WO2019188511A1 - Copper paste, bonding method, and method for producing bonded body - Google Patents

Copper paste, bonding method, and method for producing bonded body Download PDF

Info

Publication number
WO2019188511A1
WO2019188511A1 PCT/JP2019/011213 JP2019011213W WO2019188511A1 WO 2019188511 A1 WO2019188511 A1 WO 2019188511A1 JP 2019011213 W JP2019011213 W JP 2019011213W WO 2019188511 A1 WO2019188511 A1 WO 2019188511A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
copper
type
type particles
average particle
Prior art date
Application number
PCT/JP2019/011213
Other languages
French (fr)
Japanese (ja)
Inventor
治之 中城
孝之 小川
雅 張
Original Assignee
ハリマ化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社 filed Critical ハリマ化成株式会社
Priority to JP2020510704A priority Critical patent/JPWO2019188511A1/en
Priority to EP19775134.0A priority patent/EP3778069A4/en
Publication of WO2019188511A1 publication Critical patent/WO2019188511A1/en
Priority to JP2022001819A priority patent/JP7220310B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a copper paste, a bonding method using the same, and a method for manufacturing a bonded body.
  • high melting point lead solder has been widely used for joining metals, semiconductors, etc., but from the viewpoint of environmental regulations and the like, joining materials that do not contain lead are required.
  • a method using metal nanoparticles such as silver is known as a material capable of low-temperature bonding. Nanoparticles are fused at a temperature lower than the melting point due to the nanosize effect, so that low-temperature pressureless bonding is possible.
  • silver nanoparticles are expensive in material cost, and at present, sufficient bonding strength is not obtained.
  • Patent Document 1 copper particles having a particle diameter of the order of ⁇ m are used as a bonding material, and the surfaces of the copper particles are oxidized by in-situ synthesis to form nanoparticles, and then heated in a reducing atmosphere. A joining method is disclosed.
  • Patent Document 2 proposes a method of performing pressureless bonding using a copper paste containing coated nanoparticles and microparticles whose surface is coated with organic molecules to enhance dispersibility.
  • an object of the present invention is to provide a copper paste capable of realizing high bonding strength even at low temperature bonding.
  • the copper paste of the present invention contains metal particles and a dispersion medium.
  • the metal particles include first type particles and second type particles.
  • the first type particles are copper particles having an average particle diameter of 1 to 100 ⁇ m and having a nanostructure on the surface.
  • the second type particles are copper particles having an average particle diameter of 0.05 to 5 ⁇ m.
  • the average particle diameter D1 of the first kind particles is preferably 2 to 550 times the average particle diameter D2 of the second kind particles.
  • the nanostructure of the first type particles is formed by, for example, a heated oxide of copper.
  • Examples of the nanostructure include an uneven shape, a particle shape, and a fiber shape.
  • the laminated body provided with the above copper paste between the members to be joined is prepared, and the laminated body is heated in a reducing atmosphere, so that the copper paste is sintered and the members can be joined.
  • the copper paste of the present invention can be applied to low-temperature pressureless bonding. By using the copper paste of the present invention, high strength bonding can be realized.
  • FIG. 2 is a scanning micrograph of copper particles. It is sectional drawing which shows the structural example of the laminated body used for a non-pressure joining.
  • 3 is a scanning micrograph of a bonding layer cross section of Example 1 and Comparative Example 3.
  • FIG. 3 is a scanning micrograph of a bonding layer cross section of Example 1 and Comparative Example 3.
  • the copper paste of the present invention contains metal particles and a dispersion medium.
  • the metal particles include first type particles and second type particles.
  • the average particle diameter D1 of the first kind particles is 1 to 100 ⁇ m, and the average particle diameter D2 of the second kind particles is 0.05 to 5 ⁇ m.
  • the average particle diameter D1 of the first kind particles is larger than the average particle diameter D2 of the second kind particles.
  • D1 is preferably 2 to 550 times D2.
  • the average particle diameter is a volume-based cumulative median diameter (D 50 ) determined from a particle diameter distribution measured by a laser diffraction scattering method.
  • the first type particles have a nanostructure on the surface. Since the first type particles having nanostructures are fused on the surfaces at the time of heat bonding and the second type particles having a small particle diameter are filled in the gaps, there are few voids in the bonding material, and high bonding strength can be realized.
  • the first type particles are copper particles having a nanostructure on the surface and an average particle diameter of 1 to 100 ⁇ m.
  • the nanostructure on the copper particle surface include nano-sized irregularities, nanoparticles, and nanofibers.
  • copper particles having a particle diameter of 1 to 100 ⁇ m to heat oxidation, copper particles having a (sub-) oxide nanostructure on the surface can be obtained.
  • FIG. 1 (A) is a scanning microscope (SEM) photograph of wet copper powder (“1400YM” manufactured by Mitsui Mining & Smelting Co., Ltd., average particle diameter of 4.2 ⁇ m) that has not been heat-treated.
  • the surface of the copper powder before heat treatment is smooth and no nanostructure is formed.
  • FIG. 1 (B1) shows SEM photographs of wet copper powder heated in the air for 10 minutes at 100 ° C, 10 minutes at 150 ° C, 10 minutes at 200 ° C, 10 minutes at 250 ° C, and 10 minutes at 300 ° C. It is.
  • FIG. 1 (B2) and FIG. 1 (B3) are SEM photographs of wet copper powder that was subjected to heat treatment by changing the heating time at 300 ° C. to 30 minutes and 120 minutes, respectively.
  • FIG. 1 (C1) shows 10 minutes at 100 ° C., 10 minutes at 150 ° C., 10 minutes at 200 ° C., 10 minutes at 250 ° C., 10 minutes at 300 ° C., 10 minutes at 350 ° C., and 400 ° C.
  • FIG. 1 (C2) and FIG. 1 (C3) are SEM photographs of wet copper powder that was subjected to heat treatment by changing the heating time at 400 ° C. to 30 minutes and 120 minutes, respectively.
  • the melting point of copper is 1085 ° C.
  • nanostructures such as nanoscale irregularities, particles and fibers formed on the surface of the copper particles show a melting point drop due to the size effect, similar to the nanoparticles. Therefore, the first type particles having a nanostructure on the surface can be fused at a temperature lower than the melting point of copper (for example, about 300 ° C.) to form a metal bond. That is, the first type particles can be bonded at a low temperature while having a particle size on the order of ⁇ m.
  • the nanostructures are fixed on the surface of the first type particles, the problems of aggregation and uneven distribution seen in the metal nanoparticles are unlikely to occur.
  • nanostructures can be formed on the surface by heating copper particles having a particle diameter of the order of ⁇ m (hereinafter sometimes referred to as “micro copper particles”).
  • the shape of the micro copper particles used as the raw material for the first type particles is not particularly limited, and examples thereof include a spherical shape, a lump shape, a needle shape, and a flake shape.
  • the shape of the micro copper particles is preferably spherical or flaky because nanostructures are easily formed on the surface and the volume of voids between the particles when the particles are fused can be reduced.
  • Spherical includes not only a perfect sphere but also a substantially spherical shape having an aspect ratio of 3 or less.
  • “Flake shape” includes plate shapes such as plate shapes and scale shapes.
  • the particle size of the micro copper particles is preferably 1 to 100 ⁇ m. Since the particle size of the copper particles hardly changes before and after the formation of the nanostructure by heating, the particle size of the micro copper particles is substantially equal to the particle size of the first type particles. From the viewpoint of enhancing the dispersibility and facilitating the formation of the nanostructure, the particle size of the micro copper particles is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 3.5 ⁇ m or more, and particularly preferably 4 ⁇ m or more.
  • the particle size of the micro copper particles is preferably 60 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 40 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • Commercially available copper powder may be used as it is as the micro copper particles.
  • the particle size of the first type particles can be set within the range of 1 to 100 ⁇ m.
  • the particle size of the first type particles is preferably 2 to 60 ⁇ m, more preferably 3 to 50 ⁇ m, still more preferably 3.5 to 40 ⁇ m, and particularly preferably 4 to 30 ⁇ m.
  • the nano structure is formed on the surface by heating the micro copper particles in an oxidizing atmosphere.
  • the oxidizing atmosphere is an oxygen concentration atmosphere in which copper can be oxidized, and may be in the air (oxygen concentration of about 21%).
  • the heating temperature is preferably 200 to 500 ° C. What is necessary is just to determine a heating time suitably so that a nanostructure may be formed on the surface of a micro copper particle according to heating temperature etc., for example, is about 5 to 300 minutes.
  • nanostructures are formed on the surface of micro copper particles by heating.
  • the surfaces of the copper particles are oxidized to form an oxide film.
  • oxidation proceeds from the surface of the particle toward the inside, and (sub-) copper oxide on the particle surface and copper in the core portion of the particle both thermally expand as the temperature rises.
  • Copper has a larger coefficient of thermal expansion than copper oxide, so as the temperature rises, the internal copper expands the grain boundaries of the oxide film on the surface, and copper precipitates on the surface layer along the expanded grain boundaries. It is thought that copper is oxidized by being exposed to an oxidizing atmosphere, and nanostructures such as nanoparticles and nanofibers are formed.
  • the nanostructure on the surface of the micro copper particles tends to grow as the heating temperature becomes higher and the heating time becomes longer. Moreover, the tendency for a fiber-like nanostructure (nanofiber) to be formed with an increase in heating temperature is observed.
  • the temperature increase rate is decreased (for example, 5 ° C./min or less), or the temperature is increased stepwise to 350 ° C. or higher, and the temperature is 350 ° C. or higher. It is preferable to perform heating for 10 minutes or more. By gradually raising the temperature, it is considered that the deposition rate of the metal from the inside of the particle to the surface layer is controlled, and the precipitate is likely to grow in a fiber shape.
  • the particle diameter of the nanostructure is preferably 500 nm or less, and more preferably 200 nm or less.
  • the fiber diameter is preferably 100 nm or less, and more preferably 50 nm or less.
  • the length of a fiber is not specifically limited, For example, it is 10 micrometers or less, Preferably it is 5 micrometers or less.
  • the size of the nanostructure is in the above range, good bondability at a low temperature (for example, about 200 to 500 ° C.) can be ensured.
  • the size of the nanostructure is measured based on the SEM image of the particle.
  • the second type particles are copper particles having an average particle diameter of 0.05 to 5 ⁇ m.
  • the second type particles may have a nanostructure on the surface or may not have a nanostructure.
  • the second type particles have an action of filling the gaps between the particles when the first type particles are fused and reducing the volume of the voids. Therefore, particles having an average particle diameter smaller than that of the first type particles are used as the second type particles.
  • the ratio D1 / D2 of the average particle size D2 of the second type particles to the average particle size D1 of the first type particles is preferably 2 or more. 5 or more is more preferable, and 3 or more is more preferable.
  • D1 / D2 is preferably 550 or less, more preferably 300 or less, even more preferably 100 or less, and particularly preferably 50 or less, from the viewpoint of reducing the ratio of grain boundaries at the time of joining to ensure joining strength.
  • the average particle size of the second kind particles is preferably 0.07 ⁇ m or more, more preferably 0.1 ⁇ m or more, and 0.2 ⁇ m. The above is more preferable.
  • the second type particles have fusibility in a temperature range of 400 ° C. or lower.
  • the average particle diameter D2 is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less in order to lower the melting point due to the size effect.
  • the second type particles have a nanostructure on the surface like the first type particles, low temperature fusion can be realized by the nanostructure, so the average particle diameter D2 of the second type particles is 5 ⁇ m or less.
  • the range of D1 / D2 may be within the above range.
  • the shape of the second type particles is not particularly limited, and examples thereof include a spherical shape, a block shape, a needle shape, and a flake shape. Especially, since the volume of the space
  • the shape of the second type particles may be the same as or different from the shape of the first type particles.
  • both the first type particles and the second type particles may be spherical, the second type particles and the second type particles may both be flaky, and the first type particles may be flaky.
  • the particles may be spherical, the first type particles may be spherical, and the second type particles may be flaky.
  • commercially available copper powder having an average particle size of 0.05 to 5 ⁇ m may be used as it is.
  • what formed the nanostructure on the surface by heat oxidation of commercially available copper powder can also be used.
  • the copper paste may contain metal particles other than the first type particles and the second type particles.
  • the metal particles other than the copper particles include copper nanoparticles, nickel, silver, gold, palladium, platinum and the like.
  • the average particle size of metal particles other than copper particles is preferably about 0.01 to 50 ⁇ m.
  • the amount of metal particles other than copper particles is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the total amount of metal particles.
  • the content of copper particles (including copper particles having an oxide nanostructure on the surface) with respect to 100 parts by mass of the total amount of metal particles is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and 95 masses. Part or more is more preferable.
  • the amount of the copper particles is within the above range, it becomes easy to ensure the bonding strength.
  • the second type particles have an action of filling the gaps between the fused first type particles. What is necessary is just to set content of the 1st type particle
  • the content of the first type particles is preferably 20 to 95 parts by mass, more preferably 30 to 90 parts by mass, further preferably 35 to 85 parts by mass, and 40 to 80 parts by mass with respect to 100 parts by mass of the total amount of metal particles. Is particularly preferred.
  • the content of the first type particles is within the above range, high bonding strength and connection reliability due to fusion of the first type particles can be realized when the copper paste for pressureless bonding is sintered.
  • the content of the second kind particles is preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, further preferably 15 to 65 parts by mass, and 20 to 60 parts by mass with respect to 100 parts by mass of the total amount of metal particles. Is particularly preferred. If the content of the second type particles is within the above range, when the copper paste for pressureless bonding is sintered, the second type particles are easily efficiently filled in the gaps between the fused first type particles. . Therefore, the porosity can be reduced and the bonding strength can be improved. Further, the nanostructure on the surface of the first type particle is fused with the second type particle, and the bonding area is increased. For this reason, the bonding strength tends to increase as compared with the case where only the first type particles are included.
  • the amount of the second type particles is the amount of the first type particles.
  • 0.05 to 5 times is preferable, 0.1 to 2 times is more preferable, 0.2 to 1.5 times is more preferable, and 0.25 to 1.3 times is particularly preferable.
  • the copper paste contains a dispersion medium (solvent) for dispersing the metal particles.
  • the dispersion medium is not particularly limited as long as it can disperse the metal particles and can volatilize during sintering of the paste, and various aqueous solvents and organic solvents can be used.
  • the boiling point of the dispersion medium is preferably about 150 to 400 ° C. A plurality of solvents having different boiling points may be mixed and used as a dispersion medium.
