徴とする、金属系被着体同士接合方法。(A) an average particle size of 0.1~6Myuemu, spherical silver particles carbon content was made by reduction method is 0.50 wt% or less, Ri (B) having a boiling point of 70 to 250 ° C. der , A paste-like material comprising a volatile dispersion medium selected from water, volatile monohydric alcohol, volatile aliphatic hydrocarbon, volatile ketone, volatile lower aliphatic carboxylic acid ester and volatile silicone oil, When heated at 100 ° C. or more and 250 ° C. or less, the volatile dispersion medium is volatilized, the spherical silver particles are sintered together, and the volume resistivity is 1 × 10 −4 Ω · cm or less, and the thermal conductivity The volatile dispersion medium is obtained by interposing a paste-like silver composition that becomes solid silver having a W of 5 W / m · K or more between a plurality of metal-based adherends and heating at 100 ° C. or more and 250 ° C. or less. It volatilizes and the spherical silver particles sinter to bond multiple metal adherends together. Wherein the method of bonding adherends each other metallic. ペースト状銀組成物が、体積抵抗率が1×10-5Ω・cm以下であり,かつ,熱伝導度が10W/m・K以上である固形状銀になるペースト状銀組成物であることを特徴とする、請求項10記載の金属系被着体同士接合方法。The paste-like silver composition is a paste-like silver composition that becomes solid silver having a volume resistivity of 1 × 10 −5 Ω · cm or less and a thermal conductivity of 10 W / m · K or more. wherein the method of bonding adherends to each other of the metal system of claim 10, wherein. 球状銀粒子の炭素含有量が0.25重量%以下であることを特徴とする、請求項10記載の金属系被着体同士接合方法。Wherein the carbon content of spherical silver particles is 0.25 wt% or less, the joining method of the adherend between metal system of claim 10, wherein. 揮発性一価アルコールがエチルアルコール,プロピルアルコール,ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールであり、揮発性脂肪族炭化水素が低級n-パラフィンまたは低級イソパラフィンであることを特徴とする、請求項10または請求項11記載の金属系被着体同士接合方法。Volatile monohydric alcohol is ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol, and volatile aliphatic hydrocarbon is lower n-paraffin or characterized in that it is a lower isoparaffins, claim 10 or claim 11 method of bonding adherends each other metallic described. 揮発性分散媒が水と、ブチルアルコール,ペンチルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコールまたはベンジルアルコールとの混合物であることを特徴とする、請求項10または請求項11記載の金属系被着体同士接合方法。12. The volatile dispersion medium is a mixture of water and butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol or benzyl alcohol. method of bonding adherends to each other in the metal-based. 金属系の被着体が金属部材を有する電子部品であることを特徴とする、請求項10または請求項11記載の金属系被着体同士接合方法。Wherein the adherend metal system is an electronic component having a metal member, according to claim 10 or claim 11 method of bonding adherends each other metallic described.
JP2007517877A 2005-05-25 2006-05-24 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend Active JP4347381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517877A JP4347381B2 (en) 2005-05-25 2006-05-24 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005152827 2005-05-25
JP2005152827 2005-05-25
JP2007517877A JP4347381B2 (en) 2005-05-25 2006-05-24 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
PCT/JP2006/310400 WO2006126614A1 (en) 2005-05-25 2006-05-24 Paste-like silver composition, method for producing same, method for producing solid silver, solid silver, bonding method, and method for manufacturing circuit board

Publications (2)

Publication Number Publication Date
JPWO2006126614A1 JPWO2006126614A1 (en) 2008-12-25
JP4347381B2 true JP4347381B2 (en) 2009-10-21

Family

ID=37452038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007517877A Active JP4347381B2 (en) 2005-05-25 2006-05-24 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend

Country Status (3)

Country Link
JP (1) JP4347381B2 (en)
TW (1) TW200703373A (en)
WO (1) WO2006126614A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014069074A1 (en) 2012-10-30 2014-05-08 化研テック株式会社 Conductive paste and die bonding method
CN104520031A (en) * 2012-11-14 2015-04-15 三井金属矿业株式会社 Silver powder
US9011728B2 (en) 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11801556B2 (en) 2018-03-06 2023-10-31 Mitsubishi Materials Corporation Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247801B2 (en) * 2006-11-24 2009-04-02 ニホンハンダ株式会社 Paste-like metal particle composition and joining method
WO2008065728A1 (en) * 2006-11-29 2008-06-05 Nihon Handa Co., Ltd. Sintering metal particle composition having plasticity, method of producing the same, bonding agent and bonding method
WO2009051055A1 (en) * 2007-10-19 2009-04-23 Ube Industries, Ltd. Thermoelectric conversion module and process for producing the thermoelectric conversion module
JP2010095789A (en) * 2007-12-26 2010-04-30 Dowa Electronics Materials Co Ltd Metal particle dispersion liquid, coating film, metal film, conductive paste, and method for producing metal film
JP5212364B2 (en) 2008-01-17 2013-06-19 日亜化学工業株式会社 Manufacturing method of conductive material, conductive material obtained by the method, electronic device including the conductive material, light emitting device, and method of manufacturing light emitting device
JP5207281B2 (en) * 2008-01-17 2013-06-12 国立大学法人大阪大学 Conductive paste
WO2010084746A1 (en) 2009-01-23 2010-07-29 日亜化学工業株式会社 Semiconductor device and method for manufacturing same
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
EP3151268B1 (en) 2009-01-23 2020-04-01 Nichia Corporation Method of producing a semiconductor device by directly bonding silver oxide on a surface of a semiconductor element with silver or silver oxide on a surface of a base
JP5525335B2 (en) 2010-05-31 2014-06-18 株式会社日立製作所 Sintered silver paste material and semiconductor chip bonding method
WO2012032869A1 (en) * 2010-09-09 2012-03-15 本田技研工業株式会社 Process for producing sliding member, and sliding member
US9181897B2 (en) * 2011-04-06 2015-11-10 Honda Motor Co., Ltd. Sliding member and method for producing sliding member
JP6210562B2 (en) * 2014-09-30 2017-10-11 ニホンハンダ株式会社 Method for manufacturing light emitting diode device
JPWO2017006531A1 (en) * 2015-07-08 2017-07-20 バンドー化学株式会社 Bonding composition and bonding method
JP6796937B2 (en) * 2016-03-16 2020-12-09 日東電工株式会社 Manufacturing method of joint
JP6796448B2 (en) * 2016-10-20 2020-12-09 Dowaエレクトロニクス株式会社 Conductive paste and its manufacturing method, and solar cell
JP2018206826A (en) * 2017-05-31 2018-12-27 Dowaエレクトロニクス株式会社 Bonding material, bonding body, and bonding method
JP6930578B2 (en) 2019-12-20 2021-09-01 三菱マテリアル株式会社 Manufacturing method of silver paste and bonded body