  • dispersion medium examples include chain hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, chain alcohols, aromatic alcohols, alicyclic alcohols, polyhydric alcohols such as glycol and triol, ethers, glycol ethers. , Amines, amides, aldehydes, ketones and the like.
  • glycol or glycol ether is preferably used as the dispersion medium because of excellent dispersibility of the copper particles.
  • the glycol include alkylene glycols such as ethylene glycol and propylene glycol, and polyalkylene glycols such as polyethylene glycol and polypropylene glycol (mainly having a molecular weight of 1000 or less).
  • glycol ethers include polyalkylene glycol alkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monobutyl ether, and ester derivatives thereof ( For example, diethylene glycol monobutyl ether acetate).
  • the amount of the dispersion medium is about 5 to 100 parts by mass, preferably about 7 to 70 parts by mass with respect to 100 parts by mass of the metal particles. If content of a dispersion medium is in the said range, a metal particle can be disperse
  • the copper paste may contain various additives as necessary.
  • the additive include an antioxidant, a surfactant, an antifoaming agent, and an ion trapping agent.
  • the copper paste of the present invention promotes fusion of copper particles by heating in a reducing atmosphere.
  • the copper paste may contain a reducing agent.
  • Reducing agents include sulfide, thiosulfate, oxalic acid, formic acid, ascorbic acid, aldehyde, hydrazine and its derivatives, hydroxylamine and its derivatives, dithiothreitol, phosphite, hydrophosphite, phosphorous acid and its derivatives Lithium aluminum hydride, diisobutylaluminum hydride, sodium borohydride and the like.
  • Copper paste contains resin components such as polyester resin, polyurethane resin such as blocked isocyanate, epoxy resin, acrylic resin, polyacrylamide resin, polyether resin, melamine resin, terpene resin, etc. It may be. These resin components can act as a binder for the metal particles.
  • the copper paste of the present invention can fill the voids between the first type particles by the second type particles having a smaller particle diameter than the first type particles, even when the resin component is not included, High bondability can be realized.
  • the copper paste preferably does not substantially contain a resin component.
  • the resin content in the copper paste is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1 part by mass or less with respect to 100 parts by mass of the metal particles.
  • a copper paste can be prepared by mixing the above metal particles and any additive and a dispersion medium. The entire amount of the metal particles may be dispersed in the dispersion medium at once, or the remainder may be added after a part of the metal particles is dispersed. Further, after dispersing the second type particles, the first type particles may be added, or the first type particle dispersion and the second type particle dispersion may be mixed.
  • a stirring process may be performed after mixing the components. Moreover, you may remove an aggregate by classification operation before and after mixing of each component.
  • Ishikawa-type stirrer For the agitation treatment, Ishikawa-type stirrer, Silverson stirrer, cavitation stirrer, rotation and revolution type (planetary type) stirrer, ultra-thin film high-speed rotary disperser, ultrasonic disperser, reika machine, twin-screw kneader, bead mill, ball mill,
  • a stirring / kneading device such as a three-roll mill, a homogenizer, a planetary mixer, an ultra-high pressure disperser, a thin-layer shear disperser, a wet ultra-fine atomizer, or a supersonic jet mill may be used.
  • Classification operation can be performed using filtration, natural sedimentation, and centrifugation.
  • the filter for filtration include a water comb, a metal mesh, a metal filter, and a nylon mesh.
  • the copper paste can be used for applications such as a conductive paste for forming various wirings and conductive films, and a bonding material for bonding a plurality of members.
  • the above copper paste can realize high bondability by sintering in a reducing atmosphere, and is suitably used as a pressureless bonding paste.
  • a laminate in which a copper paste is disposed between the first member and the second member is prepared, and the copper paste and the second member are disposed in a direction in which the weight of the first member acts, or
  • the laminate is heated in a reducing atmosphere with a pressure of 0.01 MPa or less applied.
  • the copper paste is sintered by heating in a reducing atmosphere, fusion between the metal particles proceeds and the first member and the second member are joined.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of the laminate 10 in which the copper paste 5 is disposed between the first member 1 and the second member 2.
  • a laminate can be prepared by, for example, providing the copper paste 5 in a predetermined region of the second member 2 and placing the first member 1 thereon.
  • the first member 1 and the second member 2 are not particularly limited, and various metal materials, semiconductor materials, ceramic materials, or resin materials can be used.
  • Specific examples of the second member include a semiconductor substrate such as a silicon substrate; a metal substrate such as a copper substrate; a lead frame; a ceramic substrate with a metal plate (for example, DBC); a substrate for mounting a semiconductor element such as an LED package; a copper ribbon; Examples include power supply members such as blocks and terminals, heat sinks, and water cooling plates.
  • the first member include a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, a fast recovery diode, a power module, a transmitter, an amplifier, a sensor, and an analog integrated circuit. , Semiconductor laser, LED module and the like.
  • the first member and the second member are not limited to the above. Moreover, what was mentioned above as an example of a 1st member is good also as a 2nd member, and what was mentioned above as an example of a 2nd member is good also as a 1st member.
  • the first member 1 and the second member 2 may contain a metal on the surface in contact with the copper paste 5 (joining material).
  • the metal include copper, nickel, silver, gold, palladium, platinum, lead, tin, cobalt, manganese, aluminum, beryllium, titanium, chromium, iron, molybdenum, and alloys thereof.
  • a method of providing the copper paste 5 as the bonding material on the second member 2 screen printing, transfer printing, offset printing, relief printing, intaglio printing, gravure printing, stencil printing, soft lithography, jet printing, dispenser, comma coat
  • Various coating methods such as slit coating, die coating, gravure coating, bar coating, play coating, spin coating, and electrodeposition coating may be employed.
  • the thickness of the copper paste 5 (the thickness after drying the dispersion medium, that is, the thickness of the bonding layer) is, for example, about 1 to 1000 ⁇ m.
  • the thickness of the bonding layer can be 10 ⁇ m or more, 30 ⁇ m or more, 50 ⁇ m or more, 70 ⁇ m or more, or 100 ⁇ m or more.
  • the coating thickness can be 700 ⁇ m or less, 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, or 200 ⁇ m or less.
  • the pressure-free bonding copper paste provided on the second member may be appropriately dried for the purpose of suppressing flow during sintering and generation of voids.
  • the gas atmosphere at the time of drying may be air, an oxygen-free atmosphere, or a reducing atmosphere. Drying may be carried out at normal temperature and normal pressure, or may be accelerated by heating or reduced pressure.
  • a chip mounter, a flip chip bonder, or the like may be used, or it may be performed manually using various jigs.
  • the copper paste is sintered by heating the laminate.
  • the (sub-) copper oxide nanostructure formed on the surface of the first-type particles is reduced to form a copper nanostructure. Progression of fusion proceeds.
  • the second type particles have an oxide film or (sub-) cupric oxide nanostructure on the surface, the second type particles are also reduced in surface under a reducing atmosphere to promote fusion.
  • the reducing atmosphere there can be mentioned the presence of reducing gas such as hydrogen and formic acid.
  • the reducing atmosphere gas may be a mixed gas of a reducing gas such as hydrogen or formic acid and an inert gas such as nitrogen or a rare gas.
  • heating may be performed in an oxidation-inhibiting atmosphere instead of using a reducing gas.
  • the reducing agent is volatilized by heating to form a reducing atmosphere.
  • the oxidation-inhibiting atmosphere include an inert gas atmosphere such as nitrogen and a rare gas, and a vacuum.
  • the maximum temperature reached during heating is preferably 200 to 500 ° C., and preferably 230 to 450 from the viewpoint of promoting volatilization of the dispersion medium and fusion of the metal particles while suppressing thermal damage to the first member and the second member. ° C is more preferable, and 250 to 400 ° C is more preferable.
  • the holding time in the above temperature range is preferably 1 minute or more and more preferably 5 minutes or more from the viewpoint of sufficiently promoting the volatilization of the dispersion medium and the fusion of the metal particles.
  • the upper limit of the heating holding time is not particularly limited, but is preferably 60 minutes or less from the viewpoint of yield, process efficiency, and the like.
  • the die shear strength of the joined body in which the first member and the second member are joined via a copper paste sintered body (joining material) is preferably 20 MPa or more, more preferably 23 MPa or more, and further preferably 25 MPa or more.
  • a copper paste sintered body joining material
  • the first type particles having a relatively large particle diameter have a nanostructure on the surface, so that low temperature fusion is possible and the first particle having a relatively small particle diameter. Since the two-type particles constitute a microstructure in which the voids between the first-type particles enter, and the sintering between the particles proceeds, it is possible to form a dense bonding layer with few voids. .
  • the porosity in the cross section of the bonding layer after sintering the copper paste is preferably 25% or less, more preferably 20% or less, and even more preferably 15% or less. The porosity can be calculated from an SEM observation image of the bonded cross section (see FIG. 3).
  • the use of microparticles reduces the volume shrinkage during sintering and suppresses strain in the bonding layer, which is considered to contribute to the improvement of bonding strength.
  • the second type particles have a particle diameter that can be fused at a low temperature and hardly agglomerate, the fusion between the nanostructure on the first type particle surface and the second type particles and It is considered that the fusion between the second type particles proceeds and the bonding strength further increases.
  • the ratio D1 / D2 of the average particle diameter D1 of the first type particles and the average particle diameter D2 of the second type particles is within a predetermined range, the ratio of the grain boundary in the bonding layer is small. It is thought that it contributes to the rise of.
  • the joining method of the present invention can be applied to the manufacture of various electronic components and semiconductor devices. That is, the joined body obtained by joining a plurality of parts by sintering the copper paste of the present invention can be an electronic part or a semiconductor device.
  • the joined body of the present invention has a high die shear strength at the joint and is excellent in connection reliability.
  • the bonding material is mainly made of copper and the voids are low by filling the voids between the first type particles with the second type particles, high thermal conductivity and electrical conductivity can also be realized.
  • a to I copper powders Commercial products of the following A to I copper powders were prepared.
  • Example 1 50 parts by mass of particles R as first type particles, 50 parts by mass of particles B as second type particles, and 30 parts by mass of tripropylene glycol monomethyl ether (MFTG; boiling point 242.4 ° C.) as a dispersion medium were mixed. Using a stirrer (“Mazerustar KK-V300” manufactured by Kurabo Industries) under reduced pressure, the mixture was subjected to planetary stirring at a revolution speed of 1340 rpm and a rotation speed of 737 rpm for 2 minutes to obtain a copper paste for pressureless joining.
  • MFTG tripropylene glycol monomethyl ether
  • Example 1 [Examples 2 to 9 and Comparative Examples 1 to 6]
  • the compounding amounts of the metal particles and the solvent were changed as shown in Table 1 (the compounding values in Table 1 are parts by mass). Other than that was carried out similarly to Example 1, and obtained the copper paste.
  • This laminate was placed in a furnace of a reduction bonding apparatus (“RB-100” manufactured by Ayumi Industry), heated from room temperature to 130 ° C. over 4 minutes, and then kept at 130 ° C. for 5 minutes for preliminary drying. . Then, it heated up in 10 minutes from 130 degreeC to 300 degreeC.
  • RB-100 manufactured by Ayumi Industry
  • the temperature was raised from room temperature to 300 ° C. in an air atmosphere.
  • About the sample of the comparative example 4 and the comparative example 5 it heated up from room temperature to 300 degreeC by nitrogen atmosphere.
  • formic acid vapor was introduced into the furnace to form a formic acid atmosphere, and heating was performed at 300 ° C. for 30 minutes. After replacing the inside of the furnace with nitrogen gas and cooling to 35 ° C. or lower, a sample was taken out.
  • Table 1 shows the compositions of the copper pastes of Examples and Comparative Examples, the ratio D1 / D2 of the average particle diameter of the metal particles in the copper paste, and the die shear strength of the joined sample.
  • Table 1 the content of the first type particles having a relatively large particle diameter is underlined.
  • the SEM observation of the cross section was performed and the porosity was computed from the SEM photograph of FIG. 3 (A) (B).
  • Comparative Example 1 and Comparative Example 2 using only copper particles having no nanostructure the die shear strength of the bonded sample was less than 20 MPa.
  • Comparative Example 3 using only the micro copper particles having the nanostructure on the surface the shear strength was further reduced as compared with Comparative Examples 1 and 2.
  • the porosity of the bonded cross section of Comparative Example 3 obtained from FIG. 3 (B) was 30.4%.
  • the metal particles include copper particles (second type particles) having a particle diameter smaller than that of the first type particles in addition to the micro particles (first type particles) having a nanostructure on the surface.
  • the die shear strength was increased to 20 MPa or more.
  • the porosity of the bonding cross section of Example 1 obtained from FIG. 3A is 11.5%, and the gap between particles in the order of ⁇ m is filled with fine particles. It was confirmed that the porosity was reduced. From these results, by using micro copper particles having nanostructures formed on the surface by heat oxidation and copper particles having a relatively small particle size, the voids between the micro copper particles are particles having a relatively small particle size. It can be seen that the bonding strength between the metal particles is enhanced and the bonding strength is increased.
  • Examples 8 and 9 using micro copper particles having a nanostructure on the surface as the second kind particles having a relatively small particle diameter also showed high bonding strength as in the other examples.
  • Comparative Example 4 and Comparative Example 5 similar to Comparative Example 1 and Comparative Example 2, two types of copper particles having different particle diameters were used, but the die shear strength was further lowered as compared with Comparative Examples 1 to 3. It was. From these results, in the examples, the nanostructure formed on the surface of the copper particles has the effect of promoting the fusion of the microparticles, so that the bonding strength is increased, whereas the nanostructure has In Comparative Examples 4 and 5 using microparticles that were not used, it was considered that the bonding strength was reduced because the microparticles were not fused together.
  • Comparative Example 6 using the particle V having a nanostructure on the surface and an average particle diameter of 64 ⁇ m and the particle A having an average particle diameter of 0.1 ⁇ m, the microparticles having a nanostructure on the surface, a small particle diameter Despite the combined use of copper particles, the bonding strength was insufficient. In Comparative Example 6, since the D1 / D2 of the particle diameters of the two types of particles is large and the ratio of the grain boundaries is high, it is considered that the bonding strength has decreased. From this result, it is understood that high bondability can be realized by setting the ratio D1 / D2 of the average particle diameter of the first type particles and the second type particles within a predetermined range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)
  • Conductive Materials (AREA)

Abstract

This copper paste comprises metal particles and a dispersion medium. The metal particles comprise type-1 particles and type-2 particles. The type-1 particles are copper particles having nanostructures on the surfaces thereof, and having an average particle diameter of 1-100 μm. The type-2 particles are copper particles having an average particle diameter of 0.05-5 μm. The average particle diameter of the type-1 particles is 2-550 times the average particle diameter of the type-2 particles. For example, a laminate, in which a copper paste(5) is provided between a first member(1) and a second member(2), is heated in a reducing atmosphere to sinter the copper paste, whereby the first member and the second member can be bonded without processing.

Description

銅ペースト、接合方法および接合体の製造方法Copper paste, bonding method, and manufacturing method of bonded body
 本発明は、銅ペースト、ならびにそれを用いた接合方法および接合体の製造方法に関する。 The present invention relates to a copper paste, a bonding method using the same, and a method for manufacturing a bonded body.
 従来、金属や半導体等の接合には高融点鉛はんだが広く用いられていたが、環境規制等の観点から、鉛を含有しない接合材が求められている。低温接合が可能な材料として、銀等の金属ナノ粒子を用いる方法が知られている。ナノ粒子は、ナノサイズ効果により、融点よりも低い温度で融着するため、低温の無加圧接合が可能である。しかし、銀ナノ粒子は、材料コストが高価である上に、現状では十分な接合強度は得られていない。 Conventionally, high melting point lead solder has been widely used for joining metals, semiconductors, etc., but from the viewpoint of environmental regulations and the like, joining materials that do not contain lead are required. A method using metal nanoparticles such as silver is known as a material capable of low-temperature bonding. Nanoparticles are fused at a temperature lower than the melting point due to the nanosize effect, so that low-temperature pressureless bonding is possible. However, silver nanoparticles are expensive in material cost, and at present, sufficient bonding strength is not obtained.
 より安価な接合材料として、銅粒子を用いた検討がいくつか報告されている。特許文献1では、μmオーダーの粒子径を有する銅粒子を接合材として、その場(in situ)合成により銅粒子の表面を酸化させてナノ粒子を形成した後、還元性雰囲気下で加熱を行う接合方法が開示されている。特許文献2では、有機分子で表面を被覆することにより分散性を高めた被覆ナノ粒子とマイクロ粒子とを含む銅ペーストを用いて無加圧接合を行う方法が提案されている。 Some studies using copper particles have been reported as cheaper bonding materials. In Patent Document 1, copper particles having a particle diameter of the order of μm are used as a bonding material, and the surfaces of the copper particles are oxidized by in-situ synthesis to form nanoparticles, and then heated in a reducing atmosphere. A joining method is disclosed. Patent Document 2 proposes a method of performing pressureless bonding using a copper paste containing coated nanoparticles and microparticles whose surface is coated with organic molecules to enhance dispersibility.
特開2017-074598号公報JP 2017-074598 A 特開2014-167145号公報JP 2014-167145 A
 特許文献1および特許文献2の方法では、接合強度が十分とはいえない。かかる課題に鑑み、本発明は、低温接合でも高い接合強度を実現可能な銅ペーストの提供を目的とする。 In the methods of Patent Document 1 and Patent Document 2, the bonding strength is not sufficient. In view of this problem, an object of the present invention is to provide a copper paste capable of realizing high bonding strength even at low temperature bonding.
 本発明の銅ペーストは、金属粒子および分散媒を含む。金属粒子は、第一種粒子および第二種粒子を含む。第一種粒子は、平均粒子径が1~100μmであり、表面にナノ構造を有する銅粒子である。第二種粒子は、平均粒子径が0.05~5μmの銅粒子である。第一種粒子の平均粒子径D1は、第二種粒子の平均粒子径D2の2~550倍が好ましい。 The copper paste of the present invention contains metal particles and a dispersion medium. The metal particles include first type particles and second type particles. The first type particles are copper particles having an average particle diameter of 1 to 100 μm and having a nanostructure on the surface. The second type particles are copper particles having an average particle diameter of 0.05 to 5 μm. The average particle diameter D1 of the first kind particles is preferably 2 to 550 times the average particle diameter D2 of the second kind particles.
 第一種粒子のナノ構造は、例えば銅の加熱酸化物により形成される。ナノ構造としては、凹凸形状、粒子形状、ファイバー形状等が挙げられる。 The nanostructure of the first type particles is formed by, for example, a heated oxide of copper. Examples of the nanostructure include an uneven shape, a particle shape, and a fiber shape.
 接合対象の部材間に上記の銅ペーストを設けた積層体を準備し、この積層体を還元性雰囲気下で加熱することにより、銅ペーストが焼結され、部材間を接合できる。 The laminated body provided with the above copper paste between the members to be joined is prepared, and the laminated body is heated in a reducing atmosphere, so that the copper paste is sintered and the members can be joined.
 本発明の銅ペーストは低温無加圧接合に適用可能である。本発明の銅ペーストを用いることにより、強度の高い接合を実現できる。 The copper paste of the present invention can be applied to low-temperature pressureless bonding. By using the copper paste of the present invention, high strength bonding can be realized.
銅粒子の走査型顕微鏡写真である。2 is a scanning micrograph of copper particles. 無加圧接合に用いられる積層体の構成例を示す断面図である。It is sectional drawing which shows the structural example of the laminated body used for a non-pressure joining. 実施例1および比較例3の接合層断面の走査型顕微鏡写真である。3 is a scanning micrograph of a bonding layer cross section of Example 1 and Comparative Example 3. FIG.
[銅ペースト]
 本発明の銅ペーストは、金属粒子および分散媒を含む。金属粒子は、第一種粒子および第二種粒子を含む。第一種粒子の平均粒子径D1は1~100μmであり、第二種粒子の平均粒子径D2は0.05~5μmである。第一種粒子の平均粒子径D1は第二種粒子の平均粒子径D2よりも大きい。D1はD2の2~550倍が好ましい。なお、本願明細書において平均粒子径とは、レーザー回折散乱法により測定した粒子径分布から求められる体積基準の累積中位径(D50)である。
[Copper paste]
The copper paste of the present invention contains metal particles and a dispersion medium. The metal particles include first type particles and second type particles. The average particle diameter D1 of the first kind particles is 1 to 100 μm, and the average particle diameter D2 of the second kind particles is 0.05 to 5 μm. The average particle diameter D1 of the first kind particles is larger than the average particle diameter D2 of the second kind particles. D1 is preferably 2 to 550 times D2. In the present specification, the average particle diameter is a volume-based cumulative median diameter (D 50 ) determined from a particle diameter distribution measured by a laser diffraction scattering method.
 第一種粒子は表面にナノ構造を有する。加熱接合時には表面にナノ構造を有する第一種粒子が融着し、その隙間に、粒子径の小さい第二種粒子が充填されるため、接合材における空隙が少なく、高い接合強度を実現できる。 The first type particles have a nanostructure on the surface. Since the first type particles having nanostructures are fused on the surfaces at the time of heat bonding and the second type particles having a small particle diameter are filled in the gaps, there are few voids in the bonding material, and high bonding strength can be realized.
<金属粒子>
(第一種粒子)
 第一種粒子は、表面にナノ構造を有する平均粒子径1~100μmの銅粒子である。銅粒子表面のナノ構造としては、ナノサイズの凹凸、ナノ粒子、ナノファイバー等が挙げられる。例えば、粒子径が1~100μmの銅粒子を加熱酸化させることにより、表面に(亜)酸化銅のナノ構造を有する銅粒子が得られる。
<Metal particles>
(First type particles)
The first type particles are copper particles having a nanostructure on the surface and an average particle diameter of 1 to 100 μm. Examples of the nanostructure on the copper particle surface include nano-sized irregularities, nanoparticles, and nanofibers. For example, by subjecting copper particles having a particle diameter of 1 to 100 μm to heat oxidation, copper particles having a (sub-) oxide nanostructure on the surface can be obtained.
 図1(A)は熱処理を行っていない湿式銅粉(三井金属鉱業製「1400YM」、平均粒子径4.2μm)の走査型顕微鏡(SEM)写真である。熱処理前の銅粉の表面は平滑であり、ナノ構造は形成されていない。 FIG. 1 (A) is a scanning microscope (SEM) photograph of wet copper powder (“1400YM” manufactured by Mitsui Mining & Smelting Co., Ltd., average particle diameter of 4.2 μm) that has not been heat-treated. The surface of the copper powder before heat treatment is smooth and no nanostructure is formed.
 図1(B1)は、大気下で、100℃で10分、150℃で10分、200℃で10分、250℃で10分、および300℃で10分順次加熱した湿式銅粉のSEM写真である。図1(B2)および図1(B3)は、300℃での加熱時間を、それぞれ30分および120分に変更して加熱処理を行った湿式銅粉のSEM写真である。図1(C1)は、大気下で、100℃で10分、150℃で10分、200℃で10分、250℃で10分、300℃で10分、350℃で10分、および400℃で10分順次加熱した湿式銅粉のSEM写真である。図1(C2)および図1(C3)は、400℃での加熱時間を、それぞれ30分および120分に変更して加熱処理を行った湿式銅粉のSEM写真である。 Fig. 1 (B1) shows SEM photographs of wet copper powder heated in the air for 10 minutes at 100 ° C, 10 minutes at 150 ° C, 10 minutes at 200 ° C, 10 minutes at 250 ° C, and 10 minutes at 300 ° C. It is. FIG. 1 (B2) and FIG. 1 (B3) are SEM photographs of wet copper powder that was subjected to heat treatment by changing the heating time at 300 ° C. to 30 minutes and 120 minutes, respectively. FIG. 1 (C1) shows 10 minutes at 100 ° C., 10 minutes at 150 ° C., 10 minutes at 200 ° C., 10 minutes at 250 ° C., 10 minutes at 300 ° C., 10 minutes at 350 ° C., and 400 ° C. It is a SEM photograph of the wet copper powder heated for 10 minutes sequentially. FIG. 1 (C2) and FIG. 1 (C3) are SEM photographs of wet copper powder that was subjected to heat treatment by changing the heating time at 400 ° C. to 30 minutes and 120 minutes, respectively.
 (B1)では、粒子表面に微細な凹凸が形成されており、(B2)および(B3)では、300℃での加熱時間が長くなるにしたがって、表面の凹凸が粒子状に成長していることが分かる。400℃で加熱を行った(C1)では、(B1)よりも微細な凹凸が形成されるとともに、微細なファイバー状のナノ構造が形成されている。(C2)および(C3)では、400℃での加熱時間が長くなるにしたがって、ナノファイバーが成長していることが分かる。 In (B1), fine irregularities are formed on the particle surface, and in (B2) and (B3), the irregularities on the surface grow into particles as the heating time at 300 ° C. becomes longer. I understand. In (C1) heated at 400 ° C., finer irregularities are formed than in (B1), and fine fiber-like nanostructures are formed. In (C2) and (C3), it can be seen that the nanofibers grow as the heating time at 400 ° C. becomes longer.
 銅の融点は1085℃であるが、銅粒子の表面に形成されたナノスケールの凹凸、粒子、ファイバー等のナノ構造は、ナノ粒子と同様に、サイズ効果による融点降下を示す。そのため、表面にナノ構造を有する第一種粒子は、銅の融点よりも低い温度(例えば300℃程度)で融着して金属接合を形成可能である。すなわち、第一種粒子はμmオーダーの粒子径を有しながら低温接合が可能である。また、ナノ構造は第一種粒子の表面に固定されているため、金属ナノ粒子にみられる凝集や偏在の問題が生じ難い。 Although the melting point of copper is 1085 ° C., nanostructures such as nanoscale irregularities, particles and fibers formed on the surface of the copper particles show a melting point drop due to the size effect, similar to the nanoparticles. Therefore, the first type particles having a nanostructure on the surface can be fused at a temperature lower than the melting point of copper (for example, about 300 ° C.) to form a metal bond. That is, the first type particles can be bonded at a low temperature while having a particle size on the order of μm. In addition, since the nanostructures are fixed on the surface of the first type particles, the problems of aggregation and uneven distribution seen in the metal nanoparticles are unlikely to occur.
 上述のように、μmオーダーの粒子径を有する銅粒子(以下「マイクロ銅粒子」と記載する場合がある)を加熱することにより、表面にナノ構造を形成できる。 As described above, nanostructures can be formed on the surface by heating copper particles having a particle diameter of the order of μm (hereinafter sometimes referred to as “micro copper particles”).
 第一種粒子の原料となるマイクロ銅粒子の形状は特に限定されず、球状、塊状、針状、フレーク状等が挙げられる。中でも表面にナノ構造が形成されやすく、かつ粒子同士が融着した際の粒子間の空隙(ボイド)の体積を小さくできることから、マイクロ銅粒子の形状は、球状またはフレーク状が好ましい。なお「球状」とは完全な球だけでなく、アスペクト比が3以下の略球状を包含する。「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。 The shape of the micro copper particles used as the raw material for the first type particles is not particularly limited, and examples thereof include a spherical shape, a lump shape, a needle shape, and a flake shape. Among these, the shape of the micro copper particles is preferably spherical or flaky because nanostructures are easily formed on the surface and the volume of voids between the particles when the particles are fused can be reduced. “Spherical” includes not only a perfect sphere but also a substantially spherical shape having an aspect ratio of 3 or less. “Flake shape” includes plate shapes such as plate shapes and scale shapes.
 マイクロ銅粒子の粒子径は、1~100μmが好ましい。加熱によるナノ構造の形成前後で銅粒子の粒子径はほとんど変化しないため、マイクロ銅粒子の粒子径は、第一種粒子の粒子径に略等しい。分散性を高めるとともにナノ構造の形成を容易とする観点から、マイクロ銅粒子の粒子径は、2μm以上が好ましく、3μm以上がより好ましく、3.5μm以上がさらに好ましく、4μm以上が特に好ましい。接合の際に粒子間の融着性を高めるとともにボイドを低減する観点から、マイクロ銅粒子の粒子径は、60μm以下が好ましく、50μm以下がより好ましく、40μm以下がさらに好ましく、30μm以下が特に好ましい。マイクロ銅粒子として市販の銅粉をそのまま用いてもよい。 The particle size of the micro copper particles is preferably 1 to 100 μm. Since the particle size of the copper particles hardly changes before and after the formation of the nanostructure by heating, the particle size of the micro copper particles is substantially equal to the particle size of the first type particles. From the viewpoint of enhancing the dispersibility and facilitating the formation of the nanostructure, the particle size of the micro copper particles is preferably 2 μm or more, more preferably 3 μm or more, further preferably 3.5 μm or more, and particularly preferably 4 μm or more. From the viewpoint of enhancing the fusion between particles and reducing voids during bonding, the particle size of the micro copper particles is preferably 60 μm or less, more preferably 50 μm or less, further preferably 40 μm or less, and particularly preferably 30 μm or less. . Commercially available copper powder may be used as it is as the micro copper particles.
 マイクロ銅粒子の粒子径を上記範囲とすることにより、第一種粒子の粒子径を1~100μmの範囲内とすることができる。第一種粒子の粒子径は、2~60μmが好ましく、3~50μmがより好ましく、3.5~40μmがさらに好ましく、4~30μmが特に好ましい。 By setting the particle size of the micro copper particles within the above range, the particle size of the first type particles can be set within the range of 1 to 100 μm. The particle size of the first type particles is preferably 2 to 60 μm, more preferably 3 to 50 μm, still more preferably 3.5 to 40 μm, and particularly preferably 4 to 30 μm.
 マイクロ銅粒子を酸化雰囲気下で加熱することにより、表面にナノ構造が形成される。酸化雰囲気とは、銅が酸化可能な酸素濃度雰囲気であり、大気下(酸素濃度約21%)でもよい。加熱温度は200~500℃が好ましい。加熱時間は加熱温度等に応じてマイクロ銅粒子の表面にナノ構造が形成されるように適宜決定すればよく、例えば、5~300分程度である。 The nano structure is formed on the surface by heating the micro copper particles in an oxidizing atmosphere. The oxidizing atmosphere is an oxygen concentration atmosphere in which copper can be oxidized, and may be in the air (oxygen concentration of about 21%). The heating temperature is preferably 200 to 500 ° C. What is necessary is just to determine a heating time suitably so that a nanostructure may be formed on the surface of a micro copper particle according to heating temperature etc., for example, is about 5 to 300 minutes.