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3690552B2 (en) * 1997-05-02 2005-08-31 株式会社アルバック Metal paste firing method
JP4362170B2 (en) * 1999-07-22 2009-11-11 アルバックマテリアル株式会社 Silver ultrafine particle independent dispersion
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film
JP3796476B2 (en) * 2002-10-25 2006-07-12 バンドー化学株式会社 Conductive ink
JP4248944B2 (en) * 2003-06-10 2009-04-02 旭化成エレクトロニクス株式会社 Conductive paste, circuit pattern forming method, and bump electrode forming method
JP4489389B2 (en) * 2003-07-29 2010-06-23 三井金属鉱業株式会社 Method for producing fine silver powder
JP4489388B2 (en) * 2003-07-29 2010-06-23 三井金属鉱業株式会社 Method for producing fine silver powder
JP4447273B2 (en) * 2003-09-19 2010-04-07 三井金属鉱業株式会社 Silver ink and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011728B2 (en) 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
WO2014069074A1 (en) 2012-10-30 2014-05-08 化研テック株式会社 Conductive paste and die bonding method
KR101558462B1 (en) 2012-10-30 2015-10-13 가켄 테크 가부시키가이샤 Conductive paste and die bonding method
EP2827341A4 (en) * 2012-10-30 2016-03-30 Kaken Tech Co Ltd Conductive paste and die bonding method
US9818718B2 (en) 2012-10-30 2017-11-14 Kaken Tech Co., Ltd. Conductive paste and die bonding method
US10615144B2 (en) 2012-10-30 2020-04-07 Kaken Tech Co., Ltd. Conductive paste and die bonding method
CN104520031A (en) * 2012-11-14 2015-04-15 三井金属矿业株式会社 Silver powder
US10941304B2 (en) 2016-04-04 2021-03-09 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11634596B2 (en) 2016-04-04 2023-04-25 Nichia Corporation Metal powder sintering paste and method of producing the same, and method of producing conductive material
US11801556B2 (en) 2018-03-06 2023-10-31 Mitsubishi Materials Corporation Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition

Also Published As

Publication number Publication date
WO2006126614A1 (en) 2006-11-30
JPWO2006126614A1 (en) 2008-12-25
TW200703373A (en) 2007-01-16

Similar Documents

Publication Publication Date Title
JP4347381B2 (en) Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
JP4353380B2 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP4362742B2 (en) Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
JP5011225B2 (en) Metal member bonding agent, metal member bonded body manufacturing method, metal member bonded body, and electric circuit connecting bump manufacturing method
JP5838541B2 (en) Silver paste for conductive film formation
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
JP5887086B2 (en) Conductive material
JP2006339057A (en) Resin metal composite conductive material, its manufacturing method, and electronic device using it
EP2990142A1 (en) Metal nanoparticle dispersion, process for producing metal nanoparticle dispersion, and bonding method
WO2009122467A1 (en) Method for joining metallic members, metallic member joined product, and method for manufacturing bump for electric circuit connection
JP6756085B2 (en) Conductive paste and sintered body
JP2010053377A (en) Method for joining metallic member and method for producing metallic member-joined body
JP7025603B1 (en) Method for manufacturing a bonding composition
JP2019087553A (en) Conductive paste for bonding, and method of manufacturing electronic device using the same
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
KR102307809B1 (en) Conductive paste, laminate, and bonding method of Cu substrate or Cu electrode and conductor
JP6669420B2 (en) Bonding composition
JP2014043382A (en) Semiconductor device and method of manufacturing the same
WO2021260960A1 (en) Conductive paste, laminate body, method of bonding copper laminate/copper electrode and conductor
WO2023189846A1 (en) Silver microparticle composition
JP2004186630A (en) Conductive coating composition, conductor for electronic circuit, forming method thereof, and component for electronic circuit
TW202231398A (en) Copper oxide paste and method for producing electronic parts capable of bonding a chip component and a substrate more firmly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4347381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250