 加熱によりマイクロ銅粒子の表面にナノ構造が形成される理由は定かではないが、銅と酸化銅(または亜酸化銅)の熱膨張係数の差が関連していると推定される。酸化雰囲気下でマイクロ銅粒子を加熱すると、銅粒子の表面が酸化されて酸化被膜が形成される。この状態でさらに加熱を行うと、粒子の表面から内部に向かって酸化が進行するとともに、温度上昇に伴って粒子表面の(亜)酸化銅および粒子のコア部分の銅がともに熱膨張する。銅は酸化銅よりも熱膨張係数が大きいため、温度上昇に伴って内部の銅が表面の酸化膜の結晶粒界を広げ、広がった粒界に沿って銅が表層に析出し、析出した時点で酸化雰囲気に暴露されることにより銅が酸化され、ナノ粒子やナノファイバーのようなナノ構造が形成されると考えられる。 The reason why nanostructures are formed on the surface of micro copper particles by heating is not clear, but it is presumed that the difference in thermal expansion coefficient between copper and copper oxide (or cuprous oxide) is related. When the micro copper particles are heated in an oxidizing atmosphere, the surfaces of the copper particles are oxidized to form an oxide film. When further heating is performed in this state, oxidation proceeds from the surface of the particle toward the inside, and (sub-) copper oxide on the particle surface and copper in the core portion of the particle both thermally expand as the temperature rises. Copper has a larger coefficient of thermal expansion than copper oxide, so as the temperature rises, the internal copper expands the grain boundaries of the oxide film on the surface, and copper precipitates on the surface layer along the expanded grain boundaries. It is thought that copper is oxidized by being exposed to an oxidizing atmosphere, and nanostructures such as nanoparticles and nanofibers are formed.
 図1に示したように、加熱温度が高くなり、加熱時間が長くなるにしたがって、マイクロ銅粒子表面のナノ構造が成長する傾向がある。また、加熱温度の上昇に伴って、ファイバー状のナノ構造(ナノファイバー)が形成される傾向がみられる。第一種粒子の表面にナノファイバーが形成されている場合に、特に銅粒子の融着性が向上する傾向がある。ファイバー状のナノ構造を形成するためには、昇温速度を小さくする(例えば5℃/分以下)か、段階的に温度を上昇させて350℃以上に昇温し、350℃以上の温度で10分以上加熱を行うことが好ましい。緩やかに温度を上昇させることにより、粒子内部から表層への金属の析出速度が制御され、析出物がファイバー状に成長しやすくなると考えられる。 As shown in FIG. 1, the nanostructure on the surface of the micro copper particles tends to grow as the heating temperature becomes higher and the heating time becomes longer. Moreover, the tendency for a fiber-like nanostructure (nanofiber) to be formed with an increase in heating temperature is observed. When nanofibers are formed on the surface of the first type particles, the fusion property of the copper particles tends to be improved. In order to form a fiber-like nanostructure, the temperature increase rate is decreased (for example, 5 ° C./min or less), or the temperature is increased stepwise to 350 ° C. or higher, and the temperature is 350 ° C. or higher. It is preferable to perform heating for 10 minutes or more. By gradually raising the temperature, it is considered that the deposition rate of the metal from the inside of the particle to the surface layer is controlled, and the precipitate is likely to grow in a fiber shape.
 マイクロ銅粒子の表面に凹凸状または粒子状のナノ構造が形成されている場合、ナノ構造の粒子径は500nm以下が好ましく、200nm以下がより好ましい。マイクロ銅粒子の表面にナノファーバーが形成される場合、ファイバーの径は100nm以下が好ましく、50nm以下がより好ましい。ファイバーの長さは特に限定されないが、例えば10μm以下であり、好ましくは5μm以下である。ナノ構造のサイズが上記範囲であれば、低温(例えば、200~500℃程度)での良好な接合性を担保できる。ナノ構造のサイズは、粒子のSEM像に基づいて実測される。 When the surface of the micro copper particle has an uneven or particulate nanostructure, the particle diameter of the nanostructure is preferably 500 nm or less, and more preferably 200 nm or less. When nanofibers are formed on the surface of the micro copper particles, the fiber diameter is preferably 100 nm or less, and more preferably 50 nm or less. Although the length of a fiber is not specifically limited, For example, it is 10 micrometers or less, Preferably it is 5 micrometers or less. When the size of the nanostructure is in the above range, good bondability at a low temperature (for example, about 200 to 500 ° C.) can be ensured. The size of the nanostructure is measured based on the SEM image of the particle.
(第二種粒子)
 第二種粒子は、平均粒子径0.05~5μmの銅粒子である。第二種粒子は表面にナノ構造を有していてもよく、ナノ構造を有していなくてもよい。第二種粒子は、第一種粒子が融着した際の粒子間の隙間を埋めて、空隙の体積を小さくする作用を有する。そのため、第二種粒子としては第一種粒子よりも平均粒子径が小さい粒子が用いられる。
(Second kind particles)
The second type particles are copper particles having an average particle diameter of 0.05 to 5 μm. The second type particles may have a nanostructure on the surface or may not have a nanostructure. The second type particles have an action of filling the gaps between the particles when the first type particles are fused and reducing the volume of the voids. Therefore, particles having an average particle diameter smaller than that of the first type particles are used as the second type particles.
 融着した第一種粒子間の隙間を有効に埋めるために、第二種粒子の平均粒子径D2と第一種粒子の平均粒子径D1の比D1/D2は、2以上が好ましく、2.5以上がより好ましく、3以上がさらに好ましい。一方、接合時の粒界の比率を小さくして接合強度を確保する観点から、D1/D2は550以下が好ましく、300以下がより好ましく、100以下がさらに好ましく、50以下が特に好ましい。 In order to effectively fill the gap between the fused first type particles, the ratio D1 / D2 of the average particle size D2 of the second type particles to the average particle size D1 of the first type particles is preferably 2 or more. 5 or more is more preferable, and 3 or more is more preferable. On the other hand, D1 / D2 is preferably 550 or less, more preferably 300 or less, even more preferably 100 or less, and particularly preferably 50 or less, from the viewpoint of reducing the ratio of grain boundaries at the time of joining to ensure joining strength.
 分散性を確保して凝集を抑制するとともに、接合時の粒界を減少させる観点から、第二種粒子の平均粒子径は0.07μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましい。 From the viewpoints of ensuring dispersibility and suppressing aggregation, and reducing the grain boundary at the time of joining, the average particle size of the second kind particles is preferably 0.07 μm or more, more preferably 0.1 μm or more, and 0.2 μm. The above is more preferable.
 第二種粒子は、400℃以下の温度範囲で融着性を有することが好ましい。第二種粒子が表面にナノ構造を有していない場合は、サイズ効果により融点を降下させるために、平均粒子径D2は4μm以下が好ましく、3μm以下がより好ましく、2μm以下がさらに好ましい。第二種粒子が第一種粒子と同様に表面にナノ構造を有している場合は、ナノ構造により低温融着を実現可能であるため、第二種粒子の平均粒子径D2は、5μm以下であり、かつD1/D2の範囲が上記範囲であればよい。 It is preferable that the second type particles have fusibility in a temperature range of 400 ° C. or lower. When the second type particles do not have a nanostructure on the surface, the average particle diameter D2 is preferably 4 μm or less, more preferably 3 μm or less, and even more preferably 2 μm or less in order to lower the melting point due to the size effect. When the second type particles have a nanostructure on the surface like the first type particles, low temperature fusion can be realized by the nanostructure, so the average particle diameter D2 of the second type particles is 5 μm or less. And the range of D1 / D2 may be within the above range.
 第二種粒子の形状は特に限定されず、球状、塊状、針状、フレーク状等が挙げられる。中でも、粒子同士が融着した際の粒子間の空隙の体積を小さくできることから、第二種粒子の形状は、球状またはフレーク状が好ましい。前述のように、第二種粒子は表面にナノ構造が形成されていてもよい。 The shape of the second type particles is not particularly limited, and examples thereof include a spherical shape, a block shape, a needle shape, and a flake shape. Especially, since the volume of the space | gap between particle | grains at the time of particle | grains fuse | melting can be made small, the shape of a 2nd seed particle has a preferable spherical shape or flake shape. As described above, the second type particles may have nanostructures formed on the surface.
 第二種粒子の形状は、第一種粒子の形状と同一でもよく異なっていてもよい。例えば、第一種粒子および第二種粒子がともに球状であってもよく、第二種粒子および第二種粒子がともにフレーク状であってもよく、第一種粒子がフレーク状、第二種粒子が球状であってもよく、第一種粒子が球状、第二種粒子がフレーク状であってもよい。 The shape of the second type particles may be the same as or different from the shape of the first type particles. For example, both the first type particles and the second type particles may be spherical, the second type particles and the second type particles may both be flaky, and the first type particles may be flaky. The particles may be spherical, the first type particles may be spherical, and the second type particles may be flaky.
 第二種粒子として、平均粒子径が0.05~5μmの市販の銅粉をそのまま用いてもよい。また、市販の銅粉の加熱酸化により表面にナノ構造を形成したものを用いることもできる。 As the second kind particles, commercially available copper powder having an average particle size of 0.05 to 5 μm may be used as it is. Moreover, what formed the nanostructure on the surface by heat oxidation of commercially available copper powder can also be used.
(その他の金属粒子)
 銅ペーストは、上記の第一種粒子および第二種粒子以外の金属粒子を含んでいてもよい。銅粒子以外の金属粒子としては、銅ナノ粒子、ニッケル、銀、金、パラジウム、白金等の粒子が挙げられる。銅粒子以外の金属粒子の平均粒子径は、0.01~50μm程度が好ましい。金属粒子の全量100質量部に対する銅粒子以外の金属粒子の量は、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下がさらに好ましい。換言すると、金属粒子の全量100質量部に対する銅粒子(表面に酸化物のナノ構造を有する銅粒子を含む)の含有量は、80質量部以上が好ましく、90質量部以上がより好ましく、95質量部以上がさらに好ましい。銅粒子の量が上記範囲であることにより、接合強度を確保することが容易となる。
(Other metal particles)
The copper paste may contain metal particles other than the first type particles and the second type particles. Examples of the metal particles other than the copper particles include copper nanoparticles, nickel, silver, gold, palladium, platinum and the like. The average particle size of metal particles other than copper particles is preferably about 0.01 to 50 μm. The amount of metal particles other than copper particles is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less with respect to 100 parts by mass of the total amount of metal particles. In other words, the content of copper particles (including copper particles having an oxide nanostructure on the surface) with respect to 100 parts by mass of the total amount of metal particles is preferably 80 parts by mass or more, more preferably 90 parts by mass or more, and 95 masses. Part or more is more preferable. When the amount of the copper particles is within the above range, it becomes easy to ensure the bonding strength.
(第一種粒子および第二種粒子の含有量)
 上述のように、第二種粒子は、融着した第一種粒子の隙間を埋める作用を有する。金属粒子中の第一種粒子および第二種粒子の含有量は、両者の粒子径の比D1/D2等に応じて、第二種粒子が上記作用を有するように設定すればよい。
(Content of first type particles and second type particles)
As described above, the second type particles have an action of filling the gaps between the fused first type particles. What is necessary is just to set content of the 1st type particle | grains and 2nd type particle | grains in a metal particle so that 2nd type particle | grains may have the said effect | action according to ratio D1 / D2 of both particle diameters.
 第一種粒子の含有量は、金属粒子全量100質量部に対して、20~95質量部が好ましく、30~90質量部がより好ましく、35~85質量部がさらに好ましく、40~80質量部が特に好ましい。第一種粒子の含有量が上記範囲内であれば、無加圧接合用銅ペーストを焼結した際に、第一種粒子同士の融着による高い接合強度と接続信頼性を実現できる。 The content of the first type particles is preferably 20 to 95 parts by mass, more preferably 30 to 90 parts by mass, further preferably 35 to 85 parts by mass, and 40 to 80 parts by mass with respect to 100 parts by mass of the total amount of metal particles. Is particularly preferred. When the content of the first type particles is within the above range, high bonding strength and connection reliability due to fusion of the first type particles can be realized when the copper paste for pressureless bonding is sintered.
 第二種粒子の含有量は、金属粒子全量100質量部に対して、5~80質量部が好ましく、10~70質量部がより好ましく、15~65質量部がさらに好ましく、20~60質量部が特に好ましい。第二種粒子の含有量が上記範囲内であれば、無加圧接合用銅ペーストを焼結した際に、融着した第一種粒子間の空隙に第二種粒子が効率的に充填されやすい。そのため、空隙率が減少し、接合強度の向上を図ることができる。また、第一種粒子表面のナノ構造は第二種粒子とも融着し、接合面積が増大する。そのため、第一種粒子のみを有する場合に比べて、接合強度が上昇する傾向がある。 The content of the second kind particles is preferably 5 to 80 parts by mass, more preferably 10 to 70 parts by mass, further preferably 15 to 65 parts by mass, and 20 to 60 parts by mass with respect to 100 parts by mass of the total amount of metal particles. Is particularly preferred. If the content of the second type particles is within the above range, when the copper paste for pressureless bonding is sintered, the second type particles are easily efficiently filled in the gaps between the fused first type particles. . Therefore, the porosity can be reduced and the bonding strength can be improved. Further, the nanostructure on the surface of the first type particle is fused with the second type particle, and the bonding area is increased. For this reason, the bonding strength tends to increase as compared with the case where only the first type particles are included.
 第一種粒子同士の融着を促進するとともに、第一種粒子間の隙間を第二種粒子により効率的に充填するためには、第二種粒子の量は、第一種粒子の量の0.05~5倍が好ましく、0.1~2倍がより好ましく、0.2~1.5倍がさらに好ましく、0.25~1.3倍が特に好ましい。 In order to promote fusion between the first type particles and efficiently fill the gaps between the first type particles with the second type particles, the amount of the second type particles is the amount of the first type particles. 0.05 to 5 times is preferable, 0.1 to 2 times is more preferable, 0.2 to 1.5 times is more preferable, and 0.25 to 1.3 times is particularly preferable.
<分散媒>
 銅ペーストは、上記金属粒子を分散させるための分散媒(溶媒)を含む。分散媒は、金属粒子を分散可能であり、かつペーストの焼結時に揮発可能であれば特に限定されず、各種の水系溶媒や有機溶媒を使用できる。分散媒の沸点は、150~400℃程度が好ましい。沸点の異なる複数の溶媒を混合して分散媒として用いてもよい。
<Dispersion medium>
The copper paste contains a dispersion medium (solvent) for dispersing the metal particles. The dispersion medium is not particularly limited as long as it can disperse the metal particles and can volatilize during sintering of the paste, and various aqueous solvents and organic solvents can be used. The boiling point of the dispersion medium is preferably about 150 to 400 ° C. A plurality of solvents having different boiling points may be mixed and used as a dispersion medium.
 分散媒の具体例としては、鎖状炭化水素、芳香族炭化水素、脂環式炭化水素、鎖状アルコール、芳香族アルコール、脂環式アルコール、グリコールやトリオール等の多価アルコール、エーテル、グリコールエーテル、アミン、アミド、アルデヒド、ケトン等が挙げられる。 Specific examples of the dispersion medium include chain hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, chain alcohols, aromatic alcohols, alicyclic alcohols, polyhydric alcohols such as glycol and triol, ethers, glycol ethers. , Amines, amides, aldehydes, ketones and the like.
 これらの中でも、銅粒子の分散性に優れることから、分散媒としては、グリコールまたはグリコールエーテルが好ましく用いられる。グリコールとしては、エチレングリコール、プロピレングリコール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール(主に分子量が1000以下のもの)が挙げられる。グリコールエーテルとしては、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノブチルエーテル等のポリアルキレングリコールアルキルエーテル類、およびそのエステル誘導体(例えばジエチレングリコールモノブチルエーテルアセテート)が挙げられる。 Among these, glycol or glycol ether is preferably used as the dispersion medium because of excellent dispersibility of the copper particles. Examples of the glycol include alkylene glycols such as ethylene glycol and propylene glycol, and polyalkylene glycols such as polyethylene glycol and polypropylene glycol (mainly having a molecular weight of 1000 or less). Examples of glycol ethers include polyalkylene glycol alkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monobutyl ether, and ester derivatives thereof ( For example, diethylene glycol monobutyl ether acetate).
 分散媒の量は、金属粒子を100質量部に対して、5~100質量部程度であり、7~70質量部程度が好ましい。分散媒の含有量が上記範囲内であれば、金属粒子を適切に分散可能であり、かつ銅ペーストの粘度を適切な範囲に調整できる。 The amount of the dispersion medium is about 5 to 100 parts by mass, preferably about 7 to 70 parts by mass with respect to 100 parts by mass of the metal particles. If content of a dispersion medium is in the said range, a metal particle can be disperse | distributed appropriately and the viscosity of a copper paste can be adjusted to a suitable range.
<添加剤>
 銅ペーストには、必要に応じて、各種の添加剤を含んでいてもよい。添加剤としては、酸化防止剤、界面活性剤、消泡剤、イオントラップ剤等が挙げられる。
<Additives>
The copper paste may contain various additives as necessary. Examples of the additive include an antioxidant, a surfactant, an antifoaming agent, and an ion trapping agent.
 後述のように、本発明の銅ペーストは、還元性雰囲気下で加熱することにより銅粒子の融着が促進される。銅の融着の促進等を目的として、銅ペーストには還元剤が含まれていてもよい。還元剤としては、硫化物、チオ硫酸塩、シュウ酸、ギ酸、アスコルビン酸、アルデヒド、ヒドラジンおよびその誘導体、ヒドロキシルアミンおよびその誘導体、ジチオスレイトール、ホスファイト、ヒドロホスファイト、亜リン酸およびその誘導体、リチウムアルミニウム水素化物、ジイソブチルアルミニウム水素化物、ホウ水素化ナトリウム等が挙げられる。 As will be described later, the copper paste of the present invention promotes fusion of copper particles by heating in a reducing atmosphere. For the purpose of promoting copper fusion, the copper paste may contain a reducing agent. Reducing agents include sulfide, thiosulfate, oxalic acid, formic acid, ascorbic acid, aldehyde, hydrazine and its derivatives, hydroxylamine and its derivatives, dithiothreitol, phosphite, hydrophosphite, phosphorous acid and its derivatives Lithium aluminum hydride, diisobutylaluminum hydride, sodium borohydride and the like.
 銅ペーストには、ポリエステル系樹脂、ブロックドイソシアネート等のポリウレタン系樹脂、エポキシ系樹脂、アクリル系樹脂、ポリアクリルアミド系樹脂、ポリエーテル系樹脂、メラミン系樹脂、テルペン系樹脂等の樹脂成分が含まれていてもよい。これらの樹脂成分は、金属粒子のバインダーとして作用し得る。なお、本発明の銅ペーストは、第一種粒子よりも粒子径の小さい第二種粒子により、第一種粒子間の空隙を充填することが可能であるため、樹脂成分を含まない場合でも、高い接合性を実現可能である。特に、接合部に高い導電性が要求される場合には、銅ペーストは樹脂成分を実質的に含まないことが好ましい。銅ペーストにおける樹脂の含有量は、金属粒子100質量部に対して10質量部以下が好ましく、5質量部以下がより好ましく、3質量部以下がさらに好ましく、1質量部以下が特に好ましい。 Copper paste contains resin components such as polyester resin, polyurethane resin such as blocked isocyanate, epoxy resin, acrylic resin, polyacrylamide resin, polyether resin, melamine resin, terpene resin, etc. It may be. These resin components can act as a binder for the metal particles. In addition, since the copper paste of the present invention can fill the voids between the first type particles by the second type particles having a smaller particle diameter than the first type particles, even when the resin component is not included, High bondability can be realized. In particular, when high electrical conductivity is required for the joint, the copper paste preferably does not substantially contain a resin component. The resin content in the copper paste is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, still more preferably 3 parts by mass or less, and particularly preferably 1 part by mass or less with respect to 100 parts by mass of the metal particles.
<銅ペーストの調製>
 上記の金属粒子および任意の添加剤と分散媒とを混合することにより、銅ペーストを調製できる。金属粒子は全量を一度に分散媒に分散させてもよく、金属粒子の一部を分散させた後に残部を添加してもよい。また、第二種粒子を分散させた後に、第一種粒子を添加してもよく、第一種粒子の分散液と第二種粒子の分散液とを混合してもよい。
<Preparation of copper paste>
A copper paste can be prepared by mixing the above metal particles and any additive and a dispersion medium. The entire amount of the metal particles may be dispersed in the dispersion medium at once, or the remainder may be added after a part of the metal particles is dispersed. Further, after dispersing the second type particles, the first type particles may be added, or the first type particle dispersion and the second type particle dispersion may be mixed.
 各成分の混合後に、撹拌処理を行ってもよい。また、各成分の混合前後に、分級操作により凝集物を除去してもよい。 A stirring process may be performed after mixing the components. Moreover, you may remove an aggregate by classification operation before and after mixing of each component.
 撹拌処理には、石川式攪拌機、シルバーソン攪拌機、キャビテーション攪拌機、自転公転式(遊星式)攪拌機、超薄膜高速回転式分散機、超音波分散機、ライカイ機、二軸混練機、ビーズミル、ボールミル、三本ロールミル、ホモジナイザー、プラネタリーミキサー、超高圧型分散機、薄層せん断分散機、湿式超微粒化装置、超音速式ジェットミル等の撹拌・混練装置を用いてもよい。 For the agitation treatment, Ishikawa-type stirrer, Silverson stirrer, cavitation stirrer, rotation and revolution type (planetary type) stirrer, ultra-thin film high-speed rotary disperser, ultrasonic disperser, reika machine, twin-screw kneader, bead mill, ball mill, A stirring / kneading device such as a three-roll mill, a homogenizer, a planetary mixer, an ultra-high pressure disperser, a thin-layer shear disperser, a wet ultra-fine atomizer, or a supersonic jet mill may be used.
 分級操作は、ろ過、自然沈降、遠心分離を用いて行うことができる。ろ過用のフィルタとしては、水櫛、金属メッシュ、メタルフィルター、ナイロンメッシュが挙げられる。 Classification operation can be performed using filtration, natural sedimentation, and centrifugation. Examples of the filter for filtration include a water comb, a metal mesh, a metal filter, and a nylon mesh.
[銅ペーストを用いた接合]
 上記の銅ペーストは、各種の配線や導電膜を形成するための導電性ペースト、複数の部材間を接合するための接合材等の用途に使用できる。特に、上記の銅ペーストは、還元性雰囲気下で焼結することにより高い接合性を実現可能であり、無加圧接合用ペーストとして好適に用いられる。
[Joint using copper paste]
The copper paste can be used for applications such as a conductive paste for forming various wirings and conductive films, and a bonding material for bonding a plurality of members. In particular, the above copper paste can realize high bondability by sintering in a reducing atmosphere, and is suitably used as a pressureless bonding paste.
 無加圧接合では、第一部材と第二部材との間に銅ペーストを配置した積層体を準備し、第一部材の自重が作用する方向に銅ペーストおよび第二部材を配置した状態、または0.01MPa以下の圧力を付加した状態で、還元性雰囲気下において上記積層体の加熱が行われる。還元性雰囲気下での加熱により銅ペーストを焼結すると、金属粒子間の融着が進行して第一部材と第二部材が接合される。 In pressureless bonding, a laminate in which a copper paste is disposed between the first member and the second member is prepared, and the copper paste and the second member are disposed in a direction in which the weight of the first member acts, or The laminate is heated in a reducing atmosphere with a pressure of 0.01 MPa or less applied. When the copper paste is sintered by heating in a reducing atmosphere, fusion between the metal particles proceeds and the first member and the second member are joined.
(積層体の準備)
 図2は、第一部材1と第二部材2との間に銅ペースト5を配置した積層体10の構成例を示す断面図である。このような積層体は、例えば、第二部材2の所定領域に上記の銅ペースト5を設け、その上に第一部材1を配置することにより用意することができる。
(Preparation of laminate)
FIG. 2 is a cross-sectional view illustrating a configuration example of the laminate 10 in which the copper paste 5 is disposed between the first member 1 and the second member 2. Such a laminate can be prepared by, for example, providing the copper paste 5 in a predetermined region of the second member 2 and placing the first member 1 thereon.
 第一部材1および第二部材2は特に限定されず、各種の金属材料、半導体材料、セラミック材料または樹脂材料を用いることができる。第二部材の具体例としては、シリコン基板等の半導体基板;銅基板等の金属基板、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基板、銅リボン、金属ブロック、端子等の給電用部材、放熱板、水冷板等が挙げられる。第一部材の具体例としては、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、センサー、アナログ集積回路、半導体レーザー、LEDモジュール等が挙げられる。第一部材および第二部材は上記に限定されない。また、第一部材の例として上述したものを第二部材としてもよく、第二部材の例として上述したものを第一部材としてもよい。 The first member 1 and the second member 2 are not particularly limited, and various metal materials, semiconductor materials, ceramic materials, or resin materials can be used. Specific examples of the second member include a semiconductor substrate such as a silicon substrate; a metal substrate such as a copper substrate; a lead frame; a ceramic substrate with a metal plate (for example, DBC); a substrate for mounting a semiconductor element such as an LED package; a copper ribbon; Examples include power supply members such as blocks and terminals, heat sinks, and water cooling plates. Specific examples of the first member include a diode, a rectifier, a thyristor, a MOS gate driver, a power switch, a power MOSFET, an IGBT, a Schottky diode, a fast recovery diode, a power module, a transmitter, an amplifier, a sensor, and an analog integrated circuit. , Semiconductor laser, LED module and the like. The first member and the second member are not limited to the above. Moreover, what was mentioned above as an example of a 1st member is good also as a 2nd member, and what was mentioned above as an example of a 2nd member is good also as a 1st member.
 第一部材1および第二部材2は、銅ペースト5(接合材)と接する面に金属を含んでいてもよい。金属としては、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデンおよびこれらの合金等が挙げられる。 The first member 1 and the second member 2 may contain a metal on the surface in contact with the copper paste 5 (joining material). Examples of the metal include copper, nickel, silver, gold, palladium, platinum, lead, tin, cobalt, manganese, aluminum, beryllium, titanium, chromium, iron, molybdenum, and alloys thereof.
 第二部材2上に接合材としての銅ペースト5を設ける方法としては、スクリーン印刷、転写印刷、オフセット印刷、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、ジェットプリント、ディスペンサー、コンマコート、スリットコート、ダイコート、グラビアコート、バーコート、プレーコート、スピンコート、電着塗装等の各種の塗布法を採用すればよい。 As a method of providing the copper paste 5 as the bonding material on the second member 2, screen printing, transfer printing, offset printing, relief printing, intaglio printing, gravure printing, stencil printing, soft lithography, jet printing, dispenser, comma coat Various coating methods such as slit coating, die coating, gravure coating, bar coating, play coating, spin coating, and electrodeposition coating may be employed.
 銅ペースト5の厚み(分散媒を乾燥後の厚み、すなわち接合層の厚み)は、例えば1~1000μm程度である。接合層の厚みは、10μm以上、30μm以上、50μm以上、70μm以上または100μm以上であり得る。塗布厚みは、700μm以下、500μm以下、400μm以下、300μm以下または200μm以下であり得る。 The thickness of the copper paste 5 (the thickness after drying the dispersion medium, that is, the thickness of the bonding layer) is, for example, about 1 to 1000 μm. The thickness of the bonding layer can be 10 μm or more, 30 μm or more, 50 μm or more, 70 μm or more, or 100 μm or more. The coating thickness can be 700 μm or less, 500 μm or less, 400 μm or less, 300 μm or less, or 200 μm or less.
 第二部材上に設けられた無加圧接合用銅ペーストは、焼結時の流動やボイドの発生の抑制等を目的として、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中でもよく、無酸素雰囲気でもよく、還元性雰囲気でもよい。乾燥は、常温・常圧で実施してもよく、加熱や減圧により乾燥を促進してもよい。 The pressure-free bonding copper paste provided on the second member may be appropriately dried for the purpose of suppressing flow during sintering and generation of voids. The gas atmosphere at the time of drying may be air, an oxygen-free atmosphere, or a reducing atmosphere. Drying may be carried out at normal temperature and normal pressure, or may be accelerated by heating or reduced pressure.
 第二部材2上に設けられたペースト5上への第一部材1の配置には、チップマウンタやフリップチップボンダ等を用いてもよく、各種の冶具を用いて手作業で行ってもよい。 For the arrangement of the first member 1 on the paste 5 provided on the second member 2, a chip mounter, a flip chip bonder, or the like may be used, or it may be performed manually using various jigs.
(焼結)
 上記の積層体を加熱することにより、銅ペーストの焼結を行う。還元性雰囲気下で加熱を行うことにより、第一種粒子の表面に形成された(亜)酸化銅のナノ構造が還元されて銅のナノ構造が生成し、ナノ構造のサイズ効果により、低温での融着が進行する。第二種粒子が表面に酸化膜や(亜)酸化銅のナノ構造を有している場合は、第二種粒子も還元性雰囲気下で表面が還元され、融着が促進される。
(Sintering)
The copper paste is sintered by heating the laminate. By heating in a reducing atmosphere, the (sub-) copper oxide nanostructure formed on the surface of the first-type particles is reduced to form a copper nanostructure. Progression of fusion proceeds. In the case where the second type particles have an oxide film or (sub-) cupric oxide nanostructure on the surface, the second type particles are also reduced in surface under a reducing atmosphere to promote fusion.
 還元性雰囲気としては、水素やギ酸等の還元性ガスの存在雰囲気が挙げられる。還元性雰囲気ガスは、水素やギ酸等の還元性ガスと、窒素や希ガス等の不活性ガスとの混合ガスでもよい。ペーストが還元剤を含んでいる場合は、還元性ガスを用いる代わりに、酸化抑制雰囲気で加熱を行ってもよい。この場合は、加熱により還元剤が揮発して還元性雰囲気となる。酸化抑制雰囲気とは、窒素や希ガス等の不活性ガス雰囲気や真空下が挙げられる。 As the reducing atmosphere, there can be mentioned the presence of reducing gas such as hydrogen and formic acid. The reducing atmosphere gas may be a mixed gas of a reducing gas such as hydrogen or formic acid and an inert gas such as nitrogen or a rare gas. When the paste contains a reducing agent, heating may be performed in an oxidation-inhibiting atmosphere instead of using a reducing gas. In this case, the reducing agent is volatilized by heating to form a reducing atmosphere. Examples of the oxidation-inhibiting atmosphere include an inert gas atmosphere such as nitrogen and a rare gas, and a vacuum.
 加熱時の到達最高温度は、第一部材および第二部材への熱ダメージを抑制しつつ、分散媒の揮発および金属粒子の融着を促進する観点から、200~500℃が好ましく、230~450℃がより好ましく、250~400℃がさらに好ましい。 The maximum temperature reached during heating is preferably 200 to 500 ° C., and preferably 230 to 450 from the viewpoint of promoting volatilization of the dispersion medium and fusion of the metal particles while suppressing thermal damage to the first member and the second member. ° C is more preferable, and 250 to 400 ° C is more preferable.
 上記の温度範囲での保持時間は、分散媒の揮発および金属粒子の融着を十分に進行させる観点から、1分以上が好ましく、5分以上がより好ましい。加熱の保持時間の上限は特に限定されないが、歩留まりや工程効率等の観点からは60分以下が好ましい。 The holding time in the above temperature range is preferably 1 minute or more and more preferably 5 minutes or more from the viewpoint of sufficiently promoting the volatilization of the dispersion medium and the fusion of the metal particles. The upper limit of the heating holding time is not particularly limited, but is preferably 60 minutes or less from the viewpoint of yield, process efficiency, and the like.
 第一部材と第二部材とが銅ペーストの焼結体(接合材)を介して接合された接合体のダイシェア強度は、20MPa以上が好ましく、23MPa以上がより好ましく、25MPa以上がさらに好ましい。上記の銅ペーストを用いることにより、銅の融点以下の低温での無加圧接合により、高いシェア強度を実現できる。 The die shear strength of the joined body in which the first member and the second member are joined via a copper paste sintered body (joining material) is preferably 20 MPa or more, more preferably 23 MPa or more, and further preferably 25 MPa or more. By using the copper paste, high shear strength can be realized by pressureless bonding at a low temperature below the melting point of copper.
 このような高い接合強度を実現できる推定要因として、相対的に粒子径の大きい第一種粒子が表面にナノ構造を有するために低温融着が可能であるとともに、相対的に粒子径の小さい第二種粒子が第一種粒子間の空隙に入り込んだ微細組織を構成し、各粒子間での焼結が進行するために、空隙が少なく緻密化された接合層が形成されることが挙げられる。銅ペーストを焼結後の接合層の断面における空隙率は、25%以下が好ましく、20%以下がより好ましく、15%以下がさらに好ましい。空隙率は接合断面のSEM観察像から算出できる(図3参照)。 As a presumable factor capable of realizing such a high bonding strength, the first type particles having a relatively large particle diameter have a nanostructure on the surface, so that low temperature fusion is possible and the first particle having a relatively small particle diameter. Since the two-type particles constitute a microstructure in which the voids between the first-type particles enter, and the sintering between the particles proceeds, it is possible to form a dense bonding layer with few voids. . The porosity in the cross section of the bonding layer after sintering the copper paste is preferably 25% or less, more preferably 20% or less, and even more preferably 15% or less. The porosity can be calculated from an SEM observation image of the bonded cross section (see FIG. 3).
 空隙が少ないことに加えて、マイクロ粒子を用いることにより、焼結時の体積収縮が小さく、接合層内の歪が抑制されることも、接合強度の向上に寄与していると考えられる。また、第二種粒子は、低温融着が可能であり、かつ凝集が生じ難い程度の粒子径を有しているため、第一種粒子表面のナノ構造と第二種粒子との融着および第二種粒子同士の融着が進行し、接合強度がさらに上昇すると考えられる。さらに、第一種粒子の平均粒子径D1と第二種粒子の平均粒子径D2の比D1/D2が所定範囲内であることにより、接合層内の粒界の割合が小さいことも、接合強度の上昇に寄与していると考えられる。 In addition to the small number of voids, the use of microparticles reduces the volume shrinkage during sintering and suppresses strain in the bonding layer, which is considered to contribute to the improvement of bonding strength. Further, since the second type particles have a particle diameter that can be fused at a low temperature and hardly agglomerate, the fusion between the nanostructure on the first type particle surface and the second type particles and It is considered that the fusion between the second type particles proceeds and the bonding strength further increases. Furthermore, since the ratio D1 / D2 of the average particle diameter D1 of the first type particles and the average particle diameter D2 of the second type particles is within a predetermined range, the ratio of the grain boundary in the bonding layer is small. It is thought that it contributes to the rise of.
 本発明の接合方法は、各種の電子部品や半導体装置の製造に適用できる。すなわち、本発明の銅ペーストの焼結により複数の部品を接合した接合体は、電子部品または半導体装置等であり得る。本発明の接合体は、接合部が高いダイシェア強度を有し、接続信頼性に優れている。また、接合材が主に銅からなり、第一種粒子間の空隙に第二種粒子が充填されることにより空隙率が低いため、高い熱伝導率および電気伝導率も実現可能である。 The joining method of the present invention can be applied to the manufacture of various electronic components and semiconductor devices. That is, the joined body obtained by joining a plurality of parts by sintering the copper paste of the present invention can be an electronic part or a semiconductor device. The joined body of the present invention has a high die shear strength at the joint and is excellent in connection reliability. In addition, since the bonding material is mainly made of copper and the voids are low by filling the voids between the first type particles with the second type particles, high thermal conductivity and electrical conductivity can also be realized.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は下記の実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
[銅粒子の準備]
 下記A~Iの銅粉末の市販品を準備した。
 A:太陽日酸製「Tn-Cu100」(平均粒子径0.1μmの球状銅粉)
 B:三井金属鉱業製「1050YP」(平均粒子径0.9μmのフレーク状銅粉)
 C:三井金属鉱業製「MAC03K」(平均粒子径3.0μmの球状銅粉)
 D:三井金属鉱業製「MAC03KP」(平均粒子径4.0μmのフレーク状銅粉)
 E:三井金属鉱業製「1400YM」(平均粒子径4.2μmの球状銅粉)
 F:三井金属鉱業製「1400YP」(平均粒子径5.2μmのフレーク状銅粉)
 G:三井金属鉱業製「MA-CF」(平均粒子径21.1μmのフレーク状銅粉)
 H:CuLox製「Cu6500」(平均粒子径50μmの球状銅粉)
 I:三井金属鉱業製「MACNS」(平均粒子径64μmの球状銅粉)
[Preparation of copper particles]
Commercial products of the following A to I copper powders were prepared.
A: “Tn-Cu100” manufactured by Taiyo Nippon Sanso (spherical copper powder having an average particle size of 0.1 μm)
B: “1050YP” (flaky copper powder with an average particle size of 0.9 μm) manufactured by Mitsui Mining & Smelting
C: “MAC03K” manufactured by Mitsui Mining & Smelting Co., Ltd. (spherical copper powder with an average particle size of 3.0 μm)
D: “MAC03KP” manufactured by Mitsui Mining & Smelting Co., Ltd. (flaked copper powder having an average particle size of 4.0 μm)
E: “1400YM” manufactured by Mitsui Mining & Smelting Co., Ltd. (spherical copper powder having an average particle size of 4.2 μm)
F: “1400YP” manufactured by Mitsui Mining & Smelting Co., Ltd. (flaky copper powder having an average particle size of 5.2 μm)
G: “MA-CF” manufactured by Mitsui Mining & Smelting Co., Ltd. (flaky copper powder with an average particle size of 21.1 μm)
H: “Cu6500” manufactured by CuLox (spherical copper powder having an average particle diameter of 50 μm)
I: “MACNS” manufactured by Mitsui Mining & Smelting Co., Ltd. (spherical copper powder with an average particle size of 64 μm)
[表面にナノファイバー構造を有する銅粒子の作製]
 上記の粒子Eを大気下で撹拌しながら、100℃で10分、150℃で10分、200℃で10分、250℃で10分、300℃で10分、350℃に昇温して10分、400℃で30分加熱した。加熱後の粒子RをSEM観察したところ、凝集塊はほとんど確認されず、図1(C2)に示すように、表面にファイバー状のナノ構造が形成されていた。
[Preparation of copper particles with nanofiber structure on the surface]
While stirring the above particles E under the atmosphere, the temperature was raised to 100 ° C. for 10 minutes, 150 ° C. for 10 minutes, 200 ° C. for 10 minutes, 250 ° C. for 10 minutes, 300 ° C. for 10 minutes, 350 ° C. And heated at 400 ° C. for 30 minutes. When the particles R after heating were observed with an SEM, almost no agglomerates were observed, and as shown in FIG. 1 (C2), fiber-like nanostructures were formed on the surface.
 上記の粒子C,D,F,G,H,Iを用いて、粒子Rの作製と同様の条件で加熱を行い、表面にファイバー状のナノ構造を有する粒子P,Q,S,T,U,Vを作製した。 Using the above particles C, D, F, G, H, and I, heating is performed under the same conditions as the production of the particle R, and the particles P, Q, S, T, and U having a fiber-like nanostructure on the surface , V were produced.
[実施例1]
 第一種粒子として粒子Rを50質量部、第二種粒子として粒子Bを50質量部、および分散媒としてトリプロピレングリコールモノメチルエーテル(MFTG;沸点242.4℃)30質量部を混合した。減圧下で、撹拌機(クラボウ製「マゼルスター KK-V300」)を用いて、公転回転数1340rpm、自転回転数737rpmで2分間混合物を遊星撹拌して無加圧接合用銅ペーストを得た。
[Example 1]
50 parts by mass of particles R as first type particles, 50 parts by mass of particles B as second type particles, and 30 parts by mass of tripropylene glycol monomethyl ether (MFTG; boiling point 242.4 ° C.) as a dispersion medium were mixed. Using a stirrer (“Mazerustar KK-V300” manufactured by Kurabo Industries) under reduced pressure, the mixture was subjected to planetary stirring at a revolution speed of 1340 rpm and a rotation speed of 737 rpm for 2 minutes to obtain a copper paste for pressureless joining.
[実施例2~9および比較例1~6]
 金属粒子および溶媒の配合量を表1に示すように変更した(表1における配合の数値は質量部である)。それ以外は実施例1と同様にして、銅ペーストを得た。
[Examples 2 to 9 and Comparative Examples 1 to 6]
The compounding amounts of the metal particles and the solvent were changed as shown in Table 1 (the compounding values in Table 1 are parts by mass). Other than that was carried out similarly to Example 1, and obtained the copper paste.
[評価]
(ダイシェア強度試験用試料の作製)
 銅ペースト0.009gを、20mm×20mmの銅板(厚み1mm)上の中央に塗布し、その上に厚さ1mm、サイズ5×5mmのCuチップを接触させた後、10gの荷重でCuチップを軽く押し付けて積層体を形成した。
[Evaluation]
(Preparation of die shear strength test sample)
After applying 0.009 g of copper paste to the center of a 20 mm × 20 mm copper plate (thickness 1 mm), contacting a 1 mm thick and 5 × 5 mm size Cu chip, the Cu chip was loaded with a load of 10 g. Lightly pressed to form a laminate.
 この積層体を還元接合装置(アユミ工業製「RB-100」)の炉内に設置し、室温から130℃まで4分間で昇温した後、130℃で5分間保持して予備乾燥を行った。その後、130℃から300℃まで10分間で昇温した。実施例1~9、比較例1~3および比較例6の試料については、大気雰囲気で室温から300℃まで昇温を行った。比較例4および比較例5の試料については、窒素雰囲気で室温から300℃まで昇温を行った。300℃に昇温後、炉内にギ酸蒸気を導入してギ酸雰囲気とし、300℃で30分加熱を行った。炉内を窒素ガス置換して35℃以下まで冷却後、試料を取り出した。 This laminate was placed in a furnace of a reduction bonding apparatus (“RB-100” manufactured by Ayumi Industry), heated from room temperature to 130 ° C. over 4 minutes, and then kept at 130 ° C. for 5 minutes for preliminary drying. . Then, it heated up in 10 minutes from 130 degreeC to 300 degreeC. For the samples of Examples 1 to 9, Comparative Examples 1 to 3, and Comparative Example 6, the temperature was raised from room temperature to 300 ° C. in an air atmosphere. About the sample of the comparative example 4 and the comparative example 5, it heated up from room temperature to 300 degreeC by nitrogen atmosphere. After raising the temperature to 300 ° C., formic acid vapor was introduced into the furnace to form a formic acid atmosphere, and heating was performed at 300 ° C. for 30 minutes. After replacing the inside of the furnace with nitrogen gas and cooling to 35 ° C. or lower, a sample was taken out.
(ダイシェア強度の測定)
 DS-100ロードセルを装着した万能型ボンドテスタ(ノードソン・アドバンスト・テクノロジー製4000シリーズ)を用い、大気下にて、測定スピード1mm/分、測定高さ200μmの条件で、上記試料のダイシェア強度を測定した。
(Measurement of die shear strength)
Using a universal bond tester (4000 series manufactured by Nordson Advanced Technology) equipped with a DS-100 load cell, the die shear strength of the above sample was measured under the conditions of a measurement speed of 1 mm / min and a measurement height of 200 μm. .
 実施例および比較例の銅ペーストの組成、銅ペースト中の金属粒子の平均粒子径の比D1/D2、および接合試料のダイシェア強度を表1に示す。なお、表1においては相対的に粒子径が大きい第一種粒子の含有量に下線を付している。実施例1および比較例3の試料については、断面のSEM観察を行い、図3(A)(B)のSEM写真から空隙率を算出した。 Table 1 shows the compositions of the copper pastes of Examples and Comparative Examples, the ratio D1 / D2 of the average particle diameter of the metal particles in the copper paste, and the die shear strength of the joined sample. In Table 1, the content of the first type particles having a relatively large particle diameter is underlined. About the sample of Example 1 and Comparative Example 3, the SEM observation of the cross section was performed and the porosity was computed from the SEM photograph of FIG. 3 (A) (B).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ナノ構造を有していない銅粒子のみを用いた比較例1および比較例2では、接合試料のダイシェア強度が20MPa未満であった。表面にナノ構造を有するマイクロ銅粒子のみを用いた比較例3では、比較例1,2よりもさらにシェア強度が低下していた。図3(B)から求めた比較例3の接合断面の空隙率は30.4%であった。 In Comparative Example 1 and Comparative Example 2 using only copper particles having no nanostructure, the die shear strength of the bonded sample was less than 20 MPa. In Comparative Example 3 using only the micro copper particles having the nanostructure on the surface, the shear strength was further reduced as compared with Comparative Examples 1 and 2. The porosity of the bonded cross section of Comparative Example 3 obtained from FIG. 3 (B) was 30.4%.
 金属粒子として、表面にナノ構造を有するマイクロ粒子(第一種粒子)に加えて、第一種粒子よりも粒子径の小さい銅粒子(第二種粒子)を含む実施例1~9では、いずれもダイシェア強度が20MPa以上に上昇していた。図3(A)から求めた実施例1の接合断面の空隙率は11.5%であり、μmオーダーの粒子間の空隙が微細な粒子により充填されることにより、比較例3に比べて大幅に空隙率が低減していることが確認された。これらの結果から、加熱酸化により表面にナノ構造が形成されたマイクロ銅粒子と、相対的に粒子径の小さい銅粒子を用いることにより、マイクロ銅粒子間の空隙が相対的に粒子径の小さい粒子により充填されるとともに、金属粒子間の接合が強化されて、接合強度が上昇することが分かる。 In Examples 1 to 9, the metal particles include copper particles (second type particles) having a particle diameter smaller than that of the first type particles in addition to the micro particles (first type particles) having a nanostructure on the surface. However, the die shear strength was increased to 20 MPa or more. The porosity of the bonding cross section of Example 1 obtained from FIG. 3A is 11.5%, and the gap between particles in the order of μm is filled with fine particles. It was confirmed that the porosity was reduced. From these results, by using micro copper particles having nanostructures formed on the surface by heat oxidation and copper particles having a relatively small particle size, the voids between the micro copper particles are particles having a relatively small particle size. It can be seen that the bonding strength between the metal particles is enhanced and the bonding strength is increased.
 相対的に粒子径の小さい第二種粒子として表面にナノ構造を有するマイクロ銅粒子を用いた実施例8,9も、他の実施例と同様に高い接合強度を示した。一方、比較例4および比較例5では、比較例1および比較例2と同様に、粒子径の異なる2種類の銅粒子を用いたが、ダイシェア強度は比較例1~3よりもさらに低下していた。これらの結果から、実施例では、銅粒子の表面に形成されたナノ構造が、マイクロ粒子同士の融着を促進する作用を有するために、接合強度が上昇したのに対して、ナノ構造を有していないマイクロ粒子を用いた比較例4,5では、マイクロ粒子同士が融着しないために、接合強度が低下したと考えられる。 Examples 8 and 9 using micro copper particles having a nanostructure on the surface as the second kind particles having a relatively small particle diameter also showed high bonding strength as in the other examples. On the other hand, in Comparative Example 4 and Comparative Example 5, similar to Comparative Example 1 and Comparative Example 2, two types of copper particles having different particle diameters were used, but the die shear strength was further lowered as compared with Comparative Examples 1 to 3. It was. From these results, in the examples, the nanostructure formed on the surface of the copper particles has the effect of promoting the fusion of the microparticles, so that the bonding strength is increased, whereas the nanostructure has In Comparative Examples 4 and 5 using microparticles that were not used, it was considered that the bonding strength was reduced because the microparticles were not fused together.
 表面にナノ構造を有し平均粒子径が64μmである粒子Vと、平均粒子径が0.1μmの粒子Aを用いた比較例6では、表面にナノ構造を有するマイクロ粒子と、小粒径の銅粒子とを併用しているにも関わらず、接合強度が不十分であった。比較例6では、2種類の粒子の粒子径のD1/D2が大きく、粒界の比率が高いために、接合強度が低下したと考えられる。この結果から、第一種粒子と第二種粒子の平均粒子径の比D1/D2を所定範囲とすることにより、高い接合性を実現できることが分かる。 In Comparative Example 6 using the particle V having a nanostructure on the surface and an average particle diameter of 64 μm and the particle A having an average particle diameter of 0.1 μm, the microparticles having a nanostructure on the surface, a small particle diameter Despite the combined use of copper particles, the bonding strength was insufficient. In Comparative Example 6, since the D1 / D2 of the particle diameters of the two types of particles is large and the ratio of the grain boundaries is high, it is considered that the bonding strength has decreased. From this result, it is understood that high bondability can be realized by setting the ratio D1 / D2 of the average particle diameter of the first type particles and the second type particles within a predetermined range.

Claims (7)

  1.  第一種粒子、および前記第一種粒子よりも平均粒子径が小さい第二種粒子を含む金属粒子と、分散媒とを含み、
     前記第一種粒子は、平均粒子径が1~100μmであり、表面にナノ構造を有する銅粒子であり、
     前記第二種粒子は、平均粒子径が0.05~5μmである銅粒子であり、
     前記第一種粒子の平均粒子径が前記第二種粒子の平均粒子径の2~550倍である、銅ペースト。
    First type particles, and metal particles including second type particles having an average particle size smaller than the first type particles, and a dispersion medium,
    The first type particles are copper particles having an average particle diameter of 1 to 100 μm and having a nanostructure on the surface,
    The second kind particles are copper particles having an average particle diameter of 0.05 to 5 μm,
    A copper paste, wherein the average particle size of the first type particles is 2 to 550 times the average particle size of the second type particles.
  2.  前記第一種粒子のナノ構造が、銅の加熱酸化物により形成されている、請求項1に記載の銅ペースト。 The copper paste according to claim 1, wherein the nanostructure of the first type particles is formed of a heated oxide of copper.
  3.  前記第一種粒子が粒子表面にファイバー状のナノ構造を有する、請求項1または2に記載の銅ペースト。 The copper paste according to claim 1 or 2, wherein the first type particles have a fiber-like nanostructure on the particle surface.
  4.  前記第一種粒子の平均粒子径が3~50μmであり、前記第二種粒子の平均粒子径が0.1~5μmである、請求項1~3のいずれか1項に記載の銅ペースト。 The copper paste according to any one of claims 1 to 3, wherein the average particle size of the first type particles is 3 to 50 µm, and the average particle size of the second type particles is 0.1 to 5 µm.
  5.  前記金属粒子100質量部に対して前記分散媒を5~100質量部含有する、請求項1~4のいずれか1項に記載の銅ペースト。 The copper paste according to any one of claims 1 to 4, comprising 5 to 100 parts by mass of the dispersion medium with respect to 100 parts by mass of the metal particles.
  6.  第一部材と第二部材との間に、請求項1~5のいずれか1項に記載の銅ペーストを設けた積層体を準備し、
     前記積層体を還元性雰囲気下で加熱して前記銅ペーストを焼結する、接合方法。
    A laminated body provided with the copper paste according to any one of claims 1 to 5 between the first member and the second member is prepared,
    A joining method in which the laminate is heated in a reducing atmosphere to sinter the copper paste.
  7.  第一部材と第二部材との間に、請求項1~5のいずれか1項に記載の銅ペーストを設けた積層体を準備し、
     前記積層体を還元性雰囲気下で加熱して前記銅ペーストを焼結することにより、前記第一部材と前記第二部材とを接合する、接合体の製造方法。
    A laminated body provided with the copper paste according to any one of claims 1 to 5 between the first member and the second member is prepared,
    A method for manufacturing a joined body, wherein the first member and the second member are joined by heating the laminated body in a reducing atmosphere to sinter the copper paste.
PCT/JP2019/011213 2018-03-29 2019-03-18 Copper paste, bonding method, and method for producing bonded body WO2019188511A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020510704A JPWO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method and manufacturing method of bonded body
EP19775134.0A EP3778069A4 (en) 2018-03-29 2019-03-18 Copper paste, bonding method, and method for producing bonded body
JP2022001819A JP7220310B2 (en) 2018-03-29 2022-01-07 Copper paste for non-pressure bonding, method for non-pressure bonding, and method for manufacturing bonded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018065201 2018-03-29
JP2018-065201 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019188511A1 true WO2019188511A1 (en) 2019-10-03

Family

ID=68061545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011213 WO2019188511A1 (en) 2018-03-29 2019-03-18 Copper paste, bonding method, and method for producing bonded body

Country Status (4)

Country Link
EP (1) EP3778069A4 (en)
JP (2) JPWO2019188511A1 (en)
TW (1) TWI798404B (en)
WO (1) WO2019188511A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030327A1 (en) * 2020-08-04 2022-02-10 石原ケミカル株式会社 Joining method, copper sintered body and copper paste
US20230037164A1 (en) * 2020-01-24 2023-02-02 Taiyo Nippon Sanso Corporation Bonding material, method for producing bonding material, and bonded body
WO2023190450A1 (en) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 Bonded body manufacturing method
JP2023152656A (en) * 2022-04-01 2023-10-17 ホジョンエイブル カンパニー リミテッド Copper sintering paste composition and method of preparing the same
WO2024142582A1 (en) * 2022-12-28 2024-07-04 三井金属鉱業株式会社 Joining composition and method for producing joined structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4306234A1 (en) 2022-07-15 2024-01-17 Technische Hochschule Ingolstadt Sintering paste and method for producing a sintering paste
KR20240080255A (en) 2022-11-29 2024-06-07 (주)창성 Copper paste composition for ceramic chip components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (en) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd Copper conductor paste and substrate printed therewith
JP2011094236A (en) * 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
JP2014167145A (en) 2013-02-28 2014-09-11 Osaka Univ Jointing material
JP2017074598A (en) 2015-10-14 2017-04-20 国立大学法人大阪大学 Low-temperature bonding method using copper particle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647224B2 (en) * 2004-03-30 2011-03-09 昭栄化学工業株式会社 Conductive paste for multilayer ceramic electronic component terminal electrode
JP4362601B2 (en) * 2004-04-12 2009-11-11 Dowaエレクトロニクス株式会社 Method for producing copper powder
US20120201759A1 (en) * 2011-02-03 2012-08-09 Massachusetts Institute Of Technology Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures
JP2014152338A (en) * 2013-02-05 2014-08-25 Murata Mfg Co Ltd Nano-wire-provided fine particle and production method thereof
MY184948A (en) * 2015-09-07 2021-04-30 Hitachi Chemical Co Ltd Copper paste for joining, method for producing joined body, and method for producing semiconductor device
JP7005121B2 (en) * 2015-12-04 2022-01-21 昭和電工マテリアルズ株式会社 Copper paste for non-pressurized bonding, bonded bodies, and semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1021744A (en) * 1996-06-28 1998-01-23 Mitsuboshi Belting Ltd Copper conductor paste and substrate printed therewith
JP2011094236A (en) * 2010-12-07 2011-05-12 Dowa Holdings Co Ltd Copper powder for low temperature firing, or copper powder for conductive paste
JP2014167145A (en) 2013-02-28 2014-09-11 Osaka Univ Jointing material
JP2017074598A (en) 2015-10-14 2017-04-20 国立大学法人大阪大学 Low-temperature bonding method using copper particle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230037164A1 (en) * 2020-01-24 2023-02-02 Taiyo Nippon Sanso Corporation Bonding material, method for producing bonding material, and bonded body
WO2022030327A1 (en) * 2020-08-04 2022-02-10 石原ケミカル株式会社 Joining method, copper sintered body and copper paste
JP2022029194A (en) * 2020-08-04 2022-02-17 石原ケミカル株式会社 Joint method, copper sintered body and copper paste
JP7026739B2 (en) 2020-08-04 2022-02-28 石原ケミカル株式会社 Joining method, copper sintered body and copper paste
WO2023190450A1 (en) * 2022-03-30 2023-10-05 三井金属鉱業株式会社 Bonded body manufacturing method
JP2023152656A (en) * 2022-04-01 2023-10-17 ホジョンエイブル カンパニー リミテッド Copper sintering paste composition and method of preparing the same
JP7537777B2 (en) 2022-04-01 2024-08-21 ホジョンエイブル カンパニー リミテッド Copper sintering paste composition and method for producing same
WO2024142582A1 (en) * 2022-12-28 2024-07-04 三井金属鉱業株式会社 Joining composition and method for producing joined structure

Also Published As

Publication number Publication date
EP3778069A1 (en) 2021-02-17
TWI798404B (en) 2023-04-11
JP7220310B2 (en) 2023-02-09
JP2022046765A (en) 2022-03-23
EP3778069A4 (en) 2022-04-06
JPWO2019188511A1 (en) 2020-12-03
TW201942372A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
WO2019188511A1 (en) Copper paste, bonding method, and method for producing bonded body
JP6866893B2 (en) Copper paste for bonding, manufacturing method of bonded body and manufacturing method of semiconductor device
WO2017043545A1 (en) Copper paste for joining, method for producing joined body, and method for producing semiconductor device
TWI651149B (en) Metal bonding composition
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
JP6848549B2 (en) Copper paste for bonding and semiconductor devices
KR20170020861A (en) Multilayered metal nano and micron particles
JP2015004122A (en) Metal nanoparticle paste, bonding material containing the metal nanoparticle paste, and semiconductor device using the bonding material
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP6153076B2 (en) Metal nanoparticle paste, bonding material containing the same, and semiconductor device using the same
JP7476261B2 (en) Nanocopper pastes and films for sintered die attach and similar applications
JP5733638B2 (en) Bonding material and semiconductor device using the same, and wiring material and wiring for electronic element using the same
WO2019021637A1 (en) Method for producing metal bonded laminate
WO2020196299A1 (en) Metal paste, bonding method and method for producing bonded body
KR102459748B1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing bonded body using said paste-like metal particle aggregate composition
WO2020110271A1 (en) Method for producing bonded object and semiconductor device and copper bonding paste
EP4306234A1 (en) Sintering paste and method for producing a sintering paste
JP7463681B2 (en) Method for manufacturing joined body and joined body
JP7500943B2 (en) Metal paste for bonding, method for manufacturing bonded body, and bonded body
JP2018172764A (en) Metallic particle aggregate and method for producing the same, paste-like metallic particle composition, and method for producing conjugate
CN114845827A (en) Silver paste, method for producing same, and method for producing bonded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19775134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019775134

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019775134

Country of ref document: EP

Effective date: 20201